Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / arch / i386 / kernel / smp.c
1 /*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11 #include <linux/init.h>
12
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/smp_lock.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/mc146818rtc.h>
19 #include <linux/cache.h>
20 #include <linux/interrupt.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23
24 #include <asm/mtrr.h>
25 #include <asm/tlbflush.h>
26 #include <asm/idle.h>
27 #include <mach_apic.h>
28
29 /*
30 * Some notes on x86 processor bugs affecting SMP operation:
31 *
32 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
33 * The Linux implications for SMP are handled as follows:
34 *
35 * Pentium III / [Xeon]
36 * None of the E1AP-E3AP errata are visible to the user.
37 *
38 * E1AP. see PII A1AP
39 * E2AP. see PII A2AP
40 * E3AP. see PII A3AP
41 *
42 * Pentium II / [Xeon]
43 * None of the A1AP-A3AP errata are visible to the user.
44 *
45 * A1AP. see PPro 1AP
46 * A2AP. see PPro 2AP
47 * A3AP. see PPro 7AP
48 *
49 * Pentium Pro
50 * None of 1AP-9AP errata are visible to the normal user,
51 * except occasional delivery of 'spurious interrupt' as trap #15.
52 * This is very rare and a non-problem.
53 *
54 * 1AP. Linux maps APIC as non-cacheable
55 * 2AP. worked around in hardware
56 * 3AP. fixed in C0 and above steppings microcode update.
57 * Linux does not use excessive STARTUP_IPIs.
58 * 4AP. worked around in hardware
59 * 5AP. symmetric IO mode (normal Linux operation) not affected.
60 * 'noapic' mode has vector 0xf filled out properly.
61 * 6AP. 'noapic' mode might be affected - fixed in later steppings
62 * 7AP. We do not assume writes to the LVT deassering IRQs
63 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
64 * 9AP. We do not use mixed mode
65 *
66 * Pentium
67 * There is a marginal case where REP MOVS on 100MHz SMP
68 * machines with B stepping processors can fail. XXX should provide
69 * an L1cache=Writethrough or L1cache=off option.
70 *
71 * B stepping CPUs may hang. There are hardware work arounds
72 * for this. We warn about it in case your board doesn't have the work
73 * arounds. Basically thats so I can tell anyone with a B stepping
74 * CPU and SMP problems "tough".
75 *
76 * Specific items [From Pentium Processor Specification Update]
77 *
78 * 1AP. Linux doesn't use remote read
79 * 2AP. Linux doesn't trust APIC errors
80 * 3AP. We work around this
81 * 4AP. Linux never generated 3 interrupts of the same priority
82 * to cause a lost local interrupt.
83 * 5AP. Remote read is never used
84 * 6AP. not affected - worked around in hardware
85 * 7AP. not affected - worked around in hardware
86 * 8AP. worked around in hardware - we get explicit CS errors if not
87 * 9AP. only 'noapic' mode affected. Might generate spurious
88 * interrupts, we log only the first one and count the
89 * rest silently.
90 * 10AP. not affected - worked around in hardware
91 * 11AP. Linux reads the APIC between writes to avoid this, as per
92 * the documentation. Make sure you preserve this as it affects
93 * the C stepping chips too.
94 * 12AP. not affected - worked around in hardware
95 * 13AP. not affected - worked around in hardware
96 * 14AP. we always deassert INIT during bootup
97 * 15AP. not affected - worked around in hardware
98 * 16AP. not affected - worked around in hardware
99 * 17AP. not affected - worked around in hardware
100 * 18AP. not affected - worked around in hardware
101 * 19AP. not affected - worked around in BIOS
102 *
103 * If this sounds worrying believe me these bugs are either ___RARE___,
104 * or are signal timing bugs worked around in hardware and there's
105 * about nothing of note with C stepping upwards.
106 */
107
108 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
109
110 /*
111 * the following functions deal with sending IPIs between CPUs.
112 *
113 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
114 */
115
116 static inline int __prepare_ICR (unsigned int shortcut, int vector)
117 {
118 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
119
120 switch (vector) {
121 default:
122 icr |= APIC_DM_FIXED | vector;
123 break;
124 case NMI_VECTOR:
125 icr |= APIC_DM_NMI;
126 break;
127 }
128 return icr;
129 }
130
131 static inline int __prepare_ICR2 (unsigned int mask)
132 {
133 return SET_APIC_DEST_FIELD(mask);
134 }
135
136 void __send_IPI_shortcut(unsigned int shortcut, int vector)
137 {
138 /*
139 * Subtle. In the case of the 'never do double writes' workaround
140 * we have to lock out interrupts to be safe. As we don't care
141 * of the value read we use an atomic rmw access to avoid costly
142 * cli/sti. Otherwise we use an even cheaper single atomic write
143 * to the APIC.
144 */
145 unsigned int cfg;
146
147 /*
148 * Wait for idle.
149 */
150 apic_wait_icr_idle();
151
152 /*
153 * No need to touch the target chip field
154 */
155 cfg = __prepare_ICR(shortcut, vector);
156
157 /*
158 * Send the IPI. The write to APIC_ICR fires this off.
159 */
160 apic_write_around(APIC_ICR, cfg);
161 }
162
163 void fastcall send_IPI_self(int vector)
164 {
165 __send_IPI_shortcut(APIC_DEST_SELF, vector);
166 }
167
168 /*
169 * This is only used on smaller machines.
170 */
171 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
172 {
173 unsigned long mask = cpus_addr(cpumask)[0];
174 unsigned long cfg;
175 unsigned long flags;
176
177 local_irq_save(flags);
178 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
179 /*
180 * Wait for idle.
181 */
182 apic_wait_icr_idle();
183
184 /*
185 * prepare target chip field
186 */
187 cfg = __prepare_ICR2(mask);
188 apic_write_around(APIC_ICR2, cfg);
189
190 /*
191 * program the ICR
192 */
193 cfg = __prepare_ICR(0, vector);
194
195 /*
196 * Send the IPI. The write to APIC_ICR fires this off.
197 */
198 apic_write_around(APIC_ICR, cfg);
199
200 local_irq_restore(flags);
201 }
202
203 void send_IPI_mask_sequence(cpumask_t mask, int vector)
204 {
205 unsigned long cfg, flags;
206 unsigned int query_cpu;
207
208 /*
209 * Hack. The clustered APIC addressing mode doesn't allow us to send
210 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
211 * should be modified to do 1 message per cluster ID - mbligh
212 */
213
214 local_irq_save(flags);
215
216 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
217 if (cpu_isset(query_cpu, mask)) {
218
219 /*
220 * Wait for idle.
221 */
222 apic_wait_icr_idle();
223
224 /*
225 * prepare target chip field
226 */
227 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
228 apic_write_around(APIC_ICR2, cfg);
229
230 /*
231 * program the ICR
232 */
233 cfg = __prepare_ICR(0, vector);
234
235 /*
236 * Send the IPI. The write to APIC_ICR fires this off.
237 */
238 apic_write_around(APIC_ICR, cfg);
239 }
240 }
241 local_irq_restore(flags);
242 }
243
244 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
245
246 /*
247 * Smarter SMP flushing macros.
248 * c/o Linus Torvalds.
249 *
250 * These mean you can really definitely utterly forget about
251 * writing to user space from interrupts. (Its not allowed anyway).
252 *
253 * Optimizations Manfred Spraul <manfred@colorfullife.com>
254 */
255
256 static cpumask_t flush_cpumask;
257 static struct mm_struct * flush_mm;
258 static unsigned long flush_va;
259 static DEFINE_SPINLOCK(tlbstate_lock);
260 #define FLUSH_ALL 0xffffffff
261
262 /*
263 * We cannot call mmdrop() because we are in interrupt context,
264 * instead update mm->cpu_vm_mask.
265 *
266 * We need to reload %cr3 since the page tables may be going
267 * away from under us..
268 */
269 static inline void leave_mm (unsigned long cpu)
270 {
271 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
272 BUG();
273 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
274 load_cr3(swapper_pg_dir);
275 }
276
277 /*
278 *
279 * The flush IPI assumes that a thread switch happens in this order:
280 * [cpu0: the cpu that switches]
281 * 1) switch_mm() either 1a) or 1b)
282 * 1a) thread switch to a different mm
283 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
284 * Stop ipi delivery for the old mm. This is not synchronized with
285 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
286 * for the wrong mm, and in the worst case we perform a superflous
287 * tlb flush.
288 * 1a2) set cpu_tlbstate to TLBSTATE_OK
289 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
290 * was in lazy tlb mode.
291 * 1a3) update cpu_tlbstate[].active_mm
292 * Now cpu0 accepts tlb flushes for the new mm.
293 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
294 * Now the other cpus will send tlb flush ipis.
295 * 1a4) change cr3.
296 * 1b) thread switch without mm change
297 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
298 * flush ipis.
299 * 1b1) set cpu_tlbstate to TLBSTATE_OK
300 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
301 * Atomically set the bit [other cpus will start sending flush ipis],
302 * and test the bit.
303 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
304 * 2) switch %%esp, ie current
305 *
306 * The interrupt must handle 2 special cases:
307 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
308 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
309 * runs in kernel space, the cpu could load tlb entries for user space
310 * pages.
311 *
312 * The good news is that cpu_tlbstate is local to each cpu, no
313 * write/read ordering problems.
314 */
315
316 /*
317 * TLB flush IPI:
318 *
319 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
320 * 2) Leave the mm if we are in the lazy tlb mode.
321 */
322
323 fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
324 {
325 unsigned long cpu;
326
327 cpu = get_cpu();
328
329 if (!cpu_isset(cpu, flush_cpumask))
330 goto out;
331 /*
332 * This was a BUG() but until someone can quote me the
333 * line from the intel manual that guarantees an IPI to
334 * multiple CPUs is retried _only_ on the erroring CPUs
335 * its staying as a return
336 *
337 * BUG();
338 */
339
340 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
341 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
342 if (flush_va == FLUSH_ALL)
343 local_flush_tlb();
344 else
345 __flush_tlb_one(flush_va);
346 } else
347 leave_mm(cpu);
348 }
349 ack_APIC_irq();
350 smp_mb__before_clear_bit();
351 cpu_clear(cpu, flush_cpumask);
352 smp_mb__after_clear_bit();
353 out:
354 put_cpu_no_resched();
355 }
356
357 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
358 unsigned long va)
359 {
360 /*
361 * A couple of (to be removed) sanity checks:
362 *
363 * - current CPU must not be in mask
364 * - mask must exist :)
365 */
366 BUG_ON(cpus_empty(cpumask));
367 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
368 BUG_ON(!mm);
369
370 /* If a CPU which we ran on has gone down, OK. */
371 cpus_and(cpumask, cpumask, cpu_online_map);
372 if (cpus_empty(cpumask))
373 return;
374
375 /*
376 * i'm not happy about this global shared spinlock in the
377 * MM hot path, but we'll see how contended it is.
378 * AK: x86-64 has a faster method that could be ported.
379 */
380 spin_lock(&tlbstate_lock);
381
382 flush_mm = mm;
383 flush_va = va;
384 #if NR_CPUS <= BITS_PER_LONG
385 atomic_set_mask(cpumask, &flush_cpumask);
386 #else
387 {
388 int k;
389 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
390 unsigned long *cpu_mask = (unsigned long *)&cpumask;
391 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
392 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
393 }
394 #endif
395 /*
396 * We have to send the IPI only to
397 * CPUs affected.
398 */
399 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
400
401 while (!cpus_empty(flush_cpumask))
402 /* nothing. lockup detection does not belong here */
403 cpu_relax();
404
405 flush_mm = NULL;
406 flush_va = 0;
407 spin_unlock(&tlbstate_lock);
408 }
409
410 void flush_tlb_current_task(void)
411 {
412 struct mm_struct *mm = current->mm;
413 cpumask_t cpu_mask;
414
415 preempt_disable();
416 cpu_mask = mm->cpu_vm_mask;
417 cpu_clear(smp_processor_id(), cpu_mask);
418
419 local_flush_tlb();
420 if (!cpus_empty(cpu_mask))
421 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
422 preempt_enable();
423 }
424
425 void flush_tlb_mm (struct mm_struct * mm)
426 {
427 cpumask_t cpu_mask;
428
429 preempt_disable();
430 cpu_mask = mm->cpu_vm_mask;
431 cpu_clear(smp_processor_id(), cpu_mask);
432
433 if (current->active_mm == mm) {
434 if (current->mm)
435 local_flush_tlb();
436 else
437 leave_mm(smp_processor_id());
438 }
439 if (!cpus_empty(cpu_mask))
440 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
441
442 preempt_enable();
443 }
444
445 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
446 {
447 struct mm_struct *mm = vma->vm_mm;
448 cpumask_t cpu_mask;
449
450 preempt_disable();
451 cpu_mask = mm->cpu_vm_mask;
452 cpu_clear(smp_processor_id(), cpu_mask);
453
454 if (current->active_mm == mm) {
455 if(current->mm)
456 __flush_tlb_one(va);
457 else
458 leave_mm(smp_processor_id());
459 }
460
461 if (!cpus_empty(cpu_mask))
462 flush_tlb_others(cpu_mask, mm, va);
463
464 preempt_enable();
465 }
466 EXPORT_SYMBOL(flush_tlb_page);
467
468 static void do_flush_tlb_all(void* info)
469 {
470 unsigned long cpu = smp_processor_id();
471
472 __flush_tlb_all();
473 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
474 leave_mm(cpu);
475 }
476
477 void flush_tlb_all(void)
478 {
479 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
480 }
481
482 /*
483 * this function sends a 'reschedule' IPI to another CPU.
484 * it goes straight through and wastes no time serializing
485 * anything. Worst case is that we lose a reschedule ...
486 */
487 void smp_send_reschedule(int cpu)
488 {
489 WARN_ON(cpu_is_offline(cpu));
490 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
491 }
492
493 /*
494 * Structure and data for smp_call_function(). This is designed to minimise
495 * static memory requirements. It also looks cleaner.
496 */
497 static DEFINE_SPINLOCK(call_lock);
498
499 struct call_data_struct {
500 void (*func) (void *info);
501 void *info;
502 atomic_t started;
503 atomic_t finished;
504 int wait;
505 };
506
507 void lock_ipi_call_lock(void)
508 {
509 spin_lock_irq(&call_lock);
510 }
511
512 void unlock_ipi_call_lock(void)
513 {
514 spin_unlock_irq(&call_lock);
515 }
516
517 static struct call_data_struct *call_data;
518
519 /**
520 * smp_call_function(): Run a function on all other CPUs.
521 * @func: The function to run. This must be fast and non-blocking.
522 * @info: An arbitrary pointer to pass to the function.
523 * @nonatomic: currently unused.
524 * @wait: If true, wait (atomically) until function has completed on other CPUs.
525 *
526 * Returns 0 on success, else a negative status code. Does not return until
527 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
528 *
529 * You must not call this function with disabled interrupts or from a
530 * hardware interrupt handler or from a bottom half handler.
531 */
532 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
533 int wait)
534 {
535 struct call_data_struct data;
536 int cpus;
537
538 /* Holding any lock stops cpus from going down. */
539 spin_lock(&call_lock);
540 cpus = num_online_cpus() - 1;
541 if (!cpus) {
542 spin_unlock(&call_lock);
543 return 0;
544 }
545
546 /* Can deadlock when called with interrupts disabled */
547 WARN_ON(irqs_disabled());
548
549 data.func = func;
550 data.info = info;
551 atomic_set(&data.started, 0);
552 data.wait = wait;
553 if (wait)
554 atomic_set(&data.finished, 0);
555
556 call_data = &data;
557 mb();
558
559 /* Send a message to all other CPUs and wait for them to respond */
560 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
561
562 /* Wait for response */
563 while (atomic_read(&data.started) != cpus)
564 cpu_relax();
565
566 if (wait)
567 while (atomic_read(&data.finished) != cpus)
568 cpu_relax();
569 spin_unlock(&call_lock);
570
571 return 0;
572 }
573 EXPORT_SYMBOL(smp_call_function);
574
575 static void stop_this_cpu (void * dummy)
576 {
577 /*
578 * Remove this CPU:
579 */
580 cpu_clear(smp_processor_id(), cpu_online_map);
581 local_irq_disable();
582 disable_local_APIC();
583 if (cpu_data[smp_processor_id()].hlt_works_ok)
584 for(;;) halt();
585 for (;;);
586 }
587
588 /*
589 * this function calls the 'stop' function on all other CPUs in the system.
590 */
591
592 void smp_send_stop(void)
593 {
594 smp_call_function(stop_this_cpu, NULL, 1, 0);
595
596 local_irq_disable();
597 disable_local_APIC();
598 local_irq_enable();
599 }
600
601 /*
602 * Reschedule call back. Nothing to do,
603 * all the work is done automatically when
604 * we return from the interrupt.
605 */
606 fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
607 {
608 ack_APIC_irq();
609 }
610
611 fastcall void smp_call_function_interrupt(struct pt_regs *regs)
612 {
613 void (*func) (void *info) = call_data->func;
614 void *info = call_data->info;
615 int wait = call_data->wait;
616
617 ack_APIC_irq();
618 /*
619 * Notify initiating CPU that I've grabbed the data and am
620 * about to execute the function
621 */
622 mb();
623 atomic_inc(&call_data->started);
624 /*
625 * At this point the info structure may be out of scope unless wait==1
626 */
627 exit_idle();
628 irq_enter();
629 (*func)(info);
630 irq_exit();
631
632 if (wait) {
633 mb();
634 atomic_inc(&call_data->finished);
635 }
636 }
637
638 /*
639 * this function sends a 'generic call function' IPI to one other CPU
640 * in the system.
641 *
642 * cpu is a standard Linux logical CPU number.
643 */
644 static void
645 __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
646 int nonatomic, int wait)
647 {
648 struct call_data_struct data;
649 int cpus = 1;
650
651 data.func = func;
652 data.info = info;
653 atomic_set(&data.started, 0);
654 data.wait = wait;
655 if (wait)
656 atomic_set(&data.finished, 0);
657
658 call_data = &data;
659 wmb();
660 /* Send a message to all other CPUs and wait for them to respond */
661 send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
662
663 /* Wait for response */
664 while (atomic_read(&data.started) != cpus)
665 cpu_relax();
666
667 if (!wait)
668 return;
669
670 while (atomic_read(&data.finished) != cpus)
671 cpu_relax();
672 }
673
674 /*
675 * smp_call_function_single - Run a function on another CPU
676 * @func: The function to run. This must be fast and non-blocking.
677 * @info: An arbitrary pointer to pass to the function.
678 * @nonatomic: Currently unused.
679 * @wait: If true, wait until function has completed on other CPUs.
680 *
681 * Retrurns 0 on success, else a negative status code.
682 *
683 * Does not return until the remote CPU is nearly ready to execute <func>
684 * or is or has executed.
685 */
686
687 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
688 int nonatomic, int wait)
689 {
690 /* prevent preemption and reschedule on another processor */
691 int me = get_cpu();
692 if (cpu == me) {
693 WARN_ON(1);
694 put_cpu();
695 return -EBUSY;
696 }
697
698 /* Can deadlock when called with interrupts disabled */
699 WARN_ON(irqs_disabled());
700
701 spin_lock_bh(&call_lock);
702 __smp_call_function_single(cpu, func, info, nonatomic, wait);
703 spin_unlock_bh(&call_lock);
704 put_cpu();
705 return 0;
706 }
707 EXPORT_SYMBOL(smp_call_function_single);
708
709 static int convert_apicid_to_cpu(int apic_id)
710 {
711 int i;
712
713 for (i = 0; i < NR_CPUS; i++) {
714 if (x86_cpu_to_apicid[i] == apic_id)
715 return i;
716 }
717 return -1;
718 }
719
720 int safe_smp_processor_id(void)
721 {
722 int apicid, cpuid;
723
724 if (!boot_cpu_has(X86_FEATURE_APIC))
725 return 0;
726
727 apicid = hard_smp_processor_id();
728 if (apicid == BAD_APICID)
729 return 0;
730
731 cpuid = convert_apicid_to_cpu(apicid);
732
733 return cpuid >= 0 ? cpuid : 0;
734 }