resource/PCI: align functions now return start of resource
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23
24 #include <asm/machvec.h>
25 #include <asm/page.h>
26 #include <asm/system.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32
33 /*
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
37 */
38
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41
42 /* SAL 3.2 adds support for extended config space. */
43
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
49 {
50 u64 addr, data = 0;
51 int mode, result;
52
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
55
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
62 } else {
63 return -EINVAL;
64 }
65
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 if (result != 0)
68 return -EINVAL;
69
70 *value = (u32) data;
71 return 0;
72 }
73
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 int reg, int len, u32 value)
76 {
77 u64 addr;
78 int mode, result;
79
80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 return -EINVAL;
82
83 if ((seg | reg) <= 255) {
84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 mode = 0;
86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 mode = 1;
89 } else {
90 return -EINVAL;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 int size, u32 *value)
100 {
101 return raw_pci_read(pci_domain_nr(bus), bus->number,
102 devfn, where, size, value);
103 }
104
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 int size, u32 value)
107 {
108 return raw_pci_write(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 struct pci_ops pci_root_ops = {
113 .read = pci_read,
114 .write = pci_write,
115 };
116
117 /* Called by ACPI when it finds a new root bus. */
118
119 static struct pci_controller * __devinit
120 alloc_pci_controller (int seg)
121 {
122 struct pci_controller *controller;
123
124 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 if (!controller)
126 return NULL;
127
128 controller->segment = seg;
129 controller->node = -1;
130 return controller;
131 }
132
133 struct pci_root_info {
134 struct acpi_device *bridge;
135 struct pci_controller *controller;
136 char *name;
137 };
138
139 static unsigned int
140 new_space (u64 phys_base, int sparse)
141 {
142 u64 mmio_base;
143 int i;
144
145 if (phys_base == 0)
146 return 0; /* legacy I/O port space */
147
148 mmio_base = (u64) ioremap(phys_base, 0);
149 for (i = 0; i < num_io_spaces; i++)
150 if (io_space[i].mmio_base == mmio_base &&
151 io_space[i].sparse == sparse)
152 return i;
153
154 if (num_io_spaces == MAX_IO_SPACES) {
155 printk(KERN_ERR "PCI: Too many IO port spaces "
156 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157 return ~0;
158 }
159
160 i = num_io_spaces++;
161 io_space[i].mmio_base = mmio_base;
162 io_space[i].sparse = sparse;
163
164 return i;
165 }
166
167 static u64 __devinit
168 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
169 {
170 struct resource *resource;
171 char *name;
172 unsigned long base, min, max, base_port;
173 unsigned int sparse = 0, space_nr, len;
174
175 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176 if (!resource) {
177 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178 info->name);
179 goto out;
180 }
181
182 len = strlen(info->name) + 32;
183 name = kzalloc(len, GFP_KERNEL);
184 if (!name) {
185 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186 info->name);
187 goto free_resource;
188 }
189
190 min = addr->minimum;
191 max = min + addr->address_length - 1;
192 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193 sparse = 1;
194
195 space_nr = new_space(addr->translation_offset, sparse);
196 if (space_nr == ~0)
197 goto free_name;
198
199 base = __pa(io_space[space_nr].mmio_base);
200 base_port = IO_SPACE_BASE(space_nr);
201 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202 base_port + min, base_port + max);
203
204 /*
205 * The SDM guarantees the legacy 0-64K space is sparse, but if the
206 * mapping is done by the processor (not the bridge), ACPI may not
207 * mark it as sparse.
208 */
209 if (space_nr == 0)
210 sparse = 1;
211
212 resource->name = name;
213 resource->flags = IORESOURCE_MEM;
214 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216 insert_resource(&iomem_resource, resource);
217
218 return base_port;
219
220 free_name:
221 kfree(name);
222 free_resource:
223 kfree(resource);
224 out:
225 return ~0;
226 }
227
228 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
229 struct acpi_resource_address64 *addr)
230 {
231 acpi_status status;
232
233 /*
234 * We're only interested in _CRS descriptors that are
235 * - address space descriptors for memory or I/O space
236 * - non-zero size
237 * - producers, i.e., the address space is routed downstream,
238 * not consumed by the bridge itself
239 */
240 status = acpi_resource_to_address64(resource, addr);
241 if (ACPI_SUCCESS(status) &&
242 (addr->resource_type == ACPI_MEMORY_RANGE ||
243 addr->resource_type == ACPI_IO_RANGE) &&
244 addr->address_length &&
245 addr->producer_consumer == ACPI_PRODUCER)
246 return AE_OK;
247
248 return AE_ERROR;
249 }
250
251 static acpi_status __devinit
252 count_window (struct acpi_resource *resource, void *data)
253 {
254 unsigned int *windows = (unsigned int *) data;
255 struct acpi_resource_address64 addr;
256 acpi_status status;
257
258 status = resource_to_window(resource, &addr);
259 if (ACPI_SUCCESS(status))
260 (*windows)++;
261
262 return AE_OK;
263 }
264
265 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
266 {
267 struct pci_root_info *info = data;
268 struct pci_window *window;
269 struct acpi_resource_address64 addr;
270 acpi_status status;
271 unsigned long flags, offset = 0;
272 struct resource *root;
273
274 /* Return AE_OK for non-window resources to keep scanning for more */
275 status = resource_to_window(res, &addr);
276 if (!ACPI_SUCCESS(status))
277 return AE_OK;
278
279 if (addr.resource_type == ACPI_MEMORY_RANGE) {
280 flags = IORESOURCE_MEM;
281 root = &iomem_resource;
282 offset = addr.translation_offset;
283 } else if (addr.resource_type == ACPI_IO_RANGE) {
284 flags = IORESOURCE_IO;
285 root = &ioport_resource;
286 offset = add_io_space(info, &addr);
287 if (offset == ~0)
288 return AE_OK;
289 } else
290 return AE_OK;
291
292 window = &info->controller->window[info->controller->windows++];
293 window->resource.name = info->name;
294 window->resource.flags = flags;
295 window->resource.start = addr.minimum + offset;
296 window->resource.end = window->resource.start + addr.address_length - 1;
297 window->resource.child = NULL;
298 window->offset = offset;
299
300 if (insert_resource(root, &window->resource)) {
301 dev_err(&info->bridge->dev,
302 "can't allocate host bridge window %pR\n",
303 &window->resource);
304 } else {
305 if (offset)
306 dev_info(&info->bridge->dev, "host bridge window %pR "
307 "(PCI address [%#llx-%#llx])\n",
308 &window->resource,
309 window->resource.start - offset,
310 window->resource.end - offset);
311 else
312 dev_info(&info->bridge->dev,
313 "host bridge window %pR\n",
314 &window->resource);
315 }
316
317 return AE_OK;
318 }
319
320 static void __devinit
321 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
322 {
323 int i, j;
324
325 j = 0;
326 for (i = 0; i < ctrl->windows; i++) {
327 struct resource *res = &ctrl->window[i].resource;
328 /* HP's firmware has a hack to work around a Windows bug.
329 * Ignore these tiny memory ranges */
330 if ((res->flags & IORESOURCE_MEM) &&
331 (res->end - res->start < 16))
332 continue;
333 if (j >= PCI_BUS_NUM_RESOURCES) {
334 dev_warn(&bus->dev,
335 "ignoring host bridge window %pR (no space)\n",
336 res);
337 continue;
338 }
339 bus->resource[j++] = res;
340 }
341 }
342
343 struct pci_bus * __devinit
344 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
345 {
346 struct pci_controller *controller;
347 unsigned int windows = 0;
348 struct pci_bus *pbus;
349 char *name;
350 int pxm;
351
352 controller = alloc_pci_controller(domain);
353 if (!controller)
354 goto out1;
355
356 controller->acpi_handle = device->handle;
357
358 pxm = acpi_get_pxm(controller->acpi_handle);
359 #ifdef CONFIG_NUMA
360 if (pxm >= 0)
361 controller->node = pxm_to_node(pxm);
362 #endif
363
364 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
365 &windows);
366 if (windows) {
367 struct pci_root_info info;
368
369 controller->window =
370 kmalloc_node(sizeof(*controller->window) * windows,
371 GFP_KERNEL, controller->node);
372 if (!controller->window)
373 goto out2;
374
375 name = kmalloc(16, GFP_KERNEL);
376 if (!name)
377 goto out3;
378
379 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
380 info.bridge = device;
381 info.controller = controller;
382 info.name = name;
383 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
384 add_window, &info);
385 }
386 /*
387 * See arch/x86/pci/acpi.c.
388 * The desired pci bus might already be scanned in a quirk. We
389 * should handle the case here, but it appears that IA64 hasn't
390 * such quirk. So we just ignore the case now.
391 */
392 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
393
394 return pbus;
395
396 out3:
397 kfree(controller->window);
398 out2:
399 kfree(controller);
400 out1:
401 return NULL;
402 }
403
404 void pcibios_resource_to_bus(struct pci_dev *dev,
405 struct pci_bus_region *region, struct resource *res)
406 {
407 struct pci_controller *controller = PCI_CONTROLLER(dev);
408 unsigned long offset = 0;
409 int i;
410
411 for (i = 0; i < controller->windows; i++) {
412 struct pci_window *window = &controller->window[i];
413 if (!(window->resource.flags & res->flags))
414 continue;
415 if (window->resource.start > res->start)
416 continue;
417 if (window->resource.end < res->end)
418 continue;
419 offset = window->offset;
420 break;
421 }
422
423 region->start = res->start - offset;
424 region->end = res->end - offset;
425 }
426 EXPORT_SYMBOL(pcibios_resource_to_bus);
427
428 void pcibios_bus_to_resource(struct pci_dev *dev,
429 struct resource *res, struct pci_bus_region *region)
430 {
431 struct pci_controller *controller = PCI_CONTROLLER(dev);
432 unsigned long offset = 0;
433 int i;
434
435 for (i = 0; i < controller->windows; i++) {
436 struct pci_window *window = &controller->window[i];
437 if (!(window->resource.flags & res->flags))
438 continue;
439 if (window->resource.start - window->offset > region->start)
440 continue;
441 if (window->resource.end - window->offset < region->end)
442 continue;
443 offset = window->offset;
444 break;
445 }
446
447 res->start = region->start + offset;
448 res->end = region->end + offset;
449 }
450 EXPORT_SYMBOL(pcibios_bus_to_resource);
451
452 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
453 {
454 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
455 struct resource *devr = &dev->resource[idx];
456
457 if (!dev->bus)
458 return 0;
459 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
460 struct resource *busr = dev->bus->resource[i];
461
462 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
463 continue;
464 if ((devr->start) && (devr->start >= busr->start) &&
465 (devr->end <= busr->end))
466 return 1;
467 }
468 return 0;
469 }
470
471 static void __devinit
472 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
473 {
474 struct pci_bus_region region;
475 int i;
476
477 for (i = start; i < limit; i++) {
478 if (!dev->resource[i].flags)
479 continue;
480 region.start = dev->resource[i].start;
481 region.end = dev->resource[i].end;
482 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
483 if ((is_valid_resource(dev, i)))
484 pci_claim_resource(dev, i);
485 }
486 }
487
488 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
489 {
490 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
491 }
492 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
493
494 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
495 {
496 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
497 }
498
499 /*
500 * Called after each bus is probed, but before its children are examined.
501 */
502 void __devinit
503 pcibios_fixup_bus (struct pci_bus *b)
504 {
505 struct pci_dev *dev;
506
507 if (b->self) {
508 pci_read_bridge_bases(b);
509 pcibios_fixup_bridge_resources(b->self);
510 } else {
511 pcibios_setup_root_windows(b, b->sysdata);
512 }
513 list_for_each_entry(dev, &b->devices, bus_list)
514 pcibios_fixup_device_resources(dev);
515 platform_pci_fixup_bus(b);
516
517 return;
518 }
519
520 void __devinit
521 pcibios_update_irq (struct pci_dev *dev, int irq)
522 {
523 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
524
525 /* ??? FIXME -- record old value for shutdown. */
526 }
527
528 int
529 pcibios_enable_device (struct pci_dev *dev, int mask)
530 {
531 int ret;
532
533 ret = pci_enable_resources(dev, mask);
534 if (ret < 0)
535 return ret;
536
537 if (!dev->msi_enabled)
538 return acpi_pci_irq_enable(dev);
539 return 0;
540 }
541
542 void
543 pcibios_disable_device (struct pci_dev *dev)
544 {
545 BUG_ON(atomic_read(&dev->enable_cnt));
546 if (!dev->msi_enabled)
547 acpi_pci_irq_disable(dev);
548 }
549
550 resource_size_t
551 pcibios_align_resource (void *data, struct resource *res,
552 resource_size_t size, resource_size_t align)
553 {
554 return res->start;
555 }
556
557 /*
558 * PCI BIOS setup, always defaults to SAL interface
559 */
560 char * __init
561 pcibios_setup (char *str)
562 {
563 return str;
564 }
565
566 int
567 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
568 enum pci_mmap_state mmap_state, int write_combine)
569 {
570 unsigned long size = vma->vm_end - vma->vm_start;
571 pgprot_t prot;
572
573 /*
574 * I/O space cannot be accessed via normal processor loads and
575 * stores on this platform.
576 */
577 if (mmap_state == pci_mmap_io)
578 /*
579 * XXX we could relax this for I/O spaces for which ACPI
580 * indicates that the space is 1-to-1 mapped. But at the
581 * moment, we don't support multiple PCI address spaces and
582 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
583 */
584 return -EINVAL;
585
586 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
587 return -EINVAL;
588
589 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
590 vma->vm_page_prot);
591
592 /*
593 * If the user requested WC, the kernel uses UC or WC for this region,
594 * and the chipset supports WC, we can use WC. Otherwise, we have to
595 * use the same attribute the kernel uses.
596 */
597 if (write_combine &&
598 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
599 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
600 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
601 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
602 else
603 vma->vm_page_prot = prot;
604
605 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
606 vma->vm_end - vma->vm_start, vma->vm_page_prot))
607 return -EAGAIN;
608
609 return 0;
610 }
611
612 /**
613 * ia64_pci_get_legacy_mem - generic legacy mem routine
614 * @bus: bus to get legacy memory base address for
615 *
616 * Find the base of legacy memory for @bus. This is typically the first
617 * megabyte of bus address space for @bus or is simply 0 on platforms whose
618 * chipsets support legacy I/O and memory routing. Returns the base address
619 * or an error pointer if an error occurred.
620 *
621 * This is the ia64 generic version of this routine. Other platforms
622 * are free to override it with a machine vector.
623 */
624 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
625 {
626 return (char *)__IA64_UNCACHED_OFFSET;
627 }
628
629 /**
630 * pci_mmap_legacy_page_range - map legacy memory space to userland
631 * @bus: bus whose legacy space we're mapping
632 * @vma: vma passed in by mmap
633 *
634 * Map legacy memory space for this device back to userspace using a machine
635 * vector to get the base address.
636 */
637 int
638 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
639 enum pci_mmap_state mmap_state)
640 {
641 unsigned long size = vma->vm_end - vma->vm_start;
642 pgprot_t prot;
643 char *addr;
644
645 /* We only support mmap'ing of legacy memory space */
646 if (mmap_state != pci_mmap_mem)
647 return -ENOSYS;
648
649 /*
650 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
651 * for more details.
652 */
653 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
654 return -EINVAL;
655 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
656 vma->vm_page_prot);
657
658 addr = pci_get_legacy_mem(bus);
659 if (IS_ERR(addr))
660 return PTR_ERR(addr);
661
662 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
663 vma->vm_page_prot = prot;
664
665 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
666 size, vma->vm_page_prot))
667 return -EAGAIN;
668
669 return 0;
670 }
671
672 /**
673 * ia64_pci_legacy_read - read from legacy I/O space
674 * @bus: bus to read
675 * @port: legacy port value
676 * @val: caller allocated storage for returned value
677 * @size: number of bytes to read
678 *
679 * Simply reads @size bytes from @port and puts the result in @val.
680 *
681 * Again, this (and the write routine) are generic versions that can be
682 * overridden by the platform. This is necessary on platforms that don't
683 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
684 */
685 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
686 {
687 int ret = size;
688
689 switch (size) {
690 case 1:
691 *val = inb(port);
692 break;
693 case 2:
694 *val = inw(port);
695 break;
696 case 4:
697 *val = inl(port);
698 break;
699 default:
700 ret = -EINVAL;
701 break;
702 }
703
704 return ret;
705 }
706
707 /**
708 * ia64_pci_legacy_write - perform a legacy I/O write
709 * @bus: bus pointer
710 * @port: port to write
711 * @val: value to write
712 * @size: number of bytes to write from @val
713 *
714 * Simply writes @size bytes of @val to @port.
715 */
716 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
717 {
718 int ret = size;
719
720 switch (size) {
721 case 1:
722 outb(val, port);
723 break;
724 case 2:
725 outw(val, port);
726 break;
727 case 4:
728 outl(val, port);
729 break;
730 default:
731 ret = -EINVAL;
732 break;
733 }
734
735 return ret;
736 }
737
738 /**
739 * set_pci_cacheline_size - determine cacheline size for PCI devices
740 *
741 * We want to use the line-size of the outer-most cache. We assume
742 * that this line-size is the same for all CPUs.
743 *
744 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
745 */
746 static void __init set_pci_dfl_cacheline_size(void)
747 {
748 unsigned long levels, unique_caches;
749 long status;
750 pal_cache_config_info_t cci;
751
752 status = ia64_pal_cache_summary(&levels, &unique_caches);
753 if (status != 0) {
754 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
755 "(status=%ld)\n", __func__, status);
756 return;
757 }
758
759 status = ia64_pal_cache_config_info(levels - 1,
760 /* cache_type (data_or_unified)= */ 2, &cci);
761 if (status != 0) {
762 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
763 "(status=%ld)\n", __func__, status);
764 return;
765 }
766 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
767 }
768
769 u64 ia64_dma_get_required_mask(struct device *dev)
770 {
771 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
772 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
773 u64 mask;
774
775 if (!high_totalram) {
776 /* convert to mask just covering totalram */
777 low_totalram = (1 << (fls(low_totalram) - 1));
778 low_totalram += low_totalram - 1;
779 mask = low_totalram;
780 } else {
781 high_totalram = (1 << (fls(high_totalram) - 1));
782 high_totalram += high_totalram - 1;
783 mask = (((u64)high_totalram) << 32) + 0xffffffff;
784 }
785 return mask;
786 }
787 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
788
789 u64 dma_get_required_mask(struct device *dev)
790 {
791 return platform_dma_get_required_mask(dev);
792 }
793 EXPORT_SYMBOL_GPL(dma_get_required_mask);
794
795 static int __init pcibios_init(void)
796 {
797 set_pci_dfl_cacheline_size();
798 return 0;
799 }
800
801 subsys_initcall(pcibios_init);