9ea25fce06d5e6d42de5e3188b36dd1ee30f454a
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / perfmon.c
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
46
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55
56 #ifdef CONFIG_PERFMON
57 /*
58 * perfmon context state
59 */
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64
65 #define PFM_INVALID_ACTIVATION (~0UL)
66
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69
70 /*
71 * depth of message queue
72 */
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75
76 /*
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * bit0 : register implemented
80 * bit1 : end marker
81 * bit2-3 : reserved
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
85 * bit8-31: reserved
86 */
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
122
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
136
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140
141 #define RDEP(x) (1UL<<(x))
142
143 /*
144 * context protection macros
145 * in SMP:
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * in UP:
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 *
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
154 *
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
160 */
161 #define PROTECT_CTX(c, f) \
162 do { \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 } while(0)
167
168 #define UNPROTECT_CTX(c, f) \
169 do { \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 } while(0)
173
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
177 } while(0)
178
179
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 do { \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 } while(0)
184
185
186 #define PROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_lock(&(c)->ctx_lock); \
189 } while(0)
190
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 do { \
193 spin_unlock(&(c)->ctx_lock); \
194 } while(0)
195
196
197 #ifdef CONFIG_SMP
198
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
208
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217
218 /*
219 * cmp0 must be the value of pmc0
220 */
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222
223 #define PFMFS_MAGIC 0xa0b4d889
224
225 /*
226 * debugging
227 */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 } while (0)
234
235 #define DPRINT_ovfl(a) \
236 do { \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 } while (0)
239 #endif
240
241 /*
242 * 64-bit software counter structure
243 *
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 */
246 typedef struct {
247 unsigned long val; /* virtual 64bit counter value */
248 unsigned long lval; /* last reset value */
249 unsigned long long_reset; /* reset value on sampling overflow */
250 unsigned long short_reset; /* reset value on overflow */
251 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed; /* seed for random-number generator */
254 unsigned long mask; /* mask for random-number generator */
255 unsigned int flags; /* notify/do not notify */
256 unsigned long eventid; /* overflow event identifier */
257 } pfm_counter_t;
258
259 /*
260 * context flags
261 */
262 typedef struct {
263 unsigned int block:1; /* when 1, task will blocked on user notifications */
264 unsigned int system:1; /* do system wide monitoring */
265 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling:1; /* true if using a custom format */
267 unsigned int excl_idle:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg:1; /* no message sent on overflow */
271 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved:22;
273 } pfm_context_flags_t;
274
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
278
279
280 /*
281 * perfmon context: encapsulates all the state of a monitoring session
282 */
283
284 typedef struct pfm_context {
285 spinlock_t ctx_lock; /* context protection */
286
287 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289
290 struct task_struct *ctx_task; /* task to which context is attached */
291
292 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293
294 struct completion ctx_restart_done; /* use for blocking notification mode */
295
296 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299
300 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303
304 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305
306 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310
311 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312
313 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
314 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315
316 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
317
318 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321
322 int ctx_fd; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324
325 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
326 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size; /* size of sampling buffer */
328 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329
330 wait_queue_head_t ctx_msgq_wait;
331 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
332 int ctx_msgq_head;
333 int ctx_msgq_tail;
334 struct fasync_struct *ctx_async_queue;
335
336 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
337 } pfm_context_t;
338
339 /*
340 * magic number used to verify that structure is really
341 * a perfmon context
342 */
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
353 #endif
354
355
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
365
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368
369 /*
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
372 */
373 typedef struct {
374 spinlock_t pfs_lock; /* lock the structure */
375
376 unsigned int pfs_task_sessions; /* number of per task sessions */
377 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
380 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382
383 /*
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
387 */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 unsigned int type;
391 int pm_pos;
392 unsigned long default_value; /* power-on default value */
393 unsigned long reserved_mask; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check;
395 pfm_reg_check_t write_check;
396 unsigned long dep_pmd[4];
397 unsigned long dep_pmc[4];
398 } pfm_reg_desc_t;
399
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402
403 /*
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
406 *
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
414 */
415 typedef struct {
416 unsigned long ovfl_val; /* overflow value for counters */
417
418 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420
421 unsigned int num_pmcs; /* number of PMCS: computed at init time */
422 unsigned int num_pmds; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425
426 char *pmu_name; /* PMU family name */
427 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
428 unsigned int flags; /* pmu specific flags */
429 unsigned int num_ibrs; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs; /* number of DBRS: computed at init time */
431 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436 * PMU specific flags
437 */
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439
440 /*
441 * debug register related type definitions
442 */
443 typedef struct {
444 unsigned long ibr_mask:56;
445 unsigned long ibr_plm:4;
446 unsigned long ibr_ig:3;
447 unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449
450 typedef struct {
451 unsigned long dbr_mask:56;
452 unsigned long dbr_plm:4;
453 unsigned long dbr_ig:2;
454 unsigned long dbr_w:1;
455 unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457
458 typedef union {
459 unsigned long val;
460 ibr_mask_reg_t ibr;
461 dbr_mask_reg_t dbr;
462 } dbreg_t;
463
464
465 /*
466 * perfmon command descriptions
467 */
468 typedef struct {
469 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 char *cmd_name;
471 int cmd_flags;
472 unsigned int cmd_narg;
473 size_t cmd_argsize;
474 int (*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481
482
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490
491 typedef struct {
492 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls;
499 unsigned long pfm_smpl_handler_cycles;
500 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502
503 /*
504 * perfmon internal variables
505 */
506 static pfm_stats_t pfm_stats[NR_CPUS];
507 static pfm_session_t pfm_sessions; /* global sessions information */
508
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511
512 static struct proc_dir_entry *perfmon_dir;
513 static pfm_uuid_t pfm_null_uuid = {0,};
514
515 static spinlock_t pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517
518 static pmu_config_t *pmu_conf;
519
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523
524 static ctl_table pfm_ctl_table[]={
525 {
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = proc_dointvec,
531 },
532 {
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
536 .mode = 0666,
537 .proc_handler = proc_dointvec,
538 },
539 {
540 .procname = "fastctxsw",
541 .data = &pfm_sysctl.fastctxsw,
542 .maxlen = sizeof(int),
543 .mode = 0600,
544 .proc_handler = proc_dointvec,
545 },
546 {
547 .procname = "expert_mode",
548 .data = &pfm_sysctl.expert_mode,
549 .maxlen = sizeof(int),
550 .mode = 0600,
551 .proc_handler = proc_dointvec,
552 },
553 {}
554 };
555 static ctl_table pfm_sysctl_dir[] = {
556 {
557 .procname = "perfmon",
558 .mode = 0555,
559 .child = pfm_ctl_table,
560 },
561 {}
562 };
563 static ctl_table pfm_sysctl_root[] = {
564 {
565 .procname = "kernel",
566 .mode = 0555,
567 .child = pfm_sysctl_dir,
568 },
569 {}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
577
578 static inline void
579 pfm_put_task(struct task_struct *task)
580 {
581 if (task != current) put_task_struct(task);
582 }
583
584 static inline void
585 pfm_reserve_page(unsigned long a)
586 {
587 SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
590 pfm_unreserve_page(unsigned long a)
591 {
592 ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 spin_lock(&(x)->ctx_lock);
599 return 0UL;
600 }
601
602 static inline void
603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 spin_unlock(&(x)->ctx_lock);
606 }
607
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
610
611 static struct dentry *
612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 {
614 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 PFMFS_MAGIC);
616 }
617
618 static struct file_system_type pfm_fs_type = {
619 .name = "pfmfs",
620 .mount = pfmfs_mount,
621 .kill_sb = kill_anon_super,
622 };
623 MODULE_ALIAS_FS("pfmfs");
624
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630
631
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
634
635 /*
636 * forward declarations
637 */
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
641
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
649
650 static pmu_config_t *pmu_confs[]={
651 &pmu_conf_mont,
652 &pmu_conf_mck,
653 &pmu_conf_ita,
654 &pmu_conf_gen, /* must be last */
655 NULL
656 };
657
658
659 static int pfm_end_notify_user(pfm_context_t *ctx);
660
661 static inline void
662 pfm_clear_psr_pp(void)
663 {
664 ia64_rsm(IA64_PSR_PP);
665 ia64_srlz_i();
666 }
667
668 static inline void
669 pfm_set_psr_pp(void)
670 {
671 ia64_ssm(IA64_PSR_PP);
672 ia64_srlz_i();
673 }
674
675 static inline void
676 pfm_clear_psr_up(void)
677 {
678 ia64_rsm(IA64_PSR_UP);
679 ia64_srlz_i();
680 }
681
682 static inline void
683 pfm_set_psr_up(void)
684 {
685 ia64_ssm(IA64_PSR_UP);
686 ia64_srlz_i();
687 }
688
689 static inline unsigned long
690 pfm_get_psr(void)
691 {
692 unsigned long tmp;
693 tmp = ia64_getreg(_IA64_REG_PSR);
694 ia64_srlz_i();
695 return tmp;
696 }
697
698 static inline void
699 pfm_set_psr_l(unsigned long val)
700 {
701 ia64_setreg(_IA64_REG_PSR_L, val);
702 ia64_srlz_i();
703 }
704
705 static inline void
706 pfm_freeze_pmu(void)
707 {
708 ia64_set_pmc(0,1UL);
709 ia64_srlz_d();
710 }
711
712 static inline void
713 pfm_unfreeze_pmu(void)
714 {
715 ia64_set_pmc(0,0UL);
716 ia64_srlz_d();
717 }
718
719 static inline void
720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721 {
722 int i;
723
724 for (i=0; i < nibrs; i++) {
725 ia64_set_ibr(i, ibrs[i]);
726 ia64_dv_serialize_instruction();
727 }
728 ia64_srlz_i();
729 }
730
731 static inline void
732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733 {
734 int i;
735
736 for (i=0; i < ndbrs; i++) {
737 ia64_set_dbr(i, dbrs[i]);
738 ia64_dv_serialize_data();
739 }
740 ia64_srlz_d();
741 }
742
743 /*
744 * PMD[i] must be a counter. no check is made
745 */
746 static inline unsigned long
747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
748 {
749 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750 }
751
752 /*
753 * PMD[i] must be a counter. no check is made
754 */
755 static inline void
756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757 {
758 unsigned long ovfl_val = pmu_conf->ovfl_val;
759
760 ctx->ctx_pmds[i].val = val & ~ovfl_val;
761 /*
762 * writing to unimplemented part is ignore, so we do not need to
763 * mask off top part
764 */
765 ia64_set_pmd(i, val & ovfl_val);
766 }
767
768 static pfm_msg_t *
769 pfm_get_new_msg(pfm_context_t *ctx)
770 {
771 int idx, next;
772
773 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 if (next == ctx->ctx_msgq_head) return NULL;
777
778 idx = ctx->ctx_msgq_tail;
779 ctx->ctx_msgq_tail = next;
780
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782
783 return ctx->ctx_msgq+idx;
784 }
785
786 static pfm_msg_t *
787 pfm_get_next_msg(pfm_context_t *ctx)
788 {
789 pfm_msg_t *msg;
790
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792
793 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794
795 /*
796 * get oldest message
797 */
798 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799
800 /*
801 * and move forward
802 */
803 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806
807 return msg;
808 }
809
810 static void
811 pfm_reset_msgq(pfm_context_t *ctx)
812 {
813 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx));
815 }
816
817 static void *
818 pfm_rvmalloc(unsigned long size)
819 {
820 void *mem;
821 unsigned long addr;
822
823 size = PAGE_ALIGN(size);
824 mem = vzalloc(size);
825 if (mem) {
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr = (unsigned long)mem;
828 while (size > 0) {
829 pfm_reserve_page(addr);
830 addr+=PAGE_SIZE;
831 size-=PAGE_SIZE;
832 }
833 }
834 return mem;
835 }
836
837 static void
838 pfm_rvfree(void *mem, unsigned long size)
839 {
840 unsigned long addr;
841
842 if (mem) {
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 addr = (unsigned long) mem;
845 while ((long) size > 0) {
846 pfm_unreserve_page(addr);
847 addr+=PAGE_SIZE;
848 size-=PAGE_SIZE;
849 }
850 vfree(mem);
851 }
852 return;
853 }
854
855 static pfm_context_t *
856 pfm_context_alloc(int ctx_flags)
857 {
858 pfm_context_t *ctx;
859
860 /*
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
863 */
864 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 if (ctx) {
866 DPRINT(("alloc ctx @%p\n", ctx));
867
868 /*
869 * init context protection lock
870 */
871 spin_lock_init(&ctx->ctx_lock);
872
873 /*
874 * context is unloaded
875 */
876 ctx->ctx_state = PFM_CTX_UNLOADED;
877
878 /*
879 * initialization of context's flags
880 */
881 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 /*
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 */
888
889 /*
890 * init restart semaphore to locked
891 */
892 init_completion(&ctx->ctx_restart_done);
893
894 /*
895 * activation is used in SMP only
896 */
897 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 SET_LAST_CPU(ctx, -1);
899
900 /*
901 * initialize notification message queue
902 */
903 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 init_waitqueue_head(&ctx->ctx_msgq_wait);
905 init_waitqueue_head(&ctx->ctx_zombieq);
906
907 }
908 return ctx;
909 }
910
911 static void
912 pfm_context_free(pfm_context_t *ctx)
913 {
914 if (ctx) {
915 DPRINT(("free ctx @%p\n", ctx));
916 kfree(ctx);
917 }
918 }
919
920 static void
921 pfm_mask_monitoring(struct task_struct *task)
922 {
923 pfm_context_t *ctx = PFM_GET_CTX(task);
924 unsigned long mask, val, ovfl_mask;
925 int i;
926
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928
929 ovfl_mask = pmu_conf->ovfl_val;
930 /*
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
935 * to the owner.
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
940 *
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 *
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
947 * pfm_restart).
948 */
949 mask = ctx->ctx_used_pmds[0];
950 for (i = 0; mask; i++, mask>>=1) {
951 /* skip non used pmds */
952 if ((mask & 0x1) == 0) continue;
953 val = ia64_get_pmd(i);
954
955 if (PMD_IS_COUNTING(i)) {
956 /*
957 * we rebuild the full 64 bit value of the counter
958 */
959 ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 } else {
961 ctx->ctx_pmds[i].val = val;
962 }
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 i,
965 ctx->ctx_pmds[i].val,
966 val & ovfl_mask));
967 }
968 /*
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
971 * the user
972 *
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
975 */
976 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 if ((mask & 0x1) == 0UL) continue;
979 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 ctx->th_pmcs[i] &= ~0xfUL;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 }
983 /*
984 * make all of this visible
985 */
986 ia64_srlz_d();
987 }
988
989 /*
990 * must always be done with task == current
991 *
992 * context must be in MASKED state when calling
993 */
994 static void
995 pfm_restore_monitoring(struct task_struct *task)
996 {
997 pfm_context_t *ctx = PFM_GET_CTX(task);
998 unsigned long mask, ovfl_mask;
999 unsigned long psr, val;
1000 int i, is_system;
1001
1002 is_system = ctx->ctx_fl_system;
1003 ovfl_mask = pmu_conf->ovfl_val;
1004
1005 if (task != current) {
1006 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 return;
1008 }
1009 if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 return;
1013 }
1014 psr = pfm_get_psr();
1015 /*
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1022 *
1023 * system-wide session are pinned and self-monitoring
1024 */
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 pfm_clear_psr_pp();
1029 } else {
1030 pfm_clear_psr_up();
1031 }
1032 /*
1033 * first, we restore the PMD
1034 */
1035 mask = ctx->ctx_used_pmds[0];
1036 for (i = 0; mask; i++, mask>>=1) {
1037 /* skip non used pmds */
1038 if ((mask & 0x1) == 0) continue;
1039
1040 if (PMD_IS_COUNTING(i)) {
1041 /*
1042 * we split the 64bit value according to
1043 * counter width
1044 */
1045 val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 } else {
1048 val = ctx->ctx_pmds[i].val;
1049 }
1050 ia64_set_pmd(i, val);
1051
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 i,
1054 ctx->ctx_pmds[i].val,
1055 val));
1056 }
1057 /*
1058 * restore the PMCs
1059 */
1060 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 if ((mask & 0x1) == 0UL) continue;
1063 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 }
1068 ia64_srlz_d();
1069
1070 /*
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1073 */
1074 if (ctx->ctx_fl_using_dbreg) {
1075 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 }
1078
1079 /*
1080 * now restore PSR
1081 */
1082 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 /* enable dcr pp */
1084 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 ia64_srlz_i();
1086 }
1087 pfm_set_psr_l(psr);
1088 }
1089
1090 static inline void
1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092 {
1093 int i;
1094
1095 ia64_srlz_d();
1096
1097 for (i=0; mask; i++, mask>>=1) {
1098 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 }
1100 }
1101
1102 /*
1103 * reload from thread state (used for ctxw only)
1104 */
1105 static inline void
1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 int i;
1109 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111 for (i=0; mask; i++, mask>>=1) {
1112 if ((mask & 0x1) == 0) continue;
1113 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 ia64_set_pmd(i, val);
1115 }
1116 ia64_srlz_d();
1117 }
1118
1119 /*
1120 * propagate PMD from context to thread-state
1121 */
1122 static inline void
1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124 {
1125 unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 unsigned long mask = ctx->ctx_all_pmds[0];
1127 unsigned long val;
1128 int i;
1129
1130 DPRINT(("mask=0x%lx\n", mask));
1131
1132 for (i=0; mask; i++, mask>>=1) {
1133
1134 val = ctx->ctx_pmds[i].val;
1135
1136 /*
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1141 */
1142 if (PMD_IS_COUNTING(i)) {
1143 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 val &= ovfl_val;
1145 }
1146 ctx->th_pmds[i] = val;
1147
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 i,
1150 ctx->th_pmds[i],
1151 ctx->ctx_pmds[i].val));
1152 }
1153 }
1154
1155 /*
1156 * propagate PMC from context to thread-state
1157 */
1158 static inline void
1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160 {
1161 unsigned long mask = ctx->ctx_all_pmcs[0];
1162 int i;
1163
1164 DPRINT(("mask=0x%lx\n", mask));
1165
1166 for (i=0; mask; i++, mask>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 }
1171 }
1172
1173
1174
1175 static inline void
1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177 {
1178 int i;
1179
1180 for (i=0; mask; i++, mask>>=1) {
1181 if ((mask & 0x1) == 0) continue;
1182 ia64_set_pmc(i, pmcs[i]);
1183 }
1184 ia64_srlz_d();
1185 }
1186
1187 static inline int
1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189 {
1190 return memcmp(a, b, sizeof(pfm_uuid_t));
1191 }
1192
1193 static inline int
1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195 {
1196 int ret = 0;
1197 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 return ret;
1199 }
1200
1201 static inline int
1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203 {
1204 int ret = 0;
1205 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 return ret;
1207 }
1208
1209
1210 static inline int
1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 int cpu, void *arg)
1213 {
1214 int ret = 0;
1215 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 return ret;
1217 }
1218
1219 static inline int
1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 int cpu, void *arg)
1222 {
1223 int ret = 0;
1224 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 return ret;
1226 }
1227
1228 static inline int
1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230 {
1231 int ret = 0;
1232 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 return ret;
1234 }
1235
1236 static inline int
1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238 {
1239 int ret = 0;
1240 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 return ret;
1242 }
1243
1244 static pfm_buffer_fmt_t *
1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246 {
1247 struct list_head * pos;
1248 pfm_buffer_fmt_t * entry;
1249
1250 list_for_each(pos, &pfm_buffer_fmt_list) {
1251 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 return entry;
1254 }
1255 return NULL;
1256 }
1257
1258 /*
1259 * find a buffer format based on its uuid
1260 */
1261 static pfm_buffer_fmt_t *
1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263 {
1264 pfm_buffer_fmt_t * fmt;
1265 spin_lock(&pfm_buffer_fmt_lock);
1266 fmt = __pfm_find_buffer_fmt(uuid);
1267 spin_unlock(&pfm_buffer_fmt_lock);
1268 return fmt;
1269 }
1270
1271 int
1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273 {
1274 int ret = 0;
1275
1276 /* some sanity checks */
1277 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279 /* we need at least a handler */
1280 if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282 /*
1283 * XXX: need check validity of fmt_arg_size
1284 */
1285
1286 spin_lock(&pfm_buffer_fmt_lock);
1287
1288 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 ret = -EBUSY;
1291 goto out;
1292 }
1293 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296 out:
1297 spin_unlock(&pfm_buffer_fmt_lock);
1298 return ret;
1299 }
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302 int
1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304 {
1305 pfm_buffer_fmt_t *fmt;
1306 int ret = 0;
1307
1308 spin_lock(&pfm_buffer_fmt_lock);
1309
1310 fmt = __pfm_find_buffer_fmt(uuid);
1311 if (!fmt) {
1312 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 ret = -EINVAL;
1314 goto out;
1315 }
1316 list_del_init(&fmt->fmt_list);
1317 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319 out:
1320 spin_unlock(&pfm_buffer_fmt_lock);
1321 return ret;
1322
1323 }
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 unsigned long flags;
1330 /*
1331 * validity checks on cpu_mask have been done upstream
1332 */
1333 LOCK_PFS(flags);
1334
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1341
1342 if (is_syswide) {
1343 /*
1344 * cannot mix system wide and per-task sessions
1345 */
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1350 }
1351
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358 pfm_sessions.pfs_sys_sessions++ ;
1359
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1363 }
1364
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1371
1372 /*
1373 * Force idle() into poll mode
1374 */
1375 cpu_idle_poll_ctrl(true);
1376
1377 UNLOCK_PFS(flags);
1378
1379 return 0;
1380
1381 error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385 abort:
1386 UNLOCK_PFS(flags);
1387
1388 return -EBUSY;
1389
1390 }
1391
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 unsigned long flags;
1396 /*
1397 * validity checks on cpu_mask have been done upstream
1398 */
1399 LOCK_PFS(flags);
1400
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1407
1408
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 /*
1412 * would not work with perfmon+more than one bit in cpu_mask
1413 */
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1419 }
1420 }
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1424 }
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1431
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1434
1435 UNLOCK_PFS(flags);
1436
1437 return 0;
1438 }
1439
1440 /*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445 static int
1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447 {
1448 struct task_struct *task = current;
1449 int r;
1450
1451 /* sanity checks */
1452 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 return -EINVAL;
1455 }
1456
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459 /*
1460 * does the actual unmapping
1461 */
1462 r = vm_munmap((unsigned long)vaddr, size);
1463
1464 if (r !=0) {
1465 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 }
1467
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * free actual physical storage used by sampling buffer
1475 */
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1479 {
1480 pfm_buffer_fmt_t *fmt;
1481
1482 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484 /*
1485 * we won't use the buffer format anymore
1486 */
1487 fmt = ctx->ctx_buf_fmt;
1488
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_hdr,
1491 ctx->ctx_smpl_size,
1492 ctx->ctx_smpl_vaddr));
1493
1494 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496 /*
1497 * free the buffer
1498 */
1499 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501 ctx->ctx_smpl_hdr = NULL;
1502 ctx->ctx_smpl_size = 0UL;
1503
1504 return 0;
1505
1506 invalid_free:
1507 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 return -EINVAL;
1509 }
1510 #endif
1511
1512 static inline void
1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514 {
1515 if (fmt == NULL) return;
1516
1517 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519 }
1520
1521 /*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529 static int __init
1530 init_pfm_fs(void)
1531 {
1532 int err = register_filesystem(&pfm_fs_type);
1533 if (!err) {
1534 pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 err = PTR_ERR(pfmfs_mnt);
1536 if (IS_ERR(pfmfs_mnt))
1537 unregister_filesystem(&pfm_fs_type);
1538 else
1539 err = 0;
1540 }
1541 return err;
1542 }
1543
1544 static ssize_t
1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546 {
1547 pfm_context_t *ctx;
1548 pfm_msg_t *msg;
1549 ssize_t ret;
1550 unsigned long flags;
1551 DECLARE_WAITQUEUE(wait, current);
1552 if (PFM_IS_FILE(filp) == 0) {
1553 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 return -EINVAL;
1555 }
1556
1557 ctx = filp->private_data;
1558 if (ctx == NULL) {
1559 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 return -EINVAL;
1561 }
1562
1563 /*
1564 * check even when there is no message
1565 */
1566 if (size < sizeof(pfm_msg_t)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 return -EINVAL;
1569 }
1570
1571 PROTECT_CTX(ctx, flags);
1572
1573 /*
1574 * put ourselves on the wait queue
1575 */
1576 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579 for(;;) {
1580 /*
1581 * check wait queue
1582 */
1583
1584 set_current_state(TASK_INTERRUPTIBLE);
1585
1586 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588 ret = 0;
1589 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591 UNPROTECT_CTX(ctx, flags);
1592
1593 /*
1594 * check non-blocking read
1595 */
1596 ret = -EAGAIN;
1597 if(filp->f_flags & O_NONBLOCK) break;
1598
1599 /*
1600 * check pending signals
1601 */
1602 if(signal_pending(current)) {
1603 ret = -EINTR;
1604 break;
1605 }
1606 /*
1607 * no message, so wait
1608 */
1609 schedule();
1610
1611 PROTECT_CTX(ctx, flags);
1612 }
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614 set_current_state(TASK_RUNNING);
1615 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617 if (ret < 0) goto abort;
1618
1619 ret = -EINVAL;
1620 msg = pfm_get_next_msg(ctx);
1621 if (msg == NULL) {
1622 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 goto abort_locked;
1624 }
1625
1626 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628 ret = -EFAULT;
1629 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631 abort_locked:
1632 UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 return ret;
1635 }
1636
1637 static ssize_t
1638 pfm_write(struct file *file, const char __user *ubuf,
1639 size_t size, loff_t *ppos)
1640 {
1641 DPRINT(("pfm_write called\n"));
1642 return -EINVAL;
1643 }
1644
1645 static unsigned int
1646 pfm_poll(struct file *filp, poll_table * wait)
1647 {
1648 pfm_context_t *ctx;
1649 unsigned long flags;
1650 unsigned int mask = 0;
1651
1652 if (PFM_IS_FILE(filp) == 0) {
1653 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 return 0;
1655 }
1656
1657 ctx = filp->private_data;
1658 if (ctx == NULL) {
1659 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 return 0;
1661 }
1662
1663
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668 PROTECT_CTX(ctx, flags);
1669
1670 if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 mask = POLLIN | POLLRDNORM;
1672
1673 UNPROTECT_CTX(ctx, flags);
1674
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677 return mask;
1678 }
1679
1680 static long
1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 DPRINT(("pfm_ioctl called\n"));
1684 return -EINVAL;
1685 }
1686
1687 /*
1688 * interrupt cannot be masked when coming here
1689 */
1690 static inline int
1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 {
1693 int ret;
1694
1695 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current),
1699 fd,
1700 on,
1701 ctx->ctx_async_queue, ret));
1702
1703 return ret;
1704 }
1705
1706 static int
1707 pfm_fasync(int fd, struct file *filp, int on)
1708 {
1709 pfm_context_t *ctx;
1710 int ret;
1711
1712 if (PFM_IS_FILE(filp) == 0) {
1713 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 return -EBADF;
1715 }
1716
1717 ctx = filp->private_data;
1718 if (ctx == NULL) {
1719 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 return -EBADF;
1721 }
1722 /*
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1725 *
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1728 */
1729 ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 fd,
1734 on,
1735 ctx->ctx_async_queue, ret));
1736
1737 return ret;
1738 }
1739
1740 #ifdef CONFIG_SMP
1741 /*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746 static void
1747 pfm_syswide_force_stop(void *info)
1748 {
1749 pfm_context_t *ctx = (pfm_context_t *)info;
1750 struct pt_regs *regs = task_pt_regs(current);
1751 struct task_struct *owner;
1752 unsigned long flags;
1753 int ret;
1754
1755 if (ctx->ctx_cpu != smp_processor_id()) {
1756 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1757 ctx->ctx_cpu,
1758 smp_processor_id());
1759 return;
1760 }
1761 owner = GET_PMU_OWNER();
1762 if (owner != ctx->ctx_task) {
1763 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 smp_processor_id(),
1765 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 return;
1767 }
1768 if (GET_PMU_CTX() != ctx) {
1769 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 smp_processor_id(),
1771 GET_PMU_CTX(), ctx);
1772 return;
1773 }
1774
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 /*
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1779 * this CPU
1780 */
1781 local_irq_save(flags);
1782
1783 ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 if (ret) {
1785 DPRINT(("context_unload returned %d\n", ret));
1786 }
1787
1788 /*
1789 * unmask interrupts, PMU interrupts are now spurious here
1790 */
1791 local_irq_restore(flags);
1792 }
1793
1794 static void
1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 {
1797 int ret;
1798
1799 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802 }
1803 #endif /* CONFIG_SMP */
1804
1805 /*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809 static int
1810 pfm_flush(struct file *filp, fl_owner_t id)
1811 {
1812 pfm_context_t *ctx;
1813 struct task_struct *task;
1814 struct pt_regs *regs;
1815 unsigned long flags;
1816 unsigned long smpl_buf_size = 0UL;
1817 void *smpl_buf_vaddr = NULL;
1818 int state, is_system;
1819
1820 if (PFM_IS_FILE(filp) == 0) {
1821 DPRINT(("bad magic for\n"));
1822 return -EBADF;
1823 }
1824
1825 ctx = filp->private_data;
1826 if (ctx == NULL) {
1827 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 return -EBADF;
1829 }
1830
1831 /*
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1835 *
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1843 */
1844 PROTECT_CTX(ctx, flags);
1845
1846 state = ctx->ctx_state;
1847 is_system = ctx->ctx_fl_system;
1848
1849 task = PFM_CTX_TASK(ctx);
1850 regs = task_pt_regs(task);
1851
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1853 state,
1854 task == current ? 1 : 0));
1855
1856 /*
1857 * if state == UNLOADED, then task is NULL
1858 */
1859
1860 /*
1861 * we must stop and unload because we are losing access to the context.
1862 */
1863 if (task == current) {
1864 #ifdef CONFIG_SMP
1865 /*
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1869 *
1870 * We need to release the resource on the ORIGINAL cpu.
1871 */
1872 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 /*
1876 * keep context protected but unmask interrupt for IPI
1877 */
1878 local_irq_restore(flags);
1879
1880 pfm_syswide_cleanup_other_cpu(ctx);
1881
1882 /*
1883 * restore interrupt masking
1884 */
1885 local_irq_save(flags);
1886
1887 /*
1888 * context is unloaded at this point
1889 */
1890 } else
1891 #endif /* CONFIG_SMP */
1892 {
1893
1894 DPRINT(("forcing unload\n"));
1895 /*
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1898 */
1899 pfm_context_unload(ctx, NULL, 0, regs);
1900
1901 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 }
1903 }
1904
1905 /*
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1908 *
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1911 *
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1914 * do anything here
1915 */
1916 if (ctx->ctx_smpl_vaddr && current->mm) {
1917 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 smpl_buf_size = ctx->ctx_smpl_size;
1919 }
1920
1921 UNPROTECT_CTX(ctx, flags);
1922
1923 /*
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1927 *
1928 */
1929 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931 return 0;
1932 }
1933 /*
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1947 */
1948 static int
1949 pfm_close(struct inode *inode, struct file *filp)
1950 {
1951 pfm_context_t *ctx;
1952 struct task_struct *task;
1953 struct pt_regs *regs;
1954 DECLARE_WAITQUEUE(wait, current);
1955 unsigned long flags;
1956 unsigned long smpl_buf_size = 0UL;
1957 void *smpl_buf_addr = NULL;
1958 int free_possible = 1;
1959 int state, is_system;
1960
1961 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963 if (PFM_IS_FILE(filp) == 0) {
1964 DPRINT(("bad magic\n"));
1965 return -EBADF;
1966 }
1967
1968 ctx = filp->private_data;
1969 if (ctx == NULL) {
1970 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 return -EBADF;
1972 }
1973
1974 PROTECT_CTX(ctx, flags);
1975
1976 state = ctx->ctx_state;
1977 is_system = ctx->ctx_fl_system;
1978
1979 task = PFM_CTX_TASK(ctx);
1980 regs = task_pt_regs(task);
1981
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1983 state,
1984 task == current ? 1 : 0));
1985
1986 /*
1987 * if task == current, then pfm_flush() unloaded the context
1988 */
1989 if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991 /*
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1994 */
1995
1996 /*
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2000 *
2001 * This situation is only possible for per-task mode
2002 */
2003 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005 /*
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2008 *
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2015 *
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2018 */
2019 ctx->ctx_fl_going_zombie = 1;
2020
2021 /*
2022 * force task to wake up from MASKED state
2023 */
2024 complete(&ctx->ctx_restart_done);
2025
2026 DPRINT(("waking up ctx_state=%d\n", state));
2027
2028 /*
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2031 *
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2035 */
2036 set_current_state(TASK_INTERRUPTIBLE);
2037 add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039 UNPROTECT_CTX(ctx, flags);
2040
2041 /*
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2045 */
2046 schedule();
2047
2048
2049 PROTECT_CTX(ctx, flags);
2050
2051
2052 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053 set_current_state(TASK_RUNNING);
2054
2055 /*
2056 * context is unloaded at this point
2057 */
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 }
2060 else if (task != current) {
2061 #ifdef CONFIG_SMP
2062 /*
2063 * switch context to zombie state
2064 */
2065 ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 /*
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2071 */
2072 free_possible = 0;
2073 #else
2074 pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2076 }
2077
2078 doit:
2079 /* reload state, may have changed during opening of critical section */
2080 state = ctx->ctx_state;
2081
2082 /*
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2085 */
2086
2087 /*
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2095 */
2096 if (ctx->ctx_smpl_hdr) {
2097 smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 smpl_buf_size = ctx->ctx_smpl_size;
2099 /* no more sampling */
2100 ctx->ctx_smpl_hdr = NULL;
2101 ctx->ctx_fl_is_sampling = 0;
2102 }
2103
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 state,
2106 free_possible,
2107 smpl_buf_addr,
2108 smpl_buf_size));
2109
2110 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112 /*
2113 * UNLOADED that the session has already been unreserved.
2114 */
2115 if (state == PFM_CTX_ZOMBIE) {
2116 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 }
2118
2119 /*
2120 * disconnect file descriptor from context must be done
2121 * before we unlock.
2122 */
2123 filp->private_data = NULL;
2124
2125 /*
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2128 * can freely cut.
2129 *
2130 * If we have a deferred free, only the caller side is disconnected.
2131 */
2132 UNPROTECT_CTX(ctx, flags);
2133
2134 /*
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2137 */
2138 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140 /*
2141 * return the memory used by the context
2142 */
2143 if (free_possible) pfm_context_free(ctx);
2144
2145 return 0;
2146 }
2147
2148 static int
2149 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150 {
2151 DPRINT(("pfm_no_open called\n"));
2152 return -ENXIO;
2153 }
2154
2155
2156
2157 static const struct file_operations pfm_file_ops = {
2158 .llseek = no_llseek,
2159 .read = pfm_read,
2160 .write = pfm_write,
2161 .poll = pfm_poll,
2162 .unlocked_ioctl = pfm_ioctl,
2163 .open = pfm_no_open, /* special open code to disallow open via /proc */
2164 .fasync = pfm_fasync,
2165 .release = pfm_close,
2166 .flush = pfm_flush
2167 };
2168
2169 static int
2170 pfmfs_delete_dentry(const struct dentry *dentry)
2171 {
2172 return 1;
2173 }
2174
2175 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2176 {
2177 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2178 dentry->d_inode->i_ino);
2179 }
2180
2181 static const struct dentry_operations pfmfs_dentry_operations = {
2182 .d_delete = pfmfs_delete_dentry,
2183 .d_dname = pfmfs_dname,
2184 };
2185
2186
2187 static struct file *
2188 pfm_alloc_file(pfm_context_t *ctx)
2189 {
2190 struct file *file;
2191 struct inode *inode;
2192 struct path path;
2193 struct qstr this = { .name = "" };
2194
2195 /*
2196 * allocate a new inode
2197 */
2198 inode = new_inode(pfmfs_mnt->mnt_sb);
2199 if (!inode)
2200 return ERR_PTR(-ENOMEM);
2201
2202 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2203
2204 inode->i_mode = S_IFCHR|S_IRUGO;
2205 inode->i_uid = current_fsuid();
2206 inode->i_gid = current_fsgid();
2207
2208 /*
2209 * allocate a new dcache entry
2210 */
2211 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2212 if (!path.dentry) {
2213 iput(inode);
2214 return ERR_PTR(-ENOMEM);
2215 }
2216 path.mnt = mntget(pfmfs_mnt);
2217
2218 d_add(path.dentry, inode);
2219
2220 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2221 if (IS_ERR(file)) {
2222 path_put(&path);
2223 return file;
2224 }
2225
2226 file->f_flags = O_RDONLY;
2227 file->private_data = ctx;
2228
2229 return file;
2230 }
2231
2232 static int
2233 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2234 {
2235 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2236
2237 while (size > 0) {
2238 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2239
2240
2241 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2242 return -ENOMEM;
2243
2244 addr += PAGE_SIZE;
2245 buf += PAGE_SIZE;
2246 size -= PAGE_SIZE;
2247 }
2248 return 0;
2249 }
2250
2251 /*
2252 * allocate a sampling buffer and remaps it into the user address space of the task
2253 */
2254 static int
2255 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2256 {
2257 struct mm_struct *mm = task->mm;
2258 struct vm_area_struct *vma = NULL;
2259 unsigned long size;
2260 void *smpl_buf;
2261
2262
2263 /*
2264 * the fixed header + requested size and align to page boundary
2265 */
2266 size = PAGE_ALIGN(rsize);
2267
2268 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2269
2270 /*
2271 * check requested size to avoid Denial-of-service attacks
2272 * XXX: may have to refine this test
2273 * Check against address space limit.
2274 *
2275 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2276 * return -ENOMEM;
2277 */
2278 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2279 return -ENOMEM;
2280
2281 /*
2282 * We do the easy to undo allocations first.
2283 *
2284 * pfm_rvmalloc(), clears the buffer, so there is no leak
2285 */
2286 smpl_buf = pfm_rvmalloc(size);
2287 if (smpl_buf == NULL) {
2288 DPRINT(("Can't allocate sampling buffer\n"));
2289 return -ENOMEM;
2290 }
2291
2292 DPRINT(("smpl_buf @%p\n", smpl_buf));
2293
2294 /* allocate vma */
2295 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2296 if (!vma) {
2297 DPRINT(("Cannot allocate vma\n"));
2298 goto error_kmem;
2299 }
2300 INIT_LIST_HEAD(&vma->anon_vma_chain);
2301
2302 /*
2303 * partially initialize the vma for the sampling buffer
2304 */
2305 vma->vm_mm = mm;
2306 vma->vm_file = get_file(filp);
2307 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2308 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2309
2310 /*
2311 * Now we have everything we need and we can initialize
2312 * and connect all the data structures
2313 */
2314
2315 ctx->ctx_smpl_hdr = smpl_buf;
2316 ctx->ctx_smpl_size = size; /* aligned size */
2317
2318 /*
2319 * Let's do the difficult operations next.
2320 *
2321 * now we atomically find some area in the address space and
2322 * remap the buffer in it.
2323 */
2324 down_write(&task->mm->mmap_sem);
2325
2326 /* find some free area in address space, must have mmap sem held */
2327 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2328 if (IS_ERR_VALUE(vma->vm_start)) {
2329 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2330 up_write(&task->mm->mmap_sem);
2331 goto error;
2332 }
2333 vma->vm_end = vma->vm_start + size;
2334 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2335
2336 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2337
2338 /* can only be applied to current task, need to have the mm semaphore held when called */
2339 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2340 DPRINT(("Can't remap buffer\n"));
2341 up_write(&task->mm->mmap_sem);
2342 goto error;
2343 }
2344
2345 /*
2346 * now insert the vma in the vm list for the process, must be
2347 * done with mmap lock held
2348 */
2349 insert_vm_struct(mm, vma);
2350
2351 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2352 vma_pages(vma));
2353 up_write(&task->mm->mmap_sem);
2354
2355 /*
2356 * keep track of user level virtual address
2357 */
2358 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2359 *(unsigned long *)user_vaddr = vma->vm_start;
2360
2361 return 0;
2362
2363 error:
2364 kmem_cache_free(vm_area_cachep, vma);
2365 error_kmem:
2366 pfm_rvfree(smpl_buf, size);
2367
2368 return -ENOMEM;
2369 }
2370
2371 /*
2372 * XXX: do something better here
2373 */
2374 static int
2375 pfm_bad_permissions(struct task_struct *task)
2376 {
2377 const struct cred *tcred;
2378 kuid_t uid = current_uid();
2379 kgid_t gid = current_gid();
2380 int ret;
2381
2382 rcu_read_lock();
2383 tcred = __task_cred(task);
2384
2385 /* inspired by ptrace_attach() */
2386 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387 from_kuid(&init_user_ns, uid),
2388 from_kgid(&init_user_ns, gid),
2389 from_kuid(&init_user_ns, tcred->euid),
2390 from_kuid(&init_user_ns, tcred->suid),
2391 from_kuid(&init_user_ns, tcred->uid),
2392 from_kgid(&init_user_ns, tcred->egid),
2393 from_kgid(&init_user_ns, tcred->sgid)));
2394
2395 ret = ((!uid_eq(uid, tcred->euid))
2396 || (!uid_eq(uid, tcred->suid))
2397 || (!uid_eq(uid, tcred->uid))
2398 || (!gid_eq(gid, tcred->egid))
2399 || (!gid_eq(gid, tcred->sgid))
2400 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2401
2402 rcu_read_unlock();
2403 return ret;
2404 }
2405
2406 static int
2407 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2408 {
2409 int ctx_flags;
2410
2411 /* valid signal */
2412
2413 ctx_flags = pfx->ctx_flags;
2414
2415 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2416
2417 /*
2418 * cannot block in this mode
2419 */
2420 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2421 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2422 return -EINVAL;
2423 }
2424 } else {
2425 }
2426 /* probably more to add here */
2427
2428 return 0;
2429 }
2430
2431 static int
2432 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2433 unsigned int cpu, pfarg_context_t *arg)
2434 {
2435 pfm_buffer_fmt_t *fmt = NULL;
2436 unsigned long size = 0UL;
2437 void *uaddr = NULL;
2438 void *fmt_arg = NULL;
2439 int ret = 0;
2440 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2441
2442 /* invoke and lock buffer format, if found */
2443 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2444 if (fmt == NULL) {
2445 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2446 return -EINVAL;
2447 }
2448
2449 /*
2450 * buffer argument MUST be contiguous to pfarg_context_t
2451 */
2452 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2453
2454 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2455
2456 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2457
2458 if (ret) goto error;
2459
2460 /* link buffer format and context */
2461 ctx->ctx_buf_fmt = fmt;
2462 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2463
2464 /*
2465 * check if buffer format wants to use perfmon buffer allocation/mapping service
2466 */
2467 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2468 if (ret) goto error;
2469
2470 if (size) {
2471 /*
2472 * buffer is always remapped into the caller's address space
2473 */
2474 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2475 if (ret) goto error;
2476
2477 /* keep track of user address of buffer */
2478 arg->ctx_smpl_vaddr = uaddr;
2479 }
2480 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2481
2482 error:
2483 return ret;
2484 }
2485
2486 static void
2487 pfm_reset_pmu_state(pfm_context_t *ctx)
2488 {
2489 int i;
2490
2491 /*
2492 * install reset values for PMC.
2493 */
2494 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2495 if (PMC_IS_IMPL(i) == 0) continue;
2496 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2497 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2498 }
2499 /*
2500 * PMD registers are set to 0UL when the context in memset()
2501 */
2502
2503 /*
2504 * On context switched restore, we must restore ALL pmc and ALL pmd even
2505 * when they are not actively used by the task. In UP, the incoming process
2506 * may otherwise pick up left over PMC, PMD state from the previous process.
2507 * As opposed to PMD, stale PMC can cause harm to the incoming
2508 * process because they may change what is being measured.
2509 * Therefore, we must systematically reinstall the entire
2510 * PMC state. In SMP, the same thing is possible on the
2511 * same CPU but also on between 2 CPUs.
2512 *
2513 * The problem with PMD is information leaking especially
2514 * to user level when psr.sp=0
2515 *
2516 * There is unfortunately no easy way to avoid this problem
2517 * on either UP or SMP. This definitively slows down the
2518 * pfm_load_regs() function.
2519 */
2520
2521 /*
2522 * bitmask of all PMCs accessible to this context
2523 *
2524 * PMC0 is treated differently.
2525 */
2526 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2527
2528 /*
2529 * bitmask of all PMDs that are accessible to this context
2530 */
2531 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2532
2533 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2534
2535 /*
2536 * useful in case of re-enable after disable
2537 */
2538 ctx->ctx_used_ibrs[0] = 0UL;
2539 ctx->ctx_used_dbrs[0] = 0UL;
2540 }
2541
2542 static int
2543 pfm_ctx_getsize(void *arg, size_t *sz)
2544 {
2545 pfarg_context_t *req = (pfarg_context_t *)arg;
2546 pfm_buffer_fmt_t *fmt;
2547
2548 *sz = 0;
2549
2550 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2551
2552 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2553 if (fmt == NULL) {
2554 DPRINT(("cannot find buffer format\n"));
2555 return -EINVAL;
2556 }
2557 /* get just enough to copy in user parameters */
2558 *sz = fmt->fmt_arg_size;
2559 DPRINT(("arg_size=%lu\n", *sz));
2560
2561 return 0;
2562 }
2563
2564
2565
2566 /*
2567 * cannot attach if :
2568 * - kernel task
2569 * - task not owned by caller
2570 * - task incompatible with context mode
2571 */
2572 static int
2573 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2574 {
2575 /*
2576 * no kernel task or task not owner by caller
2577 */
2578 if (task->mm == NULL) {
2579 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2580 return -EPERM;
2581 }
2582 if (pfm_bad_permissions(task)) {
2583 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2584 return -EPERM;
2585 }
2586 /*
2587 * cannot block in self-monitoring mode
2588 */
2589 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2590 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2591 return -EINVAL;
2592 }
2593
2594 if (task->exit_state == EXIT_ZOMBIE) {
2595 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2596 return -EBUSY;
2597 }
2598
2599 /*
2600 * always ok for self
2601 */
2602 if (task == current) return 0;
2603
2604 if (!task_is_stopped_or_traced(task)) {
2605 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2606 return -EBUSY;
2607 }
2608 /*
2609 * make sure the task is off any CPU
2610 */
2611 wait_task_inactive(task, 0);
2612
2613 /* more to come... */
2614
2615 return 0;
2616 }
2617
2618 static int
2619 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2620 {
2621 struct task_struct *p = current;
2622 int ret;
2623
2624 /* XXX: need to add more checks here */
2625 if (pid < 2) return -EPERM;
2626
2627 if (pid != task_pid_vnr(current)) {
2628
2629 read_lock(&tasklist_lock);
2630
2631 p = find_task_by_vpid(pid);
2632
2633 /* make sure task cannot go away while we operate on it */
2634 if (p) get_task_struct(p);
2635
2636 read_unlock(&tasklist_lock);
2637
2638 if (p == NULL) return -ESRCH;
2639 }
2640
2641 ret = pfm_task_incompatible(ctx, p);
2642 if (ret == 0) {
2643 *task = p;
2644 } else if (p != current) {
2645 pfm_put_task(p);
2646 }
2647 return ret;
2648 }
2649
2650
2651
2652 static int
2653 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2654 {
2655 pfarg_context_t *req = (pfarg_context_t *)arg;
2656 struct file *filp;
2657 struct path path;
2658 int ctx_flags;
2659 int fd;
2660 int ret;
2661
2662 /* let's check the arguments first */
2663 ret = pfarg_is_sane(current, req);
2664 if (ret < 0)
2665 return ret;
2666
2667 ctx_flags = req->ctx_flags;
2668
2669 ret = -ENOMEM;
2670
2671 fd = get_unused_fd();
2672 if (fd < 0)
2673 return fd;
2674
2675 ctx = pfm_context_alloc(ctx_flags);
2676 if (!ctx)
2677 goto error;
2678
2679 filp = pfm_alloc_file(ctx);
2680 if (IS_ERR(filp)) {
2681 ret = PTR_ERR(filp);
2682 goto error_file;
2683 }
2684
2685 req->ctx_fd = ctx->ctx_fd = fd;
2686
2687 /*
2688 * does the user want to sample?
2689 */
2690 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2691 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2692 if (ret)
2693 goto buffer_error;
2694 }
2695
2696 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2697 ctx,
2698 ctx_flags,
2699 ctx->ctx_fl_system,
2700 ctx->ctx_fl_block,
2701 ctx->ctx_fl_excl_idle,
2702 ctx->ctx_fl_no_msg,
2703 ctx->ctx_fd));
2704
2705 /*
2706 * initialize soft PMU state
2707 */
2708 pfm_reset_pmu_state(ctx);
2709
2710 fd_install(fd, filp);
2711
2712 return 0;
2713
2714 buffer_error:
2715 path = filp->f_path;
2716 put_filp(filp);
2717 path_put(&path);
2718
2719 if (ctx->ctx_buf_fmt) {
2720 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2721 }
2722 error_file:
2723 pfm_context_free(ctx);
2724
2725 error:
2726 put_unused_fd(fd);
2727 return ret;
2728 }
2729
2730 static inline unsigned long
2731 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2732 {
2733 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2734 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2735 extern unsigned long carta_random32 (unsigned long seed);
2736
2737 if (reg->flags & PFM_REGFL_RANDOM) {
2738 new_seed = carta_random32(old_seed);
2739 val -= (old_seed & mask); /* counter values are negative numbers! */
2740 if ((mask >> 32) != 0)
2741 /* construct a full 64-bit random value: */
2742 new_seed |= carta_random32(old_seed >> 32) << 32;
2743 reg->seed = new_seed;
2744 }
2745 reg->lval = val;
2746 return val;
2747 }
2748
2749 static void
2750 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2751 {
2752 unsigned long mask = ovfl_regs[0];
2753 unsigned long reset_others = 0UL;
2754 unsigned long val;
2755 int i;
2756
2757 /*
2758 * now restore reset value on sampling overflowed counters
2759 */
2760 mask >>= PMU_FIRST_COUNTER;
2761 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2762
2763 if ((mask & 0x1UL) == 0UL) continue;
2764
2765 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2766 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2767
2768 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2769 }
2770
2771 /*
2772 * Now take care of resetting the other registers
2773 */
2774 for(i = 0; reset_others; i++, reset_others >>= 1) {
2775
2776 if ((reset_others & 0x1) == 0) continue;
2777
2778 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2779
2780 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2781 is_long_reset ? "long" : "short", i, val));
2782 }
2783 }
2784
2785 static void
2786 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2787 {
2788 unsigned long mask = ovfl_regs[0];
2789 unsigned long reset_others = 0UL;
2790 unsigned long val;
2791 int i;
2792
2793 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2794
2795 if (ctx->ctx_state == PFM_CTX_MASKED) {
2796 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2797 return;
2798 }
2799
2800 /*
2801 * now restore reset value on sampling overflowed counters
2802 */
2803 mask >>= PMU_FIRST_COUNTER;
2804 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2805
2806 if ((mask & 0x1UL) == 0UL) continue;
2807
2808 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2809 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2810
2811 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2812
2813 pfm_write_soft_counter(ctx, i, val);
2814 }
2815
2816 /*
2817 * Now take care of resetting the other registers
2818 */
2819 for(i = 0; reset_others; i++, reset_others >>= 1) {
2820
2821 if ((reset_others & 0x1) == 0) continue;
2822
2823 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2824
2825 if (PMD_IS_COUNTING(i)) {
2826 pfm_write_soft_counter(ctx, i, val);
2827 } else {
2828 ia64_set_pmd(i, val);
2829 }
2830 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2831 is_long_reset ? "long" : "short", i, val));
2832 }
2833 ia64_srlz_d();
2834 }
2835
2836 static int
2837 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2838 {
2839 struct task_struct *task;
2840 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2841 unsigned long value, pmc_pm;
2842 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2843 unsigned int cnum, reg_flags, flags, pmc_type;
2844 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2845 int is_monitor, is_counting, state;
2846 int ret = -EINVAL;
2847 pfm_reg_check_t wr_func;
2848 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2849
2850 state = ctx->ctx_state;
2851 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2852 is_system = ctx->ctx_fl_system;
2853 task = ctx->ctx_task;
2854 impl_pmds = pmu_conf->impl_pmds[0];
2855
2856 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2857
2858 if (is_loaded) {
2859 /*
2860 * In system wide and when the context is loaded, access can only happen
2861 * when the caller is running on the CPU being monitored by the session.
2862 * It does not have to be the owner (ctx_task) of the context per se.
2863 */
2864 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2865 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2866 return -EBUSY;
2867 }
2868 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2869 }
2870 expert_mode = pfm_sysctl.expert_mode;
2871
2872 for (i = 0; i < count; i++, req++) {
2873
2874 cnum = req->reg_num;
2875 reg_flags = req->reg_flags;
2876 value = req->reg_value;
2877 smpl_pmds = req->reg_smpl_pmds[0];
2878 reset_pmds = req->reg_reset_pmds[0];
2879 flags = 0;
2880
2881
2882 if (cnum >= PMU_MAX_PMCS) {
2883 DPRINT(("pmc%u is invalid\n", cnum));
2884 goto error;
2885 }
2886
2887 pmc_type = pmu_conf->pmc_desc[cnum].type;
2888 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2889 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2890 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2891
2892 /*
2893 * we reject all non implemented PMC as well
2894 * as attempts to modify PMC[0-3] which are used
2895 * as status registers by the PMU
2896 */
2897 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2898 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2899 goto error;
2900 }
2901 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2902 /*
2903 * If the PMC is a monitor, then if the value is not the default:
2904 * - system-wide session: PMCx.pm=1 (privileged monitor)
2905 * - per-task : PMCx.pm=0 (user monitor)
2906 */
2907 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2908 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2909 cnum,
2910 pmc_pm,
2911 is_system));
2912 goto error;
2913 }
2914
2915 if (is_counting) {
2916 /*
2917 * enforce generation of overflow interrupt. Necessary on all
2918 * CPUs.
2919 */
2920 value |= 1 << PMU_PMC_OI;
2921
2922 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2923 flags |= PFM_REGFL_OVFL_NOTIFY;
2924 }
2925
2926 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2927
2928 /* verify validity of smpl_pmds */
2929 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2930 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2931 goto error;
2932 }
2933
2934 /* verify validity of reset_pmds */
2935 if ((reset_pmds & impl_pmds) != reset_pmds) {
2936 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2937 goto error;
2938 }
2939 } else {
2940 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2941 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2942 goto error;
2943 }
2944 /* eventid on non-counting monitors are ignored */
2945 }
2946
2947 /*
2948 * execute write checker, if any
2949 */
2950 if (likely(expert_mode == 0 && wr_func)) {
2951 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2952 if (ret) goto error;
2953 ret = -EINVAL;
2954 }
2955
2956 /*
2957 * no error on this register
2958 */
2959 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2960
2961 /*
2962 * Now we commit the changes to the software state
2963 */
2964
2965 /*
2966 * update overflow information
2967 */
2968 if (is_counting) {
2969 /*
2970 * full flag update each time a register is programmed
2971 */
2972 ctx->ctx_pmds[cnum].flags = flags;
2973
2974 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2975 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2976 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2977
2978 /*
2979 * Mark all PMDS to be accessed as used.
2980 *
2981 * We do not keep track of PMC because we have to
2982 * systematically restore ALL of them.
2983 *
2984 * We do not update the used_monitors mask, because
2985 * if we have not programmed them, then will be in
2986 * a quiescent state, therefore we will not need to
2987 * mask/restore then when context is MASKED.
2988 */
2989 CTX_USED_PMD(ctx, reset_pmds);
2990 CTX_USED_PMD(ctx, smpl_pmds);
2991 /*
2992 * make sure we do not try to reset on
2993 * restart because we have established new values
2994 */
2995 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2996 }
2997 /*
2998 * Needed in case the user does not initialize the equivalent
2999 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3000 * possible leak here.
3001 */
3002 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3003
3004 /*
3005 * keep track of the monitor PMC that we are using.
3006 * we save the value of the pmc in ctx_pmcs[] and if
3007 * the monitoring is not stopped for the context we also
3008 * place it in the saved state area so that it will be
3009 * picked up later by the context switch code.
3010 *
3011 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3012 *
3013 * The value in th_pmcs[] may be modified on overflow, i.e., when
3014 * monitoring needs to be stopped.
3015 */
3016 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3017
3018 /*
3019 * update context state
3020 */
3021 ctx->ctx_pmcs[cnum] = value;
3022
3023 if (is_loaded) {
3024 /*
3025 * write thread state
3026 */
3027 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3028
3029 /*
3030 * write hardware register if we can
3031 */
3032 if (can_access_pmu) {
3033 ia64_set_pmc(cnum, value);
3034 }
3035 #ifdef CONFIG_SMP
3036 else {
3037 /*
3038 * per-task SMP only here
3039 *
3040 * we are guaranteed that the task is not running on the other CPU,
3041 * we indicate that this PMD will need to be reloaded if the task
3042 * is rescheduled on the CPU it ran last on.
3043 */
3044 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3045 }
3046 #endif
3047 }
3048
3049 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3050 cnum,
3051 value,
3052 is_loaded,
3053 can_access_pmu,
3054 flags,
3055 ctx->ctx_all_pmcs[0],
3056 ctx->ctx_used_pmds[0],
3057 ctx->ctx_pmds[cnum].eventid,
3058 smpl_pmds,
3059 reset_pmds,
3060 ctx->ctx_reload_pmcs[0],
3061 ctx->ctx_used_monitors[0],
3062 ctx->ctx_ovfl_regs[0]));
3063 }
3064
3065 /*
3066 * make sure the changes are visible
3067 */
3068 if (can_access_pmu) ia64_srlz_d();
3069
3070 return 0;
3071 error:
3072 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3073 return ret;
3074 }
3075
3076 static int
3077 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3078 {
3079 struct task_struct *task;
3080 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3081 unsigned long value, hw_value, ovfl_mask;
3082 unsigned int cnum;
3083 int i, can_access_pmu = 0, state;
3084 int is_counting, is_loaded, is_system, expert_mode;
3085 int ret = -EINVAL;
3086 pfm_reg_check_t wr_func;
3087
3088
3089 state = ctx->ctx_state;
3090 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3091 is_system = ctx->ctx_fl_system;
3092 ovfl_mask = pmu_conf->ovfl_val;
3093 task = ctx->ctx_task;
3094
3095 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3096
3097 /*
3098 * on both UP and SMP, we can only write to the PMC when the task is
3099 * the owner of the local PMU.
3100 */
3101 if (likely(is_loaded)) {
3102 /*
3103 * In system wide and when the context is loaded, access can only happen
3104 * when the caller is running on the CPU being monitored by the session.
3105 * It does not have to be the owner (ctx_task) of the context per se.
3106 */
3107 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3108 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3109 return -EBUSY;
3110 }
3111 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3112 }
3113 expert_mode = pfm_sysctl.expert_mode;
3114
3115 for (i = 0; i < count; i++, req++) {
3116
3117 cnum = req->reg_num;
3118 value = req->reg_value;
3119
3120 if (!PMD_IS_IMPL(cnum)) {
3121 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3122 goto abort_mission;
3123 }
3124 is_counting = PMD_IS_COUNTING(cnum);
3125 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3126
3127 /*
3128 * execute write checker, if any
3129 */
3130 if (unlikely(expert_mode == 0 && wr_func)) {
3131 unsigned long v = value;
3132
3133 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3134 if (ret) goto abort_mission;
3135
3136 value = v;
3137 ret = -EINVAL;
3138 }
3139
3140 /*
3141 * no error on this register
3142 */
3143 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3144
3145 /*
3146 * now commit changes to software state
3147 */
3148 hw_value = value;
3149
3150 /*
3151 * update virtualized (64bits) counter
3152 */
3153 if (is_counting) {
3154 /*
3155 * write context state
3156 */
3157 ctx->ctx_pmds[cnum].lval = value;
3158
3159 /*
3160 * when context is load we use the split value
3161 */
3162 if (is_loaded) {
3163 hw_value = value & ovfl_mask;
3164 value = value & ~ovfl_mask;
3165 }
3166 }
3167 /*
3168 * update reset values (not just for counters)
3169 */
3170 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3171 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3172
3173 /*
3174 * update randomization parameters (not just for counters)
3175 */
3176 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3177 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3178
3179 /*
3180 * update context value
3181 */
3182 ctx->ctx_pmds[cnum].val = value;
3183
3184 /*
3185 * Keep track of what we use
3186 *
3187 * We do not keep track of PMC because we have to
3188 * systematically restore ALL of them.
3189 */
3190 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3191
3192 /*
3193 * mark this PMD register used as well
3194 */
3195 CTX_USED_PMD(ctx, RDEP(cnum));
3196
3197 /*
3198 * make sure we do not try to reset on
3199 * restart because we have established new values
3200 */
3201 if (is_counting && state == PFM_CTX_MASKED) {
3202 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3203 }
3204
3205 if (is_loaded) {
3206 /*
3207 * write thread state
3208 */
3209 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3210
3211 /*
3212 * write hardware register if we can
3213 */
3214 if (can_access_pmu) {
3215 ia64_set_pmd(cnum, hw_value);
3216 } else {
3217 #ifdef CONFIG_SMP
3218 /*
3219 * we are guaranteed that the task is not running on the other CPU,
3220 * we indicate that this PMD will need to be reloaded if the task
3221 * is rescheduled on the CPU it ran last on.
3222 */
3223 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3224 #endif
3225 }
3226 }
3227
3228 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3229 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3230 cnum,
3231 value,
3232 is_loaded,
3233 can_access_pmu,
3234 hw_value,
3235 ctx->ctx_pmds[cnum].val,
3236 ctx->ctx_pmds[cnum].short_reset,
3237 ctx->ctx_pmds[cnum].long_reset,
3238 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3239 ctx->ctx_pmds[cnum].seed,
3240 ctx->ctx_pmds[cnum].mask,
3241 ctx->ctx_used_pmds[0],
3242 ctx->ctx_pmds[cnum].reset_pmds[0],
3243 ctx->ctx_reload_pmds[0],
3244 ctx->ctx_all_pmds[0],
3245 ctx->ctx_ovfl_regs[0]));
3246 }
3247
3248 /*
3249 * make changes visible
3250 */
3251 if (can_access_pmu) ia64_srlz_d();
3252
3253 return 0;
3254
3255 abort_mission:
3256 /*
3257 * for now, we have only one possibility for error
3258 */
3259 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3260 return ret;
3261 }
3262
3263 /*
3264 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3265 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3266 * interrupt is delivered during the call, it will be kept pending until we leave, making
3267 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3268 * guaranteed to return consistent data to the user, it may simply be old. It is not
3269 * trivial to treat the overflow while inside the call because you may end up in
3270 * some module sampling buffer code causing deadlocks.
3271 */
3272 static int
3273 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3274 {
3275 struct task_struct *task;
3276 unsigned long val = 0UL, lval, ovfl_mask, sval;
3277 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3278 unsigned int cnum, reg_flags = 0;
3279 int i, can_access_pmu = 0, state;
3280 int is_loaded, is_system, is_counting, expert_mode;
3281 int ret = -EINVAL;
3282 pfm_reg_check_t rd_func;
3283
3284 /*
3285 * access is possible when loaded only for
3286 * self-monitoring tasks or in UP mode
3287 */
3288
3289 state = ctx->ctx_state;
3290 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3291 is_system = ctx->ctx_fl_system;
3292 ovfl_mask = pmu_conf->ovfl_val;
3293 task = ctx->ctx_task;
3294
3295 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3296
3297 if (likely(is_loaded)) {
3298 /*
3299 * In system wide and when the context is loaded, access can only happen
3300 * when the caller is running on the CPU being monitored by the session.
3301 * It does not have to be the owner (ctx_task) of the context per se.
3302 */
3303 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3304 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3305 return -EBUSY;
3306 }
3307 /*
3308 * this can be true when not self-monitoring only in UP
3309 */
3310 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3311
3312 if (can_access_pmu) ia64_srlz_d();
3313 }
3314 expert_mode = pfm_sysctl.expert_mode;
3315
3316 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3317 is_loaded,
3318 can_access_pmu,
3319 state));
3320
3321 /*
3322 * on both UP and SMP, we can only read the PMD from the hardware register when
3323 * the task is the owner of the local PMU.
3324 */
3325
3326 for (i = 0; i < count; i++, req++) {
3327
3328 cnum = req->reg_num;
3329 reg_flags = req->reg_flags;
3330
3331 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3332 /*
3333 * we can only read the register that we use. That includes
3334 * the one we explicitly initialize AND the one we want included
3335 * in the sampling buffer (smpl_regs).
3336 *
3337 * Having this restriction allows optimization in the ctxsw routine
3338 * without compromising security (leaks)
3339 */
3340 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3341
3342 sval = ctx->ctx_pmds[cnum].val;
3343 lval = ctx->ctx_pmds[cnum].lval;
3344 is_counting = PMD_IS_COUNTING(cnum);
3345
3346 /*
3347 * If the task is not the current one, then we check if the
3348 * PMU state is still in the local live register due to lazy ctxsw.
3349 * If true, then we read directly from the registers.
3350 */
3351 if (can_access_pmu){
3352 val = ia64_get_pmd(cnum);
3353 } else {
3354 /*
3355 * context has been saved
3356 * if context is zombie, then task does not exist anymore.
3357 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3358 */
3359 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3360 }
3361 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3362
3363 if (is_counting) {
3364 /*
3365 * XXX: need to check for overflow when loaded
3366 */
3367 val &= ovfl_mask;
3368 val += sval;
3369 }
3370
3371 /*
3372 * execute read checker, if any
3373 */
3374 if (unlikely(expert_mode == 0 && rd_func)) {
3375 unsigned long v = val;
3376 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3377 if (ret) goto error;
3378 val = v;
3379 ret = -EINVAL;
3380 }
3381
3382 PFM_REG_RETFLAG_SET(reg_flags, 0);
3383
3384 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3385
3386 /*
3387 * update register return value, abort all if problem during copy.
3388 * we only modify the reg_flags field. no check mode is fine because
3389 * access has been verified upfront in sys_perfmonctl().
3390 */
3391 req->reg_value = val;
3392 req->reg_flags = reg_flags;
3393 req->reg_last_reset_val = lval;
3394 }
3395
3396 return 0;
3397
3398 error:
3399 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3400 return ret;
3401 }
3402
3403 int
3404 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3405 {
3406 pfm_context_t *ctx;
3407
3408 if (req == NULL) return -EINVAL;
3409
3410 ctx = GET_PMU_CTX();
3411
3412 if (ctx == NULL) return -EINVAL;
3413
3414 /*
3415 * for now limit to current task, which is enough when calling
3416 * from overflow handler
3417 */
3418 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3419
3420 return pfm_write_pmcs(ctx, req, nreq, regs);
3421 }
3422 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3423
3424 int
3425 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3426 {
3427 pfm_context_t *ctx;
3428
3429 if (req == NULL) return -EINVAL;
3430
3431 ctx = GET_PMU_CTX();
3432
3433 if (ctx == NULL) return -EINVAL;
3434
3435 /*
3436 * for now limit to current task, which is enough when calling
3437 * from overflow handler
3438 */
3439 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3440
3441 return pfm_read_pmds(ctx, req, nreq, regs);
3442 }
3443 EXPORT_SYMBOL(pfm_mod_read_pmds);
3444
3445 /*
3446 * Only call this function when a process it trying to
3447 * write the debug registers (reading is always allowed)
3448 */
3449 int
3450 pfm_use_debug_registers(struct task_struct *task)
3451 {
3452 pfm_context_t *ctx = task->thread.pfm_context;
3453 unsigned long flags;
3454 int ret = 0;
3455
3456 if (pmu_conf->use_rr_dbregs == 0) return 0;
3457
3458 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3459
3460 /*
3461 * do it only once
3462 */
3463 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3464
3465 /*
3466 * Even on SMP, we do not need to use an atomic here because
3467 * the only way in is via ptrace() and this is possible only when the
3468 * process is stopped. Even in the case where the ctxsw out is not totally
3469 * completed by the time we come here, there is no way the 'stopped' process
3470 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3471 * So this is always safe.
3472 */
3473 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3474
3475 LOCK_PFS(flags);
3476
3477 /*
3478 * We cannot allow setting breakpoints when system wide monitoring
3479 * sessions are using the debug registers.
3480 */
3481 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3482 ret = -1;
3483 else
3484 pfm_sessions.pfs_ptrace_use_dbregs++;
3485
3486 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3487 pfm_sessions.pfs_ptrace_use_dbregs,
3488 pfm_sessions.pfs_sys_use_dbregs,
3489 task_pid_nr(task), ret));
3490
3491 UNLOCK_PFS(flags);
3492
3493 return ret;
3494 }
3495
3496 /*
3497 * This function is called for every task that exits with the
3498 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3499 * able to use the debug registers for debugging purposes via
3500 * ptrace(). Therefore we know it was not using them for
3501 * performance monitoring, so we only decrement the number
3502 * of "ptraced" debug register users to keep the count up to date
3503 */
3504 int
3505 pfm_release_debug_registers(struct task_struct *task)
3506 {
3507 unsigned long flags;
3508 int ret;
3509
3510 if (pmu_conf->use_rr_dbregs == 0) return 0;
3511
3512 LOCK_PFS(flags);
3513 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3514 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3515 ret = -1;
3516 } else {
3517 pfm_sessions.pfs_ptrace_use_dbregs--;
3518 ret = 0;
3519 }
3520 UNLOCK_PFS(flags);
3521
3522 return ret;
3523 }
3524
3525 static int
3526 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3527 {
3528 struct task_struct *task;
3529 pfm_buffer_fmt_t *fmt;
3530 pfm_ovfl_ctrl_t rst_ctrl;
3531 int state, is_system;
3532 int ret = 0;
3533
3534 state = ctx->ctx_state;
3535 fmt = ctx->ctx_buf_fmt;
3536 is_system = ctx->ctx_fl_system;
3537 task = PFM_CTX_TASK(ctx);
3538
3539 switch(state) {
3540 case PFM_CTX_MASKED:
3541 break;
3542 case PFM_CTX_LOADED:
3543 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3544 /* fall through */
3545 case PFM_CTX_UNLOADED:
3546 case PFM_CTX_ZOMBIE:
3547 DPRINT(("invalid state=%d\n", state));
3548 return -EBUSY;
3549 default:
3550 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3551 return -EINVAL;
3552 }
3553
3554 /*
3555 * In system wide and when the context is loaded, access can only happen
3556 * when the caller is running on the CPU being monitored by the session.
3557 * It does not have to be the owner (ctx_task) of the context per se.
3558 */
3559 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3560 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3561 return -EBUSY;
3562 }
3563
3564 /* sanity check */
3565 if (unlikely(task == NULL)) {
3566 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3567 return -EINVAL;
3568 }
3569
3570 if (task == current || is_system) {
3571
3572 fmt = ctx->ctx_buf_fmt;
3573
3574 DPRINT(("restarting self %d ovfl=0x%lx\n",
3575 task_pid_nr(task),
3576 ctx->ctx_ovfl_regs[0]));
3577
3578 if (CTX_HAS_SMPL(ctx)) {
3579
3580 prefetch(ctx->ctx_smpl_hdr);
3581
3582 rst_ctrl.bits.mask_monitoring = 0;
3583 rst_ctrl.bits.reset_ovfl_pmds = 0;
3584
3585 if (state == PFM_CTX_LOADED)
3586 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3587 else
3588 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3589 } else {
3590 rst_ctrl.bits.mask_monitoring = 0;
3591 rst_ctrl.bits.reset_ovfl_pmds = 1;
3592 }
3593
3594 if (ret == 0) {
3595 if (rst_ctrl.bits.reset_ovfl_pmds)
3596 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3597
3598 if (rst_ctrl.bits.mask_monitoring == 0) {
3599 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3600
3601 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3602 } else {
3603 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3604
3605 // cannot use pfm_stop_monitoring(task, regs);
3606 }
3607 }
3608 /*
3609 * clear overflowed PMD mask to remove any stale information
3610 */
3611 ctx->ctx_ovfl_regs[0] = 0UL;
3612
3613 /*
3614 * back to LOADED state
3615 */
3616 ctx->ctx_state = PFM_CTX_LOADED;
3617
3618 /*
3619 * XXX: not really useful for self monitoring
3620 */
3621 ctx->ctx_fl_can_restart = 0;
3622
3623 return 0;
3624 }
3625
3626 /*
3627 * restart another task
3628 */
3629
3630 /*
3631 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3632 * one is seen by the task.
3633 */
3634 if (state == PFM_CTX_MASKED) {
3635 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3636 /*
3637 * will prevent subsequent restart before this one is
3638 * seen by other task
3639 */
3640 ctx->ctx_fl_can_restart = 0;
3641 }
3642
3643 /*
3644 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3645 * the task is blocked or on its way to block. That's the normal
3646 * restart path. If the monitoring is not masked, then the task
3647 * can be actively monitoring and we cannot directly intervene.
3648 * Therefore we use the trap mechanism to catch the task and
3649 * force it to reset the buffer/reset PMDs.
3650 *
3651 * if non-blocking, then we ensure that the task will go into
3652 * pfm_handle_work() before returning to user mode.
3653 *
3654 * We cannot explicitly reset another task, it MUST always
3655 * be done by the task itself. This works for system wide because
3656 * the tool that is controlling the session is logically doing
3657 * "self-monitoring".
3658 */
3659 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3660 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3661 complete(&ctx->ctx_restart_done);
3662 } else {
3663 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3664
3665 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3666
3667 PFM_SET_WORK_PENDING(task, 1);
3668
3669 set_notify_resume(task);
3670
3671 /*
3672 * XXX: send reschedule if task runs on another CPU
3673 */
3674 }
3675 return 0;
3676 }
3677
3678 static int
3679 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3680 {
3681 unsigned int m = *(unsigned int *)arg;
3682
3683 pfm_sysctl.debug = m == 0 ? 0 : 1;
3684
3685 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3686
3687 if (m == 0) {
3688 memset(pfm_stats, 0, sizeof(pfm_stats));
3689 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3690 }
3691 return 0;
3692 }
3693
3694 /*
3695 * arg can be NULL and count can be zero for this function
3696 */
3697 static int
3698 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3699 {
3700 struct thread_struct *thread = NULL;
3701 struct task_struct *task;
3702 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3703 unsigned long flags;
3704 dbreg_t dbreg;
3705 unsigned int rnum;
3706 int first_time;
3707 int ret = 0, state;
3708 int i, can_access_pmu = 0;
3709 int is_system, is_loaded;
3710
3711 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3712
3713 state = ctx->ctx_state;
3714 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3715 is_system = ctx->ctx_fl_system;
3716 task = ctx->ctx_task;
3717
3718 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3719
3720 /*
3721 * on both UP and SMP, we can only write to the PMC when the task is
3722 * the owner of the local PMU.
3723 */
3724 if (is_loaded) {
3725 thread = &task->thread;
3726 /*
3727 * In system wide and when the context is loaded, access can only happen
3728 * when the caller is running on the CPU being monitored by the session.
3729 * It does not have to be the owner (ctx_task) of the context per se.
3730 */
3731 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3732 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3733 return -EBUSY;
3734 }
3735 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3736 }
3737
3738 /*
3739 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3740 * ensuring that no real breakpoint can be installed via this call.
3741 *
3742 * IMPORTANT: regs can be NULL in this function
3743 */
3744
3745 first_time = ctx->ctx_fl_using_dbreg == 0;
3746
3747 /*
3748 * don't bother if we are loaded and task is being debugged
3749 */
3750 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3751 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3752 return -EBUSY;
3753 }
3754
3755 /*
3756 * check for debug registers in system wide mode
3757 *
3758 * If though a check is done in pfm_context_load(),
3759 * we must repeat it here, in case the registers are
3760 * written after the context is loaded
3761 */
3762 if (is_loaded) {
3763 LOCK_PFS(flags);
3764
3765 if (first_time && is_system) {
3766 if (pfm_sessions.pfs_ptrace_use_dbregs)
3767 ret = -EBUSY;
3768 else
3769 pfm_sessions.pfs_sys_use_dbregs++;
3770 }
3771 UNLOCK_PFS(flags);
3772 }
3773
3774 if (ret != 0) return ret;
3775
3776 /*
3777 * mark ourself as user of the debug registers for
3778 * perfmon purposes.
3779 */
3780 ctx->ctx_fl_using_dbreg = 1;
3781
3782 /*
3783 * clear hardware registers to make sure we don't
3784 * pick up stale state.
3785 *
3786 * for a system wide session, we do not use
3787 * thread.dbr, thread.ibr because this process
3788 * never leaves the current CPU and the state
3789 * is shared by all processes running on it
3790 */
3791 if (first_time && can_access_pmu) {
3792 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3793 for (i=0; i < pmu_conf->num_ibrs; i++) {
3794 ia64_set_ibr(i, 0UL);
3795 ia64_dv_serialize_instruction();
3796 }
3797 ia64_srlz_i();
3798 for (i=0; i < pmu_conf->num_dbrs; i++) {
3799 ia64_set_dbr(i, 0UL);
3800 ia64_dv_serialize_data();
3801 }
3802 ia64_srlz_d();
3803 }
3804
3805 /*
3806 * Now install the values into the registers
3807 */
3808 for (i = 0; i < count; i++, req++) {
3809
3810 rnum = req->dbreg_num;
3811 dbreg.val = req->dbreg_value;
3812
3813 ret = -EINVAL;
3814
3815 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3816 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3817 rnum, dbreg.val, mode, i, count));
3818
3819 goto abort_mission;
3820 }
3821
3822 /*
3823 * make sure we do not install enabled breakpoint
3824 */
3825 if (rnum & 0x1) {
3826 if (mode == PFM_CODE_RR)
3827 dbreg.ibr.ibr_x = 0;
3828 else
3829 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3830 }
3831
3832 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3833
3834 /*
3835 * Debug registers, just like PMC, can only be modified
3836 * by a kernel call. Moreover, perfmon() access to those
3837 * registers are centralized in this routine. The hardware
3838 * does not modify the value of these registers, therefore,
3839 * if we save them as they are written, we can avoid having
3840 * to save them on context switch out. This is made possible
3841 * by the fact that when perfmon uses debug registers, ptrace()
3842 * won't be able to modify them concurrently.
3843 */
3844 if (mode == PFM_CODE_RR) {
3845 CTX_USED_IBR(ctx, rnum);
3846
3847 if (can_access_pmu) {
3848 ia64_set_ibr(rnum, dbreg.val);
3849 ia64_dv_serialize_instruction();
3850 }
3851
3852 ctx->ctx_ibrs[rnum] = dbreg.val;
3853
3854 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3855 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3856 } else {
3857 CTX_USED_DBR(ctx, rnum);
3858
3859 if (can_access_pmu) {
3860 ia64_set_dbr(rnum, dbreg.val);
3861 ia64_dv_serialize_data();
3862 }
3863 ctx->ctx_dbrs[rnum] = dbreg.val;
3864
3865 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3866 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3867 }
3868 }
3869
3870 return 0;
3871
3872 abort_mission:
3873 /*
3874 * in case it was our first attempt, we undo the global modifications
3875 */
3876 if (first_time) {
3877 LOCK_PFS(flags);
3878 if (ctx->ctx_fl_system) {
3879 pfm_sessions.pfs_sys_use_dbregs--;
3880 }
3881 UNLOCK_PFS(flags);
3882 ctx->ctx_fl_using_dbreg = 0;
3883 }
3884 /*
3885 * install error return flag
3886 */
3887 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3888
3889 return ret;
3890 }
3891
3892 static int
3893 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894 {
3895 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3896 }
3897
3898 static int
3899 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900 {
3901 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3902 }
3903
3904 int
3905 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3906 {
3907 pfm_context_t *ctx;
3908
3909 if (req == NULL) return -EINVAL;
3910
3911 ctx = GET_PMU_CTX();
3912
3913 if (ctx == NULL) return -EINVAL;
3914
3915 /*
3916 * for now limit to current task, which is enough when calling
3917 * from overflow handler
3918 */
3919 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3920
3921 return pfm_write_ibrs(ctx, req, nreq, regs);
3922 }
3923 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3924
3925 int
3926 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3927 {
3928 pfm_context_t *ctx;
3929
3930 if (req == NULL) return -EINVAL;
3931
3932 ctx = GET_PMU_CTX();
3933
3934 if (ctx == NULL) return -EINVAL;
3935
3936 /*
3937 * for now limit to current task, which is enough when calling
3938 * from overflow handler
3939 */
3940 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3941
3942 return pfm_write_dbrs(ctx, req, nreq, regs);
3943 }
3944 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3945
3946
3947 static int
3948 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3949 {
3950 pfarg_features_t *req = (pfarg_features_t *)arg;
3951
3952 req->ft_version = PFM_VERSION;
3953 return 0;
3954 }
3955
3956 static int
3957 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3958 {
3959 struct pt_regs *tregs;
3960 struct task_struct *task = PFM_CTX_TASK(ctx);
3961 int state, is_system;
3962
3963 state = ctx->ctx_state;
3964 is_system = ctx->ctx_fl_system;
3965
3966 /*
3967 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3968 */
3969 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3970
3971 /*
3972 * In system wide and when the context is loaded, access can only happen
3973 * when the caller is running on the CPU being monitored by the session.
3974 * It does not have to be the owner (ctx_task) of the context per se.
3975 */
3976 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3977 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3978 return -EBUSY;
3979 }
3980 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3981 task_pid_nr(PFM_CTX_TASK(ctx)),
3982 state,
3983 is_system));
3984 /*
3985 * in system mode, we need to update the PMU directly
3986 * and the user level state of the caller, which may not
3987 * necessarily be the creator of the context.
3988 */
3989 if (is_system) {
3990 /*
3991 * Update local PMU first
3992 *
3993 * disable dcr pp
3994 */
3995 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3996 ia64_srlz_i();
3997
3998 /*
3999 * update local cpuinfo
4000 */
4001 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4002
4003 /*
4004 * stop monitoring, does srlz.i
4005 */
4006 pfm_clear_psr_pp();
4007
4008 /*
4009 * stop monitoring in the caller
4010 */
4011 ia64_psr(regs)->pp = 0;
4012
4013 return 0;
4014 }
4015 /*
4016 * per-task mode
4017 */
4018
4019 if (task == current) {
4020 /* stop monitoring at kernel level */
4021 pfm_clear_psr_up();
4022
4023 /*
4024 * stop monitoring at the user level
4025 */
4026 ia64_psr(regs)->up = 0;
4027 } else {
4028 tregs = task_pt_regs(task);
4029
4030 /*
4031 * stop monitoring at the user level
4032 */
4033 ia64_psr(tregs)->up = 0;
4034
4035 /*
4036 * monitoring disabled in kernel at next reschedule
4037 */
4038 ctx->ctx_saved_psr_up = 0;
4039 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4040 }
4041 return 0;
4042 }
4043
4044
4045 static int
4046 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4047 {
4048 struct pt_regs *tregs;
4049 int state, is_system;
4050
4051 state = ctx->ctx_state;
4052 is_system = ctx->ctx_fl_system;
4053
4054 if (state != PFM_CTX_LOADED) return -EINVAL;
4055
4056 /*
4057 * In system wide and when the context is loaded, access can only happen
4058 * when the caller is running on the CPU being monitored by the session.
4059 * It does not have to be the owner (ctx_task) of the context per se.
4060 */
4061 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4062 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4063 return -EBUSY;
4064 }
4065
4066 /*
4067 * in system mode, we need to update the PMU directly
4068 * and the user level state of the caller, which may not
4069 * necessarily be the creator of the context.
4070 */
4071 if (is_system) {
4072
4073 /*
4074 * set user level psr.pp for the caller
4075 */
4076 ia64_psr(regs)->pp = 1;
4077
4078 /*
4079 * now update the local PMU and cpuinfo
4080 */
4081 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4082
4083 /*
4084 * start monitoring at kernel level
4085 */
4086 pfm_set_psr_pp();
4087
4088 /* enable dcr pp */
4089 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4090 ia64_srlz_i();
4091
4092 return 0;
4093 }
4094
4095 /*
4096 * per-process mode
4097 */
4098
4099 if (ctx->ctx_task == current) {
4100
4101 /* start monitoring at kernel level */
4102 pfm_set_psr_up();
4103
4104 /*
4105 * activate monitoring at user level
4106 */
4107 ia64_psr(regs)->up = 1;
4108
4109 } else {
4110 tregs = task_pt_regs(ctx->ctx_task);
4111
4112 /*
4113 * start monitoring at the kernel level the next
4114 * time the task is scheduled
4115 */
4116 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4117
4118 /*
4119 * activate monitoring at user level
4120 */
4121 ia64_psr(tregs)->up = 1;
4122 }
4123 return 0;
4124 }
4125
4126 static int
4127 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4128 {
4129 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4130 unsigned int cnum;
4131 int i;
4132 int ret = -EINVAL;
4133
4134 for (i = 0; i < count; i++, req++) {
4135
4136 cnum = req->reg_num;
4137
4138 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4139
4140 req->reg_value = PMC_DFL_VAL(cnum);
4141
4142 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4143
4144 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4145 }
4146 return 0;
4147
4148 abort_mission:
4149 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4150 return ret;
4151 }
4152
4153 static int
4154 pfm_check_task_exist(pfm_context_t *ctx)
4155 {
4156 struct task_struct *g, *t;
4157 int ret = -ESRCH;
4158
4159 read_lock(&tasklist_lock);
4160
4161 do_each_thread (g, t) {
4162 if (t->thread.pfm_context == ctx) {
4163 ret = 0;
4164 goto out;
4165 }
4166 } while_each_thread (g, t);
4167 out:
4168 read_unlock(&tasklist_lock);
4169
4170 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4171
4172 return ret;
4173 }
4174
4175 static int
4176 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4177 {
4178 struct task_struct *task;
4179 struct thread_struct *thread;
4180 struct pfm_context_t *old;
4181 unsigned long flags;
4182 #ifndef CONFIG_SMP
4183 struct task_struct *owner_task = NULL;
4184 #endif
4185 pfarg_load_t *req = (pfarg_load_t *)arg;
4186 unsigned long *pmcs_source, *pmds_source;
4187 int the_cpu;
4188 int ret = 0;
4189 int state, is_system, set_dbregs = 0;
4190
4191 state = ctx->ctx_state;
4192 is_system = ctx->ctx_fl_system;
4193 /*
4194 * can only load from unloaded or terminated state
4195 */
4196 if (state != PFM_CTX_UNLOADED) {
4197 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4198 req->load_pid,
4199 ctx->ctx_state));
4200 return -EBUSY;
4201 }
4202
4203 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4204
4205 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4206 DPRINT(("cannot use blocking mode on self\n"));
4207 return -EINVAL;
4208 }
4209
4210 ret = pfm_get_task(ctx, req->load_pid, &task);
4211 if (ret) {
4212 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4213 return ret;
4214 }
4215
4216 ret = -EINVAL;
4217
4218 /*
4219 * system wide is self monitoring only
4220 */
4221 if (is_system && task != current) {
4222 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4223 req->load_pid));
4224 goto error;
4225 }
4226
4227 thread = &task->thread;
4228
4229 ret = 0;
4230 /*
4231 * cannot load a context which is using range restrictions,
4232 * into a task that is being debugged.
4233 */
4234 if (ctx->ctx_fl_using_dbreg) {
4235 if (thread->flags & IA64_THREAD_DBG_VALID) {
4236 ret = -EBUSY;
4237 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4238 goto error;
4239 }
4240 LOCK_PFS(flags);
4241
4242 if (is_system) {
4243 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4244 DPRINT(("cannot load [%d] dbregs in use\n",
4245 task_pid_nr(task)));
4246 ret = -EBUSY;
4247 } else {
4248 pfm_sessions.pfs_sys_use_dbregs++;
4249 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4250 set_dbregs = 1;
4251 }
4252 }
4253
4254 UNLOCK_PFS(flags);
4255
4256 if (ret) goto error;
4257 }
4258
4259 /*
4260 * SMP system-wide monitoring implies self-monitoring.
4261 *
4262 * The programming model expects the task to
4263 * be pinned on a CPU throughout the session.
4264 * Here we take note of the current CPU at the
4265 * time the context is loaded. No call from
4266 * another CPU will be allowed.
4267 *
4268 * The pinning via shed_setaffinity()
4269 * must be done by the calling task prior
4270 * to this call.
4271 *
4272 * systemwide: keep track of CPU this session is supposed to run on
4273 */
4274 the_cpu = ctx->ctx_cpu = smp_processor_id();
4275
4276 ret = -EBUSY;
4277 /*
4278 * now reserve the session
4279 */
4280 ret = pfm_reserve_session(current, is_system, the_cpu);
4281 if (ret) goto error;
4282
4283 /*
4284 * task is necessarily stopped at this point.
4285 *
4286 * If the previous context was zombie, then it got removed in
4287 * pfm_save_regs(). Therefore we should not see it here.
4288 * If we see a context, then this is an active context
4289 *
4290 * XXX: needs to be atomic
4291 */
4292 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4293 thread->pfm_context, ctx));
4294
4295 ret = -EBUSY;
4296 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4297 if (old != NULL) {
4298 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4299 goto error_unres;
4300 }
4301
4302 pfm_reset_msgq(ctx);
4303
4304 ctx->ctx_state = PFM_CTX_LOADED;
4305
4306 /*
4307 * link context to task
4308 */
4309 ctx->ctx_task = task;
4310
4311 if (is_system) {
4312 /*
4313 * we load as stopped
4314 */
4315 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4316 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4317
4318 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4319 } else {
4320 thread->flags |= IA64_THREAD_PM_VALID;
4321 }
4322
4323 /*
4324 * propagate into thread-state
4325 */
4326 pfm_copy_pmds(task, ctx);
4327 pfm_copy_pmcs(task, ctx);
4328
4329 pmcs_source = ctx->th_pmcs;
4330 pmds_source = ctx->th_pmds;
4331
4332 /*
4333 * always the case for system-wide
4334 */
4335 if (task == current) {
4336
4337 if (is_system == 0) {
4338
4339 /* allow user level control */
4340 ia64_psr(regs)->sp = 0;
4341 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4342
4343 SET_LAST_CPU(ctx, smp_processor_id());
4344 INC_ACTIVATION();
4345 SET_ACTIVATION(ctx);
4346 #ifndef CONFIG_SMP
4347 /*
4348 * push the other task out, if any
4349 */
4350 owner_task = GET_PMU_OWNER();
4351 if (owner_task) pfm_lazy_save_regs(owner_task);
4352 #endif
4353 }
4354 /*
4355 * load all PMD from ctx to PMU (as opposed to thread state)
4356 * restore all PMC from ctx to PMU
4357 */
4358 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4359 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4360
4361 ctx->ctx_reload_pmcs[0] = 0UL;
4362 ctx->ctx_reload_pmds[0] = 0UL;
4363
4364 /*
4365 * guaranteed safe by earlier check against DBG_VALID
4366 */
4367 if (ctx->ctx_fl_using_dbreg) {
4368 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4369 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4370 }
4371 /*
4372 * set new ownership
4373 */
4374 SET_PMU_OWNER(task, ctx);
4375
4376 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4377 } else {
4378 /*
4379 * when not current, task MUST be stopped, so this is safe
4380 */
4381 regs = task_pt_regs(task);
4382
4383 /* force a full reload */
4384 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4385 SET_LAST_CPU(ctx, -1);
4386
4387 /* initial saved psr (stopped) */
4388 ctx->ctx_saved_psr_up = 0UL;
4389 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4390 }
4391
4392 ret = 0;
4393
4394 error_unres:
4395 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4396 error:
4397 /*
4398 * we must undo the dbregs setting (for system-wide)
4399 */
4400 if (ret && set_dbregs) {
4401 LOCK_PFS(flags);
4402 pfm_sessions.pfs_sys_use_dbregs--;
4403 UNLOCK_PFS(flags);
4404 }
4405 /*
4406 * release task, there is now a link with the context
4407 */
4408 if (is_system == 0 && task != current) {
4409 pfm_put_task(task);
4410
4411 if (ret == 0) {
4412 ret = pfm_check_task_exist(ctx);
4413 if (ret) {
4414 ctx->ctx_state = PFM_CTX_UNLOADED;
4415 ctx->ctx_task = NULL;
4416 }
4417 }
4418 }
4419 return ret;
4420 }
4421
4422 /*
4423 * in this function, we do not need to increase the use count
4424 * for the task via get_task_struct(), because we hold the
4425 * context lock. If the task were to disappear while having
4426 * a context attached, it would go through pfm_exit_thread()
4427 * which also grabs the context lock and would therefore be blocked
4428 * until we are here.
4429 */
4430 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4431
4432 static int
4433 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4434 {
4435 struct task_struct *task = PFM_CTX_TASK(ctx);
4436 struct pt_regs *tregs;
4437 int prev_state, is_system;
4438 int ret;
4439
4440 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4441
4442 prev_state = ctx->ctx_state;
4443 is_system = ctx->ctx_fl_system;
4444
4445 /*
4446 * unload only when necessary
4447 */
4448 if (prev_state == PFM_CTX_UNLOADED) {
4449 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4450 return 0;
4451 }
4452
4453 /*
4454 * clear psr and dcr bits
4455 */
4456 ret = pfm_stop(ctx, NULL, 0, regs);
4457 if (ret) return ret;
4458
4459 ctx->ctx_state = PFM_CTX_UNLOADED;
4460
4461 /*
4462 * in system mode, we need to update the PMU directly
4463 * and the user level state of the caller, which may not
4464 * necessarily be the creator of the context.
4465 */
4466 if (is_system) {
4467
4468 /*
4469 * Update cpuinfo
4470 *
4471 * local PMU is taken care of in pfm_stop()
4472 */
4473 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4474 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4475
4476 /*
4477 * save PMDs in context
4478 * release ownership
4479 */
4480 pfm_flush_pmds(current, ctx);
4481
4482 /*
4483 * at this point we are done with the PMU
4484 * so we can unreserve the resource.
4485 */
4486 if (prev_state != PFM_CTX_ZOMBIE)
4487 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4488
4489 /*
4490 * disconnect context from task
4491 */
4492 task->thread.pfm_context = NULL;
4493 /*
4494 * disconnect task from context
4495 */
4496 ctx->ctx_task = NULL;
4497
4498 /*
4499 * There is nothing more to cleanup here.
4500 */
4501 return 0;
4502 }
4503
4504 /*
4505 * per-task mode
4506 */
4507 tregs = task == current ? regs : task_pt_regs(task);
4508
4509 if (task == current) {
4510 /*
4511 * cancel user level control
4512 */
4513 ia64_psr(regs)->sp = 1;
4514
4515 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4516 }
4517 /*
4518 * save PMDs to context
4519 * release ownership
4520 */
4521 pfm_flush_pmds(task, ctx);
4522
4523 /*
4524 * at this point we are done with the PMU
4525 * so we can unreserve the resource.
4526 *
4527 * when state was ZOMBIE, we have already unreserved.
4528 */
4529 if (prev_state != PFM_CTX_ZOMBIE)
4530 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4531
4532 /*
4533 * reset activation counter and psr
4534 */
4535 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4536 SET_LAST_CPU(ctx, -1);
4537
4538 /*
4539 * PMU state will not be restored
4540 */
4541 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4542
4543 /*
4544 * break links between context and task
4545 */
4546 task->thread.pfm_context = NULL;
4547 ctx->ctx_task = NULL;
4548
4549 PFM_SET_WORK_PENDING(task, 0);
4550
4551 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4552 ctx->ctx_fl_can_restart = 0;
4553 ctx->ctx_fl_going_zombie = 0;
4554
4555 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4556
4557 return 0;
4558 }
4559
4560
4561 /*
4562 * called only from exit_thread(): task == current
4563 * we come here only if current has a context attached (loaded or masked)
4564 */
4565 void
4566 pfm_exit_thread(struct task_struct *task)
4567 {
4568 pfm_context_t *ctx;
4569 unsigned long flags;
4570 struct pt_regs *regs = task_pt_regs(task);
4571 int ret, state;
4572 int free_ok = 0;
4573
4574 ctx = PFM_GET_CTX(task);
4575
4576 PROTECT_CTX(ctx, flags);
4577
4578 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4579
4580 state = ctx->ctx_state;
4581 switch(state) {
4582 case PFM_CTX_UNLOADED:
4583 /*
4584 * only comes to this function if pfm_context is not NULL, i.e., cannot
4585 * be in unloaded state
4586 */
4587 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4588 break;
4589 case PFM_CTX_LOADED:
4590 case PFM_CTX_MASKED:
4591 ret = pfm_context_unload(ctx, NULL, 0, regs);
4592 if (ret) {
4593 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4594 }
4595 DPRINT(("ctx unloaded for current state was %d\n", state));
4596
4597 pfm_end_notify_user(ctx);
4598 break;
4599 case PFM_CTX_ZOMBIE:
4600 ret = pfm_context_unload(ctx, NULL, 0, regs);
4601 if (ret) {
4602 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4603 }
4604 free_ok = 1;
4605 break;
4606 default:
4607 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4608 break;
4609 }
4610 UNPROTECT_CTX(ctx, flags);
4611
4612 { u64 psr = pfm_get_psr();
4613 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4614 BUG_ON(GET_PMU_OWNER());
4615 BUG_ON(ia64_psr(regs)->up);
4616 BUG_ON(ia64_psr(regs)->pp);
4617 }
4618
4619 /*
4620 * All memory free operations (especially for vmalloc'ed memory)
4621 * MUST be done with interrupts ENABLED.
4622 */
4623 if (free_ok) pfm_context_free(ctx);
4624 }
4625
4626 /*
4627 * functions MUST be listed in the increasing order of their index (see permfon.h)
4628 */
4629 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4630 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4631 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4632 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4633 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4634
4635 static pfm_cmd_desc_t pfm_cmd_tab[]={
4636 /* 0 */PFM_CMD_NONE,
4637 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4638 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4639 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4640 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4641 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4642 /* 6 */PFM_CMD_NONE,
4643 /* 7 */PFM_CMD_NONE,
4644 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4645 /* 9 */PFM_CMD_NONE,
4646 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4647 /* 11 */PFM_CMD_NONE,
4648 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4649 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4650 /* 14 */PFM_CMD_NONE,
4651 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4653 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4654 /* 18 */PFM_CMD_NONE,
4655 /* 19 */PFM_CMD_NONE,
4656 /* 20 */PFM_CMD_NONE,
4657 /* 21 */PFM_CMD_NONE,
4658 /* 22 */PFM_CMD_NONE,
4659 /* 23 */PFM_CMD_NONE,
4660 /* 24 */PFM_CMD_NONE,
4661 /* 25 */PFM_CMD_NONE,
4662 /* 26 */PFM_CMD_NONE,
4663 /* 27 */PFM_CMD_NONE,
4664 /* 28 */PFM_CMD_NONE,
4665 /* 29 */PFM_CMD_NONE,
4666 /* 30 */PFM_CMD_NONE,
4667 /* 31 */PFM_CMD_NONE,
4668 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4669 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4670 };
4671 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4672
4673 static int
4674 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4675 {
4676 struct task_struct *task;
4677 int state, old_state;
4678
4679 recheck:
4680 state = ctx->ctx_state;
4681 task = ctx->ctx_task;
4682
4683 if (task == NULL) {
4684 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4685 return 0;
4686 }
4687
4688 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4689 ctx->ctx_fd,
4690 state,
4691 task_pid_nr(task),
4692 task->state, PFM_CMD_STOPPED(cmd)));
4693
4694 /*
4695 * self-monitoring always ok.
4696 *
4697 * for system-wide the caller can either be the creator of the
4698 * context (to one to which the context is attached to) OR
4699 * a task running on the same CPU as the session.
4700 */
4701 if (task == current || ctx->ctx_fl_system) return 0;
4702
4703 /*
4704 * we are monitoring another thread
4705 */
4706 switch(state) {
4707 case PFM_CTX_UNLOADED:
4708 /*
4709 * if context is UNLOADED we are safe to go
4710 */
4711 return 0;
4712 case PFM_CTX_ZOMBIE:
4713 /*
4714 * no command can operate on a zombie context
4715 */
4716 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4717 return -EINVAL;
4718 case PFM_CTX_MASKED:
4719 /*
4720 * PMU state has been saved to software even though
4721 * the thread may still be running.
4722 */
4723 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4724 }
4725
4726 /*
4727 * context is LOADED or MASKED. Some commands may need to have
4728 * the task stopped.
4729 *
4730 * We could lift this restriction for UP but it would mean that
4731 * the user has no guarantee the task would not run between
4732 * two successive calls to perfmonctl(). That's probably OK.
4733 * If this user wants to ensure the task does not run, then
4734 * the task must be stopped.
4735 */
4736 if (PFM_CMD_STOPPED(cmd)) {
4737 if (!task_is_stopped_or_traced(task)) {
4738 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4739 return -EBUSY;
4740 }
4741 /*
4742 * task is now stopped, wait for ctxsw out
4743 *
4744 * This is an interesting point in the code.
4745 * We need to unprotect the context because
4746 * the pfm_save_regs() routines needs to grab
4747 * the same lock. There are danger in doing
4748 * this because it leaves a window open for
4749 * another task to get access to the context
4750 * and possibly change its state. The one thing
4751 * that is not possible is for the context to disappear
4752 * because we are protected by the VFS layer, i.e.,
4753 * get_fd()/put_fd().
4754 */
4755 old_state = state;
4756
4757 UNPROTECT_CTX(ctx, flags);
4758
4759 wait_task_inactive(task, 0);
4760
4761 PROTECT_CTX(ctx, flags);
4762
4763 /*
4764 * we must recheck to verify if state has changed
4765 */
4766 if (ctx->ctx_state != old_state) {
4767 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4768 goto recheck;
4769 }
4770 }
4771 return 0;
4772 }
4773
4774 /*
4775 * system-call entry point (must return long)
4776 */
4777 asmlinkage long
4778 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4779 {
4780 struct fd f = {NULL, 0};
4781 pfm_context_t *ctx = NULL;
4782 unsigned long flags = 0UL;
4783 void *args_k = NULL;
4784 long ret; /* will expand int return types */
4785 size_t base_sz, sz, xtra_sz = 0;
4786 int narg, completed_args = 0, call_made = 0, cmd_flags;
4787 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4788 int (*getsize)(void *arg, size_t *sz);
4789 #define PFM_MAX_ARGSIZE 4096
4790
4791 /*
4792 * reject any call if perfmon was disabled at initialization
4793 */
4794 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4795
4796 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4797 DPRINT(("invalid cmd=%d\n", cmd));
4798 return -EINVAL;
4799 }
4800
4801 func = pfm_cmd_tab[cmd].cmd_func;
4802 narg = pfm_cmd_tab[cmd].cmd_narg;
4803 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4804 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4805 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4806
4807 if (unlikely(func == NULL)) {
4808 DPRINT(("invalid cmd=%d\n", cmd));
4809 return -EINVAL;
4810 }
4811
4812 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4813 PFM_CMD_NAME(cmd),
4814 cmd,
4815 narg,
4816 base_sz,
4817 count));
4818
4819 /*
4820 * check if number of arguments matches what the command expects
4821 */
4822 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4823 return -EINVAL;
4824
4825 restart_args:
4826 sz = xtra_sz + base_sz*count;
4827 /*
4828 * limit abuse to min page size
4829 */
4830 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4831 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4832 return -E2BIG;
4833 }
4834
4835 /*
4836 * allocate default-sized argument buffer
4837 */
4838 if (likely(count && args_k == NULL)) {
4839 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4840 if (args_k == NULL) return -ENOMEM;
4841 }
4842
4843 ret = -EFAULT;
4844
4845 /*
4846 * copy arguments
4847 *
4848 * assume sz = 0 for command without parameters
4849 */
4850 if (sz && copy_from_user(args_k, arg, sz)) {
4851 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4852 goto error_args;
4853 }
4854
4855 /*
4856 * check if command supports extra parameters
4857 */
4858 if (completed_args == 0 && getsize) {
4859 /*
4860 * get extra parameters size (based on main argument)
4861 */
4862 ret = (*getsize)(args_k, &xtra_sz);
4863 if (ret) goto error_args;
4864
4865 completed_args = 1;
4866
4867 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4868
4869 /* retry if necessary */
4870 if (likely(xtra_sz)) goto restart_args;
4871 }
4872
4873 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4874
4875 ret = -EBADF;
4876
4877 f = fdget(fd);
4878 if (unlikely(f.file == NULL)) {
4879 DPRINT(("invalid fd %d\n", fd));
4880 goto error_args;
4881 }
4882 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4883 DPRINT(("fd %d not related to perfmon\n", fd));
4884 goto error_args;
4885 }
4886
4887 ctx = f.file->private_data;
4888 if (unlikely(ctx == NULL)) {
4889 DPRINT(("no context for fd %d\n", fd));
4890 goto error_args;
4891 }
4892 prefetch(&ctx->ctx_state);
4893
4894 PROTECT_CTX(ctx, flags);
4895
4896 /*
4897 * check task is stopped
4898 */
4899 ret = pfm_check_task_state(ctx, cmd, flags);
4900 if (unlikely(ret)) goto abort_locked;
4901
4902 skip_fd:
4903 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4904
4905 call_made = 1;
4906
4907 abort_locked:
4908 if (likely(ctx)) {
4909 DPRINT(("context unlocked\n"));
4910 UNPROTECT_CTX(ctx, flags);
4911 }
4912
4913 /* copy argument back to user, if needed */
4914 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4915
4916 error_args:
4917 if (f.file)
4918 fdput(f);
4919
4920 kfree(args_k);
4921
4922 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4923
4924 return ret;
4925 }
4926
4927 static void
4928 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4929 {
4930 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4931 pfm_ovfl_ctrl_t rst_ctrl;
4932 int state;
4933 int ret = 0;
4934
4935 state = ctx->ctx_state;
4936 /*
4937 * Unlock sampling buffer and reset index atomically
4938 * XXX: not really needed when blocking
4939 */
4940 if (CTX_HAS_SMPL(ctx)) {
4941
4942 rst_ctrl.bits.mask_monitoring = 0;
4943 rst_ctrl.bits.reset_ovfl_pmds = 0;
4944
4945 if (state == PFM_CTX_LOADED)
4946 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4947 else
4948 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4949 } else {
4950 rst_ctrl.bits.mask_monitoring = 0;
4951 rst_ctrl.bits.reset_ovfl_pmds = 1;
4952 }
4953
4954 if (ret == 0) {
4955 if (rst_ctrl.bits.reset_ovfl_pmds) {
4956 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4957 }
4958 if (rst_ctrl.bits.mask_monitoring == 0) {
4959 DPRINT(("resuming monitoring\n"));
4960 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4961 } else {
4962 DPRINT(("stopping monitoring\n"));
4963 //pfm_stop_monitoring(current, regs);
4964 }
4965 ctx->ctx_state = PFM_CTX_LOADED;
4966 }
4967 }
4968
4969 /*
4970 * context MUST BE LOCKED when calling
4971 * can only be called for current
4972 */
4973 static void
4974 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4975 {
4976 int ret;
4977
4978 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4979
4980 ret = pfm_context_unload(ctx, NULL, 0, regs);
4981 if (ret) {
4982 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4983 }
4984
4985 /*
4986 * and wakeup controlling task, indicating we are now disconnected
4987 */
4988 wake_up_interruptible(&ctx->ctx_zombieq);
4989
4990 /*
4991 * given that context is still locked, the controlling
4992 * task will only get access when we return from
4993 * pfm_handle_work().
4994 */
4995 }
4996
4997 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4998
4999 /*
5000 * pfm_handle_work() can be called with interrupts enabled
5001 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5002 * call may sleep, therefore we must re-enable interrupts
5003 * to avoid deadlocks. It is safe to do so because this function
5004 * is called ONLY when returning to user level (pUStk=1), in which case
5005 * there is no risk of kernel stack overflow due to deep
5006 * interrupt nesting.
5007 */
5008 void
5009 pfm_handle_work(void)
5010 {
5011 pfm_context_t *ctx;
5012 struct pt_regs *regs;
5013 unsigned long flags, dummy_flags;
5014 unsigned long ovfl_regs;
5015 unsigned int reason;
5016 int ret;
5017
5018 ctx = PFM_GET_CTX(current);
5019 if (ctx == NULL) {
5020 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5021 task_pid_nr(current));
5022 return;
5023 }
5024
5025 PROTECT_CTX(ctx, flags);
5026
5027 PFM_SET_WORK_PENDING(current, 0);
5028
5029 regs = task_pt_regs(current);
5030
5031 /*
5032 * extract reason for being here and clear
5033 */
5034 reason = ctx->ctx_fl_trap_reason;
5035 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5036 ovfl_regs = ctx->ctx_ovfl_regs[0];
5037
5038 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5039
5040 /*
5041 * must be done before we check for simple-reset mode
5042 */
5043 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5044 goto do_zombie;
5045
5046 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5047 if (reason == PFM_TRAP_REASON_RESET)
5048 goto skip_blocking;
5049
5050 /*
5051 * restore interrupt mask to what it was on entry.
5052 * Could be enabled/diasbled.
5053 */
5054 UNPROTECT_CTX(ctx, flags);
5055
5056 /*
5057 * force interrupt enable because of down_interruptible()
5058 */
5059 local_irq_enable();
5060
5061 DPRINT(("before block sleeping\n"));
5062
5063 /*
5064 * may go through without blocking on SMP systems
5065 * if restart has been received already by the time we call down()
5066 */
5067 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5068
5069 DPRINT(("after block sleeping ret=%d\n", ret));
5070
5071 /*
5072 * lock context and mask interrupts again
5073 * We save flags into a dummy because we may have
5074 * altered interrupts mask compared to entry in this
5075 * function.
5076 */
5077 PROTECT_CTX(ctx, dummy_flags);
5078
5079 /*
5080 * we need to read the ovfl_regs only after wake-up
5081 * because we may have had pfm_write_pmds() in between
5082 * and that can changed PMD values and therefore
5083 * ovfl_regs is reset for these new PMD values.
5084 */
5085 ovfl_regs = ctx->ctx_ovfl_regs[0];
5086
5087 if (ctx->ctx_fl_going_zombie) {
5088 do_zombie:
5089 DPRINT(("context is zombie, bailing out\n"));
5090 pfm_context_force_terminate(ctx, regs);
5091 goto nothing_to_do;
5092 }
5093 /*
5094 * in case of interruption of down() we don't restart anything
5095 */
5096 if (ret < 0)
5097 goto nothing_to_do;
5098
5099 skip_blocking:
5100 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5101 ctx->ctx_ovfl_regs[0] = 0UL;
5102
5103 nothing_to_do:
5104 /*
5105 * restore flags as they were upon entry
5106 */
5107 UNPROTECT_CTX(ctx, flags);
5108 }
5109
5110 static int
5111 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5112 {
5113 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5114 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5115 return 0;
5116 }
5117
5118 DPRINT(("waking up somebody\n"));
5119
5120 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5121
5122 /*
5123 * safe, we are not in intr handler, nor in ctxsw when
5124 * we come here
5125 */
5126 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5127
5128 return 0;
5129 }
5130
5131 static int
5132 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5133 {
5134 pfm_msg_t *msg = NULL;
5135
5136 if (ctx->ctx_fl_no_msg == 0) {
5137 msg = pfm_get_new_msg(ctx);
5138 if (msg == NULL) {
5139 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5140 return -1;
5141 }
5142
5143 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5144 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5145 msg->pfm_ovfl_msg.msg_active_set = 0;
5146 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5147 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5148 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5149 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5150 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5151 }
5152
5153 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5154 msg,
5155 ctx->ctx_fl_no_msg,
5156 ctx->ctx_fd,
5157 ovfl_pmds));
5158
5159 return pfm_notify_user(ctx, msg);
5160 }
5161
5162 static int
5163 pfm_end_notify_user(pfm_context_t *ctx)
5164 {
5165 pfm_msg_t *msg;
5166
5167 msg = pfm_get_new_msg(ctx);
5168 if (msg == NULL) {
5169 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5170 return -1;
5171 }
5172 /* no leak */
5173 memset(msg, 0, sizeof(*msg));
5174
5175 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5176 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5177 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5178
5179 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5180 msg,
5181 ctx->ctx_fl_no_msg,
5182 ctx->ctx_fd));
5183
5184 return pfm_notify_user(ctx, msg);
5185 }
5186
5187 /*
5188 * main overflow processing routine.
5189 * it can be called from the interrupt path or explicitly during the context switch code
5190 */
5191 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5192 unsigned long pmc0, struct pt_regs *regs)
5193 {
5194 pfm_ovfl_arg_t *ovfl_arg;
5195 unsigned long mask;
5196 unsigned long old_val, ovfl_val, new_val;
5197 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5198 unsigned long tstamp;
5199 pfm_ovfl_ctrl_t ovfl_ctrl;
5200 unsigned int i, has_smpl;
5201 int must_notify = 0;
5202
5203 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5204
5205 /*
5206 * sanity test. Should never happen
5207 */
5208 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5209
5210 tstamp = ia64_get_itc();
5211 mask = pmc0 >> PMU_FIRST_COUNTER;
5212 ovfl_val = pmu_conf->ovfl_val;
5213 has_smpl = CTX_HAS_SMPL(ctx);
5214
5215 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5216 "used_pmds=0x%lx\n",
5217 pmc0,
5218 task ? task_pid_nr(task): -1,
5219 (regs ? regs->cr_iip : 0),
5220 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5221 ctx->ctx_used_pmds[0]));
5222
5223
5224 /*
5225 * first we update the virtual counters
5226 * assume there was a prior ia64_srlz_d() issued
5227 */
5228 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5229
5230 /* skip pmd which did not overflow */
5231 if ((mask & 0x1) == 0) continue;
5232
5233 /*
5234 * Note that the pmd is not necessarily 0 at this point as qualified events
5235 * may have happened before the PMU was frozen. The residual count is not
5236 * taken into consideration here but will be with any read of the pmd via
5237 * pfm_read_pmds().
5238 */
5239 old_val = new_val = ctx->ctx_pmds[i].val;
5240 new_val += 1 + ovfl_val;
5241 ctx->ctx_pmds[i].val = new_val;
5242
5243 /*
5244 * check for overflow condition
5245 */
5246 if (likely(old_val > new_val)) {
5247 ovfl_pmds |= 1UL << i;
5248 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5249 }
5250
5251 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5252 i,
5253 new_val,
5254 old_val,
5255 ia64_get_pmd(i) & ovfl_val,
5256 ovfl_pmds,
5257 ovfl_notify));
5258 }
5259
5260 /*
5261 * there was no 64-bit overflow, nothing else to do
5262 */
5263 if (ovfl_pmds == 0UL) return;
5264
5265 /*
5266 * reset all control bits
5267 */
5268 ovfl_ctrl.val = 0;
5269 reset_pmds = 0UL;
5270
5271 /*
5272 * if a sampling format module exists, then we "cache" the overflow by
5273 * calling the module's handler() routine.
5274 */
5275 if (has_smpl) {
5276 unsigned long start_cycles, end_cycles;
5277 unsigned long pmd_mask;
5278 int j, k, ret = 0;
5279 int this_cpu = smp_processor_id();
5280
5281 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5282 ovfl_arg = &ctx->ctx_ovfl_arg;
5283
5284 prefetch(ctx->ctx_smpl_hdr);
5285
5286 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5287
5288 mask = 1UL << i;
5289
5290 if ((pmd_mask & 0x1) == 0) continue;
5291
5292 ovfl_arg->ovfl_pmd = (unsigned char )i;
5293 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5294 ovfl_arg->active_set = 0;
5295 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5296 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5297
5298 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5299 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5300 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5301
5302 /*
5303 * copy values of pmds of interest. Sampling format may copy them
5304 * into sampling buffer.
5305 */
5306 if (smpl_pmds) {
5307 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5308 if ((smpl_pmds & 0x1) == 0) continue;
5309 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5310 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5311 }
5312 }
5313
5314 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5315
5316 start_cycles = ia64_get_itc();
5317
5318 /*
5319 * call custom buffer format record (handler) routine
5320 */
5321 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5322
5323 end_cycles = ia64_get_itc();
5324
5325 /*
5326 * For those controls, we take the union because they have
5327 * an all or nothing behavior.
5328 */
5329 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5330 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5331 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5332 /*
5333 * build the bitmask of pmds to reset now
5334 */
5335 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5336
5337 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5338 }
5339 /*
5340 * when the module cannot handle the rest of the overflows, we abort right here
5341 */
5342 if (ret && pmd_mask) {
5343 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5344 pmd_mask<<PMU_FIRST_COUNTER));
5345 }
5346 /*
5347 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5348 */
5349 ovfl_pmds &= ~reset_pmds;
5350 } else {
5351 /*
5352 * when no sampling module is used, then the default
5353 * is to notify on overflow if requested by user
5354 */
5355 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5356 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5357 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5358 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5359 /*
5360 * if needed, we reset all overflowed pmds
5361 */
5362 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5363 }
5364
5365 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5366
5367 /*
5368 * reset the requested PMD registers using the short reset values
5369 */
5370 if (reset_pmds) {
5371 unsigned long bm = reset_pmds;
5372 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5373 }
5374
5375 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5376 /*
5377 * keep track of what to reset when unblocking
5378 */
5379 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5380
5381 /*
5382 * check for blocking context
5383 */
5384 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5385
5386 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5387
5388 /*
5389 * set the perfmon specific checking pending work for the task
5390 */
5391 PFM_SET_WORK_PENDING(task, 1);
5392
5393 /*
5394 * when coming from ctxsw, current still points to the
5395 * previous task, therefore we must work with task and not current.
5396 */
5397 set_notify_resume(task);
5398 }
5399 /*
5400 * defer until state is changed (shorten spin window). the context is locked
5401 * anyway, so the signal receiver would come spin for nothing.
5402 */
5403 must_notify = 1;
5404 }
5405
5406 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5407 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5408 PFM_GET_WORK_PENDING(task),
5409 ctx->ctx_fl_trap_reason,
5410 ovfl_pmds,
5411 ovfl_notify,
5412 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5413 /*
5414 * in case monitoring must be stopped, we toggle the psr bits
5415 */
5416 if (ovfl_ctrl.bits.mask_monitoring) {
5417 pfm_mask_monitoring(task);
5418 ctx->ctx_state = PFM_CTX_MASKED;
5419 ctx->ctx_fl_can_restart = 1;
5420 }
5421
5422 /*
5423 * send notification now
5424 */
5425 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5426
5427 return;
5428
5429 sanity_check:
5430 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5431 smp_processor_id(),
5432 task ? task_pid_nr(task) : -1,
5433 pmc0);
5434 return;
5435
5436 stop_monitoring:
5437 /*
5438 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5439 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5440 * come here as zombie only if the task is the current task. In which case, we
5441 * can access the PMU hardware directly.
5442 *
5443 * Note that zombies do have PM_VALID set. So here we do the minimal.
5444 *
5445 * In case the context was zombified it could not be reclaimed at the time
5446 * the monitoring program exited. At this point, the PMU reservation has been
5447 * returned, the sampiing buffer has been freed. We must convert this call
5448 * into a spurious interrupt. However, we must also avoid infinite overflows
5449 * by stopping monitoring for this task. We can only come here for a per-task
5450 * context. All we need to do is to stop monitoring using the psr bits which
5451 * are always task private. By re-enabling secure montioring, we ensure that
5452 * the monitored task will not be able to re-activate monitoring.
5453 * The task will eventually be context switched out, at which point the context
5454 * will be reclaimed (that includes releasing ownership of the PMU).
5455 *
5456 * So there might be a window of time where the number of per-task session is zero
5457 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5458 * context. This is safe because if a per-task session comes in, it will push this one
5459 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5460 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5461 * also push our zombie context out.
5462 *
5463 * Overall pretty hairy stuff....
5464 */
5465 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5466 pfm_clear_psr_up();
5467 ia64_psr(regs)->up = 0;
5468 ia64_psr(regs)->sp = 1;
5469 return;
5470 }
5471
5472 static int
5473 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5474 {
5475 struct task_struct *task;
5476 pfm_context_t *ctx;
5477 unsigned long flags;
5478 u64 pmc0;
5479 int this_cpu = smp_processor_id();
5480 int retval = 0;
5481
5482 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5483
5484 /*
5485 * srlz.d done before arriving here
5486 */
5487 pmc0 = ia64_get_pmc(0);
5488
5489 task = GET_PMU_OWNER();
5490 ctx = GET_PMU_CTX();
5491
5492 /*
5493 * if we have some pending bits set
5494 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5495 */
5496 if (PMC0_HAS_OVFL(pmc0) && task) {
5497 /*
5498 * we assume that pmc0.fr is always set here
5499 */
5500
5501 /* sanity check */
5502 if (!ctx) goto report_spurious1;
5503
5504 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5505 goto report_spurious2;
5506
5507 PROTECT_CTX_NOPRINT(ctx, flags);
5508
5509 pfm_overflow_handler(task, ctx, pmc0, regs);
5510
5511 UNPROTECT_CTX_NOPRINT(ctx, flags);
5512
5513 } else {
5514 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5515 retval = -1;
5516 }
5517 /*
5518 * keep it unfrozen at all times
5519 */
5520 pfm_unfreeze_pmu();
5521
5522 return retval;
5523
5524 report_spurious1:
5525 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5526 this_cpu, task_pid_nr(task));
5527 pfm_unfreeze_pmu();
5528 return -1;
5529 report_spurious2:
5530 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5531 this_cpu,
5532 task_pid_nr(task));
5533 pfm_unfreeze_pmu();
5534 return -1;
5535 }
5536
5537 static irqreturn_t
5538 pfm_interrupt_handler(int irq, void *arg)
5539 {
5540 unsigned long start_cycles, total_cycles;
5541 unsigned long min, max;
5542 int this_cpu;
5543 int ret;
5544 struct pt_regs *regs = get_irq_regs();
5545
5546 this_cpu = get_cpu();
5547 if (likely(!pfm_alt_intr_handler)) {
5548 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5549 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5550
5551 start_cycles = ia64_get_itc();
5552
5553 ret = pfm_do_interrupt_handler(arg, regs);
5554
5555 total_cycles = ia64_get_itc();
5556
5557 /*
5558 * don't measure spurious interrupts
5559 */
5560 if (likely(ret == 0)) {
5561 total_cycles -= start_cycles;
5562
5563 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5564 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5565
5566 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5567 }
5568 }
5569 else {
5570 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5571 }
5572
5573 put_cpu();
5574 return IRQ_HANDLED;
5575 }
5576
5577 /*
5578 * /proc/perfmon interface, for debug only
5579 */
5580
5581 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5582
5583 static void *
5584 pfm_proc_start(struct seq_file *m, loff_t *pos)
5585 {
5586 if (*pos == 0) {
5587 return PFM_PROC_SHOW_HEADER;
5588 }
5589
5590 while (*pos <= nr_cpu_ids) {
5591 if (cpu_online(*pos - 1)) {
5592 return (void *)*pos;
5593 }
5594 ++*pos;
5595 }
5596 return NULL;
5597 }
5598
5599 static void *
5600 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5601 {
5602 ++*pos;
5603 return pfm_proc_start(m, pos);
5604 }
5605
5606 static void
5607 pfm_proc_stop(struct seq_file *m, void *v)
5608 {
5609 }
5610
5611 static void
5612 pfm_proc_show_header(struct seq_file *m)
5613 {
5614 struct list_head * pos;
5615 pfm_buffer_fmt_t * entry;
5616 unsigned long flags;
5617
5618 seq_printf(m,
5619 "perfmon version : %u.%u\n"
5620 "model : %s\n"
5621 "fastctxsw : %s\n"
5622 "expert mode : %s\n"
5623 "ovfl_mask : 0x%lx\n"
5624 "PMU flags : 0x%x\n",
5625 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5626 pmu_conf->pmu_name,
5627 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5628 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5629 pmu_conf->ovfl_val,
5630 pmu_conf->flags);
5631
5632 LOCK_PFS(flags);
5633
5634 seq_printf(m,
5635 "proc_sessions : %u\n"
5636 "sys_sessions : %u\n"
5637 "sys_use_dbregs : %u\n"
5638 "ptrace_use_dbregs : %u\n",
5639 pfm_sessions.pfs_task_sessions,
5640 pfm_sessions.pfs_sys_sessions,
5641 pfm_sessions.pfs_sys_use_dbregs,
5642 pfm_sessions.pfs_ptrace_use_dbregs);
5643
5644 UNLOCK_PFS(flags);
5645
5646 spin_lock(&pfm_buffer_fmt_lock);
5647
5648 list_for_each(pos, &pfm_buffer_fmt_list) {
5649 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5650 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5651 entry->fmt_uuid[0],
5652 entry->fmt_uuid[1],
5653 entry->fmt_uuid[2],
5654 entry->fmt_uuid[3],
5655 entry->fmt_uuid[4],
5656 entry->fmt_uuid[5],
5657 entry->fmt_uuid[6],
5658 entry->fmt_uuid[7],
5659 entry->fmt_uuid[8],
5660 entry->fmt_uuid[9],
5661 entry->fmt_uuid[10],
5662 entry->fmt_uuid[11],
5663 entry->fmt_uuid[12],
5664 entry->fmt_uuid[13],
5665 entry->fmt_uuid[14],
5666 entry->fmt_uuid[15],
5667 entry->fmt_name);
5668 }
5669 spin_unlock(&pfm_buffer_fmt_lock);
5670
5671 }
5672
5673 static int
5674 pfm_proc_show(struct seq_file *m, void *v)
5675 {
5676 unsigned long psr;
5677 unsigned int i;
5678 int cpu;
5679
5680 if (v == PFM_PROC_SHOW_HEADER) {
5681 pfm_proc_show_header(m);
5682 return 0;
5683 }
5684
5685 /* show info for CPU (v - 1) */
5686
5687 cpu = (long)v - 1;
5688 seq_printf(m,
5689 "CPU%-2d overflow intrs : %lu\n"
5690 "CPU%-2d overflow cycles : %lu\n"
5691 "CPU%-2d overflow min : %lu\n"
5692 "CPU%-2d overflow max : %lu\n"
5693 "CPU%-2d smpl handler calls : %lu\n"
5694 "CPU%-2d smpl handler cycles : %lu\n"
5695 "CPU%-2d spurious intrs : %lu\n"
5696 "CPU%-2d replay intrs : %lu\n"
5697 "CPU%-2d syst_wide : %d\n"
5698 "CPU%-2d dcr_pp : %d\n"
5699 "CPU%-2d exclude idle : %d\n"
5700 "CPU%-2d owner : %d\n"
5701 "CPU%-2d context : %p\n"
5702 "CPU%-2d activations : %lu\n",
5703 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5704 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5705 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5706 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5707 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5708 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5709 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5710 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5711 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5712 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5713 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5714 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5715 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5716 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5717
5718 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5719
5720 psr = pfm_get_psr();
5721
5722 ia64_srlz_d();
5723
5724 seq_printf(m,
5725 "CPU%-2d psr : 0x%lx\n"
5726 "CPU%-2d pmc0 : 0x%lx\n",
5727 cpu, psr,
5728 cpu, ia64_get_pmc(0));
5729
5730 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5731 if (PMC_IS_COUNTING(i) == 0) continue;
5732 seq_printf(m,
5733 "CPU%-2d pmc%u : 0x%lx\n"
5734 "CPU%-2d pmd%u : 0x%lx\n",
5735 cpu, i, ia64_get_pmc(i),
5736 cpu, i, ia64_get_pmd(i));
5737 }
5738 }
5739 return 0;
5740 }
5741
5742 const struct seq_operations pfm_seq_ops = {
5743 .start = pfm_proc_start,
5744 .next = pfm_proc_next,
5745 .stop = pfm_proc_stop,
5746 .show = pfm_proc_show
5747 };
5748
5749 static int
5750 pfm_proc_open(struct inode *inode, struct file *file)
5751 {
5752 return seq_open(file, &pfm_seq_ops);
5753 }
5754
5755
5756 /*
5757 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5758 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5759 * is active or inactive based on mode. We must rely on the value in
5760 * local_cpu_data->pfm_syst_info
5761 */
5762 void
5763 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5764 {
5765 struct pt_regs *regs;
5766 unsigned long dcr;
5767 unsigned long dcr_pp;
5768
5769 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5770
5771 /*
5772 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5773 * on every CPU, so we can rely on the pid to identify the idle task.
5774 */
5775 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5776 regs = task_pt_regs(task);
5777 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5778 return;
5779 }
5780 /*
5781 * if monitoring has started
5782 */
5783 if (dcr_pp) {
5784 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5785 /*
5786 * context switching in?
5787 */
5788 if (is_ctxswin) {
5789 /* mask monitoring for the idle task */
5790 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5791 pfm_clear_psr_pp();
5792 ia64_srlz_i();
5793 return;
5794 }
5795 /*
5796 * context switching out
5797 * restore monitoring for next task
5798 *
5799 * Due to inlining this odd if-then-else construction generates
5800 * better code.
5801 */
5802 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5803 pfm_set_psr_pp();
5804 ia64_srlz_i();
5805 }
5806 }
5807
5808 #ifdef CONFIG_SMP
5809
5810 static void
5811 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5812 {
5813 struct task_struct *task = ctx->ctx_task;
5814
5815 ia64_psr(regs)->up = 0;
5816 ia64_psr(regs)->sp = 1;
5817
5818 if (GET_PMU_OWNER() == task) {
5819 DPRINT(("cleared ownership for [%d]\n",
5820 task_pid_nr(ctx->ctx_task)));
5821 SET_PMU_OWNER(NULL, NULL);
5822 }
5823
5824 /*
5825 * disconnect the task from the context and vice-versa
5826 */
5827 PFM_SET_WORK_PENDING(task, 0);
5828
5829 task->thread.pfm_context = NULL;
5830 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5831
5832 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5833 }
5834
5835
5836 /*
5837 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5838 */
5839 void
5840 pfm_save_regs(struct task_struct *task)
5841 {
5842 pfm_context_t *ctx;
5843 unsigned long flags;
5844 u64 psr;
5845
5846
5847 ctx = PFM_GET_CTX(task);
5848 if (ctx == NULL) return;
5849
5850 /*
5851 * we always come here with interrupts ALREADY disabled by
5852 * the scheduler. So we simply need to protect against concurrent
5853 * access, not CPU concurrency.
5854 */
5855 flags = pfm_protect_ctx_ctxsw(ctx);
5856
5857 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5858 struct pt_regs *regs = task_pt_regs(task);
5859
5860 pfm_clear_psr_up();
5861
5862 pfm_force_cleanup(ctx, regs);
5863
5864 BUG_ON(ctx->ctx_smpl_hdr);
5865
5866 pfm_unprotect_ctx_ctxsw(ctx, flags);
5867
5868 pfm_context_free(ctx);
5869 return;
5870 }
5871
5872 /*
5873 * save current PSR: needed because we modify it
5874 */
5875 ia64_srlz_d();
5876 psr = pfm_get_psr();
5877
5878 BUG_ON(psr & (IA64_PSR_I));
5879
5880 /*
5881 * stop monitoring:
5882 * This is the last instruction which may generate an overflow
5883 *
5884 * We do not need to set psr.sp because, it is irrelevant in kernel.
5885 * It will be restored from ipsr when going back to user level
5886 */
5887 pfm_clear_psr_up();
5888
5889 /*
5890 * keep a copy of psr.up (for reload)
5891 */
5892 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5893
5894 /*
5895 * release ownership of this PMU.
5896 * PM interrupts are masked, so nothing
5897 * can happen.
5898 */
5899 SET_PMU_OWNER(NULL, NULL);
5900
5901 /*
5902 * we systematically save the PMD as we have no
5903 * guarantee we will be schedule at that same
5904 * CPU again.
5905 */
5906 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5907
5908 /*
5909 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5910 * we will need it on the restore path to check
5911 * for pending overflow.
5912 */
5913 ctx->th_pmcs[0] = ia64_get_pmc(0);
5914
5915 /*
5916 * unfreeze PMU if had pending overflows
5917 */
5918 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5919
5920 /*
5921 * finally, allow context access.
5922 * interrupts will still be masked after this call.
5923 */
5924 pfm_unprotect_ctx_ctxsw(ctx, flags);
5925 }
5926
5927 #else /* !CONFIG_SMP */
5928 void
5929 pfm_save_regs(struct task_struct *task)
5930 {
5931 pfm_context_t *ctx;
5932 u64 psr;
5933
5934 ctx = PFM_GET_CTX(task);
5935 if (ctx == NULL) return;
5936
5937 /*
5938 * save current PSR: needed because we modify it
5939 */
5940 psr = pfm_get_psr();
5941
5942 BUG_ON(psr & (IA64_PSR_I));
5943
5944 /*
5945 * stop monitoring:
5946 * This is the last instruction which may generate an overflow
5947 *
5948 * We do not need to set psr.sp because, it is irrelevant in kernel.
5949 * It will be restored from ipsr when going back to user level
5950 */
5951 pfm_clear_psr_up();
5952
5953 /*
5954 * keep a copy of psr.up (for reload)
5955 */
5956 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5957 }
5958
5959 static void
5960 pfm_lazy_save_regs (struct task_struct *task)
5961 {
5962 pfm_context_t *ctx;
5963 unsigned long flags;
5964
5965 { u64 psr = pfm_get_psr();
5966 BUG_ON(psr & IA64_PSR_UP);
5967 }
5968
5969 ctx = PFM_GET_CTX(task);
5970
5971 /*
5972 * we need to mask PMU overflow here to
5973 * make sure that we maintain pmc0 until
5974 * we save it. overflow interrupts are
5975 * treated as spurious if there is no
5976 * owner.
5977 *
5978 * XXX: I don't think this is necessary
5979 */
5980 PROTECT_CTX(ctx,flags);
5981
5982 /*
5983 * release ownership of this PMU.
5984 * must be done before we save the registers.
5985 *
5986 * after this call any PMU interrupt is treated
5987 * as spurious.
5988 */
5989 SET_PMU_OWNER(NULL, NULL);
5990
5991 /*
5992 * save all the pmds we use
5993 */
5994 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5995
5996 /*
5997 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5998 * it is needed to check for pended overflow
5999 * on the restore path
6000 */
6001 ctx->th_pmcs[0] = ia64_get_pmc(0);
6002
6003 /*
6004 * unfreeze PMU if had pending overflows
6005 */
6006 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6007
6008 /*
6009 * now get can unmask PMU interrupts, they will
6010 * be treated as purely spurious and we will not
6011 * lose any information
6012 */
6013 UNPROTECT_CTX(ctx,flags);
6014 }
6015 #endif /* CONFIG_SMP */
6016
6017 #ifdef CONFIG_SMP
6018 /*
6019 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6020 */
6021 void
6022 pfm_load_regs (struct task_struct *task)
6023 {
6024 pfm_context_t *ctx;
6025 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6026 unsigned long flags;
6027 u64 psr, psr_up;
6028 int need_irq_resend;
6029
6030 ctx = PFM_GET_CTX(task);
6031 if (unlikely(ctx == NULL)) return;
6032
6033 BUG_ON(GET_PMU_OWNER());
6034
6035 /*
6036 * possible on unload
6037 */
6038 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6039
6040 /*
6041 * we always come here with interrupts ALREADY disabled by
6042 * the scheduler. So we simply need to protect against concurrent
6043 * access, not CPU concurrency.
6044 */
6045 flags = pfm_protect_ctx_ctxsw(ctx);
6046 psr = pfm_get_psr();
6047
6048 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6049
6050 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6051 BUG_ON(psr & IA64_PSR_I);
6052
6053 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6054 struct pt_regs *regs = task_pt_regs(task);
6055
6056 BUG_ON(ctx->ctx_smpl_hdr);
6057
6058 pfm_force_cleanup(ctx, regs);
6059
6060 pfm_unprotect_ctx_ctxsw(ctx, flags);
6061
6062 /*
6063 * this one (kmalloc'ed) is fine with interrupts disabled
6064 */
6065 pfm_context_free(ctx);
6066
6067 return;
6068 }
6069
6070 /*
6071 * we restore ALL the debug registers to avoid picking up
6072 * stale state.
6073 */
6074 if (ctx->ctx_fl_using_dbreg) {
6075 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6076 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6077 }
6078 /*
6079 * retrieve saved psr.up
6080 */
6081 psr_up = ctx->ctx_saved_psr_up;
6082
6083 /*
6084 * if we were the last user of the PMU on that CPU,
6085 * then nothing to do except restore psr
6086 */
6087 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6088
6089 /*
6090 * retrieve partial reload masks (due to user modifications)
6091 */
6092 pmc_mask = ctx->ctx_reload_pmcs[0];
6093 pmd_mask = ctx->ctx_reload_pmds[0];
6094
6095 } else {
6096 /*
6097 * To avoid leaking information to the user level when psr.sp=0,
6098 * we must reload ALL implemented pmds (even the ones we don't use).
6099 * In the kernel we only allow PFM_READ_PMDS on registers which
6100 * we initialized or requested (sampling) so there is no risk there.
6101 */
6102 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6103
6104 /*
6105 * ALL accessible PMCs are systematically reloaded, unused registers
6106 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6107 * up stale configuration.
6108 *
6109 * PMC0 is never in the mask. It is always restored separately.
6110 */
6111 pmc_mask = ctx->ctx_all_pmcs[0];
6112 }
6113 /*
6114 * when context is MASKED, we will restore PMC with plm=0
6115 * and PMD with stale information, but that's ok, nothing
6116 * will be captured.
6117 *
6118 * XXX: optimize here
6119 */
6120 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6121 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6122
6123 /*
6124 * check for pending overflow at the time the state
6125 * was saved.
6126 */
6127 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6128 /*
6129 * reload pmc0 with the overflow information
6130 * On McKinley PMU, this will trigger a PMU interrupt
6131 */
6132 ia64_set_pmc(0, ctx->th_pmcs[0]);
6133 ia64_srlz_d();
6134 ctx->th_pmcs[0] = 0UL;
6135
6136 /*
6137 * will replay the PMU interrupt
6138 */
6139 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6140
6141 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6142 }
6143
6144 /*
6145 * we just did a reload, so we reset the partial reload fields
6146 */
6147 ctx->ctx_reload_pmcs[0] = 0UL;
6148 ctx->ctx_reload_pmds[0] = 0UL;
6149
6150 SET_LAST_CPU(ctx, smp_processor_id());
6151
6152 /*
6153 * dump activation value for this PMU
6154 */
6155 INC_ACTIVATION();
6156 /*
6157 * record current activation for this context
6158 */
6159 SET_ACTIVATION(ctx);
6160
6161 /*
6162 * establish new ownership.
6163 */
6164 SET_PMU_OWNER(task, ctx);
6165
6166 /*
6167 * restore the psr.up bit. measurement
6168 * is active again.
6169 * no PMU interrupt can happen at this point
6170 * because we still have interrupts disabled.
6171 */
6172 if (likely(psr_up)) pfm_set_psr_up();
6173
6174 /*
6175 * allow concurrent access to context
6176 */
6177 pfm_unprotect_ctx_ctxsw(ctx, flags);
6178 }
6179 #else /* !CONFIG_SMP */
6180 /*
6181 * reload PMU state for UP kernels
6182 * in 2.5 we come here with interrupts disabled
6183 */
6184 void
6185 pfm_load_regs (struct task_struct *task)
6186 {
6187 pfm_context_t *ctx;
6188 struct task_struct *owner;
6189 unsigned long pmd_mask, pmc_mask;
6190 u64 psr, psr_up;
6191 int need_irq_resend;
6192
6193 owner = GET_PMU_OWNER();
6194 ctx = PFM_GET_CTX(task);
6195 psr = pfm_get_psr();
6196
6197 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6198 BUG_ON(psr & IA64_PSR_I);
6199
6200 /*
6201 * we restore ALL the debug registers to avoid picking up
6202 * stale state.
6203 *
6204 * This must be done even when the task is still the owner
6205 * as the registers may have been modified via ptrace()
6206 * (not perfmon) by the previous task.
6207 */
6208 if (ctx->ctx_fl_using_dbreg) {
6209 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6210 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6211 }
6212
6213 /*
6214 * retrieved saved psr.up
6215 */
6216 psr_up = ctx->ctx_saved_psr_up;
6217 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6218
6219 /*
6220 * short path, our state is still there, just
6221 * need to restore psr and we go
6222 *
6223 * we do not touch either PMC nor PMD. the psr is not touched
6224 * by the overflow_handler. So we are safe w.r.t. to interrupt
6225 * concurrency even without interrupt masking.
6226 */
6227 if (likely(owner == task)) {
6228 if (likely(psr_up)) pfm_set_psr_up();
6229 return;
6230 }
6231
6232 /*
6233 * someone else is still using the PMU, first push it out and
6234 * then we'll be able to install our stuff !
6235 *
6236 * Upon return, there will be no owner for the current PMU
6237 */
6238 if (owner) pfm_lazy_save_regs(owner);
6239
6240 /*
6241 * To avoid leaking information to the user level when psr.sp=0,
6242 * we must reload ALL implemented pmds (even the ones we don't use).
6243 * In the kernel we only allow PFM_READ_PMDS on registers which
6244 * we initialized or requested (sampling) so there is no risk there.
6245 */
6246 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6247
6248 /*
6249 * ALL accessible PMCs are systematically reloaded, unused registers
6250 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6251 * up stale configuration.
6252 *
6253 * PMC0 is never in the mask. It is always restored separately
6254 */
6255 pmc_mask = ctx->ctx_all_pmcs[0];
6256
6257 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6258 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6259
6260 /*
6261 * check for pending overflow at the time the state
6262 * was saved.
6263 */
6264 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6265 /*
6266 * reload pmc0 with the overflow information
6267 * On McKinley PMU, this will trigger a PMU interrupt
6268 */
6269 ia64_set_pmc(0, ctx->th_pmcs[0]);
6270 ia64_srlz_d();
6271
6272 ctx->th_pmcs[0] = 0UL;
6273
6274 /*
6275 * will replay the PMU interrupt
6276 */
6277 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6278
6279 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6280 }
6281
6282 /*
6283 * establish new ownership.
6284 */
6285 SET_PMU_OWNER(task, ctx);
6286
6287 /*
6288 * restore the psr.up bit. measurement
6289 * is active again.
6290 * no PMU interrupt can happen at this point
6291 * because we still have interrupts disabled.
6292 */
6293 if (likely(psr_up)) pfm_set_psr_up();
6294 }
6295 #endif /* CONFIG_SMP */
6296
6297 /*
6298 * this function assumes monitoring is stopped
6299 */
6300 static void
6301 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6302 {
6303 u64 pmc0;
6304 unsigned long mask2, val, pmd_val, ovfl_val;
6305 int i, can_access_pmu = 0;
6306 int is_self;
6307
6308 /*
6309 * is the caller the task being monitored (or which initiated the
6310 * session for system wide measurements)
6311 */
6312 is_self = ctx->ctx_task == task ? 1 : 0;
6313
6314 /*
6315 * can access PMU is task is the owner of the PMU state on the current CPU
6316 * or if we are running on the CPU bound to the context in system-wide mode
6317 * (that is not necessarily the task the context is attached to in this mode).
6318 * In system-wide we always have can_access_pmu true because a task running on an
6319 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6320 */
6321 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6322 if (can_access_pmu) {
6323 /*
6324 * Mark the PMU as not owned
6325 * This will cause the interrupt handler to do nothing in case an overflow
6326 * interrupt was in-flight
6327 * This also guarantees that pmc0 will contain the final state
6328 * It virtually gives us full control on overflow processing from that point
6329 * on.
6330 */
6331 SET_PMU_OWNER(NULL, NULL);
6332 DPRINT(("releasing ownership\n"));
6333
6334 /*
6335 * read current overflow status:
6336 *
6337 * we are guaranteed to read the final stable state
6338 */
6339 ia64_srlz_d();
6340 pmc0 = ia64_get_pmc(0); /* slow */
6341
6342 /*
6343 * reset freeze bit, overflow status information destroyed
6344 */
6345 pfm_unfreeze_pmu();
6346 } else {
6347 pmc0 = ctx->th_pmcs[0];
6348 /*
6349 * clear whatever overflow status bits there were
6350 */
6351 ctx->th_pmcs[0] = 0;
6352 }
6353 ovfl_val = pmu_conf->ovfl_val;
6354 /*
6355 * we save all the used pmds
6356 * we take care of overflows for counting PMDs
6357 *
6358 * XXX: sampling situation is not taken into account here
6359 */
6360 mask2 = ctx->ctx_used_pmds[0];
6361
6362 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6363
6364 for (i = 0; mask2; i++, mask2>>=1) {
6365
6366 /* skip non used pmds */
6367 if ((mask2 & 0x1) == 0) continue;
6368
6369 /*
6370 * can access PMU always true in system wide mode
6371 */
6372 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6373
6374 if (PMD_IS_COUNTING(i)) {
6375 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6376 task_pid_nr(task),
6377 i,
6378 ctx->ctx_pmds[i].val,
6379 val & ovfl_val));
6380
6381 /*
6382 * we rebuild the full 64 bit value of the counter
6383 */
6384 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6385
6386 /*
6387 * now everything is in ctx_pmds[] and we need
6388 * to clear the saved context from save_regs() such that
6389 * pfm_read_pmds() gets the correct value
6390 */
6391 pmd_val = 0UL;
6392
6393 /*
6394 * take care of overflow inline
6395 */
6396 if (pmc0 & (1UL << i)) {
6397 val += 1 + ovfl_val;
6398 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6399 }
6400 }
6401
6402 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6403
6404 if (is_self) ctx->th_pmds[i] = pmd_val;
6405
6406 ctx->ctx_pmds[i].val = val;
6407 }
6408 }
6409
6410 static struct irqaction perfmon_irqaction = {
6411 .handler = pfm_interrupt_handler,
6412 .flags = IRQF_DISABLED,
6413 .name = "perfmon"
6414 };
6415
6416 static void
6417 pfm_alt_save_pmu_state(void *data)
6418 {
6419 struct pt_regs *regs;
6420
6421 regs = task_pt_regs(current);
6422
6423 DPRINT(("called\n"));
6424
6425 /*
6426 * should not be necessary but
6427 * let's take not risk
6428 */
6429 pfm_clear_psr_up();
6430 pfm_clear_psr_pp();
6431 ia64_psr(regs)->pp = 0;
6432
6433 /*
6434 * This call is required
6435 * May cause a spurious interrupt on some processors
6436 */
6437 pfm_freeze_pmu();
6438
6439 ia64_srlz_d();
6440 }
6441
6442 void
6443 pfm_alt_restore_pmu_state(void *data)
6444 {
6445 struct pt_regs *regs;
6446
6447 regs = task_pt_regs(current);
6448
6449 DPRINT(("called\n"));
6450
6451 /*
6452 * put PMU back in state expected
6453 * by perfmon
6454 */
6455 pfm_clear_psr_up();
6456 pfm_clear_psr_pp();
6457 ia64_psr(regs)->pp = 0;
6458
6459 /*
6460 * perfmon runs with PMU unfrozen at all times
6461 */
6462 pfm_unfreeze_pmu();
6463
6464 ia64_srlz_d();
6465 }
6466
6467 int
6468 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6469 {
6470 int ret, i;
6471 int reserve_cpu;
6472
6473 /* some sanity checks */
6474 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6475
6476 /* do the easy test first */
6477 if (pfm_alt_intr_handler) return -EBUSY;
6478
6479 /* one at a time in the install or remove, just fail the others */
6480 if (!spin_trylock(&pfm_alt_install_check)) {
6481 return -EBUSY;
6482 }
6483
6484 /* reserve our session */
6485 for_each_online_cpu(reserve_cpu) {
6486 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6487 if (ret) goto cleanup_reserve;
6488 }
6489
6490 /* save the current system wide pmu states */
6491 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6492 if (ret) {
6493 DPRINT(("on_each_cpu() failed: %d\n", ret));
6494 goto cleanup_reserve;
6495 }
6496
6497 /* officially change to the alternate interrupt handler */
6498 pfm_alt_intr_handler = hdl;
6499
6500 spin_unlock(&pfm_alt_install_check);
6501
6502 return 0;
6503
6504 cleanup_reserve:
6505 for_each_online_cpu(i) {
6506 /* don't unreserve more than we reserved */
6507 if (i >= reserve_cpu) break;
6508
6509 pfm_unreserve_session(NULL, 1, i);
6510 }
6511
6512 spin_unlock(&pfm_alt_install_check);
6513
6514 return ret;
6515 }
6516 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6517
6518 int
6519 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6520 {
6521 int i;
6522 int ret;
6523
6524 if (hdl == NULL) return -EINVAL;
6525
6526 /* cannot remove someone else's handler! */
6527 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6528
6529 /* one at a time in the install or remove, just fail the others */
6530 if (!spin_trylock(&pfm_alt_install_check)) {
6531 return -EBUSY;
6532 }
6533
6534 pfm_alt_intr_handler = NULL;
6535
6536 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6537 if (ret) {
6538 DPRINT(("on_each_cpu() failed: %d\n", ret));
6539 }
6540
6541 for_each_online_cpu(i) {
6542 pfm_unreserve_session(NULL, 1, i);
6543 }
6544
6545 spin_unlock(&pfm_alt_install_check);
6546
6547 return 0;
6548 }
6549 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6550
6551 /*
6552 * perfmon initialization routine, called from the initcall() table
6553 */
6554 static int init_pfm_fs(void);
6555
6556 static int __init
6557 pfm_probe_pmu(void)
6558 {
6559 pmu_config_t **p;
6560 int family;
6561
6562 family = local_cpu_data->family;
6563 p = pmu_confs;
6564
6565 while(*p) {
6566 if ((*p)->probe) {
6567 if ((*p)->probe() == 0) goto found;
6568 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6569 goto found;
6570 }
6571 p++;
6572 }
6573 return -1;
6574 found:
6575 pmu_conf = *p;
6576 return 0;
6577 }
6578
6579 static const struct file_operations pfm_proc_fops = {
6580 .open = pfm_proc_open,
6581 .read = seq_read,
6582 .llseek = seq_lseek,
6583 .release = seq_release,
6584 };
6585
6586 int __init
6587 pfm_init(void)
6588 {
6589 unsigned int n, n_counters, i;
6590
6591 printk("perfmon: version %u.%u IRQ %u\n",
6592 PFM_VERSION_MAJ,
6593 PFM_VERSION_MIN,
6594 IA64_PERFMON_VECTOR);
6595
6596 if (pfm_probe_pmu()) {
6597 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6598 local_cpu_data->family);
6599 return -ENODEV;
6600 }
6601
6602 /*
6603 * compute the number of implemented PMD/PMC from the
6604 * description tables
6605 */
6606 n = 0;
6607 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6608 if (PMC_IS_IMPL(i) == 0) continue;
6609 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6610 n++;
6611 }
6612 pmu_conf->num_pmcs = n;
6613
6614 n = 0; n_counters = 0;
6615 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6616 if (PMD_IS_IMPL(i) == 0) continue;
6617 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6618 n++;
6619 if (PMD_IS_COUNTING(i)) n_counters++;
6620 }
6621 pmu_conf->num_pmds = n;
6622 pmu_conf->num_counters = n_counters;
6623
6624 /*
6625 * sanity checks on the number of debug registers
6626 */
6627 if (pmu_conf->use_rr_dbregs) {
6628 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6629 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6630 pmu_conf = NULL;
6631 return -1;
6632 }
6633 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6634 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6635 pmu_conf = NULL;
6636 return -1;
6637 }
6638 }
6639
6640 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6641 pmu_conf->pmu_name,
6642 pmu_conf->num_pmcs,
6643 pmu_conf->num_pmds,
6644 pmu_conf->num_counters,
6645 ffz(pmu_conf->ovfl_val));
6646
6647 /* sanity check */
6648 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6649 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6650 pmu_conf = NULL;
6651 return -1;
6652 }
6653
6654 /*
6655 * create /proc/perfmon (mostly for debugging purposes)
6656 */
6657 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6658 if (perfmon_dir == NULL) {
6659 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6660 pmu_conf = NULL;
6661 return -1;
6662 }
6663
6664 /*
6665 * create /proc/sys/kernel/perfmon (for debugging purposes)
6666 */
6667 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6668
6669 /*
6670 * initialize all our spinlocks
6671 */
6672 spin_lock_init(&pfm_sessions.pfs_lock);
6673 spin_lock_init(&pfm_buffer_fmt_lock);
6674
6675 init_pfm_fs();
6676
6677 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6678
6679 return 0;
6680 }
6681
6682 __initcall(pfm_init);
6683
6684 /*
6685 * this function is called before pfm_init()
6686 */
6687 void
6688 pfm_init_percpu (void)
6689 {
6690 static int first_time=1;
6691 /*
6692 * make sure no measurement is active
6693 * (may inherit programmed PMCs from EFI).
6694 */
6695 pfm_clear_psr_pp();
6696 pfm_clear_psr_up();
6697
6698 /*
6699 * we run with the PMU not frozen at all times
6700 */
6701 pfm_unfreeze_pmu();
6702
6703 if (first_time) {
6704 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6705 first_time=0;
6706 }
6707
6708 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6709 ia64_srlz_d();
6710 }
6711
6712 /*
6713 * used for debug purposes only
6714 */
6715 void
6716 dump_pmu_state(const char *from)
6717 {
6718 struct task_struct *task;
6719 struct pt_regs *regs;
6720 pfm_context_t *ctx;
6721 unsigned long psr, dcr, info, flags;
6722 int i, this_cpu;
6723
6724 local_irq_save(flags);
6725
6726 this_cpu = smp_processor_id();
6727 regs = task_pt_regs(current);
6728 info = PFM_CPUINFO_GET();
6729 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6730
6731 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6732 local_irq_restore(flags);
6733 return;
6734 }
6735
6736 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6737 this_cpu,
6738 from,
6739 task_pid_nr(current),
6740 regs->cr_iip,
6741 current->comm);
6742
6743 task = GET_PMU_OWNER();
6744 ctx = GET_PMU_CTX();
6745
6746 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6747
6748 psr = pfm_get_psr();
6749
6750 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6751 this_cpu,
6752 ia64_get_pmc(0),
6753 psr & IA64_PSR_PP ? 1 : 0,
6754 psr & IA64_PSR_UP ? 1 : 0,
6755 dcr & IA64_DCR_PP ? 1 : 0,
6756 info,
6757 ia64_psr(regs)->up,
6758 ia64_psr(regs)->pp);
6759
6760 ia64_psr(regs)->up = 0;
6761 ia64_psr(regs)->pp = 0;
6762
6763 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6764 if (PMC_IS_IMPL(i) == 0) continue;
6765 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6766 }
6767
6768 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6769 if (PMD_IS_IMPL(i) == 0) continue;
6770 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6771 }
6772
6773 if (ctx) {
6774 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6775 this_cpu,
6776 ctx->ctx_state,
6777 ctx->ctx_smpl_vaddr,
6778 ctx->ctx_smpl_hdr,
6779 ctx->ctx_msgq_head,
6780 ctx->ctx_msgq_tail,
6781 ctx->ctx_saved_psr_up);
6782 }
6783 local_irq_restore(flags);
6784 }
6785
6786 /*
6787 * called from process.c:copy_thread(). task is new child.
6788 */
6789 void
6790 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6791 {
6792 struct thread_struct *thread;
6793
6794 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6795
6796 thread = &task->thread;
6797
6798 /*
6799 * cut links inherited from parent (current)
6800 */
6801 thread->pfm_context = NULL;
6802
6803 PFM_SET_WORK_PENDING(task, 0);
6804
6805 /*
6806 * the psr bits are already set properly in copy_threads()
6807 */
6808 }
6809 #else /* !CONFIG_PERFMON */
6810 asmlinkage long
6811 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6812 {
6813 return -ENOSYS;
6814 }
6815 #endif /* CONFIG_PERFMON */