Merge ../torvalds-2.6/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / sn / kernel / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
7 */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/kernel.h>
14 #include <linux/kdev_t.h>
15 #include <linux/string.h>
16 #include <linux/tty.h>
17 #include <linux/console.h>
18 #include <linux/timex.h>
19 #include <linux/sched.h>
20 #include <linux/ioport.h>
21 #include <linux/mm.h>
22 #include <linux/serial.h>
23 #include <linux/irq.h>
24 #include <linux/bootmem.h>
25 #include <linux/mmzone.h>
26 #include <linux/interrupt.h>
27 #include <linux/acpi.h>
28 #include <linux/compiler.h>
29 #include <linux/sched.h>
30 #include <linux/root_dev.h>
31 #include <linux/nodemask.h>
32 #include <linux/pm.h>
33
34 #include <asm/io.h>
35 #include <asm/sal.h>
36 #include <asm/machvec.h>
37 #include <asm/system.h>
38 #include <asm/processor.h>
39 #include <asm/vga.h>
40 #include <asm/sn/arch.h>
41 #include <asm/sn/addrs.h>
42 #include <asm/sn/pda.h>
43 #include <asm/sn/nodepda.h>
44 #include <asm/sn/sn_cpuid.h>
45 #include <asm/sn/simulator.h>
46 #include <asm/sn/leds.h>
47 #include <asm/sn/bte.h>
48 #include <asm/sn/shub_mmr.h>
49 #include <asm/sn/clksupport.h>
50 #include <asm/sn/sn_sal.h>
51 #include <asm/sn/geo.h>
52 #include <asm/sn/sn_feature_sets.h>
53 #include "xtalk/xwidgetdev.h"
54 #include "xtalk/hubdev.h"
55 #include <asm/sn/klconfig.h>
56
57
58 DEFINE_PER_CPU(struct pda_s, pda_percpu);
59
60 #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
61
62 lboard_t *root_lboard[MAX_COMPACT_NODES];
63
64 extern void bte_init_node(nodepda_t *, cnodeid_t);
65
66 extern void sn_timer_init(void);
67 extern unsigned long last_time_offset;
68 extern void (*ia64_mark_idle) (int);
69 extern void snidle(int);
70 extern unsigned char acpi_kbd_controller_present;
71
72 unsigned long sn_rtc_cycles_per_second;
73 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
74
75 DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
76 EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
77
78 DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
79 EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
80
81 DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
82 EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
83
84 char sn_system_serial_number_string[128];
85 EXPORT_SYMBOL(sn_system_serial_number_string);
86 u64 sn_partition_serial_number;
87 EXPORT_SYMBOL(sn_partition_serial_number);
88 u8 sn_partition_id;
89 EXPORT_SYMBOL(sn_partition_id);
90 u8 sn_system_size;
91 EXPORT_SYMBOL(sn_system_size);
92 u8 sn_sharing_domain_size;
93 EXPORT_SYMBOL(sn_sharing_domain_size);
94 u8 sn_coherency_id;
95 EXPORT_SYMBOL(sn_coherency_id);
96 u8 sn_region_size;
97 EXPORT_SYMBOL(sn_region_size);
98 int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
99
100 short physical_node_map[MAX_PHYSNODE_ID];
101 static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
102
103 EXPORT_SYMBOL(physical_node_map);
104
105 int numionodes;
106
107 static void sn_init_pdas(char **);
108 static void scan_for_ionodes(void);
109
110 static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
111
112 /*
113 * The format of "screen_info" is strange, and due to early i386-setup
114 * code. This is just enough to make the console code think we're on a
115 * VGA color display.
116 */
117 struct screen_info sn_screen_info = {
118 .orig_x = 0,
119 .orig_y = 0,
120 .orig_video_mode = 3,
121 .orig_video_cols = 80,
122 .orig_video_ega_bx = 3,
123 .orig_video_lines = 25,
124 .orig_video_isVGA = 1,
125 .orig_video_points = 16
126 };
127
128 /*
129 * This is here so we can use the CMOS detection in ide-probe.c to
130 * determine what drives are present. In theory, we don't need this
131 * as the auto-detection could be done via ide-probe.c:do_probe() but
132 * in practice that would be much slower, which is painful when
133 * running in the simulator. Note that passing zeroes in DRIVE_INFO
134 * is sufficient (the IDE driver will autodetect the drive geometry).
135 */
136 #ifdef CONFIG_IA64_GENERIC
137 extern char drive_info[4 * 16];
138 #else
139 char drive_info[4 * 16];
140 #endif
141
142 /*
143 * Get nasid of current cpu early in boot before nodepda is initialized
144 */
145 static int
146 boot_get_nasid(void)
147 {
148 int nasid;
149
150 if (ia64_sn_get_sapic_info(get_sapicid(), &nasid, NULL, NULL))
151 BUG();
152 return nasid;
153 }
154
155 /*
156 * This routine can only be used during init, since
157 * smp_boot_data is an init data structure.
158 * We have to use smp_boot_data.cpu_phys_id to find
159 * the physical id of the processor because the normal
160 * cpu_physical_id() relies on data structures that
161 * may not be initialized yet.
162 */
163
164 static int __init pxm_to_nasid(int pxm)
165 {
166 int i;
167 int nid;
168
169 nid = pxm_to_nid_map[pxm];
170 for (i = 0; i < num_node_memblks; i++) {
171 if (node_memblk[i].nid == nid) {
172 return NASID_GET(node_memblk[i].start_paddr);
173 }
174 }
175 return -1;
176 }
177
178 /**
179 * early_sn_setup - early setup routine for SN platforms
180 *
181 * Sets up an initial console to aid debugging. Intended primarily
182 * for bringup. See start_kernel() in init/main.c.
183 */
184
185 void __init early_sn_setup(void)
186 {
187 efi_system_table_t *efi_systab;
188 efi_config_table_t *config_tables;
189 struct ia64_sal_systab *sal_systab;
190 struct ia64_sal_desc_entry_point *ep;
191 char *p;
192 int i, j;
193
194 /*
195 * Parse enough of the SAL tables to locate the SAL entry point. Since, console
196 * IO on SN2 is done via SAL calls, early_printk won't work without this.
197 *
198 * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
199 * Any changes to those file may have to be made hereas well.
200 */
201 efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
202 config_tables = __va(efi_systab->tables);
203 for (i = 0; i < efi_systab->nr_tables; i++) {
204 if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
205 0) {
206 sal_systab = __va(config_tables[i].table);
207 p = (char *)(sal_systab + 1);
208 for (j = 0; j < sal_systab->entry_count; j++) {
209 if (*p == SAL_DESC_ENTRY_POINT) {
210 ep = (struct ia64_sal_desc_entry_point
211 *)p;
212 ia64_sal_handler_init(__va
213 (ep->sal_proc),
214 __va(ep->gp));
215 return;
216 }
217 p += SAL_DESC_SIZE(*p);
218 }
219 }
220 }
221 /* Uh-oh, SAL not available?? */
222 printk(KERN_ERR "failed to find SAL entry point\n");
223 }
224
225 extern int platform_intr_list[];
226 extern nasid_t master_nasid;
227 static int __initdata shub_1_1_found = 0;
228
229 /*
230 * sn_check_for_wars
231 *
232 * Set flag for enabling shub specific wars
233 */
234
235 static inline int __init is_shub_1_1(int nasid)
236 {
237 unsigned long id;
238 int rev;
239
240 if (is_shub2())
241 return 0;
242 id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
243 rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
244 return rev <= 2;
245 }
246
247 static void __init sn_check_for_wars(void)
248 {
249 int cnode;
250
251 if (is_shub2()) {
252 /* none yet */
253 } else {
254 for_each_online_node(cnode) {
255 if (is_shub_1_1(cnodeid_to_nasid(cnode)))
256 shub_1_1_found = 1;
257 }
258 }
259 }
260
261 /**
262 * sn_setup - SN platform setup routine
263 * @cmdline_p: kernel command line
264 *
265 * Handles platform setup for SN machines. This includes determining
266 * the RTC frequency (via a SAL call), initializing secondary CPUs, and
267 * setting up per-node data areas. The console is also initialized here.
268 */
269 void __init sn_setup(char **cmdline_p)
270 {
271 long status, ticks_per_sec, drift;
272 int pxm;
273 u32 version = sn_sal_rev();
274 extern void sn_cpu_init(void);
275
276 ia64_sn_plat_set_error_handling_features(); // obsolete
277 ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
278 ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
279
280
281 #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
282 /*
283 * If there was a primary vga adapter identified through the
284 * EFI PCDP table, make it the preferred console. Otherwise
285 * zero out conswitchp.
286 */
287
288 if (vga_console_membase) {
289 /* usable vga ... make tty0 the preferred default console */
290 add_preferred_console("tty", 0, NULL);
291 } else {
292 printk(KERN_DEBUG "SGI: Disabling VGA console\n");
293 #ifdef CONFIG_DUMMY_CONSOLE
294 conswitchp = &dummy_con;
295 #else
296 conswitchp = NULL;
297 #endif /* CONFIG_DUMMY_CONSOLE */
298 }
299 #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
300
301 MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
302
303 memset(physical_node_map, -1, sizeof(physical_node_map));
304 for (pxm = 0; pxm < MAX_PXM_DOMAINS; pxm++)
305 if (pxm_to_nid_map[pxm] != -1)
306 physical_node_map[pxm_to_nasid(pxm)] =
307 pxm_to_nid_map[pxm];
308
309 /*
310 * Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
311 * support here so we don't have to listen to failed keyboard probe
312 * messages.
313 */
314 if (version <= 0x0209 && acpi_kbd_controller_present) {
315 printk(KERN_INFO "Disabling legacy keyboard support as prom "
316 "is too old and doesn't provide FADT\n");
317 acpi_kbd_controller_present = 0;
318 }
319
320 printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
321
322 master_nasid = boot_get_nasid();
323
324 status =
325 ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
326 &drift);
327 if (status != 0 || ticks_per_sec < 100000) {
328 printk(KERN_WARNING
329 "unable to determine platform RTC clock frequency, guessing.\n");
330 /* PROM gives wrong value for clock freq. so guess */
331 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
332 } else
333 sn_rtc_cycles_per_second = ticks_per_sec;
334
335 platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
336
337 /*
338 * we set the default root device to /dev/hda
339 * to make simulation easy
340 */
341 ROOT_DEV = Root_HDA1;
342
343 /*
344 * Create the PDAs and NODEPDAs for all the cpus.
345 */
346 sn_init_pdas(cmdline_p);
347
348 ia64_mark_idle = &snidle;
349
350 /*
351 * For the bootcpu, we do this here. All other cpus will make the
352 * call as part of cpu_init in slave cpu initialization.
353 */
354 sn_cpu_init();
355
356 #ifdef CONFIG_SMP
357 init_smp_config();
358 #endif
359 screen_info = sn_screen_info;
360
361 sn_timer_init();
362
363 /*
364 * set pm_power_off to a SAL call to allow
365 * sn machines to power off. The SAL call can be replaced
366 * by an ACPI interface call when ACPI is fully implemented
367 * for sn.
368 */
369 pm_power_off = ia64_sn_power_down;
370 }
371
372 /**
373 * sn_init_pdas - setup node data areas
374 *
375 * One time setup for Node Data Area. Called by sn_setup().
376 */
377 static void __init sn_init_pdas(char **cmdline_p)
378 {
379 cnodeid_t cnode;
380
381 memset(sn_cnodeid_to_nasid, -1,
382 sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
383 for_each_online_node(cnode)
384 sn_cnodeid_to_nasid[cnode] =
385 pxm_to_nasid(nid_to_pxm_map[cnode]);
386
387 numionodes = num_online_nodes();
388 scan_for_ionodes();
389
390 /*
391 * Allocate & initalize the nodepda for each node.
392 */
393 for_each_online_node(cnode) {
394 nodepdaindr[cnode] =
395 alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
396 memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
397 memset(nodepdaindr[cnode]->phys_cpuid, -1,
398 sizeof(nodepdaindr[cnode]->phys_cpuid));
399 spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
400 }
401
402 /*
403 * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
404 */
405 for (cnode = num_online_nodes(); cnode < numionodes; cnode++) {
406 nodepdaindr[cnode] =
407 alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
408 memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
409 }
410
411 /*
412 * Now copy the array of nodepda pointers to each nodepda.
413 */
414 for (cnode = 0; cnode < numionodes; cnode++)
415 memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
416 sizeof(nodepdaindr));
417
418 /*
419 * Set up IO related platform-dependent nodepda fields.
420 * The following routine actually sets up the hubinfo struct
421 * in nodepda.
422 */
423 for_each_online_node(cnode) {
424 bte_init_node(nodepdaindr[cnode], cnode);
425 }
426
427 /*
428 * Initialize the per node hubdev. This includes IO Nodes and
429 * headless/memless nodes.
430 */
431 for (cnode = 0; cnode < numionodes; cnode++) {
432 hubdev_init_node(nodepdaindr[cnode], cnode);
433 }
434 }
435
436 /**
437 * sn_cpu_init - initialize per-cpu data areas
438 * @cpuid: cpuid of the caller
439 *
440 * Called during cpu initialization on each cpu as it starts.
441 * Currently, initializes the per-cpu data area for SNIA.
442 * Also sets up a few fields in the nodepda. Also known as
443 * platform_cpu_init() by the ia64 machvec code.
444 */
445 void __init sn_cpu_init(void)
446 {
447 int cpuid;
448 int cpuphyid;
449 int nasid;
450 int subnode;
451 int slice;
452 int cnode;
453 int i;
454 static int wars_have_been_checked;
455
456 if (smp_processor_id() == 0 && IS_MEDUSA()) {
457 if (ia64_sn_is_fake_prom())
458 sn_prom_type = 2;
459 else
460 sn_prom_type = 1;
461 printk("Running on medusa with %s PROM\n", (sn_prom_type == 1) ? "real" : "fake");
462 }
463
464 memset(pda, 0, sizeof(pda));
465 if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, &sn_hub_info->nasid_bitmask, &sn_hub_info->nasid_shift,
466 &sn_system_size, &sn_sharing_domain_size, &sn_partition_id,
467 &sn_coherency_id, &sn_region_size))
468 BUG();
469 sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
470
471 /*
472 * The boot cpu makes this call again after platform initialization is
473 * complete.
474 */
475 if (nodepdaindr[0] == NULL)
476 return;
477
478 for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
479 if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
480 break;
481
482 cpuid = smp_processor_id();
483 cpuphyid = get_sapicid();
484
485 if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
486 BUG();
487
488 for (i=0; i < MAX_NUMNODES; i++) {
489 if (nodepdaindr[i]) {
490 nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
491 nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
492 nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
493 }
494 }
495
496 cnode = nasid_to_cnodeid(nasid);
497
498 sn_nodepda = nodepdaindr[cnode];
499
500 pda->led_address =
501 (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
502 pda->led_state = LED_ALWAYS_SET;
503 pda->hb_count = HZ / 2;
504 pda->hb_state = 0;
505 pda->idle_flag = 0;
506
507 if (cpuid != 0) {
508 /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
509 memcpy(sn_cnodeid_to_nasid,
510 (&per_cpu(__sn_cnodeid_to_nasid, 0)),
511 sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
512 }
513
514 /*
515 * Check for WARs.
516 * Only needs to be done once, on BSP.
517 * Has to be done after loop above, because it uses this cpu's
518 * sn_cnodeid_to_nasid table which was just initialized if this
519 * isn't cpu 0.
520 * Has to be done before assignment below.
521 */
522 if (!wars_have_been_checked) {
523 sn_check_for_wars();
524 wars_have_been_checked = 1;
525 }
526 sn_hub_info->shub_1_1_found = shub_1_1_found;
527
528 /*
529 * Set up addresses of PIO/MEM write status registers.
530 */
531 {
532 u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
533 u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
534 SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
535 u64 *pio;
536 pio = is_shub1() ? pio1 : pio2;
537 pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
538 pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
539 }
540
541 /*
542 * WAR addresses for SHUB 1.x.
543 */
544 if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
545 int buddy_nasid;
546 buddy_nasid =
547 cnodeid_to_nasid(numa_node_id() ==
548 num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
549 pda->pio_shub_war_cam_addr =
550 (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
551 SH1_PI_CAM_CONTROL);
552 }
553 }
554
555 /*
556 * Scan klconfig for ionodes. Add the nasids to the
557 * physical_node_map and the pda and increment numionodes.
558 */
559
560 static void __init scan_for_ionodes(void)
561 {
562 int nasid = 0;
563 lboard_t *brd;
564
565 /* fakeprom does not support klgraph */
566 if (IS_RUNNING_ON_FAKE_PROM())
567 return;
568
569 /* Setup ionodes with memory */
570 for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
571 char *klgraph_header;
572 cnodeid_t cnodeid;
573
574 if (physical_node_map[nasid] == -1)
575 continue;
576
577 cnodeid = -1;
578 klgraph_header = __va(ia64_sn_get_klconfig_addr(nasid));
579 if (!klgraph_header) {
580 BUG(); /* All nodes must have klconfig tables! */
581 }
582 cnodeid = nasid_to_cnodeid(nasid);
583 root_lboard[cnodeid] = (lboard_t *)
584 NODE_OFFSET_TO_LBOARD((nasid),
585 ((kl_config_hdr_t
586 *) (klgraph_header))->
587 ch_board_info);
588 }
589
590 /* Scan headless/memless IO Nodes. */
591 for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
592 /* if there's no nasid, don't try to read the klconfig on the node */
593 if (physical_node_map[nasid] == -1)
594 continue;
595 brd = find_lboard_any((lboard_t *)
596 root_lboard[nasid_to_cnodeid(nasid)],
597 KLTYPE_SNIA);
598 if (brd) {
599 brd = KLCF_NEXT_ANY(brd); /* Skip this node's lboard */
600 if (!brd)
601 continue;
602 }
603
604 brd = find_lboard_any(brd, KLTYPE_SNIA);
605
606 while (brd) {
607 sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
608 physical_node_map[brd->brd_nasid] = numionodes;
609 root_lboard[numionodes] = brd;
610 numionodes++;
611 brd = KLCF_NEXT_ANY(brd);
612 if (!brd)
613 break;
614
615 brd = find_lboard_any(brd, KLTYPE_SNIA);
616 }
617 }
618
619 /* Scan for TIO nodes. */
620 for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
621 /* if there's no nasid, don't try to read the klconfig on the node */
622 if (physical_node_map[nasid] == -1)
623 continue;
624 brd = find_lboard_any((lboard_t *)
625 root_lboard[nasid_to_cnodeid(nasid)],
626 KLTYPE_TIO);
627 while (brd) {
628 sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
629 physical_node_map[brd->brd_nasid] = numionodes;
630 root_lboard[numionodes] = brd;
631 numionodes++;
632 brd = KLCF_NEXT_ANY(brd);
633 if (!brd)
634 break;
635
636 brd = find_lboard_any(brd, KLTYPE_TIO);
637 }
638 }
639 }
640
641 int
642 nasid_slice_to_cpuid(int nasid, int slice)
643 {
644 long cpu;
645
646 for (cpu=0; cpu < NR_CPUS; cpu++)
647 if (cpuid_to_nasid(cpu) == nasid &&
648 cpuid_to_slice(cpu) == slice)
649 return cpu;
650
651 return -1;
652 }
653
654 int sn_prom_feature_available(int id)
655 {
656 if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
657 return 0;
658 return test_bit(id, sn_prom_features);
659 }
660 EXPORT_SYMBOL(sn_prom_feature_available);
661