ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32
33 /*
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
37 */
38
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41
42 /* SAL 3.2 adds support for extended config space. */
43
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
49 {
50 u64 addr, data = 0;
51 int mode, result;
52
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
55
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
62 } else {
63 return -EINVAL;
64 }
65
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 if (result != 0)
68 return -EINVAL;
69
70 *value = (u32) data;
71 return 0;
72 }
73
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 int reg, int len, u32 value)
76 {
77 u64 addr;
78 int mode, result;
79
80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 return -EINVAL;
82
83 if ((seg | reg) <= 255) {
84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 mode = 0;
86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 mode = 1;
89 } else {
90 return -EINVAL;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 int size, u32 *value)
100 {
101 return raw_pci_read(pci_domain_nr(bus), bus->number,
102 devfn, where, size, value);
103 }
104
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 int size, u32 value)
107 {
108 return raw_pci_write(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 struct pci_ops pci_root_ops = {
113 .read = pci_read,
114 .write = pci_write,
115 };
116
117 /* Called by ACPI when it finds a new root bus. */
118
119 static struct pci_controller * __devinit
120 alloc_pci_controller (int seg)
121 {
122 struct pci_controller *controller;
123
124 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 if (!controller)
126 return NULL;
127
128 controller->segment = seg;
129 controller->node = -1;
130 return controller;
131 }
132
133 struct pci_root_info {
134 struct acpi_device *bridge;
135 struct pci_controller *controller;
136 struct list_head resources;
137 char *name;
138 };
139
140 static unsigned int
141 new_space (u64 phys_base, int sparse)
142 {
143 u64 mmio_base;
144 int i;
145
146 if (phys_base == 0)
147 return 0; /* legacy I/O port space */
148
149 mmio_base = (u64) ioremap(phys_base, 0);
150 for (i = 0; i < num_io_spaces; i++)
151 if (io_space[i].mmio_base == mmio_base &&
152 io_space[i].sparse == sparse)
153 return i;
154
155 if (num_io_spaces == MAX_IO_SPACES) {
156 printk(KERN_ERR "PCI: Too many IO port spaces "
157 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
158 return ~0;
159 }
160
161 i = num_io_spaces++;
162 io_space[i].mmio_base = mmio_base;
163 io_space[i].sparse = sparse;
164
165 return i;
166 }
167
168 static u64 __devinit
169 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
170 {
171 struct resource *resource;
172 char *name;
173 unsigned long base, min, max, base_port;
174 unsigned int sparse = 0, space_nr, len;
175
176 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
177 if (!resource) {
178 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
179 info->name);
180 goto out;
181 }
182
183 len = strlen(info->name) + 32;
184 name = kzalloc(len, GFP_KERNEL);
185 if (!name) {
186 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
187 info->name);
188 goto free_resource;
189 }
190
191 min = addr->minimum;
192 max = min + addr->address_length - 1;
193 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194 sparse = 1;
195
196 space_nr = new_space(addr->translation_offset, sparse);
197 if (space_nr == ~0)
198 goto free_name;
199
200 base = __pa(io_space[space_nr].mmio_base);
201 base_port = IO_SPACE_BASE(space_nr);
202 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203 base_port + min, base_port + max);
204
205 /*
206 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207 * mapping is done by the processor (not the bridge), ACPI may not
208 * mark it as sparse.
209 */
210 if (space_nr == 0)
211 sparse = 1;
212
213 resource->name = name;
214 resource->flags = IORESOURCE_MEM;
215 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
216 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
217 insert_resource(&iomem_resource, resource);
218
219 return base_port;
220
221 free_name:
222 kfree(name);
223 free_resource:
224 kfree(resource);
225 out:
226 return ~0;
227 }
228
229 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
230 struct acpi_resource_address64 *addr)
231 {
232 acpi_status status;
233
234 /*
235 * We're only interested in _CRS descriptors that are
236 * - address space descriptors for memory or I/O space
237 * - non-zero size
238 * - producers, i.e., the address space is routed downstream,
239 * not consumed by the bridge itself
240 */
241 status = acpi_resource_to_address64(resource, addr);
242 if (ACPI_SUCCESS(status) &&
243 (addr->resource_type == ACPI_MEMORY_RANGE ||
244 addr->resource_type == ACPI_IO_RANGE) &&
245 addr->address_length &&
246 addr->producer_consumer == ACPI_PRODUCER)
247 return AE_OK;
248
249 return AE_ERROR;
250 }
251
252 static acpi_status __devinit
253 count_window (struct acpi_resource *resource, void *data)
254 {
255 unsigned int *windows = (unsigned int *) data;
256 struct acpi_resource_address64 addr;
257 acpi_status status;
258
259 status = resource_to_window(resource, &addr);
260 if (ACPI_SUCCESS(status))
261 (*windows)++;
262
263 return AE_OK;
264 }
265
266 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
267 {
268 struct pci_root_info *info = data;
269 struct pci_window *window;
270 struct acpi_resource_address64 addr;
271 acpi_status status;
272 unsigned long flags, offset = 0;
273 struct resource *root;
274
275 /* Return AE_OK for non-window resources to keep scanning for more */
276 status = resource_to_window(res, &addr);
277 if (!ACPI_SUCCESS(status))
278 return AE_OK;
279
280 if (addr.resource_type == ACPI_MEMORY_RANGE) {
281 flags = IORESOURCE_MEM;
282 root = &iomem_resource;
283 offset = addr.translation_offset;
284 } else if (addr.resource_type == ACPI_IO_RANGE) {
285 flags = IORESOURCE_IO;
286 root = &ioport_resource;
287 offset = add_io_space(info, &addr);
288 if (offset == ~0)
289 return AE_OK;
290 } else
291 return AE_OK;
292
293 window = &info->controller->window[info->controller->windows++];
294 window->resource.name = info->name;
295 window->resource.flags = flags;
296 window->resource.start = addr.minimum + offset;
297 window->resource.end = window->resource.start + addr.address_length - 1;
298 window->offset = offset;
299
300 if (insert_resource(root, &window->resource)) {
301 dev_err(&info->bridge->dev,
302 "can't allocate host bridge window %pR\n",
303 &window->resource);
304 } else {
305 if (offset)
306 dev_info(&info->bridge->dev, "host bridge window %pR "
307 "(PCI address [%#llx-%#llx])\n",
308 &window->resource,
309 window->resource.start - offset,
310 window->resource.end - offset);
311 else
312 dev_info(&info->bridge->dev,
313 "host bridge window %pR\n",
314 &window->resource);
315 }
316
317 /* HP's firmware has a hack to work around a Windows bug.
318 * Ignore these tiny memory ranges */
319 if (!((window->resource.flags & IORESOURCE_MEM) &&
320 (window->resource.end - window->resource.start < 16)))
321 pci_add_resource_offset(&info->resources, &window->resource,
322 window->offset);
323
324 return AE_OK;
325 }
326
327 struct pci_bus * __devinit
328 pci_acpi_scan_root(struct acpi_pci_root *root)
329 {
330 struct acpi_device *device = root->device;
331 int domain = root->segment;
332 int bus = root->secondary.start;
333 struct pci_controller *controller;
334 unsigned int windows = 0;
335 struct pci_root_info info;
336 struct pci_bus *pbus;
337 char *name;
338 int pxm;
339
340 controller = alloc_pci_controller(domain);
341 if (!controller)
342 goto out1;
343
344 controller->acpi_handle = device->handle;
345
346 pxm = acpi_get_pxm(controller->acpi_handle);
347 #ifdef CONFIG_NUMA
348 if (pxm >= 0)
349 controller->node = pxm_to_node(pxm);
350 #endif
351
352 INIT_LIST_HEAD(&info.resources);
353 /* insert busn resource at first */
354 pci_add_resource(&info.resources, &root->secondary);
355 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
356 &windows);
357 if (windows) {
358 controller->window =
359 kzalloc_node(sizeof(*controller->window) * windows,
360 GFP_KERNEL, controller->node);
361 if (!controller->window)
362 goto out2;
363
364 name = kmalloc(16, GFP_KERNEL);
365 if (!name)
366 goto out3;
367
368 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
369 info.bridge = device;
370 info.controller = controller;
371 info.name = name;
372 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
373 add_window, &info);
374 }
375 /*
376 * See arch/x86/pci/acpi.c.
377 * The desired pci bus might already be scanned in a quirk. We
378 * should handle the case here, but it appears that IA64 hasn't
379 * such quirk. So we just ignore the case now.
380 */
381 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
382 &info.resources);
383 if (!pbus) {
384 pci_free_resource_list(&info.resources);
385 return NULL;
386 }
387
388 pci_scan_child_bus(pbus);
389 return pbus;
390
391 out3:
392 kfree(controller->window);
393 out2:
394 kfree(controller);
395 out1:
396 return NULL;
397 }
398
399 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
400 {
401 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
402 struct resource *devr = &dev->resource[idx], *busr;
403
404 if (!dev->bus)
405 return 0;
406
407 pci_bus_for_each_resource(dev->bus, busr, i) {
408 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
409 continue;
410 if ((devr->start) && (devr->start >= busr->start) &&
411 (devr->end <= busr->end))
412 return 1;
413 }
414 return 0;
415 }
416
417 static void __devinit
418 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
419 {
420 int i;
421
422 for (i = start; i < limit; i++) {
423 if (!dev->resource[i].flags)
424 continue;
425 if ((is_valid_resource(dev, i)))
426 pci_claim_resource(dev, i);
427 }
428 }
429
430 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
431 {
432 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
433 }
434 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
435
436 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
437 {
438 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
439 }
440
441 /*
442 * Called after each bus is probed, but before its children are examined.
443 */
444 void __devinit
445 pcibios_fixup_bus (struct pci_bus *b)
446 {
447 struct pci_dev *dev;
448
449 if (b->self) {
450 pci_read_bridge_bases(b);
451 pcibios_fixup_bridge_resources(b->self);
452 }
453 list_for_each_entry(dev, &b->devices, bus_list)
454 pcibios_fixup_device_resources(dev);
455 platform_pci_fixup_bus(b);
456 }
457
458 void pcibios_set_master (struct pci_dev *dev)
459 {
460 /* No special bus mastering setup handling */
461 }
462
463 int
464 pcibios_enable_device (struct pci_dev *dev, int mask)
465 {
466 int ret;
467
468 ret = pci_enable_resources(dev, mask);
469 if (ret < 0)
470 return ret;
471
472 if (!dev->msi_enabled)
473 return acpi_pci_irq_enable(dev);
474 return 0;
475 }
476
477 void
478 pcibios_disable_device (struct pci_dev *dev)
479 {
480 BUG_ON(atomic_read(&dev->enable_cnt));
481 if (!dev->msi_enabled)
482 acpi_pci_irq_disable(dev);
483 }
484
485 resource_size_t
486 pcibios_align_resource (void *data, const struct resource *res,
487 resource_size_t size, resource_size_t align)
488 {
489 return res->start;
490 }
491
492 int
493 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
494 enum pci_mmap_state mmap_state, int write_combine)
495 {
496 unsigned long size = vma->vm_end - vma->vm_start;
497 pgprot_t prot;
498
499 /*
500 * I/O space cannot be accessed via normal processor loads and
501 * stores on this platform.
502 */
503 if (mmap_state == pci_mmap_io)
504 /*
505 * XXX we could relax this for I/O spaces for which ACPI
506 * indicates that the space is 1-to-1 mapped. But at the
507 * moment, we don't support multiple PCI address spaces and
508 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
509 */
510 return -EINVAL;
511
512 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
513 return -EINVAL;
514
515 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
516 vma->vm_page_prot);
517
518 /*
519 * If the user requested WC, the kernel uses UC or WC for this region,
520 * and the chipset supports WC, we can use WC. Otherwise, we have to
521 * use the same attribute the kernel uses.
522 */
523 if (write_combine &&
524 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
525 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
526 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
527 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
528 else
529 vma->vm_page_prot = prot;
530
531 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
532 vma->vm_end - vma->vm_start, vma->vm_page_prot))
533 return -EAGAIN;
534
535 return 0;
536 }
537
538 /**
539 * ia64_pci_get_legacy_mem - generic legacy mem routine
540 * @bus: bus to get legacy memory base address for
541 *
542 * Find the base of legacy memory for @bus. This is typically the first
543 * megabyte of bus address space for @bus or is simply 0 on platforms whose
544 * chipsets support legacy I/O and memory routing. Returns the base address
545 * or an error pointer if an error occurred.
546 *
547 * This is the ia64 generic version of this routine. Other platforms
548 * are free to override it with a machine vector.
549 */
550 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
551 {
552 return (char *)__IA64_UNCACHED_OFFSET;
553 }
554
555 /**
556 * pci_mmap_legacy_page_range - map legacy memory space to userland
557 * @bus: bus whose legacy space we're mapping
558 * @vma: vma passed in by mmap
559 *
560 * Map legacy memory space for this device back to userspace using a machine
561 * vector to get the base address.
562 */
563 int
564 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
565 enum pci_mmap_state mmap_state)
566 {
567 unsigned long size = vma->vm_end - vma->vm_start;
568 pgprot_t prot;
569 char *addr;
570
571 /* We only support mmap'ing of legacy memory space */
572 if (mmap_state != pci_mmap_mem)
573 return -ENOSYS;
574
575 /*
576 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
577 * for more details.
578 */
579 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
580 return -EINVAL;
581 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
582 vma->vm_page_prot);
583
584 addr = pci_get_legacy_mem(bus);
585 if (IS_ERR(addr))
586 return PTR_ERR(addr);
587
588 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
589 vma->vm_page_prot = prot;
590
591 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
592 size, vma->vm_page_prot))
593 return -EAGAIN;
594
595 return 0;
596 }
597
598 /**
599 * ia64_pci_legacy_read - read from legacy I/O space
600 * @bus: bus to read
601 * @port: legacy port value
602 * @val: caller allocated storage for returned value
603 * @size: number of bytes to read
604 *
605 * Simply reads @size bytes from @port and puts the result in @val.
606 *
607 * Again, this (and the write routine) are generic versions that can be
608 * overridden by the platform. This is necessary on platforms that don't
609 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
610 */
611 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
612 {
613 int ret = size;
614
615 switch (size) {
616 case 1:
617 *val = inb(port);
618 break;
619 case 2:
620 *val = inw(port);
621 break;
622 case 4:
623 *val = inl(port);
624 break;
625 default:
626 ret = -EINVAL;
627 break;
628 }
629
630 return ret;
631 }
632
633 /**
634 * ia64_pci_legacy_write - perform a legacy I/O write
635 * @bus: bus pointer
636 * @port: port to write
637 * @val: value to write
638 * @size: number of bytes to write from @val
639 *
640 * Simply writes @size bytes of @val to @port.
641 */
642 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
643 {
644 int ret = size;
645
646 switch (size) {
647 case 1:
648 outb(val, port);
649 break;
650 case 2:
651 outw(val, port);
652 break;
653 case 4:
654 outl(val, port);
655 break;
656 default:
657 ret = -EINVAL;
658 break;
659 }
660
661 return ret;
662 }
663
664 /**
665 * set_pci_cacheline_size - determine cacheline size for PCI devices
666 *
667 * We want to use the line-size of the outer-most cache. We assume
668 * that this line-size is the same for all CPUs.
669 *
670 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
671 */
672 static void __init set_pci_dfl_cacheline_size(void)
673 {
674 unsigned long levels, unique_caches;
675 long status;
676 pal_cache_config_info_t cci;
677
678 status = ia64_pal_cache_summary(&levels, &unique_caches);
679 if (status != 0) {
680 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
681 "(status=%ld)\n", __func__, status);
682 return;
683 }
684
685 status = ia64_pal_cache_config_info(levels - 1,
686 /* cache_type (data_or_unified)= */ 2, &cci);
687 if (status != 0) {
688 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
689 "(status=%ld)\n", __func__, status);
690 return;
691 }
692 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
693 }
694
695 u64 ia64_dma_get_required_mask(struct device *dev)
696 {
697 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
698 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
699 u64 mask;
700
701 if (!high_totalram) {
702 /* convert to mask just covering totalram */
703 low_totalram = (1 << (fls(low_totalram) - 1));
704 low_totalram += low_totalram - 1;
705 mask = low_totalram;
706 } else {
707 high_totalram = (1 << (fls(high_totalram) - 1));
708 high_totalram += high_totalram - 1;
709 mask = (((u64)high_totalram) << 32) + 0xffffffff;
710 }
711 return mask;
712 }
713 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
714
715 u64 dma_get_required_mask(struct device *dev)
716 {
717 return platform_dma_get_required_mask(dev);
718 }
719 EXPORT_SYMBOL_GPL(dma_get_required_mask);
720
721 static int __init pcibios_init(void)
722 {
723 set_pci_dfl_cacheline_size();
724 return 0;
725 }
726
727 subsys_initcall(pcibios_init);