Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/paravirt.h>
55 #include <asm/patch.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/sal.h>
59 #include <asm/sections.h>
60 #include <asm/setup.h>
61 #include <asm/smp.h>
62 #include <asm/system.h>
63 #include <asm/tlbflush.h>
64 #include <asm/unistd.h>
65 #include <asm/hpsim.h>
66
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
69 #endif
70
71 #ifdef CONFIG_SMP
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
74 #endif
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93
94 static struct resource bss_resource = {
95 .name = "Kernel bss",
96 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98
99 unsigned long ia64_max_cacheline_size;
100
101 int dma_get_cache_alignment(void)
102 {
103 return ia64_max_cacheline_size;
104 }
105 EXPORT_SYMBOL(dma_get_cache_alignment);
106
107 unsigned long ia64_iobase; /* virtual address for I/O accesses */
108 EXPORT_SYMBOL(ia64_iobase);
109 struct io_space io_space[MAX_IO_SPACES];
110 EXPORT_SYMBOL(io_space);
111 unsigned int num_io_spaces;
112
113 /*
114 * "flush_icache_range()" needs to know what processor dependent stride size to use
115 * when it makes i-cache(s) coherent with d-caches.
116 */
117 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
118 unsigned long ia64_i_cache_stride_shift = ~0;
119 /*
120 * "clflush_cache_range()" needs to know what processor dependent stride size to
121 * use when it flushes cache lines including both d-cache and i-cache.
122 */
123 /* Safest way to go: 32 bytes by 32 bytes */
124 #define CACHE_STRIDE_SHIFT 5
125 unsigned long ia64_cache_stride_shift = ~0;
126
127 /*
128 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
129 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
130 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
131 * address of the second buffer must be aligned to (merge_mask+1) in order to be
132 * mergeable). By default, we assume there is no I/O MMU which can merge physically
133 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
134 * page-size of 2^64.
135 */
136 unsigned long ia64_max_iommu_merge_mask = ~0UL;
137 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
138
139 /*
140 * We use a special marker for the end of memory and it uses the extra (+1) slot
141 */
142 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
143 int num_rsvd_regions __initdata;
144
145
146 /*
147 * Filter incoming memory segments based on the primitive map created from the boot
148 * parameters. Segments contained in the map are removed from the memory ranges. A
149 * caller-specified function is called with the memory ranges that remain after filtering.
150 * This routine does not assume the incoming segments are sorted.
151 */
152 int __init
153 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
154 {
155 unsigned long range_start, range_end, prev_start;
156 void (*func)(unsigned long, unsigned long, int);
157 int i;
158
159 #if IGNORE_PFN0
160 if (start == PAGE_OFFSET) {
161 printk(KERN_WARNING "warning: skipping physical page 0\n");
162 start += PAGE_SIZE;
163 if (start >= end) return 0;
164 }
165 #endif
166 /*
167 * lowest possible address(walker uses virtual)
168 */
169 prev_start = PAGE_OFFSET;
170 func = arg;
171
172 for (i = 0; i < num_rsvd_regions; ++i) {
173 range_start = max(start, prev_start);
174 range_end = min(end, rsvd_region[i].start);
175
176 if (range_start < range_end)
177 call_pernode_memory(__pa(range_start), range_end - range_start, func);
178
179 /* nothing more available in this segment */
180 if (range_end == end) return 0;
181
182 prev_start = rsvd_region[i].end;
183 }
184 /* end of memory marker allows full processing inside loop body */
185 return 0;
186 }
187
188 /*
189 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
190 * are not filtered out.
191 */
192 int __init
193 filter_memory(unsigned long start, unsigned long end, void *arg)
194 {
195 void (*func)(unsigned long, unsigned long, int);
196
197 #if IGNORE_PFN0
198 if (start == PAGE_OFFSET) {
199 printk(KERN_WARNING "warning: skipping physical page 0\n");
200 start += PAGE_SIZE;
201 if (start >= end)
202 return 0;
203 }
204 #endif
205 func = arg;
206 if (start < end)
207 call_pernode_memory(__pa(start), end - start, func);
208 return 0;
209 }
210
211 static void __init
212 sort_regions (struct rsvd_region *rsvd_region, int max)
213 {
214 int j;
215
216 /* simple bubble sorting */
217 while (max--) {
218 for (j = 0; j < max; ++j) {
219 if (rsvd_region[j].start > rsvd_region[j+1].start) {
220 struct rsvd_region tmp;
221 tmp = rsvd_region[j];
222 rsvd_region[j] = rsvd_region[j + 1];
223 rsvd_region[j + 1] = tmp;
224 }
225 }
226 }
227 }
228
229 /*
230 * Request address space for all standard resources
231 */
232 static int __init register_memory(void)
233 {
234 code_resource.start = ia64_tpa(_text);
235 code_resource.end = ia64_tpa(_etext) - 1;
236 data_resource.start = ia64_tpa(_etext);
237 data_resource.end = ia64_tpa(_edata) - 1;
238 bss_resource.start = ia64_tpa(__bss_start);
239 bss_resource.end = ia64_tpa(_end) - 1;
240 efi_initialize_iomem_resources(&code_resource, &data_resource,
241 &bss_resource);
242
243 return 0;
244 }
245
246 __initcall(register_memory);
247
248
249 #ifdef CONFIG_KEXEC
250
251 /*
252 * This function checks if the reserved crashkernel is allowed on the specific
253 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
254 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
255 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
256 * in kdump case. See the comment in sba_init() in sba_iommu.c.
257 *
258 * So, the only machvec that really supports loading the kdump kernel
259 * over 4 GB is "sn2".
260 */
261 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
262 {
263 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
264 return 1;
265 else
266 return pbase < (1UL << 32);
267 }
268
269 static void __init setup_crashkernel(unsigned long total, int *n)
270 {
271 unsigned long long base = 0, size = 0;
272 int ret;
273
274 ret = parse_crashkernel(boot_command_line, total,
275 &size, &base);
276 if (ret == 0 && size > 0) {
277 if (!base) {
278 sort_regions(rsvd_region, *n);
279 base = kdump_find_rsvd_region(size,
280 rsvd_region, *n);
281 }
282
283 if (!check_crashkernel_memory(base, size)) {
284 pr_warning("crashkernel: There would be kdump memory "
285 "at %ld GB but this is unusable because it "
286 "must\nbe below 4 GB. Change the memory "
287 "configuration of the machine.\n",
288 (unsigned long)(base >> 30));
289 return;
290 }
291
292 if (base != ~0UL) {
293 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
294 "for crashkernel (System RAM: %ldMB)\n",
295 (unsigned long)(size >> 20),
296 (unsigned long)(base >> 20),
297 (unsigned long)(total >> 20));
298 rsvd_region[*n].start =
299 (unsigned long)__va(base);
300 rsvd_region[*n].end =
301 (unsigned long)__va(base + size);
302 (*n)++;
303 crashk_res.start = base;
304 crashk_res.end = base + size - 1;
305 }
306 }
307 efi_memmap_res.start = ia64_boot_param->efi_memmap;
308 efi_memmap_res.end = efi_memmap_res.start +
309 ia64_boot_param->efi_memmap_size;
310 boot_param_res.start = __pa(ia64_boot_param);
311 boot_param_res.end = boot_param_res.start +
312 sizeof(*ia64_boot_param);
313 }
314 #else
315 static inline void __init setup_crashkernel(unsigned long total, int *n)
316 {}
317 #endif
318
319 /**
320 * reserve_memory - setup reserved memory areas
321 *
322 * Setup the reserved memory areas set aside for the boot parameters,
323 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
324 * see arch/ia64/include/asm/meminit.h if you need to define more.
325 */
326 void __init
327 reserve_memory (void)
328 {
329 int n = 0;
330 unsigned long total_memory;
331
332 /*
333 * none of the entries in this table overlap
334 */
335 rsvd_region[n].start = (unsigned long) ia64_boot_param;
336 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
337 n++;
338
339 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
340 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
341 n++;
342
343 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
344 rsvd_region[n].end = (rsvd_region[n].start
345 + strlen(__va(ia64_boot_param->command_line)) + 1);
346 n++;
347
348 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
349 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
350 n++;
351
352 n += paravirt_reserve_memory(&rsvd_region[n]);
353
354 #ifdef CONFIG_BLK_DEV_INITRD
355 if (ia64_boot_param->initrd_start) {
356 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
357 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
358 n++;
359 }
360 #endif
361
362 #ifdef CONFIG_CRASH_KERNEL
363 if (reserve_elfcorehdr(&rsvd_region[n].start,
364 &rsvd_region[n].end) == 0)
365 n++;
366 #endif
367
368 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
369 n++;
370
371 setup_crashkernel(total_memory, &n);
372
373 /* end of memory marker */
374 rsvd_region[n].start = ~0UL;
375 rsvd_region[n].end = ~0UL;
376 n++;
377
378 num_rsvd_regions = n;
379 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
380
381 sort_regions(rsvd_region, num_rsvd_regions);
382 }
383
384
385 /**
386 * find_initrd - get initrd parameters from the boot parameter structure
387 *
388 * Grab the initrd start and end from the boot parameter struct given us by
389 * the boot loader.
390 */
391 void __init
392 find_initrd (void)
393 {
394 #ifdef CONFIG_BLK_DEV_INITRD
395 if (ia64_boot_param->initrd_start) {
396 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
397 initrd_end = initrd_start+ia64_boot_param->initrd_size;
398
399 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
400 initrd_start, ia64_boot_param->initrd_size);
401 }
402 #endif
403 }
404
405 static void __init
406 io_port_init (void)
407 {
408 unsigned long phys_iobase;
409
410 /*
411 * Set `iobase' based on the EFI memory map or, failing that, the
412 * value firmware left in ar.k0.
413 *
414 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
415 * the port's virtual address, so ia32_load_state() loads it with a
416 * user virtual address. But in ia64 mode, glibc uses the
417 * *physical* address in ar.k0 to mmap the appropriate area from
418 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
419 * cases, user-mode can only use the legacy 0-64K I/O port space.
420 *
421 * ar.k0 is not involved in kernel I/O port accesses, which can use
422 * any of the I/O port spaces and are done via MMIO using the
423 * virtual mmio_base from the appropriate io_space[].
424 */
425 phys_iobase = efi_get_iobase();
426 if (!phys_iobase) {
427 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
428 printk(KERN_INFO "No I/O port range found in EFI memory map, "
429 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
430 }
431 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
432 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
433
434 /* setup legacy IO port space */
435 io_space[0].mmio_base = ia64_iobase;
436 io_space[0].sparse = 1;
437 num_io_spaces = 1;
438 }
439
440 /**
441 * early_console_setup - setup debugging console
442 *
443 * Consoles started here require little enough setup that we can start using
444 * them very early in the boot process, either right after the machine
445 * vector initialization, or even before if the drivers can detect their hw.
446 *
447 * Returns non-zero if a console couldn't be setup.
448 */
449 static inline int __init
450 early_console_setup (char *cmdline)
451 {
452 int earlycons = 0;
453
454 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
455 {
456 extern int sn_serial_console_early_setup(void);
457 if (!sn_serial_console_early_setup())
458 earlycons++;
459 }
460 #endif
461 #ifdef CONFIG_EFI_PCDP
462 if (!efi_setup_pcdp_console(cmdline))
463 earlycons++;
464 #endif
465 if (!simcons_register())
466 earlycons++;
467
468 return (earlycons) ? 0 : -1;
469 }
470
471 static inline void
472 mark_bsp_online (void)
473 {
474 #ifdef CONFIG_SMP
475 /* If we register an early console, allow CPU 0 to printk */
476 cpu_set(smp_processor_id(), cpu_online_map);
477 #endif
478 }
479
480 static __initdata int nomca;
481 static __init int setup_nomca(char *s)
482 {
483 nomca = 1;
484 return 0;
485 }
486 early_param("nomca", setup_nomca);
487
488 /*
489 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
490 * is_kdump_kernel() to determine if we are booting after a panic. Hence
491 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
492 */
493 #ifdef CONFIG_CRASH_DUMP
494 /* elfcorehdr= specifies the location of elf core header
495 * stored by the crashed kernel.
496 */
497 static int __init parse_elfcorehdr(char *arg)
498 {
499 if (!arg)
500 return -EINVAL;
501
502 elfcorehdr_addr = memparse(arg, &arg);
503 return 0;
504 }
505 early_param("elfcorehdr", parse_elfcorehdr);
506
507 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
508 {
509 unsigned long length;
510
511 /* We get the address using the kernel command line,
512 * but the size is extracted from the EFI tables.
513 * Both address and size are required for reservation
514 * to work properly.
515 */
516
517 if (!is_vmcore_usable())
518 return -EINVAL;
519
520 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
521 vmcore_unusable();
522 return -EINVAL;
523 }
524
525 *start = (unsigned long)__va(elfcorehdr_addr);
526 *end = *start + length;
527 return 0;
528 }
529
530 #endif /* CONFIG_PROC_VMCORE */
531
532 void __init
533 setup_arch (char **cmdline_p)
534 {
535 unw_init();
536
537 paravirt_arch_setup_early();
538
539 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
540
541 *cmdline_p = __va(ia64_boot_param->command_line);
542 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
543
544 efi_init();
545 io_port_init();
546
547 #ifdef CONFIG_IA64_GENERIC
548 /* machvec needs to be parsed from the command line
549 * before parse_early_param() is called to ensure
550 * that ia64_mv is initialised before any command line
551 * settings may cause console setup to occur
552 */
553 machvec_init_from_cmdline(*cmdline_p);
554 #endif
555
556 parse_early_param();
557
558 if (early_console_setup(*cmdline_p) == 0)
559 mark_bsp_online();
560
561 #ifdef CONFIG_ACPI
562 /* Initialize the ACPI boot-time table parser */
563 acpi_table_init();
564 # ifdef CONFIG_ACPI_NUMA
565 acpi_numa_init();
566 per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
567 32 : cpus_weight(early_cpu_possible_map)),
568 additional_cpus > 0 ? additional_cpus : 0);
569 # endif
570 #else
571 # ifdef CONFIG_SMP
572 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
573 # endif
574 #endif /* CONFIG_APCI_BOOT */
575
576 find_memory();
577
578 /* process SAL system table: */
579 ia64_sal_init(__va(efi.sal_systab));
580
581 #ifdef CONFIG_ITANIUM
582 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
583 #else
584 {
585 u64 num_phys_stacked;
586
587 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
588 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
589 }
590 #endif
591
592 #ifdef CONFIG_SMP
593 cpu_physical_id(0) = hard_smp_processor_id();
594 #endif
595
596 cpu_init(); /* initialize the bootstrap CPU */
597 mmu_context_init(); /* initialize context_id bitmap */
598
599 #ifdef CONFIG_ACPI
600 acpi_boot_init();
601 #endif
602
603 paravirt_banner();
604 paravirt_arch_setup_console(cmdline_p);
605
606 #ifdef CONFIG_VT
607 if (!conswitchp) {
608 # if defined(CONFIG_DUMMY_CONSOLE)
609 conswitchp = &dummy_con;
610 # endif
611 # if defined(CONFIG_VGA_CONSOLE)
612 /*
613 * Non-legacy systems may route legacy VGA MMIO range to system
614 * memory. vga_con probes the MMIO hole, so memory looks like
615 * a VGA device to it. The EFI memory map can tell us if it's
616 * memory so we can avoid this problem.
617 */
618 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
619 conswitchp = &vga_con;
620 # endif
621 }
622 #endif
623
624 /* enable IA-64 Machine Check Abort Handling unless disabled */
625 if (paravirt_arch_setup_nomca())
626 nomca = 1;
627 if (!nomca)
628 ia64_mca_init();
629
630 platform_setup(cmdline_p);
631 #ifndef CONFIG_IA64_HP_SIM
632 check_sal_cache_flush();
633 #endif
634 paging_init();
635 }
636
637 /*
638 * Display cpu info for all CPUs.
639 */
640 static int
641 show_cpuinfo (struct seq_file *m, void *v)
642 {
643 #ifdef CONFIG_SMP
644 # define lpj c->loops_per_jiffy
645 # define cpunum c->cpu
646 #else
647 # define lpj loops_per_jiffy
648 # define cpunum 0
649 #endif
650 static struct {
651 unsigned long mask;
652 const char *feature_name;
653 } feature_bits[] = {
654 { 1UL << 0, "branchlong" },
655 { 1UL << 1, "spontaneous deferral"},
656 { 1UL << 2, "16-byte atomic ops" }
657 };
658 char features[128], *cp, *sep;
659 struct cpuinfo_ia64 *c = v;
660 unsigned long mask;
661 unsigned long proc_freq;
662 int i, size;
663
664 mask = c->features;
665
666 /* build the feature string: */
667 memcpy(features, "standard", 9);
668 cp = features;
669 size = sizeof(features);
670 sep = "";
671 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
672 if (mask & feature_bits[i].mask) {
673 cp += snprintf(cp, size, "%s%s", sep,
674 feature_bits[i].feature_name),
675 sep = ", ";
676 mask &= ~feature_bits[i].mask;
677 size = sizeof(features) - (cp - features);
678 }
679 }
680 if (mask && size > 1) {
681 /* print unknown features as a hex value */
682 snprintf(cp, size, "%s0x%lx", sep, mask);
683 }
684
685 proc_freq = cpufreq_quick_get(cpunum);
686 if (!proc_freq)
687 proc_freq = c->proc_freq / 1000;
688
689 seq_printf(m,
690 "processor : %d\n"
691 "vendor : %s\n"
692 "arch : IA-64\n"
693 "family : %u\n"
694 "model : %u\n"
695 "model name : %s\n"
696 "revision : %u\n"
697 "archrev : %u\n"
698 "features : %s\n"
699 "cpu number : %lu\n"
700 "cpu regs : %u\n"
701 "cpu MHz : %lu.%03lu\n"
702 "itc MHz : %lu.%06lu\n"
703 "BogoMIPS : %lu.%02lu\n",
704 cpunum, c->vendor, c->family, c->model,
705 c->model_name, c->revision, c->archrev,
706 features, c->ppn, c->number,
707 proc_freq / 1000, proc_freq % 1000,
708 c->itc_freq / 1000000, c->itc_freq % 1000000,
709 lpj*HZ/500000, (lpj*HZ/5000) % 100);
710 #ifdef CONFIG_SMP
711 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
712 if (c->socket_id != -1)
713 seq_printf(m, "physical id: %u\n", c->socket_id);
714 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
715 seq_printf(m,
716 "core id : %u\n"
717 "thread id : %u\n",
718 c->core_id, c->thread_id);
719 #endif
720 seq_printf(m,"\n");
721
722 return 0;
723 }
724
725 static void *
726 c_start (struct seq_file *m, loff_t *pos)
727 {
728 #ifdef CONFIG_SMP
729 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
730 ++*pos;
731 #endif
732 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
733 }
734
735 static void *
736 c_next (struct seq_file *m, void *v, loff_t *pos)
737 {
738 ++*pos;
739 return c_start(m, pos);
740 }
741
742 static void
743 c_stop (struct seq_file *m, void *v)
744 {
745 }
746
747 const struct seq_operations cpuinfo_op = {
748 .start = c_start,
749 .next = c_next,
750 .stop = c_stop,
751 .show = show_cpuinfo
752 };
753
754 #define MAX_BRANDS 8
755 static char brandname[MAX_BRANDS][128];
756
757 static char * __cpuinit
758 get_model_name(__u8 family, __u8 model)
759 {
760 static int overflow;
761 char brand[128];
762 int i;
763
764 memcpy(brand, "Unknown", 8);
765 if (ia64_pal_get_brand_info(brand)) {
766 if (family == 0x7)
767 memcpy(brand, "Merced", 7);
768 else if (family == 0x1f) switch (model) {
769 case 0: memcpy(brand, "McKinley", 9); break;
770 case 1: memcpy(brand, "Madison", 8); break;
771 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
772 }
773 }
774 for (i = 0; i < MAX_BRANDS; i++)
775 if (strcmp(brandname[i], brand) == 0)
776 return brandname[i];
777 for (i = 0; i < MAX_BRANDS; i++)
778 if (brandname[i][0] == '\0')
779 return strcpy(brandname[i], brand);
780 if (overflow++ == 0)
781 printk(KERN_ERR
782 "%s: Table overflow. Some processor model information will be missing\n",
783 __func__);
784 return "Unknown";
785 }
786
787 static void __cpuinit
788 identify_cpu (struct cpuinfo_ia64 *c)
789 {
790 union {
791 unsigned long bits[5];
792 struct {
793 /* id 0 & 1: */
794 char vendor[16];
795
796 /* id 2 */
797 u64 ppn; /* processor serial number */
798
799 /* id 3: */
800 unsigned number : 8;
801 unsigned revision : 8;
802 unsigned model : 8;
803 unsigned family : 8;
804 unsigned archrev : 8;
805 unsigned reserved : 24;
806
807 /* id 4: */
808 u64 features;
809 } field;
810 } cpuid;
811 pal_vm_info_1_u_t vm1;
812 pal_vm_info_2_u_t vm2;
813 pal_status_t status;
814 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
815 int i;
816 for (i = 0; i < 5; ++i)
817 cpuid.bits[i] = ia64_get_cpuid(i);
818
819 memcpy(c->vendor, cpuid.field.vendor, 16);
820 #ifdef CONFIG_SMP
821 c->cpu = smp_processor_id();
822
823 /* below default values will be overwritten by identify_siblings()
824 * for Multi-Threading/Multi-Core capable CPUs
825 */
826 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
827 c->socket_id = -1;
828
829 identify_siblings(c);
830
831 if (c->threads_per_core > smp_num_siblings)
832 smp_num_siblings = c->threads_per_core;
833 #endif
834 c->ppn = cpuid.field.ppn;
835 c->number = cpuid.field.number;
836 c->revision = cpuid.field.revision;
837 c->model = cpuid.field.model;
838 c->family = cpuid.field.family;
839 c->archrev = cpuid.field.archrev;
840 c->features = cpuid.field.features;
841 c->model_name = get_model_name(c->family, c->model);
842
843 status = ia64_pal_vm_summary(&vm1, &vm2);
844 if (status == PAL_STATUS_SUCCESS) {
845 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
846 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
847 }
848 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
849 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
850 }
851
852 void __init
853 setup_per_cpu_areas (void)
854 {
855 /* start_kernel() requires this... */
856 #ifdef CONFIG_ACPI_HOTPLUG_CPU
857 prefill_possible_map();
858 #endif
859 }
860
861 /*
862 * Do the following calculations:
863 *
864 * 1. the max. cache line size.
865 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
866 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
867 */
868 static void __cpuinit
869 get_cache_info(void)
870 {
871 unsigned long line_size, max = 1;
872 u64 l, levels, unique_caches;
873 pal_cache_config_info_t cci;
874 s64 status;
875
876 status = ia64_pal_cache_summary(&levels, &unique_caches);
877 if (status != 0) {
878 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
879 __func__, status);
880 max = SMP_CACHE_BYTES;
881 /* Safest setup for "flush_icache_range()" */
882 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
883 /* Safest setup for "clflush_cache_range()" */
884 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
885 goto out;
886 }
887
888 for (l = 0; l < levels; ++l) {
889 /* cache_type (data_or_unified)=2 */
890 status = ia64_pal_cache_config_info(l, 2, &cci);
891 if (status != 0) {
892 printk(KERN_ERR
893 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
894 __func__, l, status);
895 max = SMP_CACHE_BYTES;
896 /* The safest setup for "flush_icache_range()" */
897 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
898 /* The safest setup for "clflush_cache_range()" */
899 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
900 cci.pcci_unified = 1;
901 } else {
902 if (cci.pcci_stride < ia64_cache_stride_shift)
903 ia64_cache_stride_shift = cci.pcci_stride;
904
905 line_size = 1 << cci.pcci_line_size;
906 if (line_size > max)
907 max = line_size;
908 }
909
910 if (!cci.pcci_unified) {
911 /* cache_type (instruction)=1*/
912 status = ia64_pal_cache_config_info(l, 1, &cci);
913 if (status != 0) {
914 printk(KERN_ERR
915 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
916 __func__, l, status);
917 /* The safest setup for "flush_icache_range()" */
918 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
919 }
920 }
921 if (cci.pcci_stride < ia64_i_cache_stride_shift)
922 ia64_i_cache_stride_shift = cci.pcci_stride;
923 }
924 out:
925 if (max > ia64_max_cacheline_size)
926 ia64_max_cacheline_size = max;
927 }
928
929 /*
930 * cpu_init() initializes state that is per-CPU. This function acts
931 * as a 'CPU state barrier', nothing should get across.
932 */
933 void __cpuinit
934 cpu_init (void)
935 {
936 extern void __cpuinit ia64_mmu_init (void *);
937 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
938 unsigned long num_phys_stacked;
939 pal_vm_info_2_u_t vmi;
940 unsigned int max_ctx;
941 struct cpuinfo_ia64 *cpu_info;
942 void *cpu_data;
943
944 cpu_data = per_cpu_init();
945 #ifdef CONFIG_SMP
946 /*
947 * insert boot cpu into sibling and core mapes
948 * (must be done after per_cpu area is setup)
949 */
950 if (smp_processor_id() == 0) {
951 cpu_set(0, per_cpu(cpu_sibling_map, 0));
952 cpu_set(0, cpu_core_map[0]);
953 } else {
954 /*
955 * Set ar.k3 so that assembly code in MCA handler can compute
956 * physical addresses of per cpu variables with a simple:
957 * phys = ar.k3 + &per_cpu_var
958 * and the alt-dtlb-miss handler can set per-cpu mapping into
959 * the TLB when needed. head.S already did this for cpu0.
960 */
961 ia64_set_kr(IA64_KR_PER_CPU_DATA,
962 ia64_tpa(cpu_data) - (long) __per_cpu_start);
963 }
964 #endif
965
966 get_cache_info();
967
968 /*
969 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
970 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
971 * depends on the data returned by identify_cpu(). We break the dependency by
972 * accessing cpu_data() through the canonical per-CPU address.
973 */
974 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
975 identify_cpu(cpu_info);
976
977 #ifdef CONFIG_MCKINLEY
978 {
979 # define FEATURE_SET 16
980 struct ia64_pal_retval iprv;
981
982 if (cpu_info->family == 0x1f) {
983 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
984 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
985 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
986 (iprv.v1 | 0x80), FEATURE_SET, 0);
987 }
988 }
989 #endif
990
991 /* Clear the stack memory reserved for pt_regs: */
992 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
993
994 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
995
996 /*
997 * Initialize the page-table base register to a global
998 * directory with all zeroes. This ensure that we can handle
999 * TLB-misses to user address-space even before we created the
1000 * first user address-space. This may happen, e.g., due to
1001 * aggressive use of lfetch.fault.
1002 */
1003 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1004
1005 /*
1006 * Initialize default control register to defer speculative faults except
1007 * for those arising from TLB misses, which are not deferred. The
1008 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1009 * the kernel must have recovery code for all speculative accesses). Turn on
1010 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1011 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1012 * be fine).
1013 */
1014 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1015 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1016 atomic_inc(&init_mm.mm_count);
1017 current->active_mm = &init_mm;
1018 if (current->mm)
1019 BUG();
1020
1021 ia64_mmu_init(ia64_imva(cpu_data));
1022 ia64_mca_cpu_init(ia64_imva(cpu_data));
1023
1024 #ifdef CONFIG_IA32_SUPPORT
1025 ia32_cpu_init();
1026 #endif
1027
1028 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1029 ia64_set_itc(0);
1030
1031 /* disable all local interrupt sources: */
1032 ia64_set_itv(1 << 16);
1033 ia64_set_lrr0(1 << 16);
1034 ia64_set_lrr1(1 << 16);
1035 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1036 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1037
1038 /* clear TPR & XTP to enable all interrupt classes: */
1039 ia64_setreg(_IA64_REG_CR_TPR, 0);
1040
1041 /* Clear any pending interrupts left by SAL/EFI */
1042 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1043 ia64_eoi();
1044
1045 #ifdef CONFIG_SMP
1046 normal_xtp();
1047 #endif
1048
1049 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1050 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1051 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1052 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1053 } else {
1054 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1055 max_ctx = (1U << 15) - 1; /* use architected minimum */
1056 }
1057 while (max_ctx < ia64_ctx.max_ctx) {
1058 unsigned int old = ia64_ctx.max_ctx;
1059 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1060 break;
1061 }
1062
1063 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1064 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1065 "stacked regs\n");
1066 num_phys_stacked = 96;
1067 }
1068 /* size of physical stacked register partition plus 8 bytes: */
1069 if (num_phys_stacked > max_num_phys_stacked) {
1070 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1071 max_num_phys_stacked = num_phys_stacked;
1072 }
1073 platform_cpu_init();
1074 pm_idle = default_idle;
1075 }
1076
1077 void __init
1078 check_bugs (void)
1079 {
1080 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1081 (unsigned long) __end___mckinley_e9_bundles);
1082 }
1083
1084 static int __init run_dmi_scan(void)
1085 {
1086 dmi_scan_machine();
1087 return 0;
1088 }
1089 core_initcall(run_dmi_scan);