IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 *
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
60 */
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/smp_lock.h>
67 #include <linux/bootmem.h>
68 #include <linux/acpi.h>
69 #include <linux/timer.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/smp.h>
73 #include <linux/workqueue.h>
74 #include <linux/cpumask.h>
75
76 #include <asm/delay.h>
77 #include <asm/kdebug.h>
78 #include <asm/machvec.h>
79 #include <asm/meminit.h>
80 #include <asm/page.h>
81 #include <asm/ptrace.h>
82 #include <asm/system.h>
83 #include <asm/sal.h>
84 #include <asm/mca.h>
85
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
88
89 #include "mca_drv.h"
90 #include "entry.h"
91
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
97
98 /* Used by mca_asm.S */
99 u32 ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
104
105 unsigned long __per_cpu_mca[NR_CPUS];
106
107 /* In mca_asm.S */
108 extern void ia64_os_init_dispatch_monarch (void);
109 extern void ia64_os_init_dispatch_slave (void);
110
111 static int monarch_cpu = -1;
112
113 static ia64_mc_info_t ia64_mc_info;
114
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118 #define CPE_HISTORY_LENGTH 5
119 #define CMC_HISTORY_LENGTH 5
120
121 static struct timer_list cpe_poll_timer;
122 static struct timer_list cmc_poll_timer;
123 /*
124 * This variable tells whether we are currently in polling mode.
125 * Start with this in the wrong state so we won't play w/ timers
126 * before the system is ready.
127 */
128 static int cmc_polling_enabled = 1;
129
130 /*
131 * Clearing this variable prevents CPE polling from getting activated
132 * in mca_late_init. Use it if your system doesn't provide a CPEI,
133 * but encounters problems retrieving CPE logs. This should only be
134 * necessary for debugging.
135 */
136 static int cpe_poll_enabled = 1;
137
138 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
139
140 static int mca_init __initdata;
141
142 /*
143 * limited & delayed printing support for MCA/INIT handler
144 */
145
146 #define mprintk(fmt...) ia64_mca_printk(fmt)
147
148 #define MLOGBUF_SIZE (512+256*NR_CPUS)
149 #define MLOGBUF_MSGMAX 256
150 static char mlogbuf[MLOGBUF_SIZE];
151 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
152 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
153 static unsigned long mlogbuf_start;
154 static unsigned long mlogbuf_end;
155 static unsigned int mlogbuf_finished = 0;
156 static unsigned long mlogbuf_timestamp = 0;
157
158 static int loglevel_save = -1;
159 #define BREAK_LOGLEVEL(__console_loglevel) \
160 oops_in_progress = 1; \
161 if (loglevel_save < 0) \
162 loglevel_save = __console_loglevel; \
163 __console_loglevel = 15;
164
165 #define RESTORE_LOGLEVEL(__console_loglevel) \
166 if (loglevel_save >= 0) { \
167 __console_loglevel = loglevel_save; \
168 loglevel_save = -1; \
169 } \
170 mlogbuf_finished = 0; \
171 oops_in_progress = 0;
172
173 /*
174 * Push messages into buffer, print them later if not urgent.
175 */
176 void ia64_mca_printk(const char *fmt, ...)
177 {
178 va_list args;
179 int printed_len;
180 char temp_buf[MLOGBUF_MSGMAX];
181 char *p;
182
183 va_start(args, fmt);
184 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
185 va_end(args);
186
187 /* Copy the output into mlogbuf */
188 if (oops_in_progress) {
189 /* mlogbuf was abandoned, use printk directly instead. */
190 printk(temp_buf);
191 } else {
192 spin_lock(&mlogbuf_wlock);
193 for (p = temp_buf; *p; p++) {
194 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
195 if (next != mlogbuf_start) {
196 mlogbuf[mlogbuf_end] = *p;
197 mlogbuf_end = next;
198 } else {
199 /* buffer full */
200 break;
201 }
202 }
203 mlogbuf[mlogbuf_end] = '\0';
204 spin_unlock(&mlogbuf_wlock);
205 }
206 }
207 EXPORT_SYMBOL(ia64_mca_printk);
208
209 /*
210 * Print buffered messages.
211 * NOTE: call this after returning normal context. (ex. from salinfod)
212 */
213 void ia64_mlogbuf_dump(void)
214 {
215 char temp_buf[MLOGBUF_MSGMAX];
216 char *p;
217 unsigned long index;
218 unsigned long flags;
219 unsigned int printed_len;
220
221 /* Get output from mlogbuf */
222 while (mlogbuf_start != mlogbuf_end) {
223 temp_buf[0] = '\0';
224 p = temp_buf;
225 printed_len = 0;
226
227 spin_lock_irqsave(&mlogbuf_rlock, flags);
228
229 index = mlogbuf_start;
230 while (index != mlogbuf_end) {
231 *p = mlogbuf[index];
232 index = (index + 1) % MLOGBUF_SIZE;
233 if (!*p)
234 break;
235 p++;
236 if (++printed_len >= MLOGBUF_MSGMAX - 1)
237 break;
238 }
239 *p = '\0';
240 if (temp_buf[0])
241 printk(temp_buf);
242 mlogbuf_start = index;
243
244 mlogbuf_timestamp = 0;
245 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
246 }
247 }
248 EXPORT_SYMBOL(ia64_mlogbuf_dump);
249
250 /*
251 * Call this if system is going to down or if immediate flushing messages to
252 * console is required. (ex. recovery was failed, crash dump is going to be
253 * invoked, long-wait rendezvous etc.)
254 * NOTE: this should be called from monarch.
255 */
256 static void ia64_mlogbuf_finish(int wait)
257 {
258 BREAK_LOGLEVEL(console_loglevel);
259
260 spin_lock_init(&mlogbuf_rlock);
261 ia64_mlogbuf_dump();
262 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
263 "MCA/INIT might be dodgy or fail.\n");
264
265 if (!wait)
266 return;
267
268 /* wait for console */
269 printk("Delaying for 5 seconds...\n");
270 udelay(5*1000000);
271
272 mlogbuf_finished = 1;
273 }
274 EXPORT_SYMBOL(ia64_mlogbuf_finish);
275
276 /*
277 * Print buffered messages from INIT context.
278 */
279 static void ia64_mlogbuf_dump_from_init(void)
280 {
281 if (mlogbuf_finished)
282 return;
283
284 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
285 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
286 " and the system seems to be messed up.\n");
287 ia64_mlogbuf_finish(0);
288 return;
289 }
290
291 if (!spin_trylock(&mlogbuf_rlock)) {
292 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
293 "Generated messages other than stack dump will be "
294 "buffered to mlogbuf and will be printed later.\n");
295 printk(KERN_ERR "INIT: If messages would not printed after "
296 "this INIT, wait 30sec and assert INIT again.\n");
297 if (!mlogbuf_timestamp)
298 mlogbuf_timestamp = jiffies;
299 return;
300 }
301 spin_unlock(&mlogbuf_rlock);
302 ia64_mlogbuf_dump();
303 }
304
305 static void inline
306 ia64_mca_spin(const char *func)
307 {
308 if (monarch_cpu == smp_processor_id())
309 ia64_mlogbuf_finish(0);
310 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
311 while (1)
312 cpu_relax();
313 }
314 /*
315 * IA64_MCA log support
316 */
317 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
318 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
319
320 typedef struct ia64_state_log_s
321 {
322 spinlock_t isl_lock;
323 int isl_index;
324 unsigned long isl_count;
325 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
326 } ia64_state_log_t;
327
328 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
329
330 #define IA64_LOG_ALLOCATE(it, size) \
331 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
332 (ia64_err_rec_t *)alloc_bootmem(size); \
333 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
334 (ia64_err_rec_t *)alloc_bootmem(size);}
335 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
336 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
337 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
338 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
339 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
340 #define IA64_LOG_INDEX_INC(it) \
341 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
342 ia64_state_log[it].isl_count++;}
343 #define IA64_LOG_INDEX_DEC(it) \
344 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
345 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
346 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
347 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
348
349 /*
350 * ia64_log_init
351 * Reset the OS ia64 log buffer
352 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
353 * Outputs : None
354 */
355 static void __init
356 ia64_log_init(int sal_info_type)
357 {
358 u64 max_size = 0;
359
360 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
361 IA64_LOG_LOCK_INIT(sal_info_type);
362
363 // SAL will tell us the maximum size of any error record of this type
364 max_size = ia64_sal_get_state_info_size(sal_info_type);
365 if (!max_size)
366 /* alloc_bootmem() doesn't like zero-sized allocations! */
367 return;
368
369 // set up OS data structures to hold error info
370 IA64_LOG_ALLOCATE(sal_info_type, max_size);
371 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
372 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
373 }
374
375 /*
376 * ia64_log_get
377 *
378 * Get the current MCA log from SAL and copy it into the OS log buffer.
379 *
380 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
381 * irq_safe whether you can use printk at this point
382 * Outputs : size (total record length)
383 * *buffer (ptr to error record)
384 *
385 */
386 static u64
387 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
388 {
389 sal_log_record_header_t *log_buffer;
390 u64 total_len = 0;
391 unsigned long s;
392
393 IA64_LOG_LOCK(sal_info_type);
394
395 /* Get the process state information */
396 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
397
398 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
399
400 if (total_len) {
401 IA64_LOG_INDEX_INC(sal_info_type);
402 IA64_LOG_UNLOCK(sal_info_type);
403 if (irq_safe) {
404 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
405 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
406 }
407 *buffer = (u8 *) log_buffer;
408 return total_len;
409 } else {
410 IA64_LOG_UNLOCK(sal_info_type);
411 return 0;
412 }
413 }
414
415 /*
416 * ia64_mca_log_sal_error_record
417 *
418 * This function retrieves a specified error record type from SAL
419 * and wakes up any processes waiting for error records.
420 *
421 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
422 * FIXME: remove MCA and irq_safe.
423 */
424 static void
425 ia64_mca_log_sal_error_record(int sal_info_type)
426 {
427 u8 *buffer;
428 sal_log_record_header_t *rh;
429 u64 size;
430 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
431 #ifdef IA64_MCA_DEBUG_INFO
432 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
433 #endif
434
435 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
436 if (!size)
437 return;
438
439 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
440
441 if (irq_safe)
442 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
443 smp_processor_id(),
444 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
445
446 /* Clear logs from corrected errors in case there's no user-level logger */
447 rh = (sal_log_record_header_t *)buffer;
448 if (rh->severity == sal_log_severity_corrected)
449 ia64_sal_clear_state_info(sal_info_type);
450 }
451
452 /*
453 * search_mca_table
454 * See if the MCA surfaced in an instruction range
455 * that has been tagged as recoverable.
456 *
457 * Inputs
458 * first First address range to check
459 * last Last address range to check
460 * ip Instruction pointer, address we are looking for
461 *
462 * Return value:
463 * 1 on Success (in the table)/ 0 on Failure (not in the table)
464 */
465 int
466 search_mca_table (const struct mca_table_entry *first,
467 const struct mca_table_entry *last,
468 unsigned long ip)
469 {
470 const struct mca_table_entry *curr;
471 u64 curr_start, curr_end;
472
473 curr = first;
474 while (curr <= last) {
475 curr_start = (u64) &curr->start_addr + curr->start_addr;
476 curr_end = (u64) &curr->end_addr + curr->end_addr;
477
478 if ((ip >= curr_start) && (ip <= curr_end)) {
479 return 1;
480 }
481 curr++;
482 }
483 return 0;
484 }
485
486 /* Given an address, look for it in the mca tables. */
487 int mca_recover_range(unsigned long addr)
488 {
489 extern struct mca_table_entry __start___mca_table[];
490 extern struct mca_table_entry __stop___mca_table[];
491
492 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
493 }
494 EXPORT_SYMBOL_GPL(mca_recover_range);
495
496 #ifdef CONFIG_ACPI
497
498 int cpe_vector = -1;
499 int ia64_cpe_irq = -1;
500
501 static irqreturn_t
502 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
503 {
504 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
505 static int index;
506 static DEFINE_SPINLOCK(cpe_history_lock);
507
508 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
509 __FUNCTION__, cpe_irq, smp_processor_id());
510
511 /* SAL spec states this should run w/ interrupts enabled */
512 local_irq_enable();
513
514 spin_lock(&cpe_history_lock);
515 if (!cpe_poll_enabled && cpe_vector >= 0) {
516
517 int i, count = 1; /* we know 1 happened now */
518 unsigned long now = jiffies;
519
520 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
521 if (now - cpe_history[i] <= HZ)
522 count++;
523 }
524
525 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
526 if (count >= CPE_HISTORY_LENGTH) {
527
528 cpe_poll_enabled = 1;
529 spin_unlock(&cpe_history_lock);
530 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
531
532 /*
533 * Corrected errors will still be corrected, but
534 * make sure there's a log somewhere that indicates
535 * something is generating more than we can handle.
536 */
537 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
538
539 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
540
541 /* lock already released, get out now */
542 goto out;
543 } else {
544 cpe_history[index++] = now;
545 if (index == CPE_HISTORY_LENGTH)
546 index = 0;
547 }
548 }
549 spin_unlock(&cpe_history_lock);
550 out:
551 /* Get the CPE error record and log it */
552 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
553
554 return IRQ_HANDLED;
555 }
556
557 #endif /* CONFIG_ACPI */
558
559 #ifdef CONFIG_ACPI
560 /*
561 * ia64_mca_register_cpev
562 *
563 * Register the corrected platform error vector with SAL.
564 *
565 * Inputs
566 * cpev Corrected Platform Error Vector number
567 *
568 * Outputs
569 * None
570 */
571 static void __init
572 ia64_mca_register_cpev (int cpev)
573 {
574 /* Register the CPE interrupt vector with SAL */
575 struct ia64_sal_retval isrv;
576
577 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
578 if (isrv.status) {
579 printk(KERN_ERR "Failed to register Corrected Platform "
580 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
581 return;
582 }
583
584 IA64_MCA_DEBUG("%s: corrected platform error "
585 "vector %#x registered\n", __FUNCTION__, cpev);
586 }
587 #endif /* CONFIG_ACPI */
588
589 /*
590 * ia64_mca_cmc_vector_setup
591 *
592 * Setup the corrected machine check vector register in the processor.
593 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
594 * This function is invoked on a per-processor basis.
595 *
596 * Inputs
597 * None
598 *
599 * Outputs
600 * None
601 */
602 void __cpuinit
603 ia64_mca_cmc_vector_setup (void)
604 {
605 cmcv_reg_t cmcv;
606
607 cmcv.cmcv_regval = 0;
608 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
609 cmcv.cmcv_vector = IA64_CMC_VECTOR;
610 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
611
612 IA64_MCA_DEBUG("%s: CPU %d corrected "
613 "machine check vector %#x registered.\n",
614 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
615
616 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
617 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
618 }
619
620 /*
621 * ia64_mca_cmc_vector_disable
622 *
623 * Mask the corrected machine check vector register in the processor.
624 * This function is invoked on a per-processor basis.
625 *
626 * Inputs
627 * dummy(unused)
628 *
629 * Outputs
630 * None
631 */
632 static void
633 ia64_mca_cmc_vector_disable (void *dummy)
634 {
635 cmcv_reg_t cmcv;
636
637 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
638
639 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
641
642 IA64_MCA_DEBUG("%s: CPU %d corrected "
643 "machine check vector %#x disabled.\n",
644 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
645 }
646
647 /*
648 * ia64_mca_cmc_vector_enable
649 *
650 * Unmask the corrected machine check vector register in the processor.
651 * This function is invoked on a per-processor basis.
652 *
653 * Inputs
654 * dummy(unused)
655 *
656 * Outputs
657 * None
658 */
659 static void
660 ia64_mca_cmc_vector_enable (void *dummy)
661 {
662 cmcv_reg_t cmcv;
663
664 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
665
666 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
667 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
668
669 IA64_MCA_DEBUG("%s: CPU %d corrected "
670 "machine check vector %#x enabled.\n",
671 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
672 }
673
674 /*
675 * ia64_mca_cmc_vector_disable_keventd
676 *
677 * Called via keventd (smp_call_function() is not safe in interrupt context) to
678 * disable the cmc interrupt vector.
679 */
680 static void
681 ia64_mca_cmc_vector_disable_keventd(void *unused)
682 {
683 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
684 }
685
686 /*
687 * ia64_mca_cmc_vector_enable_keventd
688 *
689 * Called via keventd (smp_call_function() is not safe in interrupt context) to
690 * enable the cmc interrupt vector.
691 */
692 static void
693 ia64_mca_cmc_vector_enable_keventd(void *unused)
694 {
695 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
696 }
697
698 /*
699 * ia64_mca_wakeup
700 *
701 * Send an inter-cpu interrupt to wake-up a particular cpu
702 * and mark that cpu to be out of rendez.
703 *
704 * Inputs : cpuid
705 * Outputs : None
706 */
707 static void
708 ia64_mca_wakeup(int cpu)
709 {
710 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
711 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
712
713 }
714
715 /*
716 * ia64_mca_wakeup_all
717 *
718 * Wakeup all the cpus which have rendez'ed previously.
719 *
720 * Inputs : None
721 * Outputs : None
722 */
723 static void
724 ia64_mca_wakeup_all(void)
725 {
726 int cpu;
727
728 /* Clear the Rendez checkin flag for all cpus */
729 for_each_online_cpu(cpu) {
730 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
731 ia64_mca_wakeup(cpu);
732 }
733
734 }
735
736 /*
737 * ia64_mca_rendez_interrupt_handler
738 *
739 * This is handler used to put slave processors into spinloop
740 * while the monarch processor does the mca handling and later
741 * wake each slave up once the monarch is done.
742 *
743 * Inputs : None
744 * Outputs : None
745 */
746 static irqreturn_t
747 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
748 {
749 unsigned long flags;
750 int cpu = smp_processor_id();
751 struct ia64_mca_notify_die nd =
752 { .sos = NULL, .monarch_cpu = &monarch_cpu };
753
754 /* Mask all interrupts */
755 local_irq_save(flags);
756 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
757 (long)&nd, 0, 0) == NOTIFY_STOP)
758 ia64_mca_spin(__FUNCTION__);
759
760 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
761 /* Register with the SAL monarch that the slave has
762 * reached SAL
763 */
764 ia64_sal_mc_rendez();
765
766 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
767 (long)&nd, 0, 0) == NOTIFY_STOP)
768 ia64_mca_spin(__FUNCTION__);
769
770 /* Wait for the monarch cpu to exit. */
771 while (monarch_cpu != -1)
772 cpu_relax(); /* spin until monarch leaves */
773
774 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
775 (long)&nd, 0, 0) == NOTIFY_STOP)
776 ia64_mca_spin(__FUNCTION__);
777
778 /* Enable all interrupts */
779 local_irq_restore(flags);
780 return IRQ_HANDLED;
781 }
782
783 /*
784 * ia64_mca_wakeup_int_handler
785 *
786 * The interrupt handler for processing the inter-cpu interrupt to the
787 * slave cpu which was spinning in the rendez loop.
788 * Since this spinning is done by turning off the interrupts and
789 * polling on the wakeup-interrupt bit in the IRR, there is
790 * nothing useful to be done in the handler.
791 *
792 * Inputs : wakeup_irq (Wakeup-interrupt bit)
793 * arg (Interrupt handler specific argument)
794 * Outputs : None
795 *
796 */
797 static irqreturn_t
798 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
799 {
800 return IRQ_HANDLED;
801 }
802
803 /* Function pointer for extra MCA recovery */
804 int (*ia64_mca_ucmc_extension)
805 (void*,struct ia64_sal_os_state*)
806 = NULL;
807
808 int
809 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
810 {
811 if (ia64_mca_ucmc_extension)
812 return 1;
813
814 ia64_mca_ucmc_extension = fn;
815 return 0;
816 }
817
818 void
819 ia64_unreg_MCA_extension(void)
820 {
821 if (ia64_mca_ucmc_extension)
822 ia64_mca_ucmc_extension = NULL;
823 }
824
825 EXPORT_SYMBOL(ia64_reg_MCA_extension);
826 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
827
828
829 static inline void
830 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
831 {
832 u64 fslot, tslot, nat;
833 *tr = *fr;
834 fslot = ((unsigned long)fr >> 3) & 63;
835 tslot = ((unsigned long)tr >> 3) & 63;
836 *tnat &= ~(1UL << tslot);
837 nat = (fnat >> fslot) & 1;
838 *tnat |= (nat << tslot);
839 }
840
841 /* Change the comm field on the MCA/INT task to include the pid that
842 * was interrupted, it makes for easier debugging. If that pid was 0
843 * (swapper or nested MCA/INIT) then use the start of the previous comm
844 * field suffixed with its cpu.
845 */
846
847 static void
848 ia64_mca_modify_comm(const struct task_struct *previous_current)
849 {
850 char *p, comm[sizeof(current->comm)];
851 if (previous_current->pid)
852 snprintf(comm, sizeof(comm), "%s %d",
853 current->comm, previous_current->pid);
854 else {
855 int l;
856 if ((p = strchr(previous_current->comm, ' ')))
857 l = p - previous_current->comm;
858 else
859 l = strlen(previous_current->comm);
860 snprintf(comm, sizeof(comm), "%s %*s %d",
861 current->comm, l, previous_current->comm,
862 task_thread_info(previous_current)->cpu);
863 }
864 memcpy(current->comm, comm, sizeof(current->comm));
865 }
866
867 /* On entry to this routine, we are running on the per cpu stack, see
868 * mca_asm.h. The original stack has not been touched by this event. Some of
869 * the original stack's registers will be in the RBS on this stack. This stack
870 * also contains a partial pt_regs and switch_stack, the rest of the data is in
871 * PAL minstate.
872 *
873 * The first thing to do is modify the original stack to look like a blocked
874 * task so we can run backtrace on the original task. Also mark the per cpu
875 * stack as current to ensure that we use the correct task state, it also means
876 * that we can do backtrace on the MCA/INIT handler code itself.
877 */
878
879 static struct task_struct *
880 ia64_mca_modify_original_stack(struct pt_regs *regs,
881 const struct switch_stack *sw,
882 struct ia64_sal_os_state *sos,
883 const char *type)
884 {
885 char *p;
886 ia64_va va;
887 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
888 const pal_min_state_area_t *ms = sos->pal_min_state;
889 struct task_struct *previous_current;
890 struct pt_regs *old_regs;
891 struct switch_stack *old_sw;
892 unsigned size = sizeof(struct pt_regs) +
893 sizeof(struct switch_stack) + 16;
894 u64 *old_bspstore, *old_bsp;
895 u64 *new_bspstore, *new_bsp;
896 u64 old_unat, old_rnat, new_rnat, nat;
897 u64 slots, loadrs = regs->loadrs;
898 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
899 u64 ar_bspstore = regs->ar_bspstore;
900 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
901 const u64 *bank;
902 const char *msg;
903 int cpu = smp_processor_id();
904
905 previous_current = curr_task(cpu);
906 set_curr_task(cpu, current);
907 if ((p = strchr(current->comm, ' ')))
908 *p = '\0';
909
910 /* Best effort attempt to cope with MCA/INIT delivered while in
911 * physical mode.
912 */
913 regs->cr_ipsr = ms->pmsa_ipsr;
914 if (ia64_psr(regs)->dt == 0) {
915 va.l = r12;
916 if (va.f.reg == 0) {
917 va.f.reg = 7;
918 r12 = va.l;
919 }
920 va.l = r13;
921 if (va.f.reg == 0) {
922 va.f.reg = 7;
923 r13 = va.l;
924 }
925 }
926 if (ia64_psr(regs)->rt == 0) {
927 va.l = ar_bspstore;
928 if (va.f.reg == 0) {
929 va.f.reg = 7;
930 ar_bspstore = va.l;
931 }
932 va.l = ar_bsp;
933 if (va.f.reg == 0) {
934 va.f.reg = 7;
935 ar_bsp = va.l;
936 }
937 }
938
939 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
940 * have been copied to the old stack, the old stack may fail the
941 * validation tests below. So ia64_old_stack() must restore the dirty
942 * registers from the new stack. The old and new bspstore probably
943 * have different alignments, so loadrs calculated on the old bsp
944 * cannot be used to restore from the new bsp. Calculate a suitable
945 * loadrs for the new stack and save it in the new pt_regs, where
946 * ia64_old_stack() can get it.
947 */
948 old_bspstore = (u64 *)ar_bspstore;
949 old_bsp = (u64 *)ar_bsp;
950 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
951 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
952 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
953 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
954
955 /* Verify the previous stack state before we change it */
956 if (user_mode(regs)) {
957 msg = "occurred in user space";
958 /* previous_current is guaranteed to be valid when the task was
959 * in user space, so ...
960 */
961 ia64_mca_modify_comm(previous_current);
962 goto no_mod;
963 }
964
965 if (!mca_recover_range(ms->pmsa_iip)) {
966 if (r13 != sos->prev_IA64_KR_CURRENT) {
967 msg = "inconsistent previous current and r13";
968 goto no_mod;
969 }
970 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
971 msg = "inconsistent r12 and r13";
972 goto no_mod;
973 }
974 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
975 msg = "inconsistent ar.bspstore and r13";
976 goto no_mod;
977 }
978 va.p = old_bspstore;
979 if (va.f.reg < 5) {
980 msg = "old_bspstore is in the wrong region";
981 goto no_mod;
982 }
983 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
984 msg = "inconsistent ar.bsp and r13";
985 goto no_mod;
986 }
987 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
988 if (ar_bspstore + size > r12) {
989 msg = "no room for blocked state";
990 goto no_mod;
991 }
992 }
993
994 ia64_mca_modify_comm(previous_current);
995
996 /* Make the original task look blocked. First stack a struct pt_regs,
997 * describing the state at the time of interrupt. mca_asm.S built a
998 * partial pt_regs, copy it and fill in the blanks using minstate.
999 */
1000 p = (char *)r12 - sizeof(*regs);
1001 old_regs = (struct pt_regs *)p;
1002 memcpy(old_regs, regs, sizeof(*regs));
1003 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1004 * pmsa_{xip,xpsr,xfs}
1005 */
1006 if (ia64_psr(regs)->ic) {
1007 old_regs->cr_iip = ms->pmsa_iip;
1008 old_regs->cr_ipsr = ms->pmsa_ipsr;
1009 old_regs->cr_ifs = ms->pmsa_ifs;
1010 } else {
1011 old_regs->cr_iip = ms->pmsa_xip;
1012 old_regs->cr_ipsr = ms->pmsa_xpsr;
1013 old_regs->cr_ifs = ms->pmsa_xfs;
1014 }
1015 old_regs->pr = ms->pmsa_pr;
1016 old_regs->b0 = ms->pmsa_br0;
1017 old_regs->loadrs = loadrs;
1018 old_regs->ar_rsc = ms->pmsa_rsc;
1019 old_unat = old_regs->ar_unat;
1020 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1021 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1022 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1023 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1024 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1025 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1026 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1027 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1028 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1029 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1030 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1031 if (ia64_psr(old_regs)->bn)
1032 bank = ms->pmsa_bank1_gr;
1033 else
1034 bank = ms->pmsa_bank0_gr;
1035 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1036 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1037 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1038 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1039 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1040 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1041 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1042 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1043 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1044 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1045 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1046 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1047 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1048 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1049 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1050 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1051
1052 /* Next stack a struct switch_stack. mca_asm.S built a partial
1053 * switch_stack, copy it and fill in the blanks using pt_regs and
1054 * minstate.
1055 *
1056 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1057 * ar.pfs is set to 0.
1058 *
1059 * unwind.c::unw_unwind() does special processing for interrupt frames.
1060 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1061 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1062 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1063 * switch_stack on the original stack so it will unwind correctly when
1064 * unwind.c reads pt_regs.
1065 *
1066 * thread.ksp is updated to point to the synthesized switch_stack.
1067 */
1068 p -= sizeof(struct switch_stack);
1069 old_sw = (struct switch_stack *)p;
1070 memcpy(old_sw, sw, sizeof(*sw));
1071 old_sw->caller_unat = old_unat;
1072 old_sw->ar_fpsr = old_regs->ar_fpsr;
1073 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1074 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1075 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1076 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1077 old_sw->b0 = (u64)ia64_leave_kernel;
1078 old_sw->b1 = ms->pmsa_br1;
1079 old_sw->ar_pfs = 0;
1080 old_sw->ar_unat = old_unat;
1081 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1082 previous_current->thread.ksp = (u64)p - 16;
1083
1084 /* Finally copy the original stack's registers back to its RBS.
1085 * Registers from ar.bspstore through ar.bsp at the time of the event
1086 * are in the current RBS, copy them back to the original stack. The
1087 * copy must be done register by register because the original bspstore
1088 * and the current one have different alignments, so the saved RNAT
1089 * data occurs at different places.
1090 *
1091 * mca_asm does cover, so the old_bsp already includes all registers at
1092 * the time of MCA/INIT. It also does flushrs, so all registers before
1093 * this function have been written to backing store on the MCA/INIT
1094 * stack.
1095 */
1096 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1097 old_rnat = regs->ar_rnat;
1098 while (slots--) {
1099 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1100 new_rnat = ia64_get_rnat(new_bspstore++);
1101 }
1102 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1103 *old_bspstore++ = old_rnat;
1104 old_rnat = 0;
1105 }
1106 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1107 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1108 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1109 *old_bspstore++ = *new_bspstore++;
1110 }
1111 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1112 old_sw->ar_rnat = old_rnat;
1113
1114 sos->prev_task = previous_current;
1115 return previous_current;
1116
1117 no_mod:
1118 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1119 smp_processor_id(), type, msg);
1120 return previous_current;
1121 }
1122
1123 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1124 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1125 * not entered rendezvous yet then wait a bit. The assumption is that any
1126 * slave that has not rendezvoused after a reasonable time is never going to do
1127 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1128 * interrupt, as well as cpus that receive the INIT slave event.
1129 */
1130
1131 static void
1132 ia64_wait_for_slaves(int monarch, const char *type)
1133 {
1134 int c, wait = 0, missing = 0;
1135 for_each_online_cpu(c) {
1136 if (c == monarch)
1137 continue;
1138 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1139 udelay(1000); /* short wait first */
1140 wait = 1;
1141 break;
1142 }
1143 }
1144 if (!wait)
1145 goto all_in;
1146 for_each_online_cpu(c) {
1147 if (c == monarch)
1148 continue;
1149 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1150 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1151 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1152 missing = 1;
1153 break;
1154 }
1155 }
1156 if (!missing)
1157 goto all_in;
1158 /*
1159 * Maybe slave(s) dead. Print buffered messages immediately.
1160 */
1161 ia64_mlogbuf_finish(0);
1162 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1163 for_each_online_cpu(c) {
1164 if (c == monarch)
1165 continue;
1166 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1167 mprintk(" %d", c);
1168 }
1169 mprintk("\n");
1170 return;
1171
1172 all_in:
1173 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1174 return;
1175 }
1176
1177 /*
1178 * ia64_mca_handler
1179 *
1180 * This is uncorrectable machine check handler called from OS_MCA
1181 * dispatch code which is in turn called from SAL_CHECK().
1182 * This is the place where the core of OS MCA handling is done.
1183 * Right now the logs are extracted and displayed in a well-defined
1184 * format. This handler code is supposed to be run only on the
1185 * monarch processor. Once the monarch is done with MCA handling
1186 * further MCA logging is enabled by clearing logs.
1187 * Monarch also has the duty of sending wakeup-IPIs to pull the
1188 * slave processors out of rendezvous spinloop.
1189 */
1190 void
1191 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1192 struct ia64_sal_os_state *sos)
1193 {
1194 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1195 &sos->proc_state_param;
1196 int recover, cpu = smp_processor_id();
1197 struct task_struct *previous_current;
1198 struct ia64_mca_notify_die nd =
1199 { .sos = sos, .monarch_cpu = &monarch_cpu };
1200
1201 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1202 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1203
1204 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1205 monarch_cpu = cpu;
1206 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1207 == NOTIFY_STOP)
1208 ia64_mca_spin(__FUNCTION__);
1209 ia64_wait_for_slaves(cpu, "MCA");
1210
1211 /* Wakeup all the processors which are spinning in the rendezvous loop.
1212 * They will leave SAL, then spin in the OS with interrupts disabled
1213 * until this monarch cpu leaves the MCA handler. That gets control
1214 * back to the OS so we can backtrace the other cpus, backtrace when
1215 * spinning in SAL does not work.
1216 */
1217 ia64_mca_wakeup_all();
1218 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1219 == NOTIFY_STOP)
1220 ia64_mca_spin(__FUNCTION__);
1221
1222 /* Get the MCA error record and log it */
1223 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1224
1225 /* TLB error is only exist in this SAL error record */
1226 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1227 /* other error recovery */
1228 || (ia64_mca_ucmc_extension
1229 && ia64_mca_ucmc_extension(
1230 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1231 sos));
1232
1233 if (recover) {
1234 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1235 rh->severity = sal_log_severity_corrected;
1236 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1237 sos->os_status = IA64_MCA_CORRECTED;
1238 } else {
1239 /* Dump buffered message to console */
1240 ia64_mlogbuf_finish(1);
1241 }
1242 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1243 == NOTIFY_STOP)
1244 ia64_mca_spin(__FUNCTION__);
1245
1246 set_curr_task(cpu, previous_current);
1247 monarch_cpu = -1;
1248 }
1249
1250 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1251 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1252
1253 /*
1254 * ia64_mca_cmc_int_handler
1255 *
1256 * This is corrected machine check interrupt handler.
1257 * Right now the logs are extracted and displayed in a well-defined
1258 * format.
1259 *
1260 * Inputs
1261 * interrupt number
1262 * client data arg ptr
1263 *
1264 * Outputs
1265 * None
1266 */
1267 static irqreturn_t
1268 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1269 {
1270 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1271 static int index;
1272 static DEFINE_SPINLOCK(cmc_history_lock);
1273
1274 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1275 __FUNCTION__, cmc_irq, smp_processor_id());
1276
1277 /* SAL spec states this should run w/ interrupts enabled */
1278 local_irq_enable();
1279
1280 spin_lock(&cmc_history_lock);
1281 if (!cmc_polling_enabled) {
1282 int i, count = 1; /* we know 1 happened now */
1283 unsigned long now = jiffies;
1284
1285 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1286 if (now - cmc_history[i] <= HZ)
1287 count++;
1288 }
1289
1290 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1291 if (count >= CMC_HISTORY_LENGTH) {
1292
1293 cmc_polling_enabled = 1;
1294 spin_unlock(&cmc_history_lock);
1295 /* If we're being hit with CMC interrupts, we won't
1296 * ever execute the schedule_work() below. Need to
1297 * disable CMC interrupts on this processor now.
1298 */
1299 ia64_mca_cmc_vector_disable(NULL);
1300 schedule_work(&cmc_disable_work);
1301
1302 /*
1303 * Corrected errors will still be corrected, but
1304 * make sure there's a log somewhere that indicates
1305 * something is generating more than we can handle.
1306 */
1307 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1308
1309 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1310
1311 /* lock already released, get out now */
1312 goto out;
1313 } else {
1314 cmc_history[index++] = now;
1315 if (index == CMC_HISTORY_LENGTH)
1316 index = 0;
1317 }
1318 }
1319 spin_unlock(&cmc_history_lock);
1320 out:
1321 /* Get the CMC error record and log it */
1322 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1323
1324 return IRQ_HANDLED;
1325 }
1326
1327 /*
1328 * ia64_mca_cmc_int_caller
1329 *
1330 * Triggered by sw interrupt from CMC polling routine. Calls
1331 * real interrupt handler and either triggers a sw interrupt
1332 * on the next cpu or does cleanup at the end.
1333 *
1334 * Inputs
1335 * interrupt number
1336 * client data arg ptr
1337 * Outputs
1338 * handled
1339 */
1340 static irqreturn_t
1341 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1342 {
1343 static int start_count = -1;
1344 unsigned int cpuid;
1345
1346 cpuid = smp_processor_id();
1347
1348 /* If first cpu, update count */
1349 if (start_count == -1)
1350 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1351
1352 ia64_mca_cmc_int_handler(cmc_irq, arg);
1353
1354 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1355
1356 if (cpuid < NR_CPUS) {
1357 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1358 } else {
1359 /* If no log record, switch out of polling mode */
1360 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1361
1362 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1363 schedule_work(&cmc_enable_work);
1364 cmc_polling_enabled = 0;
1365
1366 } else {
1367
1368 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1369 }
1370
1371 start_count = -1;
1372 }
1373
1374 return IRQ_HANDLED;
1375 }
1376
1377 /*
1378 * ia64_mca_cmc_poll
1379 *
1380 * Poll for Corrected Machine Checks (CMCs)
1381 *
1382 * Inputs : dummy(unused)
1383 * Outputs : None
1384 *
1385 */
1386 static void
1387 ia64_mca_cmc_poll (unsigned long dummy)
1388 {
1389 /* Trigger a CMC interrupt cascade */
1390 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1391 }
1392
1393 /*
1394 * ia64_mca_cpe_int_caller
1395 *
1396 * Triggered by sw interrupt from CPE polling routine. Calls
1397 * real interrupt handler and either triggers a sw interrupt
1398 * on the next cpu or does cleanup at the end.
1399 *
1400 * Inputs
1401 * interrupt number
1402 * client data arg ptr
1403 * Outputs
1404 * handled
1405 */
1406 #ifdef CONFIG_ACPI
1407
1408 static irqreturn_t
1409 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1410 {
1411 static int start_count = -1;
1412 static int poll_time = MIN_CPE_POLL_INTERVAL;
1413 unsigned int cpuid;
1414
1415 cpuid = smp_processor_id();
1416
1417 /* If first cpu, update count */
1418 if (start_count == -1)
1419 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1420
1421 ia64_mca_cpe_int_handler(cpe_irq, arg);
1422
1423 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1424
1425 if (cpuid < NR_CPUS) {
1426 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1427 } else {
1428 /*
1429 * If a log was recorded, increase our polling frequency,
1430 * otherwise, backoff or return to interrupt mode.
1431 */
1432 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1433 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1434 } else if (cpe_vector < 0) {
1435 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1436 } else {
1437 poll_time = MIN_CPE_POLL_INTERVAL;
1438
1439 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1440 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1441 cpe_poll_enabled = 0;
1442 }
1443
1444 if (cpe_poll_enabled)
1445 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1446 start_count = -1;
1447 }
1448
1449 return IRQ_HANDLED;
1450 }
1451
1452 /*
1453 * ia64_mca_cpe_poll
1454 *
1455 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1456 * on first cpu, from there it will trickle through all the cpus.
1457 *
1458 * Inputs : dummy(unused)
1459 * Outputs : None
1460 *
1461 */
1462 static void
1463 ia64_mca_cpe_poll (unsigned long dummy)
1464 {
1465 /* Trigger a CPE interrupt cascade */
1466 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1467 }
1468
1469 #endif /* CONFIG_ACPI */
1470
1471 static int
1472 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1473 {
1474 int c;
1475 struct task_struct *g, *t;
1476 if (val != DIE_INIT_MONARCH_PROCESS)
1477 return NOTIFY_DONE;
1478
1479 /*
1480 * FIXME: mlogbuf will brim over with INIT stack dumps.
1481 * To enable show_stack from INIT, we use oops_in_progress which should
1482 * be used in real oops. This would cause something wrong after INIT.
1483 */
1484 BREAK_LOGLEVEL(console_loglevel);
1485 ia64_mlogbuf_dump_from_init();
1486
1487 printk(KERN_ERR "Processes interrupted by INIT -");
1488 for_each_online_cpu(c) {
1489 struct ia64_sal_os_state *s;
1490 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1491 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1492 g = s->prev_task;
1493 if (g) {
1494 if (g->pid)
1495 printk(" %d", g->pid);
1496 else
1497 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1498 }
1499 }
1500 printk("\n\n");
1501 if (read_trylock(&tasklist_lock)) {
1502 do_each_thread (g, t) {
1503 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1504 show_stack(t, NULL);
1505 } while_each_thread (g, t);
1506 read_unlock(&tasklist_lock);
1507 }
1508 /* FIXME: This will not restore zapped printk locks. */
1509 RESTORE_LOGLEVEL(console_loglevel);
1510 return NOTIFY_DONE;
1511 }
1512
1513 /*
1514 * C portion of the OS INIT handler
1515 *
1516 * Called from ia64_os_init_dispatch
1517 *
1518 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1519 * this event. This code is used for both monarch and slave INIT events, see
1520 * sos->monarch.
1521 *
1522 * All INIT events switch to the INIT stack and change the previous process to
1523 * blocked status. If one of the INIT events is the monarch then we are
1524 * probably processing the nmi button/command. Use the monarch cpu to dump all
1525 * the processes. The slave INIT events all spin until the monarch cpu
1526 * returns. We can also get INIT slave events for MCA, in which case the MCA
1527 * process is the monarch.
1528 */
1529
1530 void
1531 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1532 struct ia64_sal_os_state *sos)
1533 {
1534 static atomic_t slaves;
1535 static atomic_t monarchs;
1536 struct task_struct *previous_current;
1537 int cpu = smp_processor_id();
1538 struct ia64_mca_notify_die nd =
1539 { .sos = sos, .monarch_cpu = &monarch_cpu };
1540
1541 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1542
1543 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1544 sos->proc_state_param, cpu, sos->monarch);
1545 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1546
1547 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1548 sos->os_status = IA64_INIT_RESUME;
1549
1550 /* FIXME: Workaround for broken proms that drive all INIT events as
1551 * slaves. The last slave that enters is promoted to be a monarch.
1552 * Remove this code in September 2006, that gives platforms a year to
1553 * fix their proms and get their customers updated.
1554 */
1555 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1556 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1557 __FUNCTION__, cpu);
1558 atomic_dec(&slaves);
1559 sos->monarch = 1;
1560 }
1561
1562 /* FIXME: Workaround for broken proms that drive all INIT events as
1563 * monarchs. Second and subsequent monarchs are demoted to slaves.
1564 * Remove this code in September 2006, that gives platforms a year to
1565 * fix their proms and get their customers updated.
1566 */
1567 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1568 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1569 __FUNCTION__, cpu);
1570 atomic_dec(&monarchs);
1571 sos->monarch = 0;
1572 }
1573
1574 if (!sos->monarch) {
1575 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1576 while (monarch_cpu == -1)
1577 cpu_relax(); /* spin until monarch enters */
1578 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1579 == NOTIFY_STOP)
1580 ia64_mca_spin(__FUNCTION__);
1581 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1582 == NOTIFY_STOP)
1583 ia64_mca_spin(__FUNCTION__);
1584 while (monarch_cpu != -1)
1585 cpu_relax(); /* spin until monarch leaves */
1586 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1587 == NOTIFY_STOP)
1588 ia64_mca_spin(__FUNCTION__);
1589 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1590 set_curr_task(cpu, previous_current);
1591 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1592 atomic_dec(&slaves);
1593 return;
1594 }
1595
1596 monarch_cpu = cpu;
1597 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1598 == NOTIFY_STOP)
1599 ia64_mca_spin(__FUNCTION__);
1600
1601 /*
1602 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1603 * generated via the BMC's command-line interface, but since the console is on the
1604 * same serial line, the user will need some time to switch out of the BMC before
1605 * the dump begins.
1606 */
1607 mprintk("Delaying for 5 seconds...\n");
1608 udelay(5*1000000);
1609 ia64_wait_for_slaves(cpu, "INIT");
1610 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1611 * to default_monarch_init_process() above and just print all the
1612 * tasks.
1613 */
1614 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1615 == NOTIFY_STOP)
1616 ia64_mca_spin(__FUNCTION__);
1617 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1618 == NOTIFY_STOP)
1619 ia64_mca_spin(__FUNCTION__);
1620 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1621 atomic_dec(&monarchs);
1622 set_curr_task(cpu, previous_current);
1623 monarch_cpu = -1;
1624 return;
1625 }
1626
1627 static int __init
1628 ia64_mca_disable_cpe_polling(char *str)
1629 {
1630 cpe_poll_enabled = 0;
1631 return 1;
1632 }
1633
1634 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1635
1636 static struct irqaction cmci_irqaction = {
1637 .handler = ia64_mca_cmc_int_handler,
1638 .flags = IRQF_DISABLED,
1639 .name = "cmc_hndlr"
1640 };
1641
1642 static struct irqaction cmcp_irqaction = {
1643 .handler = ia64_mca_cmc_int_caller,
1644 .flags = IRQF_DISABLED,
1645 .name = "cmc_poll"
1646 };
1647
1648 static struct irqaction mca_rdzv_irqaction = {
1649 .handler = ia64_mca_rendez_int_handler,
1650 .flags = IRQF_DISABLED,
1651 .name = "mca_rdzv"
1652 };
1653
1654 static struct irqaction mca_wkup_irqaction = {
1655 .handler = ia64_mca_wakeup_int_handler,
1656 .flags = IRQF_DISABLED,
1657 .name = "mca_wkup"
1658 };
1659
1660 #ifdef CONFIG_ACPI
1661 static struct irqaction mca_cpe_irqaction = {
1662 .handler = ia64_mca_cpe_int_handler,
1663 .flags = IRQF_DISABLED,
1664 .name = "cpe_hndlr"
1665 };
1666
1667 static struct irqaction mca_cpep_irqaction = {
1668 .handler = ia64_mca_cpe_int_caller,
1669 .flags = IRQF_DISABLED,
1670 .name = "cpe_poll"
1671 };
1672 #endif /* CONFIG_ACPI */
1673
1674 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1675 * these stacks can never sleep, they cannot return from the kernel to user
1676 * space, they do not appear in a normal ps listing. So there is no need to
1677 * format most of the fields.
1678 */
1679
1680 static void __cpuinit
1681 format_mca_init_stack(void *mca_data, unsigned long offset,
1682 const char *type, int cpu)
1683 {
1684 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1685 struct thread_info *ti;
1686 memset(p, 0, KERNEL_STACK_SIZE);
1687 ti = task_thread_info(p);
1688 ti->flags = _TIF_MCA_INIT;
1689 ti->preempt_count = 1;
1690 ti->task = p;
1691 ti->cpu = cpu;
1692 p->thread_info = ti;
1693 p->state = TASK_UNINTERRUPTIBLE;
1694 cpu_set(cpu, p->cpus_allowed);
1695 INIT_LIST_HEAD(&p->tasks);
1696 p->parent = p->real_parent = p->group_leader = p;
1697 INIT_LIST_HEAD(&p->children);
1698 INIT_LIST_HEAD(&p->sibling);
1699 strncpy(p->comm, type, sizeof(p->comm)-1);
1700 }
1701
1702 /* Do per-CPU MCA-related initialization. */
1703
1704 void __cpuinit
1705 ia64_mca_cpu_init(void *cpu_data)
1706 {
1707 void *pal_vaddr;
1708 static int first_time = 1;
1709
1710 if (first_time) {
1711 void *mca_data;
1712 int cpu;
1713
1714 first_time = 0;
1715 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1716 * NR_CPUS + KERNEL_STACK_SIZE);
1717 mca_data = (void *)(((unsigned long)mca_data +
1718 KERNEL_STACK_SIZE - 1) &
1719 (-KERNEL_STACK_SIZE));
1720 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1721 format_mca_init_stack(mca_data,
1722 offsetof(struct ia64_mca_cpu, mca_stack),
1723 "MCA", cpu);
1724 format_mca_init_stack(mca_data,
1725 offsetof(struct ia64_mca_cpu, init_stack),
1726 "INIT", cpu);
1727 __per_cpu_mca[cpu] = __pa(mca_data);
1728 mca_data += sizeof(struct ia64_mca_cpu);
1729 }
1730 }
1731
1732 /*
1733 * The MCA info structure was allocated earlier and its
1734 * physical address saved in __per_cpu_mca[cpu]. Copy that
1735 * address * to ia64_mca_data so we can access it as a per-CPU
1736 * variable.
1737 */
1738 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1739
1740 /*
1741 * Stash away a copy of the PTE needed to map the per-CPU page.
1742 * We may need it during MCA recovery.
1743 */
1744 __get_cpu_var(ia64_mca_per_cpu_pte) =
1745 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1746
1747 /*
1748 * Also, stash away a copy of the PAL address and the PTE
1749 * needed to map it.
1750 */
1751 pal_vaddr = efi_get_pal_addr();
1752 if (!pal_vaddr)
1753 return;
1754 __get_cpu_var(ia64_mca_pal_base) =
1755 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1756 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1757 PAGE_KERNEL));
1758 }
1759
1760 /*
1761 * ia64_mca_init
1762 *
1763 * Do all the system level mca specific initialization.
1764 *
1765 * 1. Register spinloop and wakeup request interrupt vectors
1766 *
1767 * 2. Register OS_MCA handler entry point
1768 *
1769 * 3. Register OS_INIT handler entry point
1770 *
1771 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1772 *
1773 * Note that this initialization is done very early before some kernel
1774 * services are available.
1775 *
1776 * Inputs : None
1777 *
1778 * Outputs : None
1779 */
1780 void __init
1781 ia64_mca_init(void)
1782 {
1783 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1784 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1785 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1786 int i;
1787 s64 rc;
1788 struct ia64_sal_retval isrv;
1789 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1790 static struct notifier_block default_init_monarch_nb = {
1791 .notifier_call = default_monarch_init_process,
1792 .priority = 0/* we need to notified last */
1793 };
1794
1795 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1796
1797 /* Clear the Rendez checkin flag for all cpus */
1798 for(i = 0 ; i < NR_CPUS; i++)
1799 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1800
1801 /*
1802 * Register the rendezvous spinloop and wakeup mechanism with SAL
1803 */
1804
1805 /* Register the rendezvous interrupt vector with SAL */
1806 while (1) {
1807 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1808 SAL_MC_PARAM_MECHANISM_INT,
1809 IA64_MCA_RENDEZ_VECTOR,
1810 timeout,
1811 SAL_MC_PARAM_RZ_ALWAYS);
1812 rc = isrv.status;
1813 if (rc == 0)
1814 break;
1815 if (rc == -2) {
1816 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1817 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1818 timeout = isrv.v0;
1819 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1820 continue;
1821 }
1822 printk(KERN_ERR "Failed to register rendezvous interrupt "
1823 "with SAL (status %ld)\n", rc);
1824 return;
1825 }
1826
1827 /* Register the wakeup interrupt vector with SAL */
1828 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1829 SAL_MC_PARAM_MECHANISM_INT,
1830 IA64_MCA_WAKEUP_VECTOR,
1831 0, 0);
1832 rc = isrv.status;
1833 if (rc) {
1834 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1835 "(status %ld)\n", rc);
1836 return;
1837 }
1838
1839 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1840
1841 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1842 /*
1843 * XXX - disable SAL checksum by setting size to 0; should be
1844 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1845 */
1846 ia64_mc_info.imi_mca_handler_size = 0;
1847
1848 /* Register the os mca handler with SAL */
1849 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1850 ia64_mc_info.imi_mca_handler,
1851 ia64_tpa(mca_hldlr_ptr->gp),
1852 ia64_mc_info.imi_mca_handler_size,
1853 0, 0, 0)))
1854 {
1855 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1856 "(status %ld)\n", rc);
1857 return;
1858 }
1859
1860 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1861 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1862
1863 /*
1864 * XXX - disable SAL checksum by setting size to 0, should be
1865 * size of the actual init handler in mca_asm.S.
1866 */
1867 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1868 ia64_mc_info.imi_monarch_init_handler_size = 0;
1869 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1870 ia64_mc_info.imi_slave_init_handler_size = 0;
1871
1872 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1873 ia64_mc_info.imi_monarch_init_handler);
1874
1875 /* Register the os init handler with SAL */
1876 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1877 ia64_mc_info.imi_monarch_init_handler,
1878 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1879 ia64_mc_info.imi_monarch_init_handler_size,
1880 ia64_mc_info.imi_slave_init_handler,
1881 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1882 ia64_mc_info.imi_slave_init_handler_size)))
1883 {
1884 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1885 "(status %ld)\n", rc);
1886 return;
1887 }
1888 if (register_die_notifier(&default_init_monarch_nb)) {
1889 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1890 return;
1891 }
1892
1893 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1894
1895 /*
1896 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1897 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1898 */
1899 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1900 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1901 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1902
1903 /* Setup the MCA rendezvous interrupt vector */
1904 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1905
1906 /* Setup the MCA wakeup interrupt vector */
1907 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1908
1909 #ifdef CONFIG_ACPI
1910 /* Setup the CPEI/P handler */
1911 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1912 #endif
1913
1914 /* Initialize the areas set aside by the OS to buffer the
1915 * platform/processor error states for MCA/INIT/CMC
1916 * handling.
1917 */
1918 ia64_log_init(SAL_INFO_TYPE_MCA);
1919 ia64_log_init(SAL_INFO_TYPE_INIT);
1920 ia64_log_init(SAL_INFO_TYPE_CMC);
1921 ia64_log_init(SAL_INFO_TYPE_CPE);
1922
1923 mca_init = 1;
1924 printk(KERN_INFO "MCA related initialization done\n");
1925 }
1926
1927 /*
1928 * ia64_mca_late_init
1929 *
1930 * Opportunity to setup things that require initialization later
1931 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1932 * platform doesn't support an interrupt driven mechanism.
1933 *
1934 * Inputs : None
1935 * Outputs : Status
1936 */
1937 static int __init
1938 ia64_mca_late_init(void)
1939 {
1940 if (!mca_init)
1941 return 0;
1942
1943 /* Setup the CMCI/P vector and handler */
1944 init_timer(&cmc_poll_timer);
1945 cmc_poll_timer.function = ia64_mca_cmc_poll;
1946
1947 /* Unmask/enable the vector */
1948 cmc_polling_enabled = 0;
1949 schedule_work(&cmc_enable_work);
1950
1951 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1952
1953 #ifdef CONFIG_ACPI
1954 /* Setup the CPEI/P vector and handler */
1955 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1956 init_timer(&cpe_poll_timer);
1957 cpe_poll_timer.function = ia64_mca_cpe_poll;
1958
1959 {
1960 irq_desc_t *desc;
1961 unsigned int irq;
1962
1963 if (cpe_vector >= 0) {
1964 /* If platform supports CPEI, enable the irq. */
1965 cpe_poll_enabled = 0;
1966 for (irq = 0; irq < NR_IRQS; ++irq)
1967 if (irq_to_vector(irq) == cpe_vector) {
1968 desc = irq_desc + irq;
1969 desc->status |= IRQ_PER_CPU;
1970 setup_irq(irq, &mca_cpe_irqaction);
1971 ia64_cpe_irq = irq;
1972 }
1973 ia64_mca_register_cpev(cpe_vector);
1974 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1975 } else {
1976 /* If platform doesn't support CPEI, get the timer going. */
1977 if (cpe_poll_enabled) {
1978 ia64_mca_cpe_poll(0UL);
1979 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1980 }
1981 }
1982 }
1983 #endif
1984
1985 return 0;
1986 }
1987
1988 device_initcall(ia64_mca_late_init);