Merge branch 'audit.b3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / ia32 / sys_ia32.c
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
3 *
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
12 *
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
15 */
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/syscalls.h>
20 #include <linux/sysctl.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/signal.h>
25 #include <linux/resource.h>
26 #include <linux/times.h>
27 #include <linux/utsname.h>
28 #include <linux/timex.h>
29 #include <linux/smp.h>
30 #include <linux/smp_lock.h>
31 #include <linux/sem.h>
32 #include <linux/msg.h>
33 #include <linux/mm.h>
34 #include <linux/shm.h>
35 #include <linux/slab.h>
36 #include <linux/uio.h>
37 #include <linux/nfs_fs.h>
38 #include <linux/quota.h>
39 #include <linux/syscalls.h>
40 #include <linux/sunrpc/svc.h>
41 #include <linux/nfsd/nfsd.h>
42 #include <linux/nfsd/cache.h>
43 #include <linux/nfsd/xdr.h>
44 #include <linux/nfsd/syscall.h>
45 #include <linux/poll.h>
46 #include <linux/eventpoll.h>
47 #include <linux/personality.h>
48 #include <linux/ptrace.h>
49 #include <linux/stat.h>
50 #include <linux/ipc.h>
51 #include <linux/capability.h>
52 #include <linux/compat.h>
53 #include <linux/vfs.h>
54 #include <linux/mman.h>
55 #include <linux/mutex.h>
56
57 #include <asm/intrinsics.h>
58 #include <asm/types.h>
59 #include <asm/uaccess.h>
60 #include <asm/unistd.h>
61
62 #include "ia32priv.h"
63
64 #include <net/scm.h>
65 #include <net/sock.h>
66
67 #define DEBUG 0
68
69 #if DEBUG
70 # define DBG(fmt...) printk(KERN_DEBUG fmt)
71 #else
72 # define DBG(fmt...)
73 #endif
74
75 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
76
77 #define OFFSET4K(a) ((a) & 0xfff)
78 #define PAGE_START(addr) ((addr) & PAGE_MASK)
79 #define MINSIGSTKSZ_IA32 2048
80
81 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
82 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
83
84 /*
85 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
86 * while doing so.
87 */
88 /* XXX make per-mm: */
89 static DEFINE_MUTEX(ia32_mmap_mutex);
90
91 asmlinkage long
92 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
93 struct pt_regs *regs)
94 {
95 long error;
96 char *filename;
97 unsigned long old_map_base, old_task_size, tssd;
98
99 filename = getname(name);
100 error = PTR_ERR(filename);
101 if (IS_ERR(filename))
102 return error;
103
104 old_map_base = current->thread.map_base;
105 old_task_size = current->thread.task_size;
106 tssd = ia64_get_kr(IA64_KR_TSSD);
107
108 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
109 current->thread.map_base = DEFAULT_MAP_BASE;
110 current->thread.task_size = DEFAULT_TASK_SIZE;
111 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
112 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
113
114 error = compat_do_execve(filename, argv, envp, regs);
115 putname(filename);
116
117 if (error < 0) {
118 /* oops, execve failed, switch back to old values... */
119 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
120 ia64_set_kr(IA64_KR_TSSD, tssd);
121 current->thread.map_base = old_map_base;
122 current->thread.task_size = old_task_size;
123 }
124
125 return error;
126 }
127
128 int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
129 {
130 int err;
131
132 if ((u64) stat->size > MAX_NON_LFS ||
133 !old_valid_dev(stat->dev) ||
134 !old_valid_dev(stat->rdev))
135 return -EOVERFLOW;
136
137 if (clear_user(ubuf, sizeof(*ubuf)))
138 return -EFAULT;
139
140 err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
141 err |= __put_user(stat->ino, &ubuf->st_ino);
142 err |= __put_user(stat->mode, &ubuf->st_mode);
143 err |= __put_user(stat->nlink, &ubuf->st_nlink);
144 err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
145 err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
146 err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
147 err |= __put_user(stat->size, &ubuf->st_size);
148 err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
149 err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
150 err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
151 err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
152 err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
153 err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
154 err |= __put_user(stat->blksize, &ubuf->st_blksize);
155 err |= __put_user(stat->blocks, &ubuf->st_blocks);
156 return err;
157 }
158
159 #if PAGE_SHIFT > IA32_PAGE_SHIFT
160
161
162 static int
163 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
164 {
165 int prot = 0;
166
167 if (!vma || vma->vm_start > addr)
168 return 0;
169
170 if (vma->vm_flags & VM_READ)
171 prot |= PROT_READ;
172 if (vma->vm_flags & VM_WRITE)
173 prot |= PROT_WRITE;
174 if (vma->vm_flags & VM_EXEC)
175 prot |= PROT_EXEC;
176 return prot;
177 }
178
179 /*
180 * Map a subpage by creating an anonymous page that contains the union of the old page and
181 * the subpage.
182 */
183 static unsigned long
184 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
185 loff_t off)
186 {
187 void *page = NULL;
188 struct inode *inode;
189 unsigned long ret = 0;
190 struct vm_area_struct *vma = find_vma(current->mm, start);
191 int old_prot = get_page_prot(vma, start);
192
193 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
194 file, start, end, prot, flags, off);
195
196
197 /* Optimize the case where the old mmap and the new mmap are both anonymous */
198 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
199 if (clear_user((void __user *) start, end - start)) {
200 ret = -EFAULT;
201 goto out;
202 }
203 goto skip_mmap;
204 }
205
206 page = (void *) get_zeroed_page(GFP_KERNEL);
207 if (!page)
208 return -ENOMEM;
209
210 if (old_prot)
211 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
212
213 down_write(&current->mm->mmap_sem);
214 {
215 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
216 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
217 }
218 up_write(&current->mm->mmap_sem);
219
220 if (IS_ERR((void *) ret))
221 goto out;
222
223 if (old_prot) {
224 /* copy back the old page contents. */
225 if (offset_in_page(start))
226 copy_to_user((void __user *) PAGE_START(start), page,
227 offset_in_page(start));
228 if (offset_in_page(end))
229 copy_to_user((void __user *) end, page + offset_in_page(end),
230 PAGE_SIZE - offset_in_page(end));
231 }
232
233 if (!(flags & MAP_ANONYMOUS)) {
234 /* read the file contents */
235 inode = file->f_dentry->d_inode;
236 if (!inode->i_fop || !file->f_op->read
237 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
238 {
239 ret = -EINVAL;
240 goto out;
241 }
242 }
243
244 skip_mmap:
245 if (!(prot & PROT_WRITE))
246 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
247 out:
248 if (page)
249 free_page((unsigned long) page);
250 return ret;
251 }
252
253 /* SLAB cache for partial_page structures */
254 kmem_cache_t *partial_page_cachep;
255
256 /*
257 * init partial_page_list.
258 * return 0 means kmalloc fail.
259 */
260 struct partial_page_list*
261 ia32_init_pp_list(void)
262 {
263 struct partial_page_list *p;
264
265 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
266 return p;
267 p->pp_head = NULL;
268 p->ppl_rb = RB_ROOT;
269 p->pp_hint = NULL;
270 atomic_set(&p->pp_count, 1);
271 return p;
272 }
273
274 /*
275 * Search for the partial page with @start in partial page list @ppl.
276 * If finds the partial page, return the found partial page.
277 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
278 * be used by later __ia32_insert_pp().
279 */
280 static struct partial_page *
281 __ia32_find_pp(struct partial_page_list *ppl, unsigned int start,
282 struct partial_page **pprev, struct rb_node ***rb_link,
283 struct rb_node **rb_parent)
284 {
285 struct partial_page *pp;
286 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
287
288 pp = ppl->pp_hint;
289 if (pp && pp->base == start)
290 return pp;
291
292 __rb_link = &ppl->ppl_rb.rb_node;
293 rb_prev = __rb_parent = NULL;
294
295 while (*__rb_link) {
296 __rb_parent = *__rb_link;
297 pp = rb_entry(__rb_parent, struct partial_page, pp_rb);
298
299 if (pp->base == start) {
300 ppl->pp_hint = pp;
301 return pp;
302 } else if (pp->base < start) {
303 rb_prev = __rb_parent;
304 __rb_link = &__rb_parent->rb_right;
305 } else {
306 __rb_link = &__rb_parent->rb_left;
307 }
308 }
309
310 *rb_link = __rb_link;
311 *rb_parent = __rb_parent;
312 *pprev = NULL;
313 if (rb_prev)
314 *pprev = rb_entry(rb_prev, struct partial_page, pp_rb);
315 return NULL;
316 }
317
318 /*
319 * insert @pp into @ppl.
320 */
321 static void
322 __ia32_insert_pp(struct partial_page_list *ppl, struct partial_page *pp,
323 struct partial_page *prev, struct rb_node **rb_link,
324 struct rb_node *rb_parent)
325 {
326 /* link list */
327 if (prev) {
328 pp->next = prev->next;
329 prev->next = pp;
330 } else {
331 ppl->pp_head = pp;
332 if (rb_parent)
333 pp->next = rb_entry(rb_parent,
334 struct partial_page, pp_rb);
335 else
336 pp->next = NULL;
337 }
338
339 /* link rb */
340 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
341 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
342
343 ppl->pp_hint = pp;
344 }
345
346 /*
347 * delete @pp from partial page list @ppl.
348 */
349 static void
350 __ia32_delete_pp(struct partial_page_list *ppl, struct partial_page *pp,
351 struct partial_page *prev)
352 {
353 if (prev) {
354 prev->next = pp->next;
355 if (ppl->pp_hint == pp)
356 ppl->pp_hint = prev;
357 } else {
358 ppl->pp_head = pp->next;
359 if (ppl->pp_hint == pp)
360 ppl->pp_hint = pp->next;
361 }
362 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
363 kmem_cache_free(partial_page_cachep, pp);
364 }
365
366 static struct partial_page *
367 __pp_prev(struct partial_page *pp)
368 {
369 struct rb_node *prev = rb_prev(&pp->pp_rb);
370 if (prev)
371 return rb_entry(prev, struct partial_page, pp_rb);
372 else
373 return NULL;
374 }
375
376 /*
377 * Delete partial pages with address between @start and @end.
378 * @start and @end are page aligned.
379 */
380 static void
381 __ia32_delete_pp_range(unsigned int start, unsigned int end)
382 {
383 struct partial_page *pp, *prev;
384 struct rb_node **rb_link, *rb_parent;
385
386 if (start >= end)
387 return;
388
389 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
390 &rb_link, &rb_parent);
391 if (pp)
392 prev = __pp_prev(pp);
393 else {
394 if (prev)
395 pp = prev->next;
396 else
397 pp = current->thread.ppl->pp_head;
398 }
399
400 while (pp && pp->base < end) {
401 struct partial_page *tmp = pp->next;
402 __ia32_delete_pp(current->thread.ppl, pp, prev);
403 pp = tmp;
404 }
405 }
406
407 /*
408 * Set the range between @start and @end in bitmap.
409 * @start and @end should be IA32 page aligned and in the same IA64 page.
410 */
411 static int
412 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
413 {
414 struct partial_page *pp, *prev;
415 struct rb_node ** rb_link, *rb_parent;
416 unsigned int pstart, start_bit, end_bit, i;
417
418 pstart = PAGE_START(start);
419 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
420 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
421 if (end_bit == 0)
422 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
423 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
424 &rb_link, &rb_parent);
425 if (pp) {
426 for (i = start_bit; i < end_bit; i++)
427 set_bit(i, &pp->bitmap);
428 /*
429 * Check: if this partial page has been set to a full page,
430 * then delete it.
431 */
432 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
433 PAGE_SIZE/IA32_PAGE_SIZE) {
434 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
435 }
436 return 0;
437 }
438
439 /*
440 * MAP_FIXED may lead to overlapping mmap.
441 * In this case, the requested mmap area may already mmaped as a full
442 * page. So check vma before adding a new partial page.
443 */
444 if (flags & MAP_FIXED) {
445 struct vm_area_struct *vma = find_vma(current->mm, pstart);
446 if (vma && vma->vm_start <= pstart)
447 return 0;
448 }
449
450 /* new a partial_page */
451 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
452 if (!pp)
453 return -ENOMEM;
454 pp->base = pstart;
455 pp->bitmap = 0;
456 for (i=start_bit; i<end_bit; i++)
457 set_bit(i, &(pp->bitmap));
458 pp->next = NULL;
459 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
460 return 0;
461 }
462
463 /*
464 * @start and @end should be IA32 page aligned, but don't need to be in the
465 * same IA64 page. Split @start and @end to make sure they're in the same IA64
466 * page, then call __ia32_set_pp().
467 */
468 static void
469 ia32_set_pp(unsigned int start, unsigned int end, int flags)
470 {
471 down_write(&current->mm->mmap_sem);
472 if (flags & MAP_FIXED) {
473 /*
474 * MAP_FIXED may lead to overlapping mmap. When this happens,
475 * a series of complete IA64 pages results in deletion of
476 * old partial pages in that range.
477 */
478 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
479 }
480
481 if (end < PAGE_ALIGN(start)) {
482 __ia32_set_pp(start, end, flags);
483 } else {
484 if (offset_in_page(start))
485 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
486 if (offset_in_page(end))
487 __ia32_set_pp(PAGE_START(end), end, flags);
488 }
489 up_write(&current->mm->mmap_sem);
490 }
491
492 /*
493 * Unset the range between @start and @end in bitmap.
494 * @start and @end should be IA32 page aligned and in the same IA64 page.
495 * After doing that, if the bitmap is 0, then free the page and return 1,
496 * else return 0;
497 * If not find the partial page in the list, then
498 * If the vma exists, then the full page is set to a partial page;
499 * Else return -ENOMEM.
500 */
501 static int
502 __ia32_unset_pp(unsigned int start, unsigned int end)
503 {
504 struct partial_page *pp, *prev;
505 struct rb_node ** rb_link, *rb_parent;
506 unsigned int pstart, start_bit, end_bit, i;
507 struct vm_area_struct *vma;
508
509 pstart = PAGE_START(start);
510 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
511 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
512 if (end_bit == 0)
513 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
514
515 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
516 &rb_link, &rb_parent);
517 if (pp) {
518 for (i = start_bit; i < end_bit; i++)
519 clear_bit(i, &pp->bitmap);
520 if (pp->bitmap == 0) {
521 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
522 return 1;
523 }
524 return 0;
525 }
526
527 vma = find_vma(current->mm, pstart);
528 if (!vma || vma->vm_start > pstart) {
529 return -ENOMEM;
530 }
531
532 /* new a partial_page */
533 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
534 if (!pp)
535 return -ENOMEM;
536 pp->base = pstart;
537 pp->bitmap = 0;
538 for (i = 0; i < start_bit; i++)
539 set_bit(i, &(pp->bitmap));
540 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
541 set_bit(i, &(pp->bitmap));
542 pp->next = NULL;
543 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
544 return 0;
545 }
546
547 /*
548 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
549 * __ia32_delete_pp_range(). Unset possible partial pages by calling
550 * __ia32_unset_pp().
551 * The returned value see __ia32_unset_pp().
552 */
553 static int
554 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
555 {
556 unsigned int start = *startp, end = *endp;
557 int ret = 0;
558
559 down_write(&current->mm->mmap_sem);
560
561 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
562
563 if (end < PAGE_ALIGN(start)) {
564 ret = __ia32_unset_pp(start, end);
565 if (ret == 1) {
566 *startp = PAGE_START(start);
567 *endp = PAGE_ALIGN(end);
568 }
569 if (ret == 0) {
570 /* to shortcut sys_munmap() in sys32_munmap() */
571 *startp = PAGE_START(start);
572 *endp = PAGE_START(end);
573 }
574 } else {
575 if (offset_in_page(start)) {
576 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
577 if (ret == 1)
578 *startp = PAGE_START(start);
579 if (ret == 0)
580 *startp = PAGE_ALIGN(start);
581 if (ret < 0)
582 goto out;
583 }
584 if (offset_in_page(end)) {
585 ret = __ia32_unset_pp(PAGE_START(end), end);
586 if (ret == 1)
587 *endp = PAGE_ALIGN(end);
588 if (ret == 0)
589 *endp = PAGE_START(end);
590 }
591 }
592
593 out:
594 up_write(&current->mm->mmap_sem);
595 return ret;
596 }
597
598 /*
599 * Compare the range between @start and @end with bitmap in partial page.
600 * @start and @end should be IA32 page aligned and in the same IA64 page.
601 */
602 static int
603 __ia32_compare_pp(unsigned int start, unsigned int end)
604 {
605 struct partial_page *pp, *prev;
606 struct rb_node ** rb_link, *rb_parent;
607 unsigned int pstart, start_bit, end_bit, size;
608 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
609
610 pstart = PAGE_START(start);
611
612 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
613 &rb_link, &rb_parent);
614 if (!pp)
615 return 1;
616
617 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
618 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
619 size = sizeof(pp->bitmap) * 8;
620 first_bit = find_first_bit(&pp->bitmap, size);
621 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
622 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
623 /* exceeds the first range in bitmap */
624 return -ENOMEM;
625 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
626 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
627 if ((next_zero_bit < first_bit) && (first_bit < size))
628 return 1; /* has next range */
629 else
630 return 0; /* no next range */
631 } else
632 return 1;
633 }
634
635 /*
636 * @start and @end should be IA32 page aligned, but don't need to be in the
637 * same IA64 page. Split @start and @end to make sure they're in the same IA64
638 * page, then call __ia32_compare_pp().
639 *
640 * Take this as example: the range is the 1st and 2nd 4K page.
641 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
642 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
643 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
644 * bitmap = 00000101.
645 */
646 static int
647 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
648 {
649 unsigned int start = *startp, end = *endp;
650 int retval = 0;
651
652 down_write(&current->mm->mmap_sem);
653
654 if (end < PAGE_ALIGN(start)) {
655 retval = __ia32_compare_pp(start, end);
656 if (retval == 0) {
657 *startp = PAGE_START(start);
658 *endp = PAGE_ALIGN(end);
659 }
660 } else {
661 if (offset_in_page(start)) {
662 retval = __ia32_compare_pp(start,
663 PAGE_ALIGN(start));
664 if (retval == 0)
665 *startp = PAGE_START(start);
666 if (retval < 0)
667 goto out;
668 }
669 if (offset_in_page(end)) {
670 retval = __ia32_compare_pp(PAGE_START(end), end);
671 if (retval == 0)
672 *endp = PAGE_ALIGN(end);
673 }
674 }
675
676 out:
677 up_write(&current->mm->mmap_sem);
678 return retval;
679 }
680
681 static void
682 __ia32_drop_pp_list(struct partial_page_list *ppl)
683 {
684 struct partial_page *pp = ppl->pp_head;
685
686 while (pp) {
687 struct partial_page *next = pp->next;
688 kmem_cache_free(partial_page_cachep, pp);
689 pp = next;
690 }
691
692 kfree(ppl);
693 }
694
695 void
696 ia32_drop_partial_page_list(struct task_struct *task)
697 {
698 struct partial_page_list* ppl = task->thread.ppl;
699
700 if (ppl && atomic_dec_and_test(&ppl->pp_count))
701 __ia32_drop_pp_list(ppl);
702 }
703
704 /*
705 * Copy current->thread.ppl to ppl (already initialized).
706 */
707 static int
708 __ia32_copy_pp_list(struct partial_page_list *ppl)
709 {
710 struct partial_page *pp, *tmp, *prev;
711 struct rb_node **rb_link, *rb_parent;
712
713 ppl->pp_head = NULL;
714 ppl->pp_hint = NULL;
715 ppl->ppl_rb = RB_ROOT;
716 rb_link = &ppl->ppl_rb.rb_node;
717 rb_parent = NULL;
718 prev = NULL;
719
720 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
721 tmp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
722 if (!tmp)
723 return -ENOMEM;
724 *tmp = *pp;
725 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
726 prev = tmp;
727 rb_link = &tmp->pp_rb.rb_right;
728 rb_parent = &tmp->pp_rb;
729 }
730 return 0;
731 }
732
733 int
734 ia32_copy_partial_page_list(struct task_struct *p, unsigned long clone_flags)
735 {
736 int retval = 0;
737
738 if (clone_flags & CLONE_VM) {
739 atomic_inc(&current->thread.ppl->pp_count);
740 p->thread.ppl = current->thread.ppl;
741 } else {
742 p->thread.ppl = ia32_init_pp_list();
743 if (!p->thread.ppl)
744 return -ENOMEM;
745 down_write(&current->mm->mmap_sem);
746 {
747 retval = __ia32_copy_pp_list(p->thread.ppl);
748 }
749 up_write(&current->mm->mmap_sem);
750 }
751
752 return retval;
753 }
754
755 static unsigned long
756 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
757 loff_t off)
758 {
759 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
760 struct inode *inode;
761 loff_t poff;
762
763 end = start + len;
764 pstart = PAGE_START(start);
765 pend = PAGE_ALIGN(end);
766
767 if (flags & MAP_FIXED) {
768 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
769 if (start > pstart) {
770 if (flags & MAP_SHARED)
771 printk(KERN_INFO
772 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
773 current->comm, current->pid, start);
774 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
775 off);
776 if (IS_ERR((void *) ret))
777 return ret;
778 pstart += PAGE_SIZE;
779 if (pstart >= pend)
780 goto out; /* done */
781 }
782 if (end < pend) {
783 if (flags & MAP_SHARED)
784 printk(KERN_INFO
785 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
786 current->comm, current->pid, end);
787 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
788 (off + len) - offset_in_page(end));
789 if (IS_ERR((void *) ret))
790 return ret;
791 pend -= PAGE_SIZE;
792 if (pstart >= pend)
793 goto out; /* done */
794 }
795 } else {
796 /*
797 * If a start address was specified, use it if the entire rounded out area
798 * is available.
799 */
800 if (start && !pstart)
801 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
802 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
803 if (tmp != pstart) {
804 pstart = tmp;
805 start = pstart + offset_in_page(off); /* make start congruent with off */
806 end = start + len;
807 pend = PAGE_ALIGN(end);
808 }
809 }
810
811 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
812 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
813
814 if ((flags & MAP_SHARED) && !is_congruent)
815 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
816 "(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off);
817
818 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
819 is_congruent ? "congruent" : "not congruent", poff);
820
821 down_write(&current->mm->mmap_sem);
822 {
823 if (!(flags & MAP_ANONYMOUS) && is_congruent)
824 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
825 else
826 ret = do_mmap(NULL, pstart, pend - pstart,
827 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
828 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
829 }
830 up_write(&current->mm->mmap_sem);
831
832 if (IS_ERR((void *) ret))
833 return ret;
834
835 if (!is_congruent) {
836 /* read the file contents */
837 inode = file->f_dentry->d_inode;
838 if (!inode->i_fop || !file->f_op->read
839 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
840 < 0))
841 {
842 sys_munmap(pstart, pend - pstart);
843 return -EINVAL;
844 }
845 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
846 return -EINVAL;
847 }
848
849 if (!(flags & MAP_FIXED))
850 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
851 out:
852 return start;
853 }
854
855 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
856
857 static inline unsigned int
858 get_prot32 (unsigned int prot)
859 {
860 if (prot & PROT_WRITE)
861 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
862 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
863 else if (prot & (PROT_READ | PROT_EXEC))
864 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
865 prot |= (PROT_READ | PROT_EXEC);
866
867 return prot;
868 }
869
870 unsigned long
871 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
872 loff_t offset)
873 {
874 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
875 file, addr, len, prot, flags, offset);
876
877 if (file && (!file->f_op || !file->f_op->mmap))
878 return -ENODEV;
879
880 len = IA32_PAGE_ALIGN(len);
881 if (len == 0)
882 return addr;
883
884 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
885 {
886 if (flags & MAP_FIXED)
887 return -ENOMEM;
888 else
889 return -EINVAL;
890 }
891
892 if (OFFSET4K(offset))
893 return -EINVAL;
894
895 prot = get_prot32(prot);
896
897 #if PAGE_SHIFT > IA32_PAGE_SHIFT
898 mutex_lock(&ia32_mmap_mutex);
899 {
900 addr = emulate_mmap(file, addr, len, prot, flags, offset);
901 }
902 mutex_unlock(&ia32_mmap_mutex);
903 #else
904 down_write(&current->mm->mmap_sem);
905 {
906 addr = do_mmap(file, addr, len, prot, flags, offset);
907 }
908 up_write(&current->mm->mmap_sem);
909 #endif
910 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
911 return addr;
912 }
913
914 /*
915 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
916 * system calls used a memory block for parameter passing..
917 */
918
919 struct mmap_arg_struct {
920 unsigned int addr;
921 unsigned int len;
922 unsigned int prot;
923 unsigned int flags;
924 unsigned int fd;
925 unsigned int offset;
926 };
927
928 asmlinkage long
929 sys32_mmap (struct mmap_arg_struct __user *arg)
930 {
931 struct mmap_arg_struct a;
932 struct file *file = NULL;
933 unsigned long addr;
934 int flags;
935
936 if (copy_from_user(&a, arg, sizeof(a)))
937 return -EFAULT;
938
939 if (OFFSET4K(a.offset))
940 return -EINVAL;
941
942 flags = a.flags;
943
944 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
945 if (!(flags & MAP_ANONYMOUS)) {
946 file = fget(a.fd);
947 if (!file)
948 return -EBADF;
949 }
950
951 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
952
953 if (file)
954 fput(file);
955 return addr;
956 }
957
958 asmlinkage long
959 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
960 unsigned int fd, unsigned int pgoff)
961 {
962 struct file *file = NULL;
963 unsigned long retval;
964
965 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
966 if (!(flags & MAP_ANONYMOUS)) {
967 file = fget(fd);
968 if (!file)
969 return -EBADF;
970 }
971
972 retval = ia32_do_mmap(file, addr, len, prot, flags,
973 (unsigned long) pgoff << IA32_PAGE_SHIFT);
974
975 if (file)
976 fput(file);
977 return retval;
978 }
979
980 asmlinkage long
981 sys32_munmap (unsigned int start, unsigned int len)
982 {
983 unsigned int end = start + len;
984 long ret;
985
986 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
987 ret = sys_munmap(start, end - start);
988 #else
989 if (OFFSET4K(start))
990 return -EINVAL;
991
992 end = IA32_PAGE_ALIGN(end);
993 if (start >= end)
994 return -EINVAL;
995
996 ret = ia32_unset_pp(&start, &end);
997 if (ret < 0)
998 return ret;
999
1000 if (start >= end)
1001 return 0;
1002
1003 mutex_lock(&ia32_mmap_mutex);
1004 ret = sys_munmap(start, end - start);
1005 mutex_unlock(&ia32_mmap_mutex);
1006 #endif
1007 return ret;
1008 }
1009
1010 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1011
1012 /*
1013 * When mprotect()ing a partial page, we set the permission to the union of the old
1014 * settings and the new settings. In other words, it's only possible to make access to a
1015 * partial page less restrictive.
1016 */
1017 static long
1018 mprotect_subpage (unsigned long address, int new_prot)
1019 {
1020 int old_prot;
1021 struct vm_area_struct *vma;
1022
1023 if (new_prot == PROT_NONE)
1024 return 0; /* optimize case where nothing changes... */
1025 vma = find_vma(current->mm, address);
1026 old_prot = get_page_prot(vma, address);
1027 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
1028 }
1029
1030 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
1031
1032 asmlinkage long
1033 sys32_mprotect (unsigned int start, unsigned int len, int prot)
1034 {
1035 unsigned int end = start + len;
1036 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1037 long retval = 0;
1038 #endif
1039
1040 prot = get_prot32(prot);
1041
1042 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1043 return sys_mprotect(start, end - start, prot);
1044 #else
1045 if (OFFSET4K(start))
1046 return -EINVAL;
1047
1048 end = IA32_PAGE_ALIGN(end);
1049 if (end < start)
1050 return -EINVAL;
1051
1052 retval = ia32_compare_pp(&start, &end);
1053
1054 if (retval < 0)
1055 return retval;
1056
1057 mutex_lock(&ia32_mmap_mutex);
1058 {
1059 if (offset_in_page(start)) {
1060 /* start address is 4KB aligned but not page aligned. */
1061 retval = mprotect_subpage(PAGE_START(start), prot);
1062 if (retval < 0)
1063 goto out;
1064
1065 start = PAGE_ALIGN(start);
1066 if (start >= end)
1067 goto out; /* retval is already zero... */
1068 }
1069
1070 if (offset_in_page(end)) {
1071 /* end address is 4KB aligned but not page aligned. */
1072 retval = mprotect_subpage(PAGE_START(end), prot);
1073 if (retval < 0)
1074 goto out;
1075
1076 end = PAGE_START(end);
1077 }
1078 retval = sys_mprotect(start, end - start, prot);
1079 }
1080 out:
1081 mutex_unlock(&ia32_mmap_mutex);
1082 return retval;
1083 #endif
1084 }
1085
1086 asmlinkage long
1087 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1088 unsigned int flags, unsigned int new_addr)
1089 {
1090 long ret;
1091
1092 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1093 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1094 #else
1095 unsigned int old_end, new_end;
1096
1097 if (OFFSET4K(addr))
1098 return -EINVAL;
1099
1100 old_len = IA32_PAGE_ALIGN(old_len);
1101 new_len = IA32_PAGE_ALIGN(new_len);
1102 old_end = addr + old_len;
1103 new_end = addr + new_len;
1104
1105 if (!new_len)
1106 return -EINVAL;
1107
1108 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1109 return -EINVAL;
1110
1111 if (old_len >= new_len) {
1112 ret = sys32_munmap(addr + new_len, old_len - new_len);
1113 if (ret && old_len != new_len)
1114 return ret;
1115 ret = addr;
1116 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1117 return ret;
1118 old_len = new_len;
1119 }
1120
1121 addr = PAGE_START(addr);
1122 old_len = PAGE_ALIGN(old_end) - addr;
1123 new_len = PAGE_ALIGN(new_end) - addr;
1124
1125 mutex_lock(&ia32_mmap_mutex);
1126 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1127 mutex_unlock(&ia32_mmap_mutex);
1128
1129 if ((ret >= 0) && (old_len < new_len)) {
1130 /* mremap expanded successfully */
1131 ia32_set_pp(old_end, new_end, flags);
1132 }
1133 #endif
1134 return ret;
1135 }
1136
1137 asmlinkage long
1138 sys32_pipe (int __user *fd)
1139 {
1140 int retval;
1141 int fds[2];
1142
1143 retval = do_pipe(fds);
1144 if (retval)
1145 goto out;
1146 if (copy_to_user(fd, fds, sizeof(fds)))
1147 retval = -EFAULT;
1148 out:
1149 return retval;
1150 }
1151
1152 static inline long
1153 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1154 {
1155 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1156 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1157 }
1158
1159 static inline long
1160 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1161 {
1162 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1163 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1164 }
1165
1166 asmlinkage unsigned long
1167 sys32_alarm (unsigned int seconds)
1168 {
1169 return alarm_setitimer(seconds);
1170 }
1171
1172 /* Translations due to time_t size differences. Which affects all
1173 sorts of things, like timeval and itimerval. */
1174
1175 extern struct timezone sys_tz;
1176
1177 asmlinkage long
1178 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1179 {
1180 if (tv) {
1181 struct timeval ktv;
1182 do_gettimeofday(&ktv);
1183 if (put_tv32(tv, &ktv))
1184 return -EFAULT;
1185 }
1186 if (tz) {
1187 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1188 return -EFAULT;
1189 }
1190 return 0;
1191 }
1192
1193 asmlinkage long
1194 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1195 {
1196 struct timeval ktv;
1197 struct timespec kts;
1198 struct timezone ktz;
1199
1200 if (tv) {
1201 if (get_tv32(&ktv, tv))
1202 return -EFAULT;
1203 kts.tv_sec = ktv.tv_sec;
1204 kts.tv_nsec = ktv.tv_usec * 1000;
1205 }
1206 if (tz) {
1207 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1208 return -EFAULT;
1209 }
1210
1211 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1212 }
1213
1214 struct getdents32_callback {
1215 struct compat_dirent __user *current_dir;
1216 struct compat_dirent __user *previous;
1217 int count;
1218 int error;
1219 };
1220
1221 struct readdir32_callback {
1222 struct old_linux32_dirent __user * dirent;
1223 int count;
1224 };
1225
1226 static int
1227 filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino,
1228 unsigned int d_type)
1229 {
1230 struct compat_dirent __user * dirent;
1231 struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
1232 int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4);
1233
1234 buf->error = -EINVAL; /* only used if we fail.. */
1235 if (reclen > buf->count)
1236 return -EINVAL;
1237 buf->error = -EFAULT; /* only used if we fail.. */
1238 dirent = buf->previous;
1239 if (dirent)
1240 if (put_user(offset, &dirent->d_off))
1241 return -EFAULT;
1242 dirent = buf->current_dir;
1243 buf->previous = dirent;
1244 if (put_user(ino, &dirent->d_ino)
1245 || put_user(reclen, &dirent->d_reclen)
1246 || copy_to_user(dirent->d_name, name, namlen)
1247 || put_user(0, dirent->d_name + namlen))
1248 return -EFAULT;
1249 dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen);
1250 buf->current_dir = dirent;
1251 buf->count -= reclen;
1252 return 0;
1253 }
1254
1255 asmlinkage long
1256 sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count)
1257 {
1258 struct file * file;
1259 struct compat_dirent __user * lastdirent;
1260 struct getdents32_callback buf;
1261 int error;
1262
1263 error = -EBADF;
1264 file = fget(fd);
1265 if (!file)
1266 goto out;
1267
1268 buf.current_dir = dirent;
1269 buf.previous = NULL;
1270 buf.count = count;
1271 buf.error = 0;
1272
1273 error = vfs_readdir(file, filldir32, &buf);
1274 if (error < 0)
1275 goto out_putf;
1276 error = buf.error;
1277 lastdirent = buf.previous;
1278 if (lastdirent) {
1279 error = -EINVAL;
1280 if (put_user(file->f_pos, &lastdirent->d_off))
1281 goto out_putf;
1282 error = count - buf.count;
1283 }
1284
1285 out_putf:
1286 fput(file);
1287 out:
1288 return error;
1289 }
1290
1291 static int
1292 fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino,
1293 unsigned int d_type)
1294 {
1295 struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
1296 struct old_linux32_dirent __user * dirent;
1297
1298 if (buf->count)
1299 return -EINVAL;
1300 buf->count++;
1301 dirent = buf->dirent;
1302 if (put_user(ino, &dirent->d_ino)
1303 || put_user(offset, &dirent->d_offset)
1304 || put_user(namlen, &dirent->d_namlen)
1305 || copy_to_user(dirent->d_name, name, namlen)
1306 || put_user(0, dirent->d_name + namlen))
1307 return -EFAULT;
1308 return 0;
1309 }
1310
1311 asmlinkage long
1312 sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count)
1313 {
1314 int error;
1315 struct file * file;
1316 struct readdir32_callback buf;
1317
1318 error = -EBADF;
1319 file = fget(fd);
1320 if (!file)
1321 goto out;
1322
1323 buf.count = 0;
1324 buf.dirent = dirent;
1325
1326 error = vfs_readdir(file, fillonedir32, &buf);
1327 if (error >= 0)
1328 error = buf.count;
1329 fput(file);
1330 out:
1331 return error;
1332 }
1333
1334 struct sel_arg_struct {
1335 unsigned int n;
1336 unsigned int inp;
1337 unsigned int outp;
1338 unsigned int exp;
1339 unsigned int tvp;
1340 };
1341
1342 asmlinkage long
1343 sys32_old_select (struct sel_arg_struct __user *arg)
1344 {
1345 struct sel_arg_struct a;
1346
1347 if (copy_from_user(&a, arg, sizeof(a)))
1348 return -EFAULT;
1349 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1350 compat_ptr(a.exp), compat_ptr(a.tvp));
1351 }
1352
1353 #define SEMOP 1
1354 #define SEMGET 2
1355 #define SEMCTL 3
1356 #define SEMTIMEDOP 4
1357 #define MSGSND 11
1358 #define MSGRCV 12
1359 #define MSGGET 13
1360 #define MSGCTL 14
1361 #define SHMAT 21
1362 #define SHMDT 22
1363 #define SHMGET 23
1364 #define SHMCTL 24
1365
1366 asmlinkage long
1367 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1368 {
1369 int version;
1370
1371 version = call >> 16; /* hack for backward compatibility */
1372 call &= 0xffff;
1373
1374 switch (call) {
1375 case SEMTIMEDOP:
1376 if (fifth)
1377 return compat_sys_semtimedop(first, compat_ptr(ptr),
1378 second, compat_ptr(fifth));
1379 /* else fall through for normal semop() */
1380 case SEMOP:
1381 /* struct sembuf is the same on 32 and 64bit :)) */
1382 return sys_semtimedop(first, compat_ptr(ptr), second,
1383 NULL);
1384 case SEMGET:
1385 return sys_semget(first, second, third);
1386 case SEMCTL:
1387 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1388
1389 case MSGSND:
1390 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1391 case MSGRCV:
1392 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1393 case MSGGET:
1394 return sys_msgget((key_t) first, second);
1395 case MSGCTL:
1396 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1397
1398 case SHMAT:
1399 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1400 break;
1401 case SHMDT:
1402 return sys_shmdt(compat_ptr(ptr));
1403 case SHMGET:
1404 return sys_shmget(first, (unsigned)second, third);
1405 case SHMCTL:
1406 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1407
1408 default:
1409 return -ENOSYS;
1410 }
1411 return -EINVAL;
1412 }
1413
1414 asmlinkage long
1415 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1416 struct compat_rusage *ru);
1417
1418 asmlinkage long
1419 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1420 {
1421 return compat_sys_wait4(pid, stat_addr, options, NULL);
1422 }
1423
1424 static unsigned int
1425 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1426 {
1427 size_t copied;
1428 unsigned int ret;
1429
1430 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1431 return (copied != sizeof(ret)) ? -EIO : 0;
1432 }
1433
1434 static unsigned int
1435 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1436 {
1437
1438 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1439 return -EIO;
1440 return 0;
1441 }
1442
1443 /*
1444 * The order in which registers are stored in the ptrace regs structure
1445 */
1446 #define PT_EBX 0
1447 #define PT_ECX 1
1448 #define PT_EDX 2
1449 #define PT_ESI 3
1450 #define PT_EDI 4
1451 #define PT_EBP 5
1452 #define PT_EAX 6
1453 #define PT_DS 7
1454 #define PT_ES 8
1455 #define PT_FS 9
1456 #define PT_GS 10
1457 #define PT_ORIG_EAX 11
1458 #define PT_EIP 12
1459 #define PT_CS 13
1460 #define PT_EFL 14
1461 #define PT_UESP 15
1462 #define PT_SS 16
1463
1464 static unsigned int
1465 getreg (struct task_struct *child, int regno)
1466 {
1467 struct pt_regs *child_regs;
1468
1469 child_regs = task_pt_regs(child);
1470 switch (regno / sizeof(int)) {
1471 case PT_EBX: return child_regs->r11;
1472 case PT_ECX: return child_regs->r9;
1473 case PT_EDX: return child_regs->r10;
1474 case PT_ESI: return child_regs->r14;
1475 case PT_EDI: return child_regs->r15;
1476 case PT_EBP: return child_regs->r13;
1477 case PT_EAX: return child_regs->r8;
1478 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1479 case PT_EIP: return child_regs->cr_iip;
1480 case PT_UESP: return child_regs->r12;
1481 case PT_EFL: return child->thread.eflag;
1482 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1483 return __USER_DS;
1484 case PT_CS: return __USER_CS;
1485 default:
1486 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1487 break;
1488 }
1489 return 0;
1490 }
1491
1492 static void
1493 putreg (struct task_struct *child, int regno, unsigned int value)
1494 {
1495 struct pt_regs *child_regs;
1496
1497 child_regs = task_pt_regs(child);
1498 switch (regno / sizeof(int)) {
1499 case PT_EBX: child_regs->r11 = value; break;
1500 case PT_ECX: child_regs->r9 = value; break;
1501 case PT_EDX: child_regs->r10 = value; break;
1502 case PT_ESI: child_regs->r14 = value; break;
1503 case PT_EDI: child_regs->r15 = value; break;
1504 case PT_EBP: child_regs->r13 = value; break;
1505 case PT_EAX: child_regs->r8 = value; break;
1506 case PT_ORIG_EAX: child_regs->r1 = value; break;
1507 case PT_EIP: child_regs->cr_iip = value; break;
1508 case PT_UESP: child_regs->r12 = value; break;
1509 case PT_EFL: child->thread.eflag = value; break;
1510 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1511 if (value != __USER_DS)
1512 printk(KERN_ERR
1513 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1514 regno, value);
1515 break;
1516 case PT_CS:
1517 if (value != __USER_CS)
1518 printk(KERN_ERR
1519 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1520 regno, value);
1521 break;
1522 default:
1523 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1524 break;
1525 }
1526 }
1527
1528 static void
1529 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1530 struct switch_stack *swp, int tos)
1531 {
1532 struct _fpreg_ia32 *f;
1533 char buf[32];
1534
1535 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1536 if ((regno += tos) >= 8)
1537 regno -= 8;
1538 switch (regno) {
1539 case 0:
1540 ia64f2ia32f(f, &ptp->f8);
1541 break;
1542 case 1:
1543 ia64f2ia32f(f, &ptp->f9);
1544 break;
1545 case 2:
1546 ia64f2ia32f(f, &ptp->f10);
1547 break;
1548 case 3:
1549 ia64f2ia32f(f, &ptp->f11);
1550 break;
1551 case 4:
1552 case 5:
1553 case 6:
1554 case 7:
1555 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1556 break;
1557 }
1558 copy_to_user(reg, f, sizeof(*reg));
1559 }
1560
1561 static void
1562 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1563 struct switch_stack *swp, int tos)
1564 {
1565
1566 if ((regno += tos) >= 8)
1567 regno -= 8;
1568 switch (regno) {
1569 case 0:
1570 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1571 break;
1572 case 1:
1573 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1574 break;
1575 case 2:
1576 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1577 break;
1578 case 3:
1579 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1580 break;
1581 case 4:
1582 case 5:
1583 case 6:
1584 case 7:
1585 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1586 break;
1587 }
1588 return;
1589 }
1590
1591 int
1592 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1593 {
1594 struct switch_stack *swp;
1595 struct pt_regs *ptp;
1596 int i, tos;
1597
1598 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1599 return -EFAULT;
1600
1601 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1602 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1603 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1604 __put_user(tsk->thread.fir, &save->fip);
1605 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1606 __put_user(tsk->thread.fdr, &save->foo);
1607 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1608
1609 /*
1610 * Stack frames start with 16-bytes of temp space
1611 */
1612 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1613 ptp = task_pt_regs(tsk);
1614 tos = (tsk->thread.fsr >> 11) & 7;
1615 for (i = 0; i < 8; i++)
1616 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1617 return 0;
1618 }
1619
1620 static int
1621 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1622 {
1623 struct switch_stack *swp;
1624 struct pt_regs *ptp;
1625 int i, tos;
1626 unsigned int fsrlo, fsrhi, num32;
1627
1628 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1629 return(-EFAULT);
1630
1631 __get_user(num32, (unsigned int __user *)&save->cwd);
1632 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1633 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1634 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1635 num32 = (fsrhi << 16) | fsrlo;
1636 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1637 __get_user(num32, (unsigned int __user *)&save->fip);
1638 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1639 __get_user(num32, (unsigned int __user *)&save->foo);
1640 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1641
1642 /*
1643 * Stack frames start with 16-bytes of temp space
1644 */
1645 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1646 ptp = task_pt_regs(tsk);
1647 tos = (tsk->thread.fsr >> 11) & 7;
1648 for (i = 0; i < 8; i++)
1649 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1650 return 0;
1651 }
1652
1653 int
1654 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1655 {
1656 struct switch_stack *swp;
1657 struct pt_regs *ptp;
1658 int i, tos;
1659 unsigned long mxcsr=0;
1660 unsigned long num128[2];
1661
1662 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1663 return -EFAULT;
1664
1665 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1666 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1667 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1668 __put_user(tsk->thread.fir, &save->fip);
1669 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1670 __put_user(tsk->thread.fdr, &save->foo);
1671 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1672
1673 /*
1674 * Stack frames start with 16-bytes of temp space
1675 */
1676 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1677 ptp = task_pt_regs(tsk);
1678 tos = (tsk->thread.fsr >> 11) & 7;
1679 for (i = 0; i < 8; i++)
1680 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1681
1682 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1683 __put_user(mxcsr & 0xffff, &save->mxcsr);
1684 for (i = 0; i < 8; i++) {
1685 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1686 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1687 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1688 }
1689 return 0;
1690 }
1691
1692 static int
1693 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1694 {
1695 struct switch_stack *swp;
1696 struct pt_regs *ptp;
1697 int i, tos;
1698 unsigned int fsrlo, fsrhi, num32;
1699 int mxcsr;
1700 unsigned long num64;
1701 unsigned long num128[2];
1702
1703 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1704 return(-EFAULT);
1705
1706 __get_user(num32, (unsigned int __user *)&save->cwd);
1707 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1708 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1709 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1710 num32 = (fsrhi << 16) | fsrlo;
1711 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1712 __get_user(num32, (unsigned int __user *)&save->fip);
1713 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1714 __get_user(num32, (unsigned int __user *)&save->foo);
1715 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1716
1717 /*
1718 * Stack frames start with 16-bytes of temp space
1719 */
1720 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1721 ptp = task_pt_regs(tsk);
1722 tos = (tsk->thread.fsr >> 11) & 7;
1723 for (i = 0; i < 8; i++)
1724 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1725
1726 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1727 num64 = mxcsr & 0xff10;
1728 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1729 num64 = mxcsr & 0x3f;
1730 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1731
1732 for (i = 0; i < 8; i++) {
1733 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1734 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1735 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1736 }
1737 return 0;
1738 }
1739
1740 asmlinkage long
1741 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1742 {
1743 struct task_struct *child;
1744 unsigned int value, tmp;
1745 long i, ret;
1746
1747 lock_kernel();
1748 if (request == PTRACE_TRACEME) {
1749 ret = ptrace_traceme();
1750 goto out;
1751 }
1752
1753 child = ptrace_get_task_struct(pid);
1754 if (IS_ERR(child)) {
1755 ret = PTR_ERR(child);
1756 goto out;
1757 }
1758
1759 if (request == PTRACE_ATTACH) {
1760 ret = sys_ptrace(request, pid, addr, data);
1761 goto out_tsk;
1762 }
1763
1764 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1765 if (ret < 0)
1766 goto out_tsk;
1767
1768 switch (request) {
1769 case PTRACE_PEEKTEXT:
1770 case PTRACE_PEEKDATA: /* read word at location addr */
1771 ret = ia32_peek(child, addr, &value);
1772 if (ret == 0)
1773 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1774 else
1775 ret = -EIO;
1776 goto out_tsk;
1777
1778 case PTRACE_POKETEXT:
1779 case PTRACE_POKEDATA: /* write the word at location addr */
1780 ret = ia32_poke(child, addr, data);
1781 goto out_tsk;
1782
1783 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1784 ret = -EIO;
1785 if ((addr & 3) || addr > 17*sizeof(int))
1786 break;
1787
1788 tmp = getreg(child, addr);
1789 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1790 ret = 0;
1791 break;
1792
1793 case PTRACE_POKEUSR: /* write word at addr in USER area */
1794 ret = -EIO;
1795 if ((addr & 3) || addr > 17*sizeof(int))
1796 break;
1797
1798 putreg(child, addr, data);
1799 ret = 0;
1800 break;
1801
1802 case IA32_PTRACE_GETREGS:
1803 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1804 ret = -EIO;
1805 break;
1806 }
1807 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1808 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1809 data += sizeof(int);
1810 }
1811 ret = 0;
1812 break;
1813
1814 case IA32_PTRACE_SETREGS:
1815 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1816 ret = -EIO;
1817 break;
1818 }
1819 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1820 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1821 putreg(child, i, tmp);
1822 data += sizeof(int);
1823 }
1824 ret = 0;
1825 break;
1826
1827 case IA32_PTRACE_GETFPREGS:
1828 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1829 compat_ptr(data));
1830 break;
1831
1832 case IA32_PTRACE_GETFPXREGS:
1833 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1834 compat_ptr(data));
1835 break;
1836
1837 case IA32_PTRACE_SETFPREGS:
1838 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1839 compat_ptr(data));
1840 break;
1841
1842 case IA32_PTRACE_SETFPXREGS:
1843 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1844 compat_ptr(data));
1845 break;
1846
1847 case PTRACE_GETEVENTMSG:
1848 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1849 break;
1850
1851 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1852 case PTRACE_CONT: /* restart after signal. */
1853 case PTRACE_KILL:
1854 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1855 case PTRACE_DETACH: /* detach a process */
1856 ret = sys_ptrace(request, pid, addr, data);
1857 break;
1858
1859 default:
1860 ret = ptrace_request(child, request, addr, data);
1861 break;
1862
1863 }
1864 out_tsk:
1865 put_task_struct(child);
1866 out:
1867 unlock_kernel();
1868 return ret;
1869 }
1870
1871 typedef struct {
1872 unsigned int ss_sp;
1873 unsigned int ss_flags;
1874 unsigned int ss_size;
1875 } ia32_stack_t;
1876
1877 asmlinkage long
1878 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1879 long arg2, long arg3, long arg4, long arg5, long arg6,
1880 long arg7, struct pt_regs pt)
1881 {
1882 stack_t uss, uoss;
1883 ia32_stack_t buf32;
1884 int ret;
1885 mm_segment_t old_fs = get_fs();
1886
1887 if (uss32) {
1888 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1889 return -EFAULT;
1890 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1891 uss.ss_flags = buf32.ss_flags;
1892 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1893 check and set it to the user requested value later */
1894 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1895 ret = -ENOMEM;
1896 goto out;
1897 }
1898 uss.ss_size = MINSIGSTKSZ;
1899 }
1900 set_fs(KERNEL_DS);
1901 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1902 (stack_t __user *) &uoss, pt.r12);
1903 current->sas_ss_size = buf32.ss_size;
1904 set_fs(old_fs);
1905 out:
1906 if (ret < 0)
1907 return(ret);
1908 if (uoss32) {
1909 buf32.ss_sp = (long __user) uoss.ss_sp;
1910 buf32.ss_flags = uoss.ss_flags;
1911 buf32.ss_size = uoss.ss_size;
1912 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1913 return -EFAULT;
1914 }
1915 return ret;
1916 }
1917
1918 asmlinkage int
1919 sys32_pause (void)
1920 {
1921 current->state = TASK_INTERRUPTIBLE;
1922 schedule();
1923 return -ERESTARTNOHAND;
1924 }
1925
1926 asmlinkage int
1927 sys32_msync (unsigned int start, unsigned int len, int flags)
1928 {
1929 unsigned int addr;
1930
1931 if (OFFSET4K(start))
1932 return -EINVAL;
1933 addr = PAGE_START(start);
1934 return sys_msync(addr, len + (start - addr), flags);
1935 }
1936
1937 struct sysctl32 {
1938 unsigned int name;
1939 int nlen;
1940 unsigned int oldval;
1941 unsigned int oldlenp;
1942 unsigned int newval;
1943 unsigned int newlen;
1944 unsigned int __unused[4];
1945 };
1946
1947 #ifdef CONFIG_SYSCTL
1948 asmlinkage long
1949 sys32_sysctl (struct sysctl32 __user *args)
1950 {
1951 struct sysctl32 a32;
1952 mm_segment_t old_fs = get_fs ();
1953 void __user *oldvalp, *newvalp;
1954 size_t oldlen;
1955 int __user *namep;
1956 long ret;
1957
1958 if (copy_from_user(&a32, args, sizeof(a32)))
1959 return -EFAULT;
1960
1961 /*
1962 * We need to pre-validate these because we have to disable address checking
1963 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1964 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1965 * addresses, we KNOW that access_ok() will always succeed, so this is an
1966 * expensive NOP, but so what...
1967 */
1968 namep = (int __user *) compat_ptr(a32.name);
1969 oldvalp = compat_ptr(a32.oldval);
1970 newvalp = compat_ptr(a32.newval);
1971
1972 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1973 || !access_ok(VERIFY_WRITE, namep, 0)
1974 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1975 || !access_ok(VERIFY_WRITE, newvalp, 0))
1976 return -EFAULT;
1977
1978 set_fs(KERNEL_DS);
1979 lock_kernel();
1980 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1981 newvalp, (size_t) a32.newlen);
1982 unlock_kernel();
1983 set_fs(old_fs);
1984
1985 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1986 return -EFAULT;
1987
1988 return ret;
1989 }
1990 #endif
1991
1992 asmlinkage long
1993 sys32_newuname (struct new_utsname __user *name)
1994 {
1995 int ret = sys_newuname(name);
1996
1997 if (!ret)
1998 if (copy_to_user(name->machine, "i686\0\0\0", 8))
1999 ret = -EFAULT;
2000 return ret;
2001 }
2002
2003 asmlinkage long
2004 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
2005 {
2006 uid_t a, b, c;
2007 int ret;
2008 mm_segment_t old_fs = get_fs();
2009
2010 set_fs(KERNEL_DS);
2011 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
2012 set_fs(old_fs);
2013
2014 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
2015 return -EFAULT;
2016 return ret;
2017 }
2018
2019 asmlinkage long
2020 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
2021 {
2022 gid_t a, b, c;
2023 int ret;
2024 mm_segment_t old_fs = get_fs();
2025
2026 set_fs(KERNEL_DS);
2027 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
2028 set_fs(old_fs);
2029
2030 if (ret)
2031 return ret;
2032
2033 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
2034 }
2035
2036 asmlinkage long
2037 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
2038 {
2039 /* Sign-extension of "offset" is important here... */
2040 return sys_lseek(fd, offset, whence);
2041 }
2042
2043 static int
2044 groups16_to_user(short __user *grouplist, struct group_info *group_info)
2045 {
2046 int i;
2047 short group;
2048
2049 for (i = 0; i < group_info->ngroups; i++) {
2050 group = (short)GROUP_AT(group_info, i);
2051 if (put_user(group, grouplist+i))
2052 return -EFAULT;
2053 }
2054
2055 return 0;
2056 }
2057
2058 static int
2059 groups16_from_user(struct group_info *group_info, short __user *grouplist)
2060 {
2061 int i;
2062 short group;
2063
2064 for (i = 0; i < group_info->ngroups; i++) {
2065 if (get_user(group, grouplist+i))
2066 return -EFAULT;
2067 GROUP_AT(group_info, i) = (gid_t)group;
2068 }
2069
2070 return 0;
2071 }
2072
2073 asmlinkage long
2074 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
2075 {
2076 int i;
2077
2078 if (gidsetsize < 0)
2079 return -EINVAL;
2080
2081 get_group_info(current->group_info);
2082 i = current->group_info->ngroups;
2083 if (gidsetsize) {
2084 if (i > gidsetsize) {
2085 i = -EINVAL;
2086 goto out;
2087 }
2088 if (groups16_to_user(grouplist, current->group_info)) {
2089 i = -EFAULT;
2090 goto out;
2091 }
2092 }
2093 out:
2094 put_group_info(current->group_info);
2095 return i;
2096 }
2097
2098 asmlinkage long
2099 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
2100 {
2101 struct group_info *group_info;
2102 int retval;
2103
2104 if (!capable(CAP_SETGID))
2105 return -EPERM;
2106 if ((unsigned)gidsetsize > NGROUPS_MAX)
2107 return -EINVAL;
2108
2109 group_info = groups_alloc(gidsetsize);
2110 if (!group_info)
2111 return -ENOMEM;
2112 retval = groups16_from_user(group_info, grouplist);
2113 if (retval) {
2114 put_group_info(group_info);
2115 return retval;
2116 }
2117
2118 retval = set_current_groups(group_info);
2119 put_group_info(group_info);
2120
2121 return retval;
2122 }
2123
2124 asmlinkage long
2125 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
2126 {
2127 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
2128 }
2129
2130 asmlinkage long
2131 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
2132 {
2133 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
2134 }
2135
2136 static int
2137 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
2138 {
2139 int err;
2140 u64 hdev;
2141
2142 if (clear_user(ubuf, sizeof(*ubuf)))
2143 return -EFAULT;
2144
2145 hdev = huge_encode_dev(kbuf->dev);
2146 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
2147 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
2148 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
2149 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
2150 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
2151 err |= __put_user(kbuf->mode, &ubuf->st_mode);
2152 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
2153 err |= __put_user(kbuf->uid, &ubuf->st_uid);
2154 err |= __put_user(kbuf->gid, &ubuf->st_gid);
2155 hdev = huge_encode_dev(kbuf->rdev);
2156 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2157 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2158 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2159 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2160 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2161 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2162 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2163 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2164 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2165 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2166 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2167 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2168 return err;
2169 }
2170
2171 asmlinkage long
2172 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2173 {
2174 struct kstat s;
2175 long ret = vfs_stat(filename, &s);
2176 if (!ret)
2177 ret = putstat64(statbuf, &s);
2178 return ret;
2179 }
2180
2181 asmlinkage long
2182 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2183 {
2184 struct kstat s;
2185 long ret = vfs_lstat(filename, &s);
2186 if (!ret)
2187 ret = putstat64(statbuf, &s);
2188 return ret;
2189 }
2190
2191 asmlinkage long
2192 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2193 {
2194 struct kstat s;
2195 long ret = vfs_fstat(fd, &s);
2196 if (!ret)
2197 ret = putstat64(statbuf, &s);
2198 return ret;
2199 }
2200
2201 struct sysinfo32 {
2202 s32 uptime;
2203 u32 loads[3];
2204 u32 totalram;
2205 u32 freeram;
2206 u32 sharedram;
2207 u32 bufferram;
2208 u32 totalswap;
2209 u32 freeswap;
2210 u16 procs;
2211 u16 pad;
2212 u32 totalhigh;
2213 u32 freehigh;
2214 u32 mem_unit;
2215 char _f[8];
2216 };
2217
2218 asmlinkage long
2219 sys32_sysinfo (struct sysinfo32 __user *info)
2220 {
2221 struct sysinfo s;
2222 long ret, err;
2223 int bitcount = 0;
2224 mm_segment_t old_fs = get_fs();
2225
2226 set_fs(KERNEL_DS);
2227 ret = sys_sysinfo((struct sysinfo __user *) &s);
2228 set_fs(old_fs);
2229 /* Check to see if any memory value is too large for 32-bit and
2230 * scale down if needed.
2231 */
2232 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2233 while (s.mem_unit < PAGE_SIZE) {
2234 s.mem_unit <<= 1;
2235 bitcount++;
2236 }
2237 s.totalram >>= bitcount;
2238 s.freeram >>= bitcount;
2239 s.sharedram >>= bitcount;
2240 s.bufferram >>= bitcount;
2241 s.totalswap >>= bitcount;
2242 s.freeswap >>= bitcount;
2243 s.totalhigh >>= bitcount;
2244 s.freehigh >>= bitcount;
2245 }
2246
2247 if (!access_ok(VERIFY_WRITE, info, sizeof(*info)))
2248 return -EFAULT;
2249
2250 err = __put_user(s.uptime, &info->uptime);
2251 err |= __put_user(s.loads[0], &info->loads[0]);
2252 err |= __put_user(s.loads[1], &info->loads[1]);
2253 err |= __put_user(s.loads[2], &info->loads[2]);
2254 err |= __put_user(s.totalram, &info->totalram);
2255 err |= __put_user(s.freeram, &info->freeram);
2256 err |= __put_user(s.sharedram, &info->sharedram);
2257 err |= __put_user(s.bufferram, &info->bufferram);
2258 err |= __put_user(s.totalswap, &info->totalswap);
2259 err |= __put_user(s.freeswap, &info->freeswap);
2260 err |= __put_user(s.procs, &info->procs);
2261 err |= __put_user (s.totalhigh, &info->totalhigh);
2262 err |= __put_user (s.freehigh, &info->freehigh);
2263 err |= __put_user (s.mem_unit, &info->mem_unit);
2264 if (err)
2265 return -EFAULT;
2266 return ret;
2267 }
2268
2269 asmlinkage long
2270 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2271 {
2272 mm_segment_t old_fs = get_fs();
2273 struct timespec t;
2274 long ret;
2275
2276 set_fs(KERNEL_DS);
2277 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2278 set_fs(old_fs);
2279 if (put_compat_timespec(&t, interval))
2280 return -EFAULT;
2281 return ret;
2282 }
2283
2284 asmlinkage long
2285 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2286 {
2287 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2288 }
2289
2290 asmlinkage long
2291 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2292 {
2293 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2294 }
2295
2296 asmlinkage long
2297 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2298 {
2299 mm_segment_t old_fs = get_fs();
2300 long ret;
2301 off_t of;
2302
2303 if (offset && get_user(of, offset))
2304 return -EFAULT;
2305
2306 set_fs(KERNEL_DS);
2307 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2308 set_fs(old_fs);
2309
2310 if (offset && put_user(of, offset))
2311 return -EFAULT;
2312
2313 return ret;
2314 }
2315
2316 asmlinkage long
2317 sys32_personality (unsigned int personality)
2318 {
2319 long ret;
2320
2321 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2322 personality = PER_LINUX32;
2323 ret = sys_personality(personality);
2324 if (ret == PER_LINUX32)
2325 ret = PER_LINUX;
2326 return ret;
2327 }
2328
2329 asmlinkage unsigned long
2330 sys32_brk (unsigned int brk)
2331 {
2332 unsigned long ret, obrk;
2333 struct mm_struct *mm = current->mm;
2334
2335 obrk = mm->brk;
2336 ret = sys_brk(brk);
2337 if (ret < obrk)
2338 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2339 return ret;
2340 }
2341
2342 /* Structure for ia32 emulation on ia64 */
2343 struct epoll_event32
2344 {
2345 u32 events;
2346 u32 data[2];
2347 };
2348
2349 asmlinkage long
2350 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2351 {
2352 mm_segment_t old_fs = get_fs();
2353 struct epoll_event event64;
2354 int error;
2355 u32 data_halfword;
2356
2357 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2358 return -EFAULT;
2359
2360 __get_user(event64.events, &event->events);
2361 __get_user(data_halfword, &event->data[0]);
2362 event64.data = data_halfword;
2363 __get_user(data_halfword, &event->data[1]);
2364 event64.data |= (u64)data_halfword << 32;
2365
2366 set_fs(KERNEL_DS);
2367 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2368 set_fs(old_fs);
2369
2370 return error;
2371 }
2372
2373 asmlinkage long
2374 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2375 int timeout)
2376 {
2377 struct epoll_event *events64 = NULL;
2378 mm_segment_t old_fs = get_fs();
2379 int numevents, size;
2380 int evt_idx;
2381 int do_free_pages = 0;
2382
2383 if (maxevents <= 0) {
2384 return -EINVAL;
2385 }
2386
2387 /* Verify that the area passed by the user is writeable */
2388 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2389 return -EFAULT;
2390
2391 /*
2392 * Allocate space for the intermediate copy. If the space needed
2393 * is large enough to cause kmalloc to fail, then try again with
2394 * __get_free_pages.
2395 */
2396 size = maxevents * sizeof(struct epoll_event);
2397 events64 = kmalloc(size, GFP_KERNEL);
2398 if (events64 == NULL) {
2399 events64 = (struct epoll_event *)
2400 __get_free_pages(GFP_KERNEL, get_order(size));
2401 if (events64 == NULL)
2402 return -ENOMEM;
2403 do_free_pages = 1;
2404 }
2405
2406 /* Do the system call */
2407 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2408 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2409 maxevents, timeout);
2410 set_fs(old_fs);
2411
2412 /* Don't modify userspace memory if we're returning an error */
2413 if (numevents > 0) {
2414 /* Translate the 64-bit structures back into the 32-bit
2415 structures */
2416 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2417 __put_user(events64[evt_idx].events,
2418 &events[evt_idx].events);
2419 __put_user((u32)events64[evt_idx].data,
2420 &events[evt_idx].data[0]);
2421 __put_user((u32)(events64[evt_idx].data >> 32),
2422 &events[evt_idx].data[1]);
2423 }
2424 }
2425
2426 if (do_free_pages)
2427 free_pages((unsigned long) events64, get_order(size));
2428 else
2429 kfree(events64);
2430 return numevents;
2431 }
2432
2433 /*
2434 * Get a yet unused TLS descriptor index.
2435 */
2436 static int
2437 get_free_idx (void)
2438 {
2439 struct thread_struct *t = &current->thread;
2440 int idx;
2441
2442 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2443 if (desc_empty(t->tls_array + idx))
2444 return idx + GDT_ENTRY_TLS_MIN;
2445 return -ESRCH;
2446 }
2447
2448 /*
2449 * Set a given TLS descriptor:
2450 */
2451 asmlinkage int
2452 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2453 {
2454 struct thread_struct *t = &current->thread;
2455 struct ia32_user_desc info;
2456 struct desc_struct *desc;
2457 int cpu, idx;
2458
2459 if (copy_from_user(&info, u_info, sizeof(info)))
2460 return -EFAULT;
2461 idx = info.entry_number;
2462
2463 /*
2464 * index -1 means the kernel should try to find and allocate an empty descriptor:
2465 */
2466 if (idx == -1) {
2467 idx = get_free_idx();
2468 if (idx < 0)
2469 return idx;
2470 if (put_user(idx, &u_info->entry_number))
2471 return -EFAULT;
2472 }
2473
2474 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2475 return -EINVAL;
2476
2477 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
2478
2479 cpu = smp_processor_id();
2480
2481 if (LDT_empty(&info)) {
2482 desc->a = 0;
2483 desc->b = 0;
2484 } else {
2485 desc->a = LDT_entry_a(&info);
2486 desc->b = LDT_entry_b(&info);
2487 }
2488 load_TLS(t, cpu);
2489 return 0;
2490 }
2491
2492 /*
2493 * Get the current Thread-Local Storage area:
2494 */
2495
2496 #define GET_BASE(desc) ( \
2497 (((desc)->a >> 16) & 0x0000ffff) | \
2498 (((desc)->b << 16) & 0x00ff0000) | \
2499 ( (desc)->b & 0xff000000) )
2500
2501 #define GET_LIMIT(desc) ( \
2502 ((desc)->a & 0x0ffff) | \
2503 ((desc)->b & 0xf0000) )
2504
2505 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2506 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2507 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2508 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2509 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2510 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2511
2512 asmlinkage int
2513 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2514 {
2515 struct ia32_user_desc info;
2516 struct desc_struct *desc;
2517 int idx;
2518
2519 if (get_user(idx, &u_info->entry_number))
2520 return -EFAULT;
2521 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2522 return -EINVAL;
2523
2524 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2525
2526 info.entry_number = idx;
2527 info.base_addr = GET_BASE(desc);
2528 info.limit = GET_LIMIT(desc);
2529 info.seg_32bit = GET_32BIT(desc);
2530 info.contents = GET_CONTENTS(desc);
2531 info.read_exec_only = !GET_WRITABLE(desc);
2532 info.limit_in_pages = GET_LIMIT_PAGES(desc);
2533 info.seg_not_present = !GET_PRESENT(desc);
2534 info.useable = GET_USEABLE(desc);
2535
2536 if (copy_to_user(u_info, &info, sizeof(info)))
2537 return -EFAULT;
2538 return 0;
2539 }
2540
2541 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
2542 __u32 len_low, __u32 len_high, int advice)
2543 {
2544 return sys_fadvise64_64(fd,
2545 (((u64)offset_high)<<32) | offset_low,
2546 (((u64)len_high)<<32) | len_low,
2547 advice);
2548 }
2549
2550 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
2551
2552 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
2553 {
2554 uid_t sruid, seuid;
2555
2556 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2557 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2558 return sys_setreuid(sruid, seuid);
2559 }
2560
2561 asmlinkage long
2562 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
2563 compat_uid_t suid)
2564 {
2565 uid_t sruid, seuid, ssuid;
2566
2567 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2568 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2569 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
2570 return sys_setresuid(sruid, seuid, ssuid);
2571 }
2572
2573 asmlinkage long
2574 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
2575 {
2576 gid_t srgid, segid;
2577
2578 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2579 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2580 return sys_setregid(srgid, segid);
2581 }
2582
2583 asmlinkage long
2584 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
2585 compat_gid_t sgid)
2586 {
2587 gid_t srgid, segid, ssgid;
2588
2589 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2590 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2591 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
2592 return sys_setresgid(srgid, segid, ssgid);
2593 }
2594
2595 /* Handle adjtimex compatibility. */
2596
2597 struct timex32 {
2598 u32 modes;
2599 s32 offset, freq, maxerror, esterror;
2600 s32 status, constant, precision, tolerance;
2601 struct compat_timeval time;
2602 s32 tick;
2603 s32 ppsfreq, jitter, shift, stabil;
2604 s32 jitcnt, calcnt, errcnt, stbcnt;
2605 s32 :32; s32 :32; s32 :32; s32 :32;
2606 s32 :32; s32 :32; s32 :32; s32 :32;
2607 s32 :32; s32 :32; s32 :32; s32 :32;
2608 };
2609
2610 extern int do_adjtimex(struct timex *);
2611
2612 asmlinkage long
2613 sys32_adjtimex(struct timex32 *utp)
2614 {
2615 struct timex txc;
2616 int ret;
2617
2618 memset(&txc, 0, sizeof(struct timex));
2619
2620 if(get_user(txc.modes, &utp->modes) ||
2621 __get_user(txc.offset, &utp->offset) ||
2622 __get_user(txc.freq, &utp->freq) ||
2623 __get_user(txc.maxerror, &utp->maxerror) ||
2624 __get_user(txc.esterror, &utp->esterror) ||
2625 __get_user(txc.status, &utp->status) ||
2626 __get_user(txc.constant, &utp->constant) ||
2627 __get_user(txc.precision, &utp->precision) ||
2628 __get_user(txc.tolerance, &utp->tolerance) ||
2629 __get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2630 __get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2631 __get_user(txc.tick, &utp->tick) ||
2632 __get_user(txc.ppsfreq, &utp->ppsfreq) ||
2633 __get_user(txc.jitter, &utp->jitter) ||
2634 __get_user(txc.shift, &utp->shift) ||
2635 __get_user(txc.stabil, &utp->stabil) ||
2636 __get_user(txc.jitcnt, &utp->jitcnt) ||
2637 __get_user(txc.calcnt, &utp->calcnt) ||
2638 __get_user(txc.errcnt, &utp->errcnt) ||
2639 __get_user(txc.stbcnt, &utp->stbcnt))
2640 return -EFAULT;
2641
2642 ret = do_adjtimex(&txc);
2643
2644 if(put_user(txc.modes, &utp->modes) ||
2645 __put_user(txc.offset, &utp->offset) ||
2646 __put_user(txc.freq, &utp->freq) ||
2647 __put_user(txc.maxerror, &utp->maxerror) ||
2648 __put_user(txc.esterror, &utp->esterror) ||
2649 __put_user(txc.status, &utp->status) ||
2650 __put_user(txc.constant, &utp->constant) ||
2651 __put_user(txc.precision, &utp->precision) ||
2652 __put_user(txc.tolerance, &utp->tolerance) ||
2653 __put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2654 __put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2655 __put_user(txc.tick, &utp->tick) ||
2656 __put_user(txc.ppsfreq, &utp->ppsfreq) ||
2657 __put_user(txc.jitter, &utp->jitter) ||
2658 __put_user(txc.shift, &utp->shift) ||
2659 __put_user(txc.stabil, &utp->stabil) ||
2660 __put_user(txc.jitcnt, &utp->jitcnt) ||
2661 __put_user(txc.calcnt, &utp->calcnt) ||
2662 __put_user(txc.errcnt, &utp->errcnt) ||
2663 __put_user(txc.stbcnt, &utp->stbcnt))
2664 ret = -EFAULT;
2665
2666 return ret;
2667 }
2668 #endif /* NOTYET */