Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13 #include <linux/config.h>
14
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/system.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33
34
35 /*
36 * Low-level SAL-based PCI configuration access functions. Note that SAL
37 * calls are already serialized (via sal_lock), so we don't need another
38 * synchronization mechanism here.
39 */
40
41 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
42 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
43
44 /* SAL 3.2 adds support for extended config space. */
45
46 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
47 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
48
49 static int
50 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
51 int reg, int len, u32 *value)
52 {
53 u64 addr, data = 0;
54 int mode, result;
55
56 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
57 return -EINVAL;
58
59 if ((seg | reg) <= 255) {
60 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
61 mode = 0;
62 } else {
63 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
64 mode = 1;
65 }
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 if (result != 0)
68 return -EINVAL;
69
70 *value = (u32) data;
71 return 0;
72 }
73
74 static int
75 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
76 int reg, int len, u32 value)
77 {
78 u64 addr;
79 int mode, result;
80
81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 return -EINVAL;
83
84 if ((seg | reg) <= 255) {
85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 mode = 0;
87 } else {
88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 mode = 1;
90 }
91 result = ia64_sal_pci_config_write(addr, mode, len, value);
92 if (result != 0)
93 return -EINVAL;
94 return 0;
95 }
96
97 static struct pci_raw_ops pci_sal_ops = {
98 .read = pci_sal_read,
99 .write = pci_sal_write
100 };
101
102 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
103
104 static int
105 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
106 {
107 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
108 devfn, where, size, value);
109 }
110
111 static int
112 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
113 {
114 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
115 devfn, where, size, value);
116 }
117
118 struct pci_ops pci_root_ops = {
119 .read = pci_read,
120 .write = pci_write,
121 };
122
123 /* Called by ACPI when it finds a new root bus. */
124
125 static struct pci_controller * __devinit
126 alloc_pci_controller (int seg)
127 {
128 struct pci_controller *controller;
129
130 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
131 if (!controller)
132 return NULL;
133
134 memset(controller, 0, sizeof(*controller));
135 controller->segment = seg;
136 controller->node = -1;
137 return controller;
138 }
139
140 struct pci_root_info {
141 struct pci_controller *controller;
142 char *name;
143 };
144
145 static unsigned int
146 new_space (u64 phys_base, int sparse)
147 {
148 u64 mmio_base;
149 int i;
150
151 if (phys_base == 0)
152 return 0; /* legacy I/O port space */
153
154 mmio_base = (u64) ioremap(phys_base, 0);
155 for (i = 0; i < num_io_spaces; i++)
156 if (io_space[i].mmio_base == mmio_base &&
157 io_space[i].sparse == sparse)
158 return i;
159
160 if (num_io_spaces == MAX_IO_SPACES) {
161 printk(KERN_ERR "PCI: Too many IO port spaces "
162 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
163 return ~0;
164 }
165
166 i = num_io_spaces++;
167 io_space[i].mmio_base = mmio_base;
168 io_space[i].sparse = sparse;
169
170 return i;
171 }
172
173 static u64 __devinit
174 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
175 {
176 struct resource *resource;
177 char *name;
178 u64 base, min, max, base_port;
179 unsigned int sparse = 0, space_nr, len;
180
181 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
182 if (!resource) {
183 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
184 info->name);
185 goto out;
186 }
187
188 len = strlen(info->name) + 32;
189 name = kzalloc(len, GFP_KERNEL);
190 if (!name) {
191 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
192 info->name);
193 goto free_resource;
194 }
195
196 min = addr->minimum;
197 max = min + addr->address_length - 1;
198 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
199 sparse = 1;
200
201 space_nr = new_space(addr->translation_offset, sparse);
202 if (space_nr == ~0)
203 goto free_name;
204
205 base = __pa(io_space[space_nr].mmio_base);
206 base_port = IO_SPACE_BASE(space_nr);
207 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
208 base_port + min, base_port + max);
209
210 /*
211 * The SDM guarantees the legacy 0-64K space is sparse, but if the
212 * mapping is done by the processor (not the bridge), ACPI may not
213 * mark it as sparse.
214 */
215 if (space_nr == 0)
216 sparse = 1;
217
218 resource->name = name;
219 resource->flags = IORESOURCE_MEM;
220 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
221 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
222 insert_resource(&iomem_resource, resource);
223
224 return base_port;
225
226 free_name:
227 kfree(name);
228 free_resource:
229 kfree(resource);
230 out:
231 return ~0;
232 }
233
234 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
235 struct acpi_resource_address64 *addr)
236 {
237 acpi_status status;
238
239 /*
240 * We're only interested in _CRS descriptors that are
241 * - address space descriptors for memory or I/O space
242 * - non-zero size
243 * - producers, i.e., the address space is routed downstream,
244 * not consumed by the bridge itself
245 */
246 status = acpi_resource_to_address64(resource, addr);
247 if (ACPI_SUCCESS(status) &&
248 (addr->resource_type == ACPI_MEMORY_RANGE ||
249 addr->resource_type == ACPI_IO_RANGE) &&
250 addr->address_length &&
251 addr->producer_consumer == ACPI_PRODUCER)
252 return AE_OK;
253
254 return AE_ERROR;
255 }
256
257 static acpi_status __devinit
258 count_window (struct acpi_resource *resource, void *data)
259 {
260 unsigned int *windows = (unsigned int *) data;
261 struct acpi_resource_address64 addr;
262 acpi_status status;
263
264 status = resource_to_window(resource, &addr);
265 if (ACPI_SUCCESS(status))
266 (*windows)++;
267
268 return AE_OK;
269 }
270
271 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
272 {
273 struct pci_root_info *info = data;
274 struct pci_window *window;
275 struct acpi_resource_address64 addr;
276 acpi_status status;
277 unsigned long flags, offset = 0;
278 struct resource *root;
279
280 /* Return AE_OK for non-window resources to keep scanning for more */
281 status = resource_to_window(res, &addr);
282 if (!ACPI_SUCCESS(status))
283 return AE_OK;
284
285 if (addr.resource_type == ACPI_MEMORY_RANGE) {
286 flags = IORESOURCE_MEM;
287 root = &iomem_resource;
288 offset = addr.translation_offset;
289 } else if (addr.resource_type == ACPI_IO_RANGE) {
290 flags = IORESOURCE_IO;
291 root = &ioport_resource;
292 offset = add_io_space(info, &addr);
293 if (offset == ~0)
294 return AE_OK;
295 } else
296 return AE_OK;
297
298 window = &info->controller->window[info->controller->windows++];
299 window->resource.name = info->name;
300 window->resource.flags = flags;
301 window->resource.start = addr.minimum + offset;
302 window->resource.end = window->resource.start + addr.address_length - 1;
303 window->resource.child = NULL;
304 window->offset = offset;
305
306 if (insert_resource(root, &window->resource)) {
307 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
308 window->resource.start, window->resource.end,
309 root->name, info->name);
310 }
311
312 return AE_OK;
313 }
314
315 static void __devinit
316 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
317 {
318 int i, j;
319
320 j = 0;
321 for (i = 0; i < ctrl->windows; i++) {
322 struct resource *res = &ctrl->window[i].resource;
323 /* HP's firmware has a hack to work around a Windows bug.
324 * Ignore these tiny memory ranges */
325 if ((res->flags & IORESOURCE_MEM) &&
326 (res->end - res->start < 16))
327 continue;
328 if (j >= PCI_BUS_NUM_RESOURCES) {
329 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
330 res->end, res->flags);
331 continue;
332 }
333 bus->resource[j++] = res;
334 }
335 }
336
337 struct pci_bus * __devinit
338 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
339 {
340 struct pci_root_info info;
341 struct pci_controller *controller;
342 unsigned int windows = 0;
343 struct pci_bus *pbus;
344 char *name;
345 int pxm;
346
347 controller = alloc_pci_controller(domain);
348 if (!controller)
349 goto out1;
350
351 controller->acpi_handle = device->handle;
352
353 pxm = acpi_get_pxm(controller->acpi_handle);
354 #ifdef CONFIG_NUMA
355 if (pxm >= 0)
356 controller->node = pxm_to_nid_map[pxm];
357 #endif
358
359 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
360 &windows);
361 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
362 GFP_KERNEL, controller->node);
363 if (!controller->window)
364 goto out2;
365
366 name = kmalloc(16, GFP_KERNEL);
367 if (!name)
368 goto out3;
369
370 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
371 info.controller = controller;
372 info.name = name;
373 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
374 &info);
375
376 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
377 if (pbus)
378 pcibios_setup_root_windows(pbus, controller);
379
380 return pbus;
381
382 out3:
383 kfree(controller->window);
384 out2:
385 kfree(controller);
386 out1:
387 return NULL;
388 }
389
390 void pcibios_resource_to_bus(struct pci_dev *dev,
391 struct pci_bus_region *region, struct resource *res)
392 {
393 struct pci_controller *controller = PCI_CONTROLLER(dev);
394 unsigned long offset = 0;
395 int i;
396
397 for (i = 0; i < controller->windows; i++) {
398 struct pci_window *window = &controller->window[i];
399 if (!(window->resource.flags & res->flags))
400 continue;
401 if (window->resource.start > res->start)
402 continue;
403 if (window->resource.end < res->end)
404 continue;
405 offset = window->offset;
406 break;
407 }
408
409 region->start = res->start - offset;
410 region->end = res->end - offset;
411 }
412 EXPORT_SYMBOL(pcibios_resource_to_bus);
413
414 void pcibios_bus_to_resource(struct pci_dev *dev,
415 struct resource *res, struct pci_bus_region *region)
416 {
417 struct pci_controller *controller = PCI_CONTROLLER(dev);
418 unsigned long offset = 0;
419 int i;
420
421 for (i = 0; i < controller->windows; i++) {
422 struct pci_window *window = &controller->window[i];
423 if (!(window->resource.flags & res->flags))
424 continue;
425 if (window->resource.start - window->offset > region->start)
426 continue;
427 if (window->resource.end - window->offset < region->end)
428 continue;
429 offset = window->offset;
430 break;
431 }
432
433 res->start = region->start + offset;
434 res->end = region->end + offset;
435 }
436 EXPORT_SYMBOL(pcibios_bus_to_resource);
437
438 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
439 {
440 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
441 struct resource *devr = &dev->resource[idx];
442
443 if (!dev->bus)
444 return 0;
445 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
446 struct resource *busr = dev->bus->resource[i];
447
448 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
449 continue;
450 if ((devr->start) && (devr->start >= busr->start) &&
451 (devr->end <= busr->end))
452 return 1;
453 }
454 return 0;
455 }
456
457 static void __devinit
458 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
459 {
460 struct pci_bus_region region;
461 int i;
462
463 for (i = start; i < limit; i++) {
464 if (!dev->resource[i].flags)
465 continue;
466 region.start = dev->resource[i].start;
467 region.end = dev->resource[i].end;
468 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
469 if ((is_valid_resource(dev, i)))
470 pci_claim_resource(dev, i);
471 }
472 }
473
474 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
475 {
476 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
477 }
478
479 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
480 {
481 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
482 }
483
484 /*
485 * Called after each bus is probed, but before its children are examined.
486 */
487 void __devinit
488 pcibios_fixup_bus (struct pci_bus *b)
489 {
490 struct pci_dev *dev;
491
492 if (b->self) {
493 pci_read_bridge_bases(b);
494 pcibios_fixup_bridge_resources(b->self);
495 }
496 list_for_each_entry(dev, &b->devices, bus_list)
497 pcibios_fixup_device_resources(dev);
498
499 return;
500 }
501
502 void __devinit
503 pcibios_update_irq (struct pci_dev *dev, int irq)
504 {
505 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
506
507 /* ??? FIXME -- record old value for shutdown. */
508 }
509
510 static inline int
511 pcibios_enable_resources (struct pci_dev *dev, int mask)
512 {
513 u16 cmd, old_cmd;
514 int idx;
515 struct resource *r;
516 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
517
518 if (!dev)
519 return -EINVAL;
520
521 pci_read_config_word(dev, PCI_COMMAND, &cmd);
522 old_cmd = cmd;
523 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
524 /* Only set up the desired resources. */
525 if (!(mask & (1 << idx)))
526 continue;
527
528 r = &dev->resource[idx];
529 if (!(r->flags & type_mask))
530 continue;
531 if ((idx == PCI_ROM_RESOURCE) &&
532 (!(r->flags & IORESOURCE_ROM_ENABLE)))
533 continue;
534 if (!r->start && r->end) {
535 printk(KERN_ERR
536 "PCI: Device %s not available because of resource collisions\n",
537 pci_name(dev));
538 return -EINVAL;
539 }
540 if (r->flags & IORESOURCE_IO)
541 cmd |= PCI_COMMAND_IO;
542 if (r->flags & IORESOURCE_MEM)
543 cmd |= PCI_COMMAND_MEMORY;
544 }
545 if (cmd != old_cmd) {
546 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
547 pci_write_config_word(dev, PCI_COMMAND, cmd);
548 }
549 return 0;
550 }
551
552 int
553 pcibios_enable_device (struct pci_dev *dev, int mask)
554 {
555 int ret;
556
557 ret = pcibios_enable_resources(dev, mask);
558 if (ret < 0)
559 return ret;
560
561 return acpi_pci_irq_enable(dev);
562 }
563
564 void
565 pcibios_disable_device (struct pci_dev *dev)
566 {
567 acpi_pci_irq_disable(dev);
568 }
569
570 void
571 pcibios_align_resource (void *data, struct resource *res,
572 unsigned long size, unsigned long align)
573 {
574 }
575
576 /*
577 * PCI BIOS setup, always defaults to SAL interface
578 */
579 char * __init
580 pcibios_setup (char *str)
581 {
582 return NULL;
583 }
584
585 int
586 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
587 enum pci_mmap_state mmap_state, int write_combine)
588 {
589 /*
590 * I/O space cannot be accessed via normal processor loads and
591 * stores on this platform.
592 */
593 if (mmap_state == pci_mmap_io)
594 /*
595 * XXX we could relax this for I/O spaces for which ACPI
596 * indicates that the space is 1-to-1 mapped. But at the
597 * moment, we don't support multiple PCI address spaces and
598 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
599 */
600 return -EINVAL;
601
602 /*
603 * Leave vm_pgoff as-is, the PCI space address is the physical
604 * address on this platform.
605 */
606 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
607
608 if (write_combine && efi_range_is_wc(vma->vm_start,
609 vma->vm_end - vma->vm_start))
610 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
611 else
612 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
613
614 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
615 vma->vm_end - vma->vm_start, vma->vm_page_prot))
616 return -EAGAIN;
617
618 return 0;
619 }
620
621 /**
622 * ia64_pci_get_legacy_mem - generic legacy mem routine
623 * @bus: bus to get legacy memory base address for
624 *
625 * Find the base of legacy memory for @bus. This is typically the first
626 * megabyte of bus address space for @bus or is simply 0 on platforms whose
627 * chipsets support legacy I/O and memory routing. Returns the base address
628 * or an error pointer if an error occurred.
629 *
630 * This is the ia64 generic version of this routine. Other platforms
631 * are free to override it with a machine vector.
632 */
633 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
634 {
635 return (char *)__IA64_UNCACHED_OFFSET;
636 }
637
638 /**
639 * pci_mmap_legacy_page_range - map legacy memory space to userland
640 * @bus: bus whose legacy space we're mapping
641 * @vma: vma passed in by mmap
642 *
643 * Map legacy memory space for this device back to userspace using a machine
644 * vector to get the base address.
645 */
646 int
647 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
648 {
649 char *addr;
650
651 addr = pci_get_legacy_mem(bus);
652 if (IS_ERR(addr))
653 return PTR_ERR(addr);
654
655 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
656 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
657 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
658
659 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
660 vma->vm_end - vma->vm_start, vma->vm_page_prot))
661 return -EAGAIN;
662
663 return 0;
664 }
665
666 /**
667 * ia64_pci_legacy_read - read from legacy I/O space
668 * @bus: bus to read
669 * @port: legacy port value
670 * @val: caller allocated storage for returned value
671 * @size: number of bytes to read
672 *
673 * Simply reads @size bytes from @port and puts the result in @val.
674 *
675 * Again, this (and the write routine) are generic versions that can be
676 * overridden by the platform. This is necessary on platforms that don't
677 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
678 */
679 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
680 {
681 int ret = size;
682
683 switch (size) {
684 case 1:
685 *val = inb(port);
686 break;
687 case 2:
688 *val = inw(port);
689 break;
690 case 4:
691 *val = inl(port);
692 break;
693 default:
694 ret = -EINVAL;
695 break;
696 }
697
698 return ret;
699 }
700
701 /**
702 * ia64_pci_legacy_write - perform a legacy I/O write
703 * @bus: bus pointer
704 * @port: port to write
705 * @val: value to write
706 * @size: number of bytes to write from @val
707 *
708 * Simply writes @size bytes of @val to @port.
709 */
710 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
711 {
712 int ret = size;
713
714 switch (size) {
715 case 1:
716 outb(val, port);
717 break;
718 case 2:
719 outw(val, port);
720 break;
721 case 4:
722 outl(val, port);
723 break;
724 default:
725 ret = -EINVAL;
726 break;
727 }
728
729 return ret;
730 }
731
732 /**
733 * pci_cacheline_size - determine cacheline size for PCI devices
734 * @dev: void
735 *
736 * We want to use the line-size of the outer-most cache. We assume
737 * that this line-size is the same for all CPUs.
738 *
739 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
740 *
741 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
742 */
743 static unsigned long
744 pci_cacheline_size (void)
745 {
746 u64 levels, unique_caches;
747 s64 status;
748 pal_cache_config_info_t cci;
749 static u8 cacheline_size;
750
751 if (cacheline_size)
752 return cacheline_size;
753
754 status = ia64_pal_cache_summary(&levels, &unique_caches);
755 if (status != 0) {
756 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
757 __FUNCTION__, status);
758 return SMP_CACHE_BYTES;
759 }
760
761 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
762 &cci);
763 if (status != 0) {
764 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
765 __FUNCTION__, status);
766 return SMP_CACHE_BYTES;
767 }
768 cacheline_size = 1 << cci.pcci_line_size;
769 return cacheline_size;
770 }
771
772 /**
773 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
774 * @dev: the PCI device for which MWI is enabled
775 *
776 * For ia64, we can get the cacheline sizes from PAL.
777 *
778 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
779 */
780 int
781 pcibios_prep_mwi (struct pci_dev *dev)
782 {
783 unsigned long desired_linesize, current_linesize;
784 int rc = 0;
785 u8 pci_linesize;
786
787 desired_linesize = pci_cacheline_size();
788
789 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
790 current_linesize = 4 * pci_linesize;
791 if (desired_linesize != current_linesize) {
792 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
793 pci_name(dev), current_linesize);
794 if (current_linesize > desired_linesize) {
795 printk(" expected %lu bytes instead\n", desired_linesize);
796 rc = -EINVAL;
797 } else {
798 printk(" correcting to %lu\n", desired_linesize);
799 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
800 }
801 }
802 return rc;
803 }
804
805 int pci_vector_resources(int last, int nr_released)
806 {
807 int count = nr_released;
808
809 count += (IA64_LAST_DEVICE_VECTOR - last);
810
811 return count;
812 }