Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / ia32 / sys_ia32.c
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
3 *
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
12 *
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
15 */
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/syscalls.h>
20 #include <linux/sysctl.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/signal.h>
25 #include <linux/resource.h>
26 #include <linux/times.h>
27 #include <linux/utsname.h>
28 #include <linux/timex.h>
29 #include <linux/smp.h>
30 #include <linux/smp_lock.h>
31 #include <linux/sem.h>
32 #include <linux/msg.h>
33 #include <linux/mm.h>
34 #include <linux/shm.h>
35 #include <linux/slab.h>
36 #include <linux/uio.h>
37 #include <linux/nfs_fs.h>
38 #include <linux/quota.h>
39 #include <linux/syscalls.h>
40 #include <linux/sunrpc/svc.h>
41 #include <linux/nfsd/nfsd.h>
42 #include <linux/nfsd/cache.h>
43 #include <linux/nfsd/xdr.h>
44 #include <linux/nfsd/syscall.h>
45 #include <linux/poll.h>
46 #include <linux/eventpoll.h>
47 #include <linux/personality.h>
48 #include <linux/ptrace.h>
49 #include <linux/stat.h>
50 #include <linux/ipc.h>
51 #include <linux/capability.h>
52 #include <linux/compat.h>
53 #include <linux/vfs.h>
54 #include <linux/mman.h>
55 #include <linux/mutex.h>
56
57 #include <asm/intrinsics.h>
58 #include <asm/types.h>
59 #include <asm/uaccess.h>
60 #include <asm/unistd.h>
61
62 #include "ia32priv.h"
63
64 #include <net/scm.h>
65 #include <net/sock.h>
66
67 #define DEBUG 0
68
69 #if DEBUG
70 # define DBG(fmt...) printk(KERN_DEBUG fmt)
71 #else
72 # define DBG(fmt...)
73 #endif
74
75 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
76
77 #define OFFSET4K(a) ((a) & 0xfff)
78 #define PAGE_START(addr) ((addr) & PAGE_MASK)
79 #define MINSIGSTKSZ_IA32 2048
80
81 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
82 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
83
84 /*
85 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
86 * while doing so.
87 */
88 /* XXX make per-mm: */
89 static DEFINE_MUTEX(ia32_mmap_mutex);
90
91 asmlinkage long
92 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
93 struct pt_regs *regs)
94 {
95 long error;
96 char *filename;
97 unsigned long old_map_base, old_task_size, tssd;
98
99 filename = getname(name);
100 error = PTR_ERR(filename);
101 if (IS_ERR(filename))
102 return error;
103
104 old_map_base = current->thread.map_base;
105 old_task_size = current->thread.task_size;
106 tssd = ia64_get_kr(IA64_KR_TSSD);
107
108 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
109 current->thread.map_base = DEFAULT_MAP_BASE;
110 current->thread.task_size = DEFAULT_TASK_SIZE;
111 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
112 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
113
114 error = compat_do_execve(filename, argv, envp, regs);
115 putname(filename);
116
117 if (error < 0) {
118 /* oops, execve failed, switch back to old values... */
119 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
120 ia64_set_kr(IA64_KR_TSSD, tssd);
121 current->thread.map_base = old_map_base;
122 current->thread.task_size = old_task_size;
123 }
124
125 return error;
126 }
127
128 int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
129 {
130 int err;
131
132 if ((u64) stat->size > MAX_NON_LFS ||
133 !old_valid_dev(stat->dev) ||
134 !old_valid_dev(stat->rdev))
135 return -EOVERFLOW;
136
137 if (clear_user(ubuf, sizeof(*ubuf)))
138 return -EFAULT;
139
140 err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
141 err |= __put_user(stat->ino, &ubuf->st_ino);
142 err |= __put_user(stat->mode, &ubuf->st_mode);
143 err |= __put_user(stat->nlink, &ubuf->st_nlink);
144 err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
145 err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
146 err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
147 err |= __put_user(stat->size, &ubuf->st_size);
148 err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
149 err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
150 err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
151 err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
152 err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
153 err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
154 err |= __put_user(stat->blksize, &ubuf->st_blksize);
155 err |= __put_user(stat->blocks, &ubuf->st_blocks);
156 return err;
157 }
158
159 #if PAGE_SHIFT > IA32_PAGE_SHIFT
160
161
162 static int
163 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
164 {
165 int prot = 0;
166
167 if (!vma || vma->vm_start > addr)
168 return 0;
169
170 if (vma->vm_flags & VM_READ)
171 prot |= PROT_READ;
172 if (vma->vm_flags & VM_WRITE)
173 prot |= PROT_WRITE;
174 if (vma->vm_flags & VM_EXEC)
175 prot |= PROT_EXEC;
176 return prot;
177 }
178
179 /*
180 * Map a subpage by creating an anonymous page that contains the union of the old page and
181 * the subpage.
182 */
183 static unsigned long
184 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
185 loff_t off)
186 {
187 void *page = NULL;
188 struct inode *inode;
189 unsigned long ret = 0;
190 struct vm_area_struct *vma = find_vma(current->mm, start);
191 int old_prot = get_page_prot(vma, start);
192
193 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
194 file, start, end, prot, flags, off);
195
196
197 /* Optimize the case where the old mmap and the new mmap are both anonymous */
198 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
199 if (clear_user((void __user *) start, end - start)) {
200 ret = -EFAULT;
201 goto out;
202 }
203 goto skip_mmap;
204 }
205
206 page = (void *) get_zeroed_page(GFP_KERNEL);
207 if (!page)
208 return -ENOMEM;
209
210 if (old_prot)
211 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
212
213 down_write(&current->mm->mmap_sem);
214 {
215 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
216 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
217 }
218 up_write(&current->mm->mmap_sem);
219
220 if (IS_ERR((void *) ret))
221 goto out;
222
223 if (old_prot) {
224 /* copy back the old page contents. */
225 if (offset_in_page(start))
226 copy_to_user((void __user *) PAGE_START(start), page,
227 offset_in_page(start));
228 if (offset_in_page(end))
229 copy_to_user((void __user *) end, page + offset_in_page(end),
230 PAGE_SIZE - offset_in_page(end));
231 }
232
233 if (!(flags & MAP_ANONYMOUS)) {
234 /* read the file contents */
235 inode = file->f_dentry->d_inode;
236 if (!inode->i_fop || !file->f_op->read
237 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
238 {
239 ret = -EINVAL;
240 goto out;
241 }
242 }
243
244 skip_mmap:
245 if (!(prot & PROT_WRITE))
246 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
247 out:
248 if (page)
249 free_page((unsigned long) page);
250 return ret;
251 }
252
253 /* SLAB cache for partial_page structures */
254 kmem_cache_t *partial_page_cachep;
255
256 /*
257 * init partial_page_list.
258 * return 0 means kmalloc fail.
259 */
260 struct partial_page_list*
261 ia32_init_pp_list(void)
262 {
263 struct partial_page_list *p;
264
265 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
266 return p;
267 p->pp_head = NULL;
268 p->ppl_rb = RB_ROOT;
269 p->pp_hint = NULL;
270 atomic_set(&p->pp_count, 1);
271 return p;
272 }
273
274 /*
275 * Search for the partial page with @start in partial page list @ppl.
276 * If finds the partial page, return the found partial page.
277 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
278 * be used by later __ia32_insert_pp().
279 */
280 static struct partial_page *
281 __ia32_find_pp(struct partial_page_list *ppl, unsigned int start,
282 struct partial_page **pprev, struct rb_node ***rb_link,
283 struct rb_node **rb_parent)
284 {
285 struct partial_page *pp;
286 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
287
288 pp = ppl->pp_hint;
289 if (pp && pp->base == start)
290 return pp;
291
292 __rb_link = &ppl->ppl_rb.rb_node;
293 rb_prev = __rb_parent = NULL;
294
295 while (*__rb_link) {
296 __rb_parent = *__rb_link;
297 pp = rb_entry(__rb_parent, struct partial_page, pp_rb);
298
299 if (pp->base == start) {
300 ppl->pp_hint = pp;
301 return pp;
302 } else if (pp->base < start) {
303 rb_prev = __rb_parent;
304 __rb_link = &__rb_parent->rb_right;
305 } else {
306 __rb_link = &__rb_parent->rb_left;
307 }
308 }
309
310 *rb_link = __rb_link;
311 *rb_parent = __rb_parent;
312 *pprev = NULL;
313 if (rb_prev)
314 *pprev = rb_entry(rb_prev, struct partial_page, pp_rb);
315 return NULL;
316 }
317
318 /*
319 * insert @pp into @ppl.
320 */
321 static void
322 __ia32_insert_pp(struct partial_page_list *ppl, struct partial_page *pp,
323 struct partial_page *prev, struct rb_node **rb_link,
324 struct rb_node *rb_parent)
325 {
326 /* link list */
327 if (prev) {
328 pp->next = prev->next;
329 prev->next = pp;
330 } else {
331 ppl->pp_head = pp;
332 if (rb_parent)
333 pp->next = rb_entry(rb_parent,
334 struct partial_page, pp_rb);
335 else
336 pp->next = NULL;
337 }
338
339 /* link rb */
340 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
341 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
342
343 ppl->pp_hint = pp;
344 }
345
346 /*
347 * delete @pp from partial page list @ppl.
348 */
349 static void
350 __ia32_delete_pp(struct partial_page_list *ppl, struct partial_page *pp,
351 struct partial_page *prev)
352 {
353 if (prev) {
354 prev->next = pp->next;
355 if (ppl->pp_hint == pp)
356 ppl->pp_hint = prev;
357 } else {
358 ppl->pp_head = pp->next;
359 if (ppl->pp_hint == pp)
360 ppl->pp_hint = pp->next;
361 }
362 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
363 kmem_cache_free(partial_page_cachep, pp);
364 }
365
366 static struct partial_page *
367 __pp_prev(struct partial_page *pp)
368 {
369 struct rb_node *prev = rb_prev(&pp->pp_rb);
370 if (prev)
371 return rb_entry(prev, struct partial_page, pp_rb);
372 else
373 return NULL;
374 }
375
376 /*
377 * Delete partial pages with address between @start and @end.
378 * @start and @end are page aligned.
379 */
380 static void
381 __ia32_delete_pp_range(unsigned int start, unsigned int end)
382 {
383 struct partial_page *pp, *prev;
384 struct rb_node **rb_link, *rb_parent;
385
386 if (start >= end)
387 return;
388
389 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
390 &rb_link, &rb_parent);
391 if (pp)
392 prev = __pp_prev(pp);
393 else {
394 if (prev)
395 pp = prev->next;
396 else
397 pp = current->thread.ppl->pp_head;
398 }
399
400 while (pp && pp->base < end) {
401 struct partial_page *tmp = pp->next;
402 __ia32_delete_pp(current->thread.ppl, pp, prev);
403 pp = tmp;
404 }
405 }
406
407 /*
408 * Set the range between @start and @end in bitmap.
409 * @start and @end should be IA32 page aligned and in the same IA64 page.
410 */
411 static int
412 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
413 {
414 struct partial_page *pp, *prev;
415 struct rb_node ** rb_link, *rb_parent;
416 unsigned int pstart, start_bit, end_bit, i;
417
418 pstart = PAGE_START(start);
419 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
420 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
421 if (end_bit == 0)
422 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
423 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
424 &rb_link, &rb_parent);
425 if (pp) {
426 for (i = start_bit; i < end_bit; i++)
427 set_bit(i, &pp->bitmap);
428 /*
429 * Check: if this partial page has been set to a full page,
430 * then delete it.
431 */
432 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
433 PAGE_SIZE/IA32_PAGE_SIZE) {
434 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
435 }
436 return 0;
437 }
438
439 /*
440 * MAP_FIXED may lead to overlapping mmap.
441 * In this case, the requested mmap area may already mmaped as a full
442 * page. So check vma before adding a new partial page.
443 */
444 if (flags & MAP_FIXED) {
445 struct vm_area_struct *vma = find_vma(current->mm, pstart);
446 if (vma && vma->vm_start <= pstart)
447 return 0;
448 }
449
450 /* new a partial_page */
451 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
452 if (!pp)
453 return -ENOMEM;
454 pp->base = pstart;
455 pp->bitmap = 0;
456 for (i=start_bit; i<end_bit; i++)
457 set_bit(i, &(pp->bitmap));
458 pp->next = NULL;
459 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
460 return 0;
461 }
462
463 /*
464 * @start and @end should be IA32 page aligned, but don't need to be in the
465 * same IA64 page. Split @start and @end to make sure they're in the same IA64
466 * page, then call __ia32_set_pp().
467 */
468 static void
469 ia32_set_pp(unsigned int start, unsigned int end, int flags)
470 {
471 down_write(&current->mm->mmap_sem);
472 if (flags & MAP_FIXED) {
473 /*
474 * MAP_FIXED may lead to overlapping mmap. When this happens,
475 * a series of complete IA64 pages results in deletion of
476 * old partial pages in that range.
477 */
478 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
479 }
480
481 if (end < PAGE_ALIGN(start)) {
482 __ia32_set_pp(start, end, flags);
483 } else {
484 if (offset_in_page(start))
485 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
486 if (offset_in_page(end))
487 __ia32_set_pp(PAGE_START(end), end, flags);
488 }
489 up_write(&current->mm->mmap_sem);
490 }
491
492 /*
493 * Unset the range between @start and @end in bitmap.
494 * @start and @end should be IA32 page aligned and in the same IA64 page.
495 * After doing that, if the bitmap is 0, then free the page and return 1,
496 * else return 0;
497 * If not find the partial page in the list, then
498 * If the vma exists, then the full page is set to a partial page;
499 * Else return -ENOMEM.
500 */
501 static int
502 __ia32_unset_pp(unsigned int start, unsigned int end)
503 {
504 struct partial_page *pp, *prev;
505 struct rb_node ** rb_link, *rb_parent;
506 unsigned int pstart, start_bit, end_bit, i;
507 struct vm_area_struct *vma;
508
509 pstart = PAGE_START(start);
510 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
511 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
512 if (end_bit == 0)
513 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
514
515 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
516 &rb_link, &rb_parent);
517 if (pp) {
518 for (i = start_bit; i < end_bit; i++)
519 clear_bit(i, &pp->bitmap);
520 if (pp->bitmap == 0) {
521 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
522 return 1;
523 }
524 return 0;
525 }
526
527 vma = find_vma(current->mm, pstart);
528 if (!vma || vma->vm_start > pstart) {
529 return -ENOMEM;
530 }
531
532 /* new a partial_page */
533 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
534 if (!pp)
535 return -ENOMEM;
536 pp->base = pstart;
537 pp->bitmap = 0;
538 for (i = 0; i < start_bit; i++)
539 set_bit(i, &(pp->bitmap));
540 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
541 set_bit(i, &(pp->bitmap));
542 pp->next = NULL;
543 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
544 return 0;
545 }
546
547 /*
548 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
549 * __ia32_delete_pp_range(). Unset possible partial pages by calling
550 * __ia32_unset_pp().
551 * The returned value see __ia32_unset_pp().
552 */
553 static int
554 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
555 {
556 unsigned int start = *startp, end = *endp;
557 int ret = 0;
558
559 down_write(&current->mm->mmap_sem);
560
561 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
562
563 if (end < PAGE_ALIGN(start)) {
564 ret = __ia32_unset_pp(start, end);
565 if (ret == 1) {
566 *startp = PAGE_START(start);
567 *endp = PAGE_ALIGN(end);
568 }
569 if (ret == 0) {
570 /* to shortcut sys_munmap() in sys32_munmap() */
571 *startp = PAGE_START(start);
572 *endp = PAGE_START(end);
573 }
574 } else {
575 if (offset_in_page(start)) {
576 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
577 if (ret == 1)
578 *startp = PAGE_START(start);
579 if (ret == 0)
580 *startp = PAGE_ALIGN(start);
581 if (ret < 0)
582 goto out;
583 }
584 if (offset_in_page(end)) {
585 ret = __ia32_unset_pp(PAGE_START(end), end);
586 if (ret == 1)
587 *endp = PAGE_ALIGN(end);
588 if (ret == 0)
589 *endp = PAGE_START(end);
590 }
591 }
592
593 out:
594 up_write(&current->mm->mmap_sem);
595 return ret;
596 }
597
598 /*
599 * Compare the range between @start and @end with bitmap in partial page.
600 * @start and @end should be IA32 page aligned and in the same IA64 page.
601 */
602 static int
603 __ia32_compare_pp(unsigned int start, unsigned int end)
604 {
605 struct partial_page *pp, *prev;
606 struct rb_node ** rb_link, *rb_parent;
607 unsigned int pstart, start_bit, end_bit, size;
608 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
609
610 pstart = PAGE_START(start);
611
612 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
613 &rb_link, &rb_parent);
614 if (!pp)
615 return 1;
616
617 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
618 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
619 size = sizeof(pp->bitmap) * 8;
620 first_bit = find_first_bit(&pp->bitmap, size);
621 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
622 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
623 /* exceeds the first range in bitmap */
624 return -ENOMEM;
625 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
626 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
627 if ((next_zero_bit < first_bit) && (first_bit < size))
628 return 1; /* has next range */
629 else
630 return 0; /* no next range */
631 } else
632 return 1;
633 }
634
635 /*
636 * @start and @end should be IA32 page aligned, but don't need to be in the
637 * same IA64 page. Split @start and @end to make sure they're in the same IA64
638 * page, then call __ia32_compare_pp().
639 *
640 * Take this as example: the range is the 1st and 2nd 4K page.
641 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
642 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
643 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
644 * bitmap = 00000101.
645 */
646 static int
647 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
648 {
649 unsigned int start = *startp, end = *endp;
650 int retval = 0;
651
652 down_write(&current->mm->mmap_sem);
653
654 if (end < PAGE_ALIGN(start)) {
655 retval = __ia32_compare_pp(start, end);
656 if (retval == 0) {
657 *startp = PAGE_START(start);
658 *endp = PAGE_ALIGN(end);
659 }
660 } else {
661 if (offset_in_page(start)) {
662 retval = __ia32_compare_pp(start,
663 PAGE_ALIGN(start));
664 if (retval == 0)
665 *startp = PAGE_START(start);
666 if (retval < 0)
667 goto out;
668 }
669 if (offset_in_page(end)) {
670 retval = __ia32_compare_pp(PAGE_START(end), end);
671 if (retval == 0)
672 *endp = PAGE_ALIGN(end);
673 }
674 }
675
676 out:
677 up_write(&current->mm->mmap_sem);
678 return retval;
679 }
680
681 static void
682 __ia32_drop_pp_list(struct partial_page_list *ppl)
683 {
684 struct partial_page *pp = ppl->pp_head;
685
686 while (pp) {
687 struct partial_page *next = pp->next;
688 kmem_cache_free(partial_page_cachep, pp);
689 pp = next;
690 }
691
692 kfree(ppl);
693 }
694
695 void
696 ia32_drop_partial_page_list(struct task_struct *task)
697 {
698 struct partial_page_list* ppl = task->thread.ppl;
699
700 if (ppl && atomic_dec_and_test(&ppl->pp_count))
701 __ia32_drop_pp_list(ppl);
702 }
703
704 /*
705 * Copy current->thread.ppl to ppl (already initialized).
706 */
707 static int
708 __ia32_copy_pp_list(struct partial_page_list *ppl)
709 {
710 struct partial_page *pp, *tmp, *prev;
711 struct rb_node **rb_link, *rb_parent;
712
713 ppl->pp_head = NULL;
714 ppl->pp_hint = NULL;
715 ppl->ppl_rb = RB_ROOT;
716 rb_link = &ppl->ppl_rb.rb_node;
717 rb_parent = NULL;
718 prev = NULL;
719
720 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
721 tmp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
722 if (!tmp)
723 return -ENOMEM;
724 *tmp = *pp;
725 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
726 prev = tmp;
727 rb_link = &tmp->pp_rb.rb_right;
728 rb_parent = &tmp->pp_rb;
729 }
730 return 0;
731 }
732
733 int
734 ia32_copy_partial_page_list(struct task_struct *p, unsigned long clone_flags)
735 {
736 int retval = 0;
737
738 if (clone_flags & CLONE_VM) {
739 atomic_inc(&current->thread.ppl->pp_count);
740 p->thread.ppl = current->thread.ppl;
741 } else {
742 p->thread.ppl = ia32_init_pp_list();
743 if (!p->thread.ppl)
744 return -ENOMEM;
745 down_write(&current->mm->mmap_sem);
746 {
747 retval = __ia32_copy_pp_list(p->thread.ppl);
748 }
749 up_write(&current->mm->mmap_sem);
750 }
751
752 return retval;
753 }
754
755 static unsigned long
756 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
757 loff_t off)
758 {
759 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
760 struct inode *inode;
761 loff_t poff;
762
763 end = start + len;
764 pstart = PAGE_START(start);
765 pend = PAGE_ALIGN(end);
766
767 if (flags & MAP_FIXED) {
768 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
769 if (start > pstart) {
770 if (flags & MAP_SHARED)
771 printk(KERN_INFO
772 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
773 current->comm, current->pid, start);
774 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
775 off);
776 if (IS_ERR((void *) ret))
777 return ret;
778 pstart += PAGE_SIZE;
779 if (pstart >= pend)
780 goto out; /* done */
781 }
782 if (end < pend) {
783 if (flags & MAP_SHARED)
784 printk(KERN_INFO
785 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
786 current->comm, current->pid, end);
787 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
788 (off + len) - offset_in_page(end));
789 if (IS_ERR((void *) ret))
790 return ret;
791 pend -= PAGE_SIZE;
792 if (pstart >= pend)
793 goto out; /* done */
794 }
795 } else {
796 /*
797 * If a start address was specified, use it if the entire rounded out area
798 * is available.
799 */
800 if (start && !pstart)
801 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
802 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
803 if (tmp != pstart) {
804 pstart = tmp;
805 start = pstart + offset_in_page(off); /* make start congruent with off */
806 end = start + len;
807 pend = PAGE_ALIGN(end);
808 }
809 }
810
811 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
812 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
813
814 if ((flags & MAP_SHARED) && !is_congruent)
815 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
816 "(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off);
817
818 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
819 is_congruent ? "congruent" : "not congruent", poff);
820
821 down_write(&current->mm->mmap_sem);
822 {
823 if (!(flags & MAP_ANONYMOUS) && is_congruent)
824 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
825 else
826 ret = do_mmap(NULL, pstart, pend - pstart,
827 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
828 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
829 }
830 up_write(&current->mm->mmap_sem);
831
832 if (IS_ERR((void *) ret))
833 return ret;
834
835 if (!is_congruent) {
836 /* read the file contents */
837 inode = file->f_dentry->d_inode;
838 if (!inode->i_fop || !file->f_op->read
839 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
840 < 0))
841 {
842 sys_munmap(pstart, pend - pstart);
843 return -EINVAL;
844 }
845 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
846 return -EINVAL;
847 }
848
849 if (!(flags & MAP_FIXED))
850 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
851 out:
852 return start;
853 }
854
855 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
856
857 static inline unsigned int
858 get_prot32 (unsigned int prot)
859 {
860 if (prot & PROT_WRITE)
861 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
862 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
863 else if (prot & (PROT_READ | PROT_EXEC))
864 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
865 prot |= (PROT_READ | PROT_EXEC);
866
867 return prot;
868 }
869
870 unsigned long
871 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
872 loff_t offset)
873 {
874 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
875 file, addr, len, prot, flags, offset);
876
877 if (file && (!file->f_op || !file->f_op->mmap))
878 return -ENODEV;
879
880 len = IA32_PAGE_ALIGN(len);
881 if (len == 0)
882 return addr;
883
884 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
885 {
886 if (flags & MAP_FIXED)
887 return -ENOMEM;
888 else
889 return -EINVAL;
890 }
891
892 if (OFFSET4K(offset))
893 return -EINVAL;
894
895 prot = get_prot32(prot);
896
897 #if PAGE_SHIFT > IA32_PAGE_SHIFT
898 mutex_lock(&ia32_mmap_mutex);
899 {
900 addr = emulate_mmap(file, addr, len, prot, flags, offset);
901 }
902 mutex_unlock(&ia32_mmap_mutex);
903 #else
904 down_write(&current->mm->mmap_sem);
905 {
906 addr = do_mmap(file, addr, len, prot, flags, offset);
907 }
908 up_write(&current->mm->mmap_sem);
909 #endif
910 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
911 return addr;
912 }
913
914 /*
915 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
916 * system calls used a memory block for parameter passing..
917 */
918
919 struct mmap_arg_struct {
920 unsigned int addr;
921 unsigned int len;
922 unsigned int prot;
923 unsigned int flags;
924 unsigned int fd;
925 unsigned int offset;
926 };
927
928 asmlinkage long
929 sys32_mmap (struct mmap_arg_struct __user *arg)
930 {
931 struct mmap_arg_struct a;
932 struct file *file = NULL;
933 unsigned long addr;
934 int flags;
935
936 if (copy_from_user(&a, arg, sizeof(a)))
937 return -EFAULT;
938
939 if (OFFSET4K(a.offset))
940 return -EINVAL;
941
942 flags = a.flags;
943
944 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
945 if (!(flags & MAP_ANONYMOUS)) {
946 file = fget(a.fd);
947 if (!file)
948 return -EBADF;
949 }
950
951 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
952
953 if (file)
954 fput(file);
955 return addr;
956 }
957
958 asmlinkage long
959 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
960 unsigned int fd, unsigned int pgoff)
961 {
962 struct file *file = NULL;
963 unsigned long retval;
964
965 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
966 if (!(flags & MAP_ANONYMOUS)) {
967 file = fget(fd);
968 if (!file)
969 return -EBADF;
970 }
971
972 retval = ia32_do_mmap(file, addr, len, prot, flags,
973 (unsigned long) pgoff << IA32_PAGE_SHIFT);
974
975 if (file)
976 fput(file);
977 return retval;
978 }
979
980 asmlinkage long
981 sys32_munmap (unsigned int start, unsigned int len)
982 {
983 unsigned int end = start + len;
984 long ret;
985
986 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
987 ret = sys_munmap(start, end - start);
988 #else
989 if (OFFSET4K(start))
990 return -EINVAL;
991
992 end = IA32_PAGE_ALIGN(end);
993 if (start >= end)
994 return -EINVAL;
995
996 ret = ia32_unset_pp(&start, &end);
997 if (ret < 0)
998 return ret;
999
1000 if (start >= end)
1001 return 0;
1002
1003 mutex_lock(&ia32_mmap_mutex);
1004 ret = sys_munmap(start, end - start);
1005 mutex_unlock(&ia32_mmap_mutex);
1006 #endif
1007 return ret;
1008 }
1009
1010 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1011
1012 /*
1013 * When mprotect()ing a partial page, we set the permission to the union of the old
1014 * settings and the new settings. In other words, it's only possible to make access to a
1015 * partial page less restrictive.
1016 */
1017 static long
1018 mprotect_subpage (unsigned long address, int new_prot)
1019 {
1020 int old_prot;
1021 struct vm_area_struct *vma;
1022
1023 if (new_prot == PROT_NONE)
1024 return 0; /* optimize case where nothing changes... */
1025 vma = find_vma(current->mm, address);
1026 old_prot = get_page_prot(vma, address);
1027 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
1028 }
1029
1030 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
1031
1032 asmlinkage long
1033 sys32_mprotect (unsigned int start, unsigned int len, int prot)
1034 {
1035 unsigned int end = start + len;
1036 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1037 long retval = 0;
1038 #endif
1039
1040 prot = get_prot32(prot);
1041
1042 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1043 return sys_mprotect(start, end - start, prot);
1044 #else
1045 if (OFFSET4K(start))
1046 return -EINVAL;
1047
1048 end = IA32_PAGE_ALIGN(end);
1049 if (end < start)
1050 return -EINVAL;
1051
1052 retval = ia32_compare_pp(&start, &end);
1053
1054 if (retval < 0)
1055 return retval;
1056
1057 mutex_lock(&ia32_mmap_mutex);
1058 {
1059 if (offset_in_page(start)) {
1060 /* start address is 4KB aligned but not page aligned. */
1061 retval = mprotect_subpage(PAGE_START(start), prot);
1062 if (retval < 0)
1063 goto out;
1064
1065 start = PAGE_ALIGN(start);
1066 if (start >= end)
1067 goto out; /* retval is already zero... */
1068 }
1069
1070 if (offset_in_page(end)) {
1071 /* end address is 4KB aligned but not page aligned. */
1072 retval = mprotect_subpage(PAGE_START(end), prot);
1073 if (retval < 0)
1074 goto out;
1075
1076 end = PAGE_START(end);
1077 }
1078 retval = sys_mprotect(start, end - start, prot);
1079 }
1080 out:
1081 mutex_unlock(&ia32_mmap_mutex);
1082 return retval;
1083 #endif
1084 }
1085
1086 asmlinkage long
1087 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1088 unsigned int flags, unsigned int new_addr)
1089 {
1090 long ret;
1091
1092 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1093 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1094 #else
1095 unsigned int old_end, new_end;
1096
1097 if (OFFSET4K(addr))
1098 return -EINVAL;
1099
1100 old_len = IA32_PAGE_ALIGN(old_len);
1101 new_len = IA32_PAGE_ALIGN(new_len);
1102 old_end = addr + old_len;
1103 new_end = addr + new_len;
1104
1105 if (!new_len)
1106 return -EINVAL;
1107
1108 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1109 return -EINVAL;
1110
1111 if (old_len >= new_len) {
1112 ret = sys32_munmap(addr + new_len, old_len - new_len);
1113 if (ret && old_len != new_len)
1114 return ret;
1115 ret = addr;
1116 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1117 return ret;
1118 old_len = new_len;
1119 }
1120
1121 addr = PAGE_START(addr);
1122 old_len = PAGE_ALIGN(old_end) - addr;
1123 new_len = PAGE_ALIGN(new_end) - addr;
1124
1125 mutex_lock(&ia32_mmap_mutex);
1126 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1127 mutex_unlock(&ia32_mmap_mutex);
1128
1129 if ((ret >= 0) && (old_len < new_len)) {
1130 /* mremap expanded successfully */
1131 ia32_set_pp(old_end, new_end, flags);
1132 }
1133 #endif
1134 return ret;
1135 }
1136
1137 asmlinkage long
1138 sys32_pipe (int __user *fd)
1139 {
1140 int retval;
1141 int fds[2];
1142
1143 retval = do_pipe(fds);
1144 if (retval)
1145 goto out;
1146 if (copy_to_user(fd, fds, sizeof(fds)))
1147 retval = -EFAULT;
1148 out:
1149 return retval;
1150 }
1151
1152 static inline long
1153 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1154 {
1155 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1156 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1157 }
1158
1159 static inline long
1160 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1161 {
1162 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1163 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1164 }
1165
1166 asmlinkage unsigned long
1167 sys32_alarm (unsigned int seconds)
1168 {
1169 struct itimerval it_new, it_old;
1170 unsigned int oldalarm;
1171
1172 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
1173 it_new.it_value.tv_sec = seconds;
1174 it_new.it_value.tv_usec = 0;
1175 do_setitimer(ITIMER_REAL, &it_new, &it_old);
1176 oldalarm = it_old.it_value.tv_sec;
1177 /* ehhh.. We can't return 0 if we have an alarm pending.. */
1178 /* And we'd better return too much than too little anyway */
1179 if (it_old.it_value.tv_usec)
1180 oldalarm++;
1181 return oldalarm;
1182 }
1183
1184 /* Translations due to time_t size differences. Which affects all
1185 sorts of things, like timeval and itimerval. */
1186
1187 extern struct timezone sys_tz;
1188
1189 asmlinkage long
1190 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1191 {
1192 if (tv) {
1193 struct timeval ktv;
1194 do_gettimeofday(&ktv);
1195 if (put_tv32(tv, &ktv))
1196 return -EFAULT;
1197 }
1198 if (tz) {
1199 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1200 return -EFAULT;
1201 }
1202 return 0;
1203 }
1204
1205 asmlinkage long
1206 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1207 {
1208 struct timeval ktv;
1209 struct timespec kts;
1210 struct timezone ktz;
1211
1212 if (tv) {
1213 if (get_tv32(&ktv, tv))
1214 return -EFAULT;
1215 kts.tv_sec = ktv.tv_sec;
1216 kts.tv_nsec = ktv.tv_usec * 1000;
1217 }
1218 if (tz) {
1219 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1220 return -EFAULT;
1221 }
1222
1223 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1224 }
1225
1226 struct getdents32_callback {
1227 struct compat_dirent __user *current_dir;
1228 struct compat_dirent __user *previous;
1229 int count;
1230 int error;
1231 };
1232
1233 struct readdir32_callback {
1234 struct old_linux32_dirent __user * dirent;
1235 int count;
1236 };
1237
1238 static int
1239 filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino,
1240 unsigned int d_type)
1241 {
1242 struct compat_dirent __user * dirent;
1243 struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
1244 int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4);
1245
1246 buf->error = -EINVAL; /* only used if we fail.. */
1247 if (reclen > buf->count)
1248 return -EINVAL;
1249 buf->error = -EFAULT; /* only used if we fail.. */
1250 dirent = buf->previous;
1251 if (dirent)
1252 if (put_user(offset, &dirent->d_off))
1253 return -EFAULT;
1254 dirent = buf->current_dir;
1255 buf->previous = dirent;
1256 if (put_user(ino, &dirent->d_ino)
1257 || put_user(reclen, &dirent->d_reclen)
1258 || copy_to_user(dirent->d_name, name, namlen)
1259 || put_user(0, dirent->d_name + namlen))
1260 return -EFAULT;
1261 dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen);
1262 buf->current_dir = dirent;
1263 buf->count -= reclen;
1264 return 0;
1265 }
1266
1267 asmlinkage long
1268 sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count)
1269 {
1270 struct file * file;
1271 struct compat_dirent __user * lastdirent;
1272 struct getdents32_callback buf;
1273 int error;
1274
1275 error = -EBADF;
1276 file = fget(fd);
1277 if (!file)
1278 goto out;
1279
1280 buf.current_dir = dirent;
1281 buf.previous = NULL;
1282 buf.count = count;
1283 buf.error = 0;
1284
1285 error = vfs_readdir(file, filldir32, &buf);
1286 if (error < 0)
1287 goto out_putf;
1288 error = buf.error;
1289 lastdirent = buf.previous;
1290 if (lastdirent) {
1291 error = -EINVAL;
1292 if (put_user(file->f_pos, &lastdirent->d_off))
1293 goto out_putf;
1294 error = count - buf.count;
1295 }
1296
1297 out_putf:
1298 fput(file);
1299 out:
1300 return error;
1301 }
1302
1303 static int
1304 fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino,
1305 unsigned int d_type)
1306 {
1307 struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
1308 struct old_linux32_dirent __user * dirent;
1309
1310 if (buf->count)
1311 return -EINVAL;
1312 buf->count++;
1313 dirent = buf->dirent;
1314 if (put_user(ino, &dirent->d_ino)
1315 || put_user(offset, &dirent->d_offset)
1316 || put_user(namlen, &dirent->d_namlen)
1317 || copy_to_user(dirent->d_name, name, namlen)
1318 || put_user(0, dirent->d_name + namlen))
1319 return -EFAULT;
1320 return 0;
1321 }
1322
1323 asmlinkage long
1324 sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count)
1325 {
1326 int error;
1327 struct file * file;
1328 struct readdir32_callback buf;
1329
1330 error = -EBADF;
1331 file = fget(fd);
1332 if (!file)
1333 goto out;
1334
1335 buf.count = 0;
1336 buf.dirent = dirent;
1337
1338 error = vfs_readdir(file, fillonedir32, &buf);
1339 if (error >= 0)
1340 error = buf.count;
1341 fput(file);
1342 out:
1343 return error;
1344 }
1345
1346 struct sel_arg_struct {
1347 unsigned int n;
1348 unsigned int inp;
1349 unsigned int outp;
1350 unsigned int exp;
1351 unsigned int tvp;
1352 };
1353
1354 asmlinkage long
1355 sys32_old_select (struct sel_arg_struct __user *arg)
1356 {
1357 struct sel_arg_struct a;
1358
1359 if (copy_from_user(&a, arg, sizeof(a)))
1360 return -EFAULT;
1361 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1362 compat_ptr(a.exp), compat_ptr(a.tvp));
1363 }
1364
1365 #define SEMOP 1
1366 #define SEMGET 2
1367 #define SEMCTL 3
1368 #define SEMTIMEDOP 4
1369 #define MSGSND 11
1370 #define MSGRCV 12
1371 #define MSGGET 13
1372 #define MSGCTL 14
1373 #define SHMAT 21
1374 #define SHMDT 22
1375 #define SHMGET 23
1376 #define SHMCTL 24
1377
1378 asmlinkage long
1379 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1380 {
1381 int version;
1382
1383 version = call >> 16; /* hack for backward compatibility */
1384 call &= 0xffff;
1385
1386 switch (call) {
1387 case SEMTIMEDOP:
1388 if (fifth)
1389 return compat_sys_semtimedop(first, compat_ptr(ptr),
1390 second, compat_ptr(fifth));
1391 /* else fall through for normal semop() */
1392 case SEMOP:
1393 /* struct sembuf is the same on 32 and 64bit :)) */
1394 return sys_semtimedop(first, compat_ptr(ptr), second,
1395 NULL);
1396 case SEMGET:
1397 return sys_semget(first, second, third);
1398 case SEMCTL:
1399 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1400
1401 case MSGSND:
1402 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1403 case MSGRCV:
1404 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1405 case MSGGET:
1406 return sys_msgget((key_t) first, second);
1407 case MSGCTL:
1408 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1409
1410 case SHMAT:
1411 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1412 break;
1413 case SHMDT:
1414 return sys_shmdt(compat_ptr(ptr));
1415 case SHMGET:
1416 return sys_shmget(first, (unsigned)second, third);
1417 case SHMCTL:
1418 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1419
1420 default:
1421 return -ENOSYS;
1422 }
1423 return -EINVAL;
1424 }
1425
1426 asmlinkage long
1427 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1428 struct compat_rusage *ru);
1429
1430 asmlinkage long
1431 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1432 {
1433 return compat_sys_wait4(pid, stat_addr, options, NULL);
1434 }
1435
1436 static unsigned int
1437 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1438 {
1439 size_t copied;
1440 unsigned int ret;
1441
1442 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1443 return (copied != sizeof(ret)) ? -EIO : 0;
1444 }
1445
1446 static unsigned int
1447 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1448 {
1449
1450 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1451 return -EIO;
1452 return 0;
1453 }
1454
1455 /*
1456 * The order in which registers are stored in the ptrace regs structure
1457 */
1458 #define PT_EBX 0
1459 #define PT_ECX 1
1460 #define PT_EDX 2
1461 #define PT_ESI 3
1462 #define PT_EDI 4
1463 #define PT_EBP 5
1464 #define PT_EAX 6
1465 #define PT_DS 7
1466 #define PT_ES 8
1467 #define PT_FS 9
1468 #define PT_GS 10
1469 #define PT_ORIG_EAX 11
1470 #define PT_EIP 12
1471 #define PT_CS 13
1472 #define PT_EFL 14
1473 #define PT_UESP 15
1474 #define PT_SS 16
1475
1476 static unsigned int
1477 getreg (struct task_struct *child, int regno)
1478 {
1479 struct pt_regs *child_regs;
1480
1481 child_regs = task_pt_regs(child);
1482 switch (regno / sizeof(int)) {
1483 case PT_EBX: return child_regs->r11;
1484 case PT_ECX: return child_regs->r9;
1485 case PT_EDX: return child_regs->r10;
1486 case PT_ESI: return child_regs->r14;
1487 case PT_EDI: return child_regs->r15;
1488 case PT_EBP: return child_regs->r13;
1489 case PT_EAX: return child_regs->r8;
1490 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1491 case PT_EIP: return child_regs->cr_iip;
1492 case PT_UESP: return child_regs->r12;
1493 case PT_EFL: return child->thread.eflag;
1494 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1495 return __USER_DS;
1496 case PT_CS: return __USER_CS;
1497 default:
1498 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1499 break;
1500 }
1501 return 0;
1502 }
1503
1504 static void
1505 putreg (struct task_struct *child, int regno, unsigned int value)
1506 {
1507 struct pt_regs *child_regs;
1508
1509 child_regs = task_pt_regs(child);
1510 switch (regno / sizeof(int)) {
1511 case PT_EBX: child_regs->r11 = value; break;
1512 case PT_ECX: child_regs->r9 = value; break;
1513 case PT_EDX: child_regs->r10 = value; break;
1514 case PT_ESI: child_regs->r14 = value; break;
1515 case PT_EDI: child_regs->r15 = value; break;
1516 case PT_EBP: child_regs->r13 = value; break;
1517 case PT_EAX: child_regs->r8 = value; break;
1518 case PT_ORIG_EAX: child_regs->r1 = value; break;
1519 case PT_EIP: child_regs->cr_iip = value; break;
1520 case PT_UESP: child_regs->r12 = value; break;
1521 case PT_EFL: child->thread.eflag = value; break;
1522 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1523 if (value != __USER_DS)
1524 printk(KERN_ERR
1525 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1526 regno, value);
1527 break;
1528 case PT_CS:
1529 if (value != __USER_CS)
1530 printk(KERN_ERR
1531 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1532 regno, value);
1533 break;
1534 default:
1535 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1536 break;
1537 }
1538 }
1539
1540 static void
1541 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1542 struct switch_stack *swp, int tos)
1543 {
1544 struct _fpreg_ia32 *f;
1545 char buf[32];
1546
1547 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1548 if ((regno += tos) >= 8)
1549 regno -= 8;
1550 switch (regno) {
1551 case 0:
1552 ia64f2ia32f(f, &ptp->f8);
1553 break;
1554 case 1:
1555 ia64f2ia32f(f, &ptp->f9);
1556 break;
1557 case 2:
1558 ia64f2ia32f(f, &ptp->f10);
1559 break;
1560 case 3:
1561 ia64f2ia32f(f, &ptp->f11);
1562 break;
1563 case 4:
1564 case 5:
1565 case 6:
1566 case 7:
1567 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1568 break;
1569 }
1570 copy_to_user(reg, f, sizeof(*reg));
1571 }
1572
1573 static void
1574 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1575 struct switch_stack *swp, int tos)
1576 {
1577
1578 if ((regno += tos) >= 8)
1579 regno -= 8;
1580 switch (regno) {
1581 case 0:
1582 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1583 break;
1584 case 1:
1585 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1586 break;
1587 case 2:
1588 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1589 break;
1590 case 3:
1591 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1592 break;
1593 case 4:
1594 case 5:
1595 case 6:
1596 case 7:
1597 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1598 break;
1599 }
1600 return;
1601 }
1602
1603 int
1604 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1605 {
1606 struct switch_stack *swp;
1607 struct pt_regs *ptp;
1608 int i, tos;
1609
1610 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1611 return -EFAULT;
1612
1613 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1614 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1615 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1616 __put_user(tsk->thread.fir, &save->fip);
1617 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1618 __put_user(tsk->thread.fdr, &save->foo);
1619 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1620
1621 /*
1622 * Stack frames start with 16-bytes of temp space
1623 */
1624 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1625 ptp = task_pt_regs(tsk);
1626 tos = (tsk->thread.fsr >> 11) & 7;
1627 for (i = 0; i < 8; i++)
1628 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1629 return 0;
1630 }
1631
1632 static int
1633 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1634 {
1635 struct switch_stack *swp;
1636 struct pt_regs *ptp;
1637 int i, tos;
1638 unsigned int fsrlo, fsrhi, num32;
1639
1640 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1641 return(-EFAULT);
1642
1643 __get_user(num32, (unsigned int __user *)&save->cwd);
1644 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1645 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1646 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1647 num32 = (fsrhi << 16) | fsrlo;
1648 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1649 __get_user(num32, (unsigned int __user *)&save->fip);
1650 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1651 __get_user(num32, (unsigned int __user *)&save->foo);
1652 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1653
1654 /*
1655 * Stack frames start with 16-bytes of temp space
1656 */
1657 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1658 ptp = task_pt_regs(tsk);
1659 tos = (tsk->thread.fsr >> 11) & 7;
1660 for (i = 0; i < 8; i++)
1661 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1662 return 0;
1663 }
1664
1665 int
1666 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1667 {
1668 struct switch_stack *swp;
1669 struct pt_regs *ptp;
1670 int i, tos;
1671 unsigned long mxcsr=0;
1672 unsigned long num128[2];
1673
1674 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1675 return -EFAULT;
1676
1677 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1678 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1679 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1680 __put_user(tsk->thread.fir, &save->fip);
1681 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1682 __put_user(tsk->thread.fdr, &save->foo);
1683 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1684
1685 /*
1686 * Stack frames start with 16-bytes of temp space
1687 */
1688 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1689 ptp = task_pt_regs(tsk);
1690 tos = (tsk->thread.fsr >> 11) & 7;
1691 for (i = 0; i < 8; i++)
1692 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1693
1694 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1695 __put_user(mxcsr & 0xffff, &save->mxcsr);
1696 for (i = 0; i < 8; i++) {
1697 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1698 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1699 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1700 }
1701 return 0;
1702 }
1703
1704 static int
1705 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1706 {
1707 struct switch_stack *swp;
1708 struct pt_regs *ptp;
1709 int i, tos;
1710 unsigned int fsrlo, fsrhi, num32;
1711 int mxcsr;
1712 unsigned long num64;
1713 unsigned long num128[2];
1714
1715 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1716 return(-EFAULT);
1717
1718 __get_user(num32, (unsigned int __user *)&save->cwd);
1719 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1720 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1721 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1722 num32 = (fsrhi << 16) | fsrlo;
1723 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1724 __get_user(num32, (unsigned int __user *)&save->fip);
1725 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1726 __get_user(num32, (unsigned int __user *)&save->foo);
1727 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1728
1729 /*
1730 * Stack frames start with 16-bytes of temp space
1731 */
1732 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1733 ptp = task_pt_regs(tsk);
1734 tos = (tsk->thread.fsr >> 11) & 7;
1735 for (i = 0; i < 8; i++)
1736 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1737
1738 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1739 num64 = mxcsr & 0xff10;
1740 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1741 num64 = mxcsr & 0x3f;
1742 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1743
1744 for (i = 0; i < 8; i++) {
1745 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1746 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1747 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1748 }
1749 return 0;
1750 }
1751
1752 asmlinkage long
1753 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1754 {
1755 struct task_struct *child;
1756 unsigned int value, tmp;
1757 long i, ret;
1758
1759 lock_kernel();
1760 if (request == PTRACE_TRACEME) {
1761 ret = ptrace_traceme();
1762 goto out;
1763 }
1764
1765 child = ptrace_get_task_struct(pid);
1766 if (IS_ERR(child)) {
1767 ret = PTR_ERR(child);
1768 goto out;
1769 }
1770
1771 if (request == PTRACE_ATTACH) {
1772 ret = sys_ptrace(request, pid, addr, data);
1773 goto out_tsk;
1774 }
1775
1776 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1777 if (ret < 0)
1778 goto out_tsk;
1779
1780 switch (request) {
1781 case PTRACE_PEEKTEXT:
1782 case PTRACE_PEEKDATA: /* read word at location addr */
1783 ret = ia32_peek(child, addr, &value);
1784 if (ret == 0)
1785 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1786 else
1787 ret = -EIO;
1788 goto out_tsk;
1789
1790 case PTRACE_POKETEXT:
1791 case PTRACE_POKEDATA: /* write the word at location addr */
1792 ret = ia32_poke(child, addr, data);
1793 goto out_tsk;
1794
1795 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1796 ret = -EIO;
1797 if ((addr & 3) || addr > 17*sizeof(int))
1798 break;
1799
1800 tmp = getreg(child, addr);
1801 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1802 ret = 0;
1803 break;
1804
1805 case PTRACE_POKEUSR: /* write word at addr in USER area */
1806 ret = -EIO;
1807 if ((addr & 3) || addr > 17*sizeof(int))
1808 break;
1809
1810 putreg(child, addr, data);
1811 ret = 0;
1812 break;
1813
1814 case IA32_PTRACE_GETREGS:
1815 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1816 ret = -EIO;
1817 break;
1818 }
1819 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1820 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1821 data += sizeof(int);
1822 }
1823 ret = 0;
1824 break;
1825
1826 case IA32_PTRACE_SETREGS:
1827 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1828 ret = -EIO;
1829 break;
1830 }
1831 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1832 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1833 putreg(child, i, tmp);
1834 data += sizeof(int);
1835 }
1836 ret = 0;
1837 break;
1838
1839 case IA32_PTRACE_GETFPREGS:
1840 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1841 compat_ptr(data));
1842 break;
1843
1844 case IA32_PTRACE_GETFPXREGS:
1845 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1846 compat_ptr(data));
1847 break;
1848
1849 case IA32_PTRACE_SETFPREGS:
1850 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1851 compat_ptr(data));
1852 break;
1853
1854 case IA32_PTRACE_SETFPXREGS:
1855 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1856 compat_ptr(data));
1857 break;
1858
1859 case PTRACE_GETEVENTMSG:
1860 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1861 break;
1862
1863 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1864 case PTRACE_CONT: /* restart after signal. */
1865 case PTRACE_KILL:
1866 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1867 case PTRACE_DETACH: /* detach a process */
1868 ret = sys_ptrace(request, pid, addr, data);
1869 break;
1870
1871 default:
1872 ret = ptrace_request(child, request, addr, data);
1873 break;
1874
1875 }
1876 out_tsk:
1877 put_task_struct(child);
1878 out:
1879 unlock_kernel();
1880 return ret;
1881 }
1882
1883 typedef struct {
1884 unsigned int ss_sp;
1885 unsigned int ss_flags;
1886 unsigned int ss_size;
1887 } ia32_stack_t;
1888
1889 asmlinkage long
1890 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1891 long arg2, long arg3, long arg4, long arg5, long arg6,
1892 long arg7, struct pt_regs pt)
1893 {
1894 stack_t uss, uoss;
1895 ia32_stack_t buf32;
1896 int ret;
1897 mm_segment_t old_fs = get_fs();
1898
1899 if (uss32) {
1900 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1901 return -EFAULT;
1902 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1903 uss.ss_flags = buf32.ss_flags;
1904 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1905 check and set it to the user requested value later */
1906 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1907 ret = -ENOMEM;
1908 goto out;
1909 }
1910 uss.ss_size = MINSIGSTKSZ;
1911 }
1912 set_fs(KERNEL_DS);
1913 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1914 (stack_t __user *) &uoss, pt.r12);
1915 current->sas_ss_size = buf32.ss_size;
1916 set_fs(old_fs);
1917 out:
1918 if (ret < 0)
1919 return(ret);
1920 if (uoss32) {
1921 buf32.ss_sp = (long __user) uoss.ss_sp;
1922 buf32.ss_flags = uoss.ss_flags;
1923 buf32.ss_size = uoss.ss_size;
1924 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1925 return -EFAULT;
1926 }
1927 return ret;
1928 }
1929
1930 asmlinkage int
1931 sys32_pause (void)
1932 {
1933 current->state = TASK_INTERRUPTIBLE;
1934 schedule();
1935 return -ERESTARTNOHAND;
1936 }
1937
1938 asmlinkage int
1939 sys32_msync (unsigned int start, unsigned int len, int flags)
1940 {
1941 unsigned int addr;
1942
1943 if (OFFSET4K(start))
1944 return -EINVAL;
1945 addr = PAGE_START(start);
1946 return sys_msync(addr, len + (start - addr), flags);
1947 }
1948
1949 struct sysctl32 {
1950 unsigned int name;
1951 int nlen;
1952 unsigned int oldval;
1953 unsigned int oldlenp;
1954 unsigned int newval;
1955 unsigned int newlen;
1956 unsigned int __unused[4];
1957 };
1958
1959 #ifdef CONFIG_SYSCTL
1960 asmlinkage long
1961 sys32_sysctl (struct sysctl32 __user *args)
1962 {
1963 struct sysctl32 a32;
1964 mm_segment_t old_fs = get_fs ();
1965 void __user *oldvalp, *newvalp;
1966 size_t oldlen;
1967 int __user *namep;
1968 long ret;
1969
1970 if (copy_from_user(&a32, args, sizeof(a32)))
1971 return -EFAULT;
1972
1973 /*
1974 * We need to pre-validate these because we have to disable address checking
1975 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1976 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1977 * addresses, we KNOW that access_ok() will always succeed, so this is an
1978 * expensive NOP, but so what...
1979 */
1980 namep = (int __user *) compat_ptr(a32.name);
1981 oldvalp = compat_ptr(a32.oldval);
1982 newvalp = compat_ptr(a32.newval);
1983
1984 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1985 || !access_ok(VERIFY_WRITE, namep, 0)
1986 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1987 || !access_ok(VERIFY_WRITE, newvalp, 0))
1988 return -EFAULT;
1989
1990 set_fs(KERNEL_DS);
1991 lock_kernel();
1992 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1993 newvalp, (size_t) a32.newlen);
1994 unlock_kernel();
1995 set_fs(old_fs);
1996
1997 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1998 return -EFAULT;
1999
2000 return ret;
2001 }
2002 #endif
2003
2004 asmlinkage long
2005 sys32_newuname (struct new_utsname __user *name)
2006 {
2007 int ret = sys_newuname(name);
2008
2009 if (!ret)
2010 if (copy_to_user(name->machine, "i686\0\0\0", 8))
2011 ret = -EFAULT;
2012 return ret;
2013 }
2014
2015 asmlinkage long
2016 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
2017 {
2018 uid_t a, b, c;
2019 int ret;
2020 mm_segment_t old_fs = get_fs();
2021
2022 set_fs(KERNEL_DS);
2023 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
2024 set_fs(old_fs);
2025
2026 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
2027 return -EFAULT;
2028 return ret;
2029 }
2030
2031 asmlinkage long
2032 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
2033 {
2034 gid_t a, b, c;
2035 int ret;
2036 mm_segment_t old_fs = get_fs();
2037
2038 set_fs(KERNEL_DS);
2039 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
2040 set_fs(old_fs);
2041
2042 if (ret)
2043 return ret;
2044
2045 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
2046 }
2047
2048 asmlinkage long
2049 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
2050 {
2051 /* Sign-extension of "offset" is important here... */
2052 return sys_lseek(fd, offset, whence);
2053 }
2054
2055 static int
2056 groups16_to_user(short __user *grouplist, struct group_info *group_info)
2057 {
2058 int i;
2059 short group;
2060
2061 for (i = 0; i < group_info->ngroups; i++) {
2062 group = (short)GROUP_AT(group_info, i);
2063 if (put_user(group, grouplist+i))
2064 return -EFAULT;
2065 }
2066
2067 return 0;
2068 }
2069
2070 static int
2071 groups16_from_user(struct group_info *group_info, short __user *grouplist)
2072 {
2073 int i;
2074 short group;
2075
2076 for (i = 0; i < group_info->ngroups; i++) {
2077 if (get_user(group, grouplist+i))
2078 return -EFAULT;
2079 GROUP_AT(group_info, i) = (gid_t)group;
2080 }
2081
2082 return 0;
2083 }
2084
2085 asmlinkage long
2086 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
2087 {
2088 int i;
2089
2090 if (gidsetsize < 0)
2091 return -EINVAL;
2092
2093 get_group_info(current->group_info);
2094 i = current->group_info->ngroups;
2095 if (gidsetsize) {
2096 if (i > gidsetsize) {
2097 i = -EINVAL;
2098 goto out;
2099 }
2100 if (groups16_to_user(grouplist, current->group_info)) {
2101 i = -EFAULT;
2102 goto out;
2103 }
2104 }
2105 out:
2106 put_group_info(current->group_info);
2107 return i;
2108 }
2109
2110 asmlinkage long
2111 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
2112 {
2113 struct group_info *group_info;
2114 int retval;
2115
2116 if (!capable(CAP_SETGID))
2117 return -EPERM;
2118 if ((unsigned)gidsetsize > NGROUPS_MAX)
2119 return -EINVAL;
2120
2121 group_info = groups_alloc(gidsetsize);
2122 if (!group_info)
2123 return -ENOMEM;
2124 retval = groups16_from_user(group_info, grouplist);
2125 if (retval) {
2126 put_group_info(group_info);
2127 return retval;
2128 }
2129
2130 retval = set_current_groups(group_info);
2131 put_group_info(group_info);
2132
2133 return retval;
2134 }
2135
2136 asmlinkage long
2137 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
2138 {
2139 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
2140 }
2141
2142 asmlinkage long
2143 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
2144 {
2145 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
2146 }
2147
2148 static int
2149 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
2150 {
2151 int err;
2152 u64 hdev;
2153
2154 if (clear_user(ubuf, sizeof(*ubuf)))
2155 return -EFAULT;
2156
2157 hdev = huge_encode_dev(kbuf->dev);
2158 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
2159 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
2160 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
2161 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
2162 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
2163 err |= __put_user(kbuf->mode, &ubuf->st_mode);
2164 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
2165 err |= __put_user(kbuf->uid, &ubuf->st_uid);
2166 err |= __put_user(kbuf->gid, &ubuf->st_gid);
2167 hdev = huge_encode_dev(kbuf->rdev);
2168 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2169 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2170 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2171 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2172 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2173 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2174 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2175 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2176 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2177 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2178 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2179 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2180 return err;
2181 }
2182
2183 asmlinkage long
2184 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2185 {
2186 struct kstat s;
2187 long ret = vfs_stat(filename, &s);
2188 if (!ret)
2189 ret = putstat64(statbuf, &s);
2190 return ret;
2191 }
2192
2193 asmlinkage long
2194 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2195 {
2196 struct kstat s;
2197 long ret = vfs_lstat(filename, &s);
2198 if (!ret)
2199 ret = putstat64(statbuf, &s);
2200 return ret;
2201 }
2202
2203 asmlinkage long
2204 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2205 {
2206 struct kstat s;
2207 long ret = vfs_fstat(fd, &s);
2208 if (!ret)
2209 ret = putstat64(statbuf, &s);
2210 return ret;
2211 }
2212
2213 struct sysinfo32 {
2214 s32 uptime;
2215 u32 loads[3];
2216 u32 totalram;
2217 u32 freeram;
2218 u32 sharedram;
2219 u32 bufferram;
2220 u32 totalswap;
2221 u32 freeswap;
2222 u16 procs;
2223 u16 pad;
2224 u32 totalhigh;
2225 u32 freehigh;
2226 u32 mem_unit;
2227 char _f[8];
2228 };
2229
2230 asmlinkage long
2231 sys32_sysinfo (struct sysinfo32 __user *info)
2232 {
2233 struct sysinfo s;
2234 long ret, err;
2235 int bitcount = 0;
2236 mm_segment_t old_fs = get_fs();
2237
2238 set_fs(KERNEL_DS);
2239 ret = sys_sysinfo((struct sysinfo __user *) &s);
2240 set_fs(old_fs);
2241 /* Check to see if any memory value is too large for 32-bit and
2242 * scale down if needed.
2243 */
2244 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2245 while (s.mem_unit < PAGE_SIZE) {
2246 s.mem_unit <<= 1;
2247 bitcount++;
2248 }
2249 s.totalram >>= bitcount;
2250 s.freeram >>= bitcount;
2251 s.sharedram >>= bitcount;
2252 s.bufferram >>= bitcount;
2253 s.totalswap >>= bitcount;
2254 s.freeswap >>= bitcount;
2255 s.totalhigh >>= bitcount;
2256 s.freehigh >>= bitcount;
2257 }
2258
2259 if (!access_ok(VERIFY_WRITE, info, sizeof(*info)))
2260 return -EFAULT;
2261
2262 err = __put_user(s.uptime, &info->uptime);
2263 err |= __put_user(s.loads[0], &info->loads[0]);
2264 err |= __put_user(s.loads[1], &info->loads[1]);
2265 err |= __put_user(s.loads[2], &info->loads[2]);
2266 err |= __put_user(s.totalram, &info->totalram);
2267 err |= __put_user(s.freeram, &info->freeram);
2268 err |= __put_user(s.sharedram, &info->sharedram);
2269 err |= __put_user(s.bufferram, &info->bufferram);
2270 err |= __put_user(s.totalswap, &info->totalswap);
2271 err |= __put_user(s.freeswap, &info->freeswap);
2272 err |= __put_user(s.procs, &info->procs);
2273 err |= __put_user (s.totalhigh, &info->totalhigh);
2274 err |= __put_user (s.freehigh, &info->freehigh);
2275 err |= __put_user (s.mem_unit, &info->mem_unit);
2276 if (err)
2277 return -EFAULT;
2278 return ret;
2279 }
2280
2281 asmlinkage long
2282 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2283 {
2284 mm_segment_t old_fs = get_fs();
2285 struct timespec t;
2286 long ret;
2287
2288 set_fs(KERNEL_DS);
2289 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2290 set_fs(old_fs);
2291 if (put_compat_timespec(&t, interval))
2292 return -EFAULT;
2293 return ret;
2294 }
2295
2296 asmlinkage long
2297 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2298 {
2299 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2300 }
2301
2302 asmlinkage long
2303 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2304 {
2305 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2306 }
2307
2308 asmlinkage long
2309 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2310 {
2311 mm_segment_t old_fs = get_fs();
2312 long ret;
2313 off_t of;
2314
2315 if (offset && get_user(of, offset))
2316 return -EFAULT;
2317
2318 set_fs(KERNEL_DS);
2319 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2320 set_fs(old_fs);
2321
2322 if (offset && put_user(of, offset))
2323 return -EFAULT;
2324
2325 return ret;
2326 }
2327
2328 asmlinkage long
2329 sys32_personality (unsigned int personality)
2330 {
2331 long ret;
2332
2333 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2334 personality = PER_LINUX32;
2335 ret = sys_personality(personality);
2336 if (ret == PER_LINUX32)
2337 ret = PER_LINUX;
2338 return ret;
2339 }
2340
2341 asmlinkage unsigned long
2342 sys32_brk (unsigned int brk)
2343 {
2344 unsigned long ret, obrk;
2345 struct mm_struct *mm = current->mm;
2346
2347 obrk = mm->brk;
2348 ret = sys_brk(brk);
2349 if (ret < obrk)
2350 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2351 return ret;
2352 }
2353
2354 /* Structure for ia32 emulation on ia64 */
2355 struct epoll_event32
2356 {
2357 u32 events;
2358 u32 data[2];
2359 };
2360
2361 asmlinkage long
2362 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2363 {
2364 mm_segment_t old_fs = get_fs();
2365 struct epoll_event event64;
2366 int error;
2367 u32 data_halfword;
2368
2369 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2370 return -EFAULT;
2371
2372 __get_user(event64.events, &event->events);
2373 __get_user(data_halfword, &event->data[0]);
2374 event64.data = data_halfword;
2375 __get_user(data_halfword, &event->data[1]);
2376 event64.data |= (u64)data_halfword << 32;
2377
2378 set_fs(KERNEL_DS);
2379 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2380 set_fs(old_fs);
2381
2382 return error;
2383 }
2384
2385 asmlinkage long
2386 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2387 int timeout)
2388 {
2389 struct epoll_event *events64 = NULL;
2390 mm_segment_t old_fs = get_fs();
2391 int numevents, size;
2392 int evt_idx;
2393 int do_free_pages = 0;
2394
2395 if (maxevents <= 0) {
2396 return -EINVAL;
2397 }
2398
2399 /* Verify that the area passed by the user is writeable */
2400 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2401 return -EFAULT;
2402
2403 /*
2404 * Allocate space for the intermediate copy. If the space needed
2405 * is large enough to cause kmalloc to fail, then try again with
2406 * __get_free_pages.
2407 */
2408 size = maxevents * sizeof(struct epoll_event);
2409 events64 = kmalloc(size, GFP_KERNEL);
2410 if (events64 == NULL) {
2411 events64 = (struct epoll_event *)
2412 __get_free_pages(GFP_KERNEL, get_order(size));
2413 if (events64 == NULL)
2414 return -ENOMEM;
2415 do_free_pages = 1;
2416 }
2417
2418 /* Do the system call */
2419 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2420 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2421 maxevents, timeout);
2422 set_fs(old_fs);
2423
2424 /* Don't modify userspace memory if we're returning an error */
2425 if (numevents > 0) {
2426 /* Translate the 64-bit structures back into the 32-bit
2427 structures */
2428 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2429 __put_user(events64[evt_idx].events,
2430 &events[evt_idx].events);
2431 __put_user((u32)events64[evt_idx].data,
2432 &events[evt_idx].data[0]);
2433 __put_user((u32)(events64[evt_idx].data >> 32),
2434 &events[evt_idx].data[1]);
2435 }
2436 }
2437
2438 if (do_free_pages)
2439 free_pages((unsigned long) events64, get_order(size));
2440 else
2441 kfree(events64);
2442 return numevents;
2443 }
2444
2445 /*
2446 * Get a yet unused TLS descriptor index.
2447 */
2448 static int
2449 get_free_idx (void)
2450 {
2451 struct thread_struct *t = &current->thread;
2452 int idx;
2453
2454 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2455 if (desc_empty(t->tls_array + idx))
2456 return idx + GDT_ENTRY_TLS_MIN;
2457 return -ESRCH;
2458 }
2459
2460 /*
2461 * Set a given TLS descriptor:
2462 */
2463 asmlinkage int
2464 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2465 {
2466 struct thread_struct *t = &current->thread;
2467 struct ia32_user_desc info;
2468 struct desc_struct *desc;
2469 int cpu, idx;
2470
2471 if (copy_from_user(&info, u_info, sizeof(info)))
2472 return -EFAULT;
2473 idx = info.entry_number;
2474
2475 /*
2476 * index -1 means the kernel should try to find and allocate an empty descriptor:
2477 */
2478 if (idx == -1) {
2479 idx = get_free_idx();
2480 if (idx < 0)
2481 return idx;
2482 if (put_user(idx, &u_info->entry_number))
2483 return -EFAULT;
2484 }
2485
2486 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2487 return -EINVAL;
2488
2489 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
2490
2491 cpu = smp_processor_id();
2492
2493 if (LDT_empty(&info)) {
2494 desc->a = 0;
2495 desc->b = 0;
2496 } else {
2497 desc->a = LDT_entry_a(&info);
2498 desc->b = LDT_entry_b(&info);
2499 }
2500 load_TLS(t, cpu);
2501 return 0;
2502 }
2503
2504 /*
2505 * Get the current Thread-Local Storage area:
2506 */
2507
2508 #define GET_BASE(desc) ( \
2509 (((desc)->a >> 16) & 0x0000ffff) | \
2510 (((desc)->b << 16) & 0x00ff0000) | \
2511 ( (desc)->b & 0xff000000) )
2512
2513 #define GET_LIMIT(desc) ( \
2514 ((desc)->a & 0x0ffff) | \
2515 ((desc)->b & 0xf0000) )
2516
2517 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2518 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2519 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2520 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2521 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2522 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2523
2524 asmlinkage int
2525 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2526 {
2527 struct ia32_user_desc info;
2528 struct desc_struct *desc;
2529 int idx;
2530
2531 if (get_user(idx, &u_info->entry_number))
2532 return -EFAULT;
2533 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2534 return -EINVAL;
2535
2536 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2537
2538 info.entry_number = idx;
2539 info.base_addr = GET_BASE(desc);
2540 info.limit = GET_LIMIT(desc);
2541 info.seg_32bit = GET_32BIT(desc);
2542 info.contents = GET_CONTENTS(desc);
2543 info.read_exec_only = !GET_WRITABLE(desc);
2544 info.limit_in_pages = GET_LIMIT_PAGES(desc);
2545 info.seg_not_present = !GET_PRESENT(desc);
2546 info.useable = GET_USEABLE(desc);
2547
2548 if (copy_to_user(u_info, &info, sizeof(info)))
2549 return -EFAULT;
2550 return 0;
2551 }
2552
2553 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
2554 __u32 len_low, __u32 len_high, int advice)
2555 {
2556 return sys_fadvise64_64(fd,
2557 (((u64)offset_high)<<32) | offset_low,
2558 (((u64)len_high)<<32) | len_low,
2559 advice);
2560 }
2561
2562 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
2563
2564 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
2565 {
2566 uid_t sruid, seuid;
2567
2568 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2569 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2570 return sys_setreuid(sruid, seuid);
2571 }
2572
2573 asmlinkage long
2574 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
2575 compat_uid_t suid)
2576 {
2577 uid_t sruid, seuid, ssuid;
2578
2579 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2580 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2581 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
2582 return sys_setresuid(sruid, seuid, ssuid);
2583 }
2584
2585 asmlinkage long
2586 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
2587 {
2588 gid_t srgid, segid;
2589
2590 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2591 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2592 return sys_setregid(srgid, segid);
2593 }
2594
2595 asmlinkage long
2596 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
2597 compat_gid_t sgid)
2598 {
2599 gid_t srgid, segid, ssgid;
2600
2601 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2602 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2603 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
2604 return sys_setresgid(srgid, segid, ssgid);
2605 }
2606
2607 /* Handle adjtimex compatibility. */
2608
2609 struct timex32 {
2610 u32 modes;
2611 s32 offset, freq, maxerror, esterror;
2612 s32 status, constant, precision, tolerance;
2613 struct compat_timeval time;
2614 s32 tick;
2615 s32 ppsfreq, jitter, shift, stabil;
2616 s32 jitcnt, calcnt, errcnt, stbcnt;
2617 s32 :32; s32 :32; s32 :32; s32 :32;
2618 s32 :32; s32 :32; s32 :32; s32 :32;
2619 s32 :32; s32 :32; s32 :32; s32 :32;
2620 };
2621
2622 extern int do_adjtimex(struct timex *);
2623
2624 asmlinkage long
2625 sys32_adjtimex(struct timex32 *utp)
2626 {
2627 struct timex txc;
2628 int ret;
2629
2630 memset(&txc, 0, sizeof(struct timex));
2631
2632 if(get_user(txc.modes, &utp->modes) ||
2633 __get_user(txc.offset, &utp->offset) ||
2634 __get_user(txc.freq, &utp->freq) ||
2635 __get_user(txc.maxerror, &utp->maxerror) ||
2636 __get_user(txc.esterror, &utp->esterror) ||
2637 __get_user(txc.status, &utp->status) ||
2638 __get_user(txc.constant, &utp->constant) ||
2639 __get_user(txc.precision, &utp->precision) ||
2640 __get_user(txc.tolerance, &utp->tolerance) ||
2641 __get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2642 __get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2643 __get_user(txc.tick, &utp->tick) ||
2644 __get_user(txc.ppsfreq, &utp->ppsfreq) ||
2645 __get_user(txc.jitter, &utp->jitter) ||
2646 __get_user(txc.shift, &utp->shift) ||
2647 __get_user(txc.stabil, &utp->stabil) ||
2648 __get_user(txc.jitcnt, &utp->jitcnt) ||
2649 __get_user(txc.calcnt, &utp->calcnt) ||
2650 __get_user(txc.errcnt, &utp->errcnt) ||
2651 __get_user(txc.stbcnt, &utp->stbcnt))
2652 return -EFAULT;
2653
2654 ret = do_adjtimex(&txc);
2655
2656 if(put_user(txc.modes, &utp->modes) ||
2657 __put_user(txc.offset, &utp->offset) ||
2658 __put_user(txc.freq, &utp->freq) ||
2659 __put_user(txc.maxerror, &utp->maxerror) ||
2660 __put_user(txc.esterror, &utp->esterror) ||
2661 __put_user(txc.status, &utp->status) ||
2662 __put_user(txc.constant, &utp->constant) ||
2663 __put_user(txc.precision, &utp->precision) ||
2664 __put_user(txc.tolerance, &utp->tolerance) ||
2665 __put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2666 __put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2667 __put_user(txc.tick, &utp->tick) ||
2668 __put_user(txc.ppsfreq, &utp->ppsfreq) ||
2669 __put_user(txc.jitter, &utp->jitter) ||
2670 __put_user(txc.shift, &utp->shift) ||
2671 __put_user(txc.stabil, &utp->stabil) ||
2672 __put_user(txc.jitcnt, &utp->jitcnt) ||
2673 __put_user(txc.calcnt, &utp->calcnt) ||
2674 __put_user(txc.errcnt, &utp->errcnt) ||
2675 __put_user(txc.stbcnt, &utp->stbcnt))
2676 ret = -EFAULT;
2677
2678 return ret;
2679 }
2680 #endif /* NOTYET */