ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37
38 /*
39 * empty_zero_page is a special page that is used for
40 * zero-initialized data and COW.
41 */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44
45 /*
46 * The pmd table for the upper-most set of pages.
47 */
48 pmd_t *top_pmd;
49
50 #define CPOLICY_UNCACHED 0
51 #define CPOLICY_BUFFERED 1
52 #define CPOLICY_WRITETHROUGH 2
53 #define CPOLICY_WRITEBACK 3
54 #define CPOLICY_WRITEALLOC 4
55
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60
61 EXPORT_SYMBOL(pgprot_user);
62 EXPORT_SYMBOL(pgprot_kernel);
63
64 struct cachepolicy {
65 const char policy[16];
66 unsigned int cr_mask;
67 pmdval_t pmd;
68 pteval_t pte;
69 };
70
71 static struct cachepolicy cache_policies[] __initdata = {
72 {
73 .policy = "uncached",
74 .cr_mask = CR_W|CR_C,
75 .pmd = PMD_SECT_UNCACHED,
76 .pte = L_PTE_MT_UNCACHED,
77 }, {
78 .policy = "buffered",
79 .cr_mask = CR_C,
80 .pmd = PMD_SECT_BUFFERED,
81 .pte = L_PTE_MT_BUFFERABLE,
82 }, {
83 .policy = "writethrough",
84 .cr_mask = 0,
85 .pmd = PMD_SECT_WT,
86 .pte = L_PTE_MT_WRITETHROUGH,
87 }, {
88 .policy = "writeback",
89 .cr_mask = 0,
90 .pmd = PMD_SECT_WB,
91 .pte = L_PTE_MT_WRITEBACK,
92 }, {
93 .policy = "writealloc",
94 .cr_mask = 0,
95 .pmd = PMD_SECT_WBWA,
96 .pte = L_PTE_MT_WRITEALLOC,
97 }
98 };
99
100 /*
101 * These are useful for identifying cache coherency
102 * problems by allowing the cache or the cache and
103 * writebuffer to be turned off. (Note: the write
104 * buffer should not be on and the cache off).
105 */
106 static int __init early_cachepolicy(char *p)
107 {
108 int i;
109
110 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
111 int len = strlen(cache_policies[i].policy);
112
113 if (memcmp(p, cache_policies[i].policy, len) == 0) {
114 cachepolicy = i;
115 cr_alignment &= ~cache_policies[i].cr_mask;
116 cr_no_alignment &= ~cache_policies[i].cr_mask;
117 break;
118 }
119 }
120 if (i == ARRAY_SIZE(cache_policies))
121 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
122 /*
123 * This restriction is partly to do with the way we boot; it is
124 * unpredictable to have memory mapped using two different sets of
125 * memory attributes (shared, type, and cache attribs). We can not
126 * change these attributes once the initial assembly has setup the
127 * page tables.
128 */
129 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
130 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
131 cachepolicy = CPOLICY_WRITEBACK;
132 }
133 flush_cache_all();
134 set_cr(cr_alignment);
135 return 0;
136 }
137 early_param("cachepolicy", early_cachepolicy);
138
139 static int __init early_nocache(char *__unused)
140 {
141 char *p = "buffered";
142 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
143 early_cachepolicy(p);
144 return 0;
145 }
146 early_param("nocache", early_nocache);
147
148 static int __init early_nowrite(char *__unused)
149 {
150 char *p = "uncached";
151 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
152 early_cachepolicy(p);
153 return 0;
154 }
155 early_param("nowb", early_nowrite);
156
157 #ifndef CONFIG_ARM_LPAE
158 static int __init early_ecc(char *p)
159 {
160 if (memcmp(p, "on", 2) == 0)
161 ecc_mask = PMD_PROTECTION;
162 else if (memcmp(p, "off", 3) == 0)
163 ecc_mask = 0;
164 return 0;
165 }
166 early_param("ecc", early_ecc);
167 #endif
168
169 static int __init noalign_setup(char *__unused)
170 {
171 cr_alignment &= ~CR_A;
172 cr_no_alignment &= ~CR_A;
173 set_cr(cr_alignment);
174 return 1;
175 }
176 __setup("noalign", noalign_setup);
177
178 #ifndef CONFIG_SMP
179 void adjust_cr(unsigned long mask, unsigned long set)
180 {
181 unsigned long flags;
182
183 mask &= ~CR_A;
184
185 set &= mask;
186
187 local_irq_save(flags);
188
189 cr_no_alignment = (cr_no_alignment & ~mask) | set;
190 cr_alignment = (cr_alignment & ~mask) | set;
191
192 set_cr((get_cr() & ~mask) | set);
193
194 local_irq_restore(flags);
195 }
196 #endif
197
198 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
199 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
200
201 static struct mem_type mem_types[] = {
202 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
204 L_PTE_SHARED,
205 .prot_l1 = PMD_TYPE_TABLE,
206 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
207 .domain = DOMAIN_IO,
208 },
209 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
210 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
211 .prot_l1 = PMD_TYPE_TABLE,
212 .prot_sect = PROT_SECT_DEVICE,
213 .domain = DOMAIN_IO,
214 },
215 [MT_DEVICE_CACHED] = { /* ioremap_cached */
216 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
217 .prot_l1 = PMD_TYPE_TABLE,
218 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
219 .domain = DOMAIN_IO,
220 },
221 [MT_DEVICE_WC] = { /* ioremap_wc */
222 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
223 .prot_l1 = PMD_TYPE_TABLE,
224 .prot_sect = PROT_SECT_DEVICE,
225 .domain = DOMAIN_IO,
226 },
227 [MT_UNCACHED] = {
228 .prot_pte = PROT_PTE_DEVICE,
229 .prot_l1 = PMD_TYPE_TABLE,
230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 .domain = DOMAIN_IO,
232 },
233 [MT_CACHECLEAN] = {
234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
235 .domain = DOMAIN_KERNEL,
236 },
237 #ifndef CONFIG_ARM_LPAE
238 [MT_MINICLEAN] = {
239 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
240 .domain = DOMAIN_KERNEL,
241 },
242 #endif
243 [MT_LOW_VECTORS] = {
244 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 L_PTE_RDONLY,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .domain = DOMAIN_USER,
248 },
249 [MT_HIGH_VECTORS] = {
250 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251 L_PTE_USER | L_PTE_RDONLY,
252 .prot_l1 = PMD_TYPE_TABLE,
253 .domain = DOMAIN_USER,
254 },
255 [MT_MEMORY] = {
256 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
257 .prot_l1 = PMD_TYPE_TABLE,
258 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 .domain = DOMAIN_KERNEL,
260 },
261 [MT_ROM] = {
262 .prot_sect = PMD_TYPE_SECT,
263 .domain = DOMAIN_KERNEL,
264 },
265 [MT_MEMORY_NONCACHED] = {
266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267 L_PTE_MT_BUFFERABLE,
268 .prot_l1 = PMD_TYPE_TABLE,
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
270 .domain = DOMAIN_KERNEL,
271 },
272 [MT_MEMORY_DTCM] = {
273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274 L_PTE_XN,
275 .prot_l1 = PMD_TYPE_TABLE,
276 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
277 .domain = DOMAIN_KERNEL,
278 },
279 [MT_MEMORY_ITCM] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
281 .prot_l1 = PMD_TYPE_TABLE,
282 .domain = DOMAIN_KERNEL,
283 },
284 [MT_MEMORY_SO] = {
285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286 L_PTE_MT_UNCACHED,
287 .prot_l1 = PMD_TYPE_TABLE,
288 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
289 PMD_SECT_UNCACHED | PMD_SECT_XN,
290 .domain = DOMAIN_KERNEL,
291 },
292 [MT_MEMORY_DMA_READY] = {
293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294 .prot_l1 = PMD_TYPE_TABLE,
295 .domain = DOMAIN_KERNEL,
296 },
297 };
298
299 const struct mem_type *get_mem_type(unsigned int type)
300 {
301 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
302 }
303 EXPORT_SYMBOL(get_mem_type);
304
305 /*
306 * Adjust the PMD section entries according to the CPU in use.
307 */
308 static void __init build_mem_type_table(void)
309 {
310 struct cachepolicy *cp;
311 unsigned int cr = get_cr();
312 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
313 int cpu_arch = cpu_architecture();
314 int i;
315
316 if (cpu_arch < CPU_ARCH_ARMv6) {
317 #if defined(CONFIG_CPU_DCACHE_DISABLE)
318 if (cachepolicy > CPOLICY_BUFFERED)
319 cachepolicy = CPOLICY_BUFFERED;
320 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
321 if (cachepolicy > CPOLICY_WRITETHROUGH)
322 cachepolicy = CPOLICY_WRITETHROUGH;
323 #endif
324 }
325 if (cpu_arch < CPU_ARCH_ARMv5) {
326 if (cachepolicy >= CPOLICY_WRITEALLOC)
327 cachepolicy = CPOLICY_WRITEBACK;
328 ecc_mask = 0;
329 }
330 if (is_smp())
331 cachepolicy = CPOLICY_WRITEALLOC;
332
333 /*
334 * Strip out features not present on earlier architectures.
335 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
336 * without extended page tables don't have the 'Shared' bit.
337 */
338 if (cpu_arch < CPU_ARCH_ARMv5)
339 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
340 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
341 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
342 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
343 mem_types[i].prot_sect &= ~PMD_SECT_S;
344
345 /*
346 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347 * "update-able on write" bit on ARM610). However, Xscale and
348 * Xscale3 require this bit to be cleared.
349 */
350 if (cpu_is_xscale() || cpu_is_xsc3()) {
351 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
352 mem_types[i].prot_sect &= ~PMD_BIT4;
353 mem_types[i].prot_l1 &= ~PMD_BIT4;
354 }
355 } else if (cpu_arch < CPU_ARCH_ARMv6) {
356 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
357 if (mem_types[i].prot_l1)
358 mem_types[i].prot_l1 |= PMD_BIT4;
359 if (mem_types[i].prot_sect)
360 mem_types[i].prot_sect |= PMD_BIT4;
361 }
362 }
363
364 /*
365 * Mark the device areas according to the CPU/architecture.
366 */
367 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
368 if (!cpu_is_xsc3()) {
369 /*
370 * Mark device regions on ARMv6+ as execute-never
371 * to prevent speculative instruction fetches.
372 */
373 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
376 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
377 }
378 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
379 /*
380 * For ARMv7 with TEX remapping,
381 * - shared device is SXCB=1100
382 * - nonshared device is SXCB=0100
383 * - write combine device mem is SXCB=0001
384 * (Uncached Normal memory)
385 */
386 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
388 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
389 } else if (cpu_is_xsc3()) {
390 /*
391 * For Xscale3,
392 * - shared device is TEXCB=00101
393 * - nonshared device is TEXCB=01000
394 * - write combine device mem is TEXCB=00100
395 * (Inner/Outer Uncacheable in xsc3 parlance)
396 */
397 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
398 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
399 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
400 } else {
401 /*
402 * For ARMv6 and ARMv7 without TEX remapping,
403 * - shared device is TEXCB=00001
404 * - nonshared device is TEXCB=01000
405 * - write combine device mem is TEXCB=00100
406 * (Uncached Normal in ARMv6 parlance).
407 */
408 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
410 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
411 }
412 } else {
413 /*
414 * On others, write combining is "Uncached/Buffered"
415 */
416 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
417 }
418
419 /*
420 * Now deal with the memory-type mappings
421 */
422 cp = &cache_policies[cachepolicy];
423 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
424
425 /*
426 * ARMv6 and above have extended page tables.
427 */
428 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
429 #ifndef CONFIG_ARM_LPAE
430 /*
431 * Mark cache clean areas and XIP ROM read only
432 * from SVC mode and no access from userspace.
433 */
434 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
435 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
436 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
437 #endif
438
439 if (is_smp()) {
440 /*
441 * Mark memory with the "shared" attribute
442 * for SMP systems
443 */
444 user_pgprot |= L_PTE_SHARED;
445 kern_pgprot |= L_PTE_SHARED;
446 vecs_pgprot |= L_PTE_SHARED;
447 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
448 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
449 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
450 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
451 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
452 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
453 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
454 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
455 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
456 }
457 }
458
459 /*
460 * Non-cacheable Normal - intended for memory areas that must
461 * not cause dirty cache line writebacks when used
462 */
463 if (cpu_arch >= CPU_ARCH_ARMv6) {
464 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
465 /* Non-cacheable Normal is XCB = 001 */
466 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
467 PMD_SECT_BUFFERED;
468 } else {
469 /* For both ARMv6 and non-TEX-remapping ARMv7 */
470 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
471 PMD_SECT_TEX(1);
472 }
473 } else {
474 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
475 }
476
477 #ifdef CONFIG_ARM_LPAE
478 /*
479 * Do not generate access flag faults for the kernel mappings.
480 */
481 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482 mem_types[i].prot_pte |= PTE_EXT_AF;
483 if (mem_types[i].prot_sect)
484 mem_types[i].prot_sect |= PMD_SECT_AF;
485 }
486 kern_pgprot |= PTE_EXT_AF;
487 vecs_pgprot |= PTE_EXT_AF;
488 #endif
489
490 for (i = 0; i < 16; i++) {
491 pteval_t v = pgprot_val(protection_map[i]);
492 protection_map[i] = __pgprot(v | user_pgprot);
493 }
494
495 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
496 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
497
498 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
499 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
500 L_PTE_DIRTY | kern_pgprot);
501
502 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
503 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
504 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
505 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
506 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
507 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
508 mem_types[MT_ROM].prot_sect |= cp->pmd;
509
510 switch (cp->pmd) {
511 case PMD_SECT_WT:
512 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
513 break;
514 case PMD_SECT_WB:
515 case PMD_SECT_WBWA:
516 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
517 break;
518 }
519 printk("Memory policy: ECC %sabled, Data cache %s\n",
520 ecc_mask ? "en" : "dis", cp->policy);
521
522 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
523 struct mem_type *t = &mem_types[i];
524 if (t->prot_l1)
525 t->prot_l1 |= PMD_DOMAIN(t->domain);
526 if (t->prot_sect)
527 t->prot_sect |= PMD_DOMAIN(t->domain);
528 }
529 }
530
531 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
532 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
533 unsigned long size, pgprot_t vma_prot)
534 {
535 if (!pfn_valid(pfn))
536 return pgprot_noncached(vma_prot);
537 else if (file->f_flags & O_SYNC)
538 return pgprot_writecombine(vma_prot);
539 return vma_prot;
540 }
541 EXPORT_SYMBOL(phys_mem_access_prot);
542 #endif
543
544 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
545
546 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
547 {
548 void *ptr = __va(memblock_alloc(sz, align));
549 memset(ptr, 0, sz);
550 return ptr;
551 }
552
553 static void __init *early_alloc(unsigned long sz)
554 {
555 return early_alloc_aligned(sz, sz);
556 }
557
558 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
559 {
560 if (pmd_none(*pmd)) {
561 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
562 __pmd_populate(pmd, __pa(pte), prot);
563 }
564 BUG_ON(pmd_bad(*pmd));
565 return pte_offset_kernel(pmd, addr);
566 }
567
568 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
569 unsigned long end, unsigned long pfn,
570 const struct mem_type *type)
571 {
572 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
573 do {
574 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
575 pfn++;
576 } while (pte++, addr += PAGE_SIZE, addr != end);
577 }
578
579 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
580 unsigned long end, phys_addr_t phys,
581 const struct mem_type *type)
582 {
583 pmd_t *pmd = pmd_offset(pud, addr);
584
585 /*
586 * Try a section mapping - end, addr and phys must all be aligned
587 * to a section boundary. Note that PMDs refer to the individual
588 * L1 entries, whereas PGDs refer to a group of L1 entries making
589 * up one logical pointer to an L2 table.
590 */
591 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
592 pmd_t *p = pmd;
593
594 #ifndef CONFIG_ARM_LPAE
595 if (addr & SECTION_SIZE)
596 pmd++;
597 #endif
598
599 do {
600 *pmd = __pmd(phys | type->prot_sect);
601 phys += SECTION_SIZE;
602 } while (pmd++, addr += SECTION_SIZE, addr != end);
603
604 flush_pmd_entry(p);
605 } else {
606 /*
607 * No need to loop; pte's aren't interested in the
608 * individual L1 entries.
609 */
610 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
611 }
612 }
613
614 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
615 unsigned long end, unsigned long phys, const struct mem_type *type)
616 {
617 pud_t *pud = pud_offset(pgd, addr);
618 unsigned long next;
619
620 do {
621 next = pud_addr_end(addr, end);
622 alloc_init_section(pud, addr, next, phys, type);
623 phys += next - addr;
624 } while (pud++, addr = next, addr != end);
625 }
626
627 #ifndef CONFIG_ARM_LPAE
628 static void __init create_36bit_mapping(struct map_desc *md,
629 const struct mem_type *type)
630 {
631 unsigned long addr, length, end;
632 phys_addr_t phys;
633 pgd_t *pgd;
634
635 addr = md->virtual;
636 phys = __pfn_to_phys(md->pfn);
637 length = PAGE_ALIGN(md->length);
638
639 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
640 printk(KERN_ERR "MM: CPU does not support supersection "
641 "mapping for 0x%08llx at 0x%08lx\n",
642 (long long)__pfn_to_phys((u64)md->pfn), addr);
643 return;
644 }
645
646 /* N.B. ARMv6 supersections are only defined to work with domain 0.
647 * Since domain assignments can in fact be arbitrary, the
648 * 'domain == 0' check below is required to insure that ARMv6
649 * supersections are only allocated for domain 0 regardless
650 * of the actual domain assignments in use.
651 */
652 if (type->domain) {
653 printk(KERN_ERR "MM: invalid domain in supersection "
654 "mapping for 0x%08llx at 0x%08lx\n",
655 (long long)__pfn_to_phys((u64)md->pfn), addr);
656 return;
657 }
658
659 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
660 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
661 " at 0x%08lx invalid alignment\n",
662 (long long)__pfn_to_phys((u64)md->pfn), addr);
663 return;
664 }
665
666 /*
667 * Shift bits [35:32] of address into bits [23:20] of PMD
668 * (See ARMv6 spec).
669 */
670 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
671
672 pgd = pgd_offset_k(addr);
673 end = addr + length;
674 do {
675 pud_t *pud = pud_offset(pgd, addr);
676 pmd_t *pmd = pmd_offset(pud, addr);
677 int i;
678
679 for (i = 0; i < 16; i++)
680 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
681
682 addr += SUPERSECTION_SIZE;
683 phys += SUPERSECTION_SIZE;
684 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
685 } while (addr != end);
686 }
687 #endif /* !CONFIG_ARM_LPAE */
688
689 /*
690 * Create the page directory entries and any necessary
691 * page tables for the mapping specified by `md'. We
692 * are able to cope here with varying sizes and address
693 * offsets, and we take full advantage of sections and
694 * supersections.
695 */
696 static void __init create_mapping(struct map_desc *md)
697 {
698 unsigned long addr, length, end;
699 phys_addr_t phys;
700 const struct mem_type *type;
701 pgd_t *pgd;
702
703 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
704 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
705 " at 0x%08lx in user region\n",
706 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
707 return;
708 }
709
710 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
711 md->virtual >= PAGE_OFFSET &&
712 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
713 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
714 " at 0x%08lx out of vmalloc space\n",
715 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
716 }
717
718 type = &mem_types[md->type];
719
720 #ifndef CONFIG_ARM_LPAE
721 /*
722 * Catch 36-bit addresses
723 */
724 if (md->pfn >= 0x100000) {
725 create_36bit_mapping(md, type);
726 return;
727 }
728 #endif
729
730 addr = md->virtual & PAGE_MASK;
731 phys = __pfn_to_phys(md->pfn);
732 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
733
734 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
735 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
736 "be mapped using pages, ignoring.\n",
737 (long long)__pfn_to_phys(md->pfn), addr);
738 return;
739 }
740
741 pgd = pgd_offset_k(addr);
742 end = addr + length;
743 do {
744 unsigned long next = pgd_addr_end(addr, end);
745
746 alloc_init_pud(pgd, addr, next, phys, type);
747
748 phys += next - addr;
749 addr = next;
750 } while (pgd++, addr != end);
751 }
752
753 /*
754 * Create the architecture specific mappings
755 */
756 void __init iotable_init(struct map_desc *io_desc, int nr)
757 {
758 struct map_desc *md;
759 struct vm_struct *vm;
760
761 if (!nr)
762 return;
763
764 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
765
766 for (md = io_desc; nr; md++, nr--) {
767 create_mapping(md);
768 vm->addr = (void *)(md->virtual & PAGE_MASK);
769 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
770 vm->phys_addr = __pfn_to_phys(md->pfn);
771 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
772 vm->flags |= VM_ARM_MTYPE(md->type);
773 vm->caller = iotable_init;
774 vm_area_add_early(vm++);
775 }
776 }
777
778 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
779 void *caller)
780 {
781 struct vm_struct *vm;
782
783 vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
784 vm->addr = (void *)addr;
785 vm->size = size;
786 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
787 vm->caller = caller;
788 vm_area_add_early(vm);
789 }
790
791 #ifndef CONFIG_ARM_LPAE
792
793 /*
794 * The Linux PMD is made of two consecutive section entries covering 2MB
795 * (see definition in include/asm/pgtable-2level.h). However a call to
796 * create_mapping() may optimize static mappings by using individual
797 * 1MB section mappings. This leaves the actual PMD potentially half
798 * initialized if the top or bottom section entry isn't used, leaving it
799 * open to problems if a subsequent ioremap() or vmalloc() tries to use
800 * the virtual space left free by that unused section entry.
801 *
802 * Let's avoid the issue by inserting dummy vm entries covering the unused
803 * PMD halves once the static mappings are in place.
804 */
805
806 static void __init pmd_empty_section_gap(unsigned long addr)
807 {
808 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
809 }
810
811 static void __init fill_pmd_gaps(void)
812 {
813 struct vm_struct *vm;
814 unsigned long addr, next = 0;
815 pmd_t *pmd;
816
817 /* we're still single threaded hence no lock needed here */
818 for (vm = vmlist; vm; vm = vm->next) {
819 if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
820 continue;
821 addr = (unsigned long)vm->addr;
822 if (addr < next)
823 continue;
824
825 /*
826 * Check if this vm starts on an odd section boundary.
827 * If so and the first section entry for this PMD is free
828 * then we block the corresponding virtual address.
829 */
830 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
831 pmd = pmd_off_k(addr);
832 if (pmd_none(*pmd))
833 pmd_empty_section_gap(addr & PMD_MASK);
834 }
835
836 /*
837 * Then check if this vm ends on an odd section boundary.
838 * If so and the second section entry for this PMD is empty
839 * then we block the corresponding virtual address.
840 */
841 addr += vm->size;
842 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
843 pmd = pmd_off_k(addr) + 1;
844 if (pmd_none(*pmd))
845 pmd_empty_section_gap(addr);
846 }
847
848 /* no need to look at any vm entry until we hit the next PMD */
849 next = (addr + PMD_SIZE - 1) & PMD_MASK;
850 }
851 }
852
853 #else
854 #define fill_pmd_gaps() do { } while (0)
855 #endif
856
857 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
858 static void __init pci_reserve_io(void)
859 {
860 struct vm_struct *vm;
861 unsigned long addr;
862
863 /* we're still single threaded hence no lock needed here */
864 for (vm = vmlist; vm; vm = vm->next) {
865 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
866 continue;
867 addr = (unsigned long)vm->addr;
868 addr &= ~(SZ_2M - 1);
869 if (addr == PCI_IO_VIRT_BASE)
870 return;
871
872 }
873 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
874 }
875 #else
876 #define pci_reserve_io() do { } while (0)
877 #endif
878
879 #ifdef CONFIG_DEBUG_LL
880 void __init debug_ll_io_init(void)
881 {
882 struct map_desc map;
883
884 debug_ll_addr(&map.pfn, &map.virtual);
885 if (!map.pfn || !map.virtual)
886 return;
887 map.pfn = __phys_to_pfn(map.pfn);
888 map.virtual &= PAGE_MASK;
889 map.length = PAGE_SIZE;
890 map.type = MT_DEVICE;
891 create_mapping(&map);
892 }
893 #endif
894
895 static void * __initdata vmalloc_min =
896 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
897
898 /*
899 * vmalloc=size forces the vmalloc area to be exactly 'size'
900 * bytes. This can be used to increase (or decrease) the vmalloc
901 * area - the default is 240m.
902 */
903 static int __init early_vmalloc(char *arg)
904 {
905 unsigned long vmalloc_reserve = memparse(arg, NULL);
906
907 if (vmalloc_reserve < SZ_16M) {
908 vmalloc_reserve = SZ_16M;
909 printk(KERN_WARNING
910 "vmalloc area too small, limiting to %luMB\n",
911 vmalloc_reserve >> 20);
912 }
913
914 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
915 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
916 printk(KERN_WARNING
917 "vmalloc area is too big, limiting to %luMB\n",
918 vmalloc_reserve >> 20);
919 }
920
921 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
922 return 0;
923 }
924 early_param("vmalloc", early_vmalloc);
925
926 phys_addr_t arm_lowmem_limit __initdata = 0;
927
928 void __init sanity_check_meminfo(void)
929 {
930 int i, j, highmem = 0;
931
932 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
933 struct membank *bank = &meminfo.bank[j];
934 *bank = meminfo.bank[i];
935
936 if (bank->start > ULONG_MAX)
937 highmem = 1;
938
939 #ifdef CONFIG_HIGHMEM
940 if (__va(bank->start) >= vmalloc_min ||
941 __va(bank->start) < (void *)PAGE_OFFSET)
942 highmem = 1;
943
944 bank->highmem = highmem;
945
946 /*
947 * Split those memory banks which are partially overlapping
948 * the vmalloc area greatly simplifying things later.
949 */
950 if (!highmem && __va(bank->start) < vmalloc_min &&
951 bank->size > vmalloc_min - __va(bank->start)) {
952 if (meminfo.nr_banks >= NR_BANKS) {
953 printk(KERN_CRIT "NR_BANKS too low, "
954 "ignoring high memory\n");
955 } else {
956 memmove(bank + 1, bank,
957 (meminfo.nr_banks - i) * sizeof(*bank));
958 meminfo.nr_banks++;
959 i++;
960 bank[1].size -= vmalloc_min - __va(bank->start);
961 bank[1].start = __pa(vmalloc_min - 1) + 1;
962 bank[1].highmem = highmem = 1;
963 j++;
964 }
965 bank->size = vmalloc_min - __va(bank->start);
966 }
967 #else
968 bank->highmem = highmem;
969
970 /*
971 * Highmem banks not allowed with !CONFIG_HIGHMEM.
972 */
973 if (highmem) {
974 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
975 "(!CONFIG_HIGHMEM).\n",
976 (unsigned long long)bank->start,
977 (unsigned long long)bank->start + bank->size - 1);
978 continue;
979 }
980
981 /*
982 * Check whether this memory bank would entirely overlap
983 * the vmalloc area.
984 */
985 if (__va(bank->start) >= vmalloc_min ||
986 __va(bank->start) < (void *)PAGE_OFFSET) {
987 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
988 "(vmalloc region overlap).\n",
989 (unsigned long long)bank->start,
990 (unsigned long long)bank->start + bank->size - 1);
991 continue;
992 }
993
994 /*
995 * Check whether this memory bank would partially overlap
996 * the vmalloc area.
997 */
998 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
999 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1000 unsigned long newsize = vmalloc_min - __va(bank->start);
1001 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1002 "to -%.8llx (vmalloc region overlap).\n",
1003 (unsigned long long)bank->start,
1004 (unsigned long long)bank->start + bank->size - 1,
1005 (unsigned long long)bank->start + newsize - 1);
1006 bank->size = newsize;
1007 }
1008 #endif
1009 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1010 arm_lowmem_limit = bank->start + bank->size;
1011
1012 j++;
1013 }
1014 #ifdef CONFIG_HIGHMEM
1015 if (highmem) {
1016 const char *reason = NULL;
1017
1018 if (cache_is_vipt_aliasing()) {
1019 /*
1020 * Interactions between kmap and other mappings
1021 * make highmem support with aliasing VIPT caches
1022 * rather difficult.
1023 */
1024 reason = "with VIPT aliasing cache";
1025 }
1026 if (reason) {
1027 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1028 reason);
1029 while (j > 0 && meminfo.bank[j - 1].highmem)
1030 j--;
1031 }
1032 }
1033 #endif
1034 meminfo.nr_banks = j;
1035 high_memory = __va(arm_lowmem_limit - 1) + 1;
1036 memblock_set_current_limit(arm_lowmem_limit);
1037 }
1038
1039 static inline void prepare_page_table(void)
1040 {
1041 unsigned long addr;
1042 phys_addr_t end;
1043
1044 /*
1045 * Clear out all the mappings below the kernel image.
1046 */
1047 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1048 pmd_clear(pmd_off_k(addr));
1049
1050 #ifdef CONFIG_XIP_KERNEL
1051 /* The XIP kernel is mapped in the module area -- skip over it */
1052 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1053 #endif
1054 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1055 pmd_clear(pmd_off_k(addr));
1056
1057 /*
1058 * Find the end of the first block of lowmem.
1059 */
1060 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1061 if (end >= arm_lowmem_limit)
1062 end = arm_lowmem_limit;
1063
1064 /*
1065 * Clear out all the kernel space mappings, except for the first
1066 * memory bank, up to the vmalloc region.
1067 */
1068 for (addr = __phys_to_virt(end);
1069 addr < VMALLOC_START; addr += PMD_SIZE)
1070 pmd_clear(pmd_off_k(addr));
1071 }
1072
1073 #ifdef CONFIG_ARM_LPAE
1074 /* the first page is reserved for pgd */
1075 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1076 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1077 #else
1078 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1079 #endif
1080
1081 /*
1082 * Reserve the special regions of memory
1083 */
1084 void __init arm_mm_memblock_reserve(void)
1085 {
1086 /*
1087 * Reserve the page tables. These are already in use,
1088 * and can only be in node 0.
1089 */
1090 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1091
1092 #ifdef CONFIG_SA1111
1093 /*
1094 * Because of the SA1111 DMA bug, we want to preserve our
1095 * precious DMA-able memory...
1096 */
1097 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1098 #endif
1099 }
1100
1101 /*
1102 * Set up the device mappings. Since we clear out the page tables for all
1103 * mappings above VMALLOC_START, we will remove any debug device mappings.
1104 * This means you have to be careful how you debug this function, or any
1105 * called function. This means you can't use any function or debugging
1106 * method which may touch any device, otherwise the kernel _will_ crash.
1107 */
1108 static void __init devicemaps_init(struct machine_desc *mdesc)
1109 {
1110 struct map_desc map;
1111 unsigned long addr;
1112 void *vectors;
1113
1114 /*
1115 * Allocate the vector page early.
1116 */
1117 vectors = early_alloc(PAGE_SIZE);
1118
1119 early_trap_init(vectors);
1120
1121 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1122 pmd_clear(pmd_off_k(addr));
1123
1124 /*
1125 * Map the kernel if it is XIP.
1126 * It is always first in the modulearea.
1127 */
1128 #ifdef CONFIG_XIP_KERNEL
1129 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1130 map.virtual = MODULES_VADDR;
1131 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1132 map.type = MT_ROM;
1133 create_mapping(&map);
1134 #endif
1135
1136 /*
1137 * Map the cache flushing regions.
1138 */
1139 #ifdef FLUSH_BASE
1140 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1141 map.virtual = FLUSH_BASE;
1142 map.length = SZ_1M;
1143 map.type = MT_CACHECLEAN;
1144 create_mapping(&map);
1145 #endif
1146 #ifdef FLUSH_BASE_MINICACHE
1147 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1148 map.virtual = FLUSH_BASE_MINICACHE;
1149 map.length = SZ_1M;
1150 map.type = MT_MINICLEAN;
1151 create_mapping(&map);
1152 #endif
1153
1154 /*
1155 * Create a mapping for the machine vectors at the high-vectors
1156 * location (0xffff0000). If we aren't using high-vectors, also
1157 * create a mapping at the low-vectors virtual address.
1158 */
1159 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1160 map.virtual = 0xffff0000;
1161 map.length = PAGE_SIZE;
1162 map.type = MT_HIGH_VECTORS;
1163 create_mapping(&map);
1164
1165 if (!vectors_high()) {
1166 map.virtual = 0;
1167 map.type = MT_LOW_VECTORS;
1168 create_mapping(&map);
1169 }
1170
1171 /*
1172 * Ask the machine support to map in the statically mapped devices.
1173 */
1174 if (mdesc->map_io)
1175 mdesc->map_io();
1176 fill_pmd_gaps();
1177
1178 /* Reserve fixed i/o space in VMALLOC region */
1179 pci_reserve_io();
1180
1181 /*
1182 * Finally flush the caches and tlb to ensure that we're in a
1183 * consistent state wrt the writebuffer. This also ensures that
1184 * any write-allocated cache lines in the vector page are written
1185 * back. After this point, we can start to touch devices again.
1186 */
1187 local_flush_tlb_all();
1188 flush_cache_all();
1189 }
1190
1191 static void __init kmap_init(void)
1192 {
1193 #ifdef CONFIG_HIGHMEM
1194 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1195 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1196 #endif
1197 }
1198
1199 static void __init map_lowmem(void)
1200 {
1201 struct memblock_region *reg;
1202
1203 /* Map all the lowmem memory banks. */
1204 for_each_memblock(memory, reg) {
1205 phys_addr_t start = reg->base;
1206 phys_addr_t end = start + reg->size;
1207 struct map_desc map;
1208
1209 if (end > arm_lowmem_limit)
1210 end = arm_lowmem_limit;
1211 if (start >= end)
1212 break;
1213
1214 map.pfn = __phys_to_pfn(start);
1215 map.virtual = __phys_to_virt(start);
1216 map.length = end - start;
1217 map.type = MT_MEMORY;
1218
1219 create_mapping(&map);
1220 }
1221 }
1222
1223 /*
1224 * paging_init() sets up the page tables, initialises the zone memory
1225 * maps, and sets up the zero page, bad page and bad page tables.
1226 */
1227 void __init paging_init(struct machine_desc *mdesc)
1228 {
1229 void *zero_page;
1230
1231 memblock_set_current_limit(arm_lowmem_limit);
1232
1233 build_mem_type_table();
1234 prepare_page_table();
1235 map_lowmem();
1236 dma_contiguous_remap();
1237 devicemaps_init(mdesc);
1238 kmap_init();
1239
1240 top_pmd = pmd_off_k(0xffff0000);
1241
1242 /* allocate the zero page. */
1243 zero_page = early_alloc(PAGE_SIZE);
1244
1245 bootmem_init();
1246
1247 empty_zero_page = virt_to_page(zero_page);
1248 __flush_dcache_page(NULL, empty_zero_page);
1249 }