ARM: entry: prefetch abort helper: pass aborted pc in r4 rather than r0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / flush.c
1 /*
2 * linux/arch/arm/mm/flush.c
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/system.h>
20 #include <asm/tlbflush.h>
21
22 #include "mm.h"
23
24 #ifdef CONFIG_CPU_CACHE_VIPT
25
26 #define ALIAS_FLUSH_START 0xffff4000
27
28 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
29 {
30 unsigned long to = ALIAS_FLUSH_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
31 const int zero = 0;
32
33 set_pte_ext(TOP_PTE(to), pfn_pte(pfn, PAGE_KERNEL), 0);
34 flush_tlb_kernel_page(to);
35
36 asm( "mcrr p15, 0, %1, %0, c14\n"
37 " mcr p15, 0, %2, c7, c10, 4"
38 :
39 : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
40 : "cc");
41 }
42
43 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
44 {
45 unsigned long colour = CACHE_COLOUR(vaddr);
46 unsigned long offset = vaddr & (PAGE_SIZE - 1);
47 unsigned long to;
48
49 set_pte_ext(TOP_PTE(ALIAS_FLUSH_START) + colour, pfn_pte(pfn, PAGE_KERNEL), 0);
50 to = ALIAS_FLUSH_START + (colour << PAGE_SHIFT) + offset;
51 flush_tlb_kernel_page(to);
52 flush_icache_range(to, to + len);
53 }
54
55 void flush_cache_mm(struct mm_struct *mm)
56 {
57 if (cache_is_vivt()) {
58 vivt_flush_cache_mm(mm);
59 return;
60 }
61
62 if (cache_is_vipt_aliasing()) {
63 asm( "mcr p15, 0, %0, c7, c14, 0\n"
64 " mcr p15, 0, %0, c7, c10, 4"
65 :
66 : "r" (0)
67 : "cc");
68 }
69 }
70
71 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
72 {
73 if (cache_is_vivt()) {
74 vivt_flush_cache_range(vma, start, end);
75 return;
76 }
77
78 if (cache_is_vipt_aliasing()) {
79 asm( "mcr p15, 0, %0, c7, c14, 0\n"
80 " mcr p15, 0, %0, c7, c10, 4"
81 :
82 : "r" (0)
83 : "cc");
84 }
85
86 if (vma->vm_flags & VM_EXEC)
87 __flush_icache_all();
88 }
89
90 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
91 {
92 if (cache_is_vivt()) {
93 vivt_flush_cache_page(vma, user_addr, pfn);
94 return;
95 }
96
97 if (cache_is_vipt_aliasing()) {
98 flush_pfn_alias(pfn, user_addr);
99 __flush_icache_all();
100 }
101
102 if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
103 __flush_icache_all();
104 }
105
106 #else
107 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
108 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
109 #endif
110
111 static void flush_ptrace_access_other(void *args)
112 {
113 __flush_icache_all();
114 }
115
116 static
117 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
118 unsigned long uaddr, void *kaddr, unsigned long len)
119 {
120 if (cache_is_vivt()) {
121 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
122 unsigned long addr = (unsigned long)kaddr;
123 __cpuc_coherent_kern_range(addr, addr + len);
124 }
125 return;
126 }
127
128 if (cache_is_vipt_aliasing()) {
129 flush_pfn_alias(page_to_pfn(page), uaddr);
130 __flush_icache_all();
131 return;
132 }
133
134 /* VIPT non-aliasing D-cache */
135 if (vma->vm_flags & VM_EXEC) {
136 unsigned long addr = (unsigned long)kaddr;
137 if (icache_is_vipt_aliasing())
138 flush_icache_alias(page_to_pfn(page), uaddr, len);
139 else
140 __cpuc_coherent_kern_range(addr, addr + len);
141 if (cache_ops_need_broadcast())
142 smp_call_function(flush_ptrace_access_other,
143 NULL, 1);
144 }
145 }
146
147 /*
148 * Copy user data from/to a page which is mapped into a different
149 * processes address space. Really, we want to allow our "user
150 * space" model to handle this.
151 *
152 * Note that this code needs to run on the current CPU.
153 */
154 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
155 unsigned long uaddr, void *dst, const void *src,
156 unsigned long len)
157 {
158 #ifdef CONFIG_SMP
159 preempt_disable();
160 #endif
161 memcpy(dst, src, len);
162 flush_ptrace_access(vma, page, uaddr, dst, len);
163 #ifdef CONFIG_SMP
164 preempt_enable();
165 #endif
166 }
167
168 void __flush_dcache_page(struct address_space *mapping, struct page *page)
169 {
170 /*
171 * Writeback any data associated with the kernel mapping of this
172 * page. This ensures that data in the physical page is mutually
173 * coherent with the kernels mapping.
174 */
175 if (!PageHighMem(page)) {
176 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
177 } else {
178 void *addr = kmap_high_get(page);
179 if (addr) {
180 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
181 kunmap_high(page);
182 } else if (cache_is_vipt()) {
183 /* unmapped pages might still be cached */
184 addr = kmap_atomic(page);
185 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
186 kunmap_atomic(addr);
187 }
188 }
189
190 /*
191 * If this is a page cache page, and we have an aliasing VIPT cache,
192 * we only need to do one flush - which would be at the relevant
193 * userspace colour, which is congruent with page->index.
194 */
195 if (mapping && cache_is_vipt_aliasing())
196 flush_pfn_alias(page_to_pfn(page),
197 page->index << PAGE_CACHE_SHIFT);
198 }
199
200 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
201 {
202 struct mm_struct *mm = current->active_mm;
203 struct vm_area_struct *mpnt;
204 struct prio_tree_iter iter;
205 pgoff_t pgoff;
206
207 /*
208 * There are possible user space mappings of this page:
209 * - VIVT cache: we need to also write back and invalidate all user
210 * data in the current VM view associated with this page.
211 * - aliasing VIPT: we only need to find one mapping of this page.
212 */
213 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
214
215 flush_dcache_mmap_lock(mapping);
216 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
217 unsigned long offset;
218
219 /*
220 * If this VMA is not in our MM, we can ignore it.
221 */
222 if (mpnt->vm_mm != mm)
223 continue;
224 if (!(mpnt->vm_flags & VM_MAYSHARE))
225 continue;
226 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
227 flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
228 }
229 flush_dcache_mmap_unlock(mapping);
230 }
231
232 #if __LINUX_ARM_ARCH__ >= 6
233 void __sync_icache_dcache(pte_t pteval)
234 {
235 unsigned long pfn;
236 struct page *page;
237 struct address_space *mapping;
238
239 if (!pte_present_user(pteval))
240 return;
241 if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
242 /* only flush non-aliasing VIPT caches for exec mappings */
243 return;
244 pfn = pte_pfn(pteval);
245 if (!pfn_valid(pfn))
246 return;
247
248 page = pfn_to_page(pfn);
249 if (cache_is_vipt_aliasing())
250 mapping = page_mapping(page);
251 else
252 mapping = NULL;
253
254 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
255 __flush_dcache_page(mapping, page);
256
257 if (pte_exec(pteval))
258 __flush_icache_all();
259 }
260 #endif
261
262 /*
263 * Ensure cache coherency between kernel mapping and userspace mapping
264 * of this page.
265 *
266 * We have three cases to consider:
267 * - VIPT non-aliasing cache: fully coherent so nothing required.
268 * - VIVT: fully aliasing, so we need to handle every alias in our
269 * current VM view.
270 * - VIPT aliasing: need to handle one alias in our current VM view.
271 *
272 * If we need to handle aliasing:
273 * If the page only exists in the page cache and there are no user
274 * space mappings, we can be lazy and remember that we may have dirty
275 * kernel cache lines for later. Otherwise, we assume we have
276 * aliasing mappings.
277 *
278 * Note that we disable the lazy flush for SMP configurations where
279 * the cache maintenance operations are not automatically broadcasted.
280 */
281 void flush_dcache_page(struct page *page)
282 {
283 struct address_space *mapping;
284
285 /*
286 * The zero page is never written to, so never has any dirty
287 * cache lines, and therefore never needs to be flushed.
288 */
289 if (page == ZERO_PAGE(0))
290 return;
291
292 mapping = page_mapping(page);
293
294 if (!cache_ops_need_broadcast() &&
295 mapping && !mapping_mapped(mapping))
296 clear_bit(PG_dcache_clean, &page->flags);
297 else {
298 __flush_dcache_page(mapping, page);
299 if (mapping && cache_is_vivt())
300 __flush_dcache_aliases(mapping, page);
301 else if (mapping)
302 __flush_icache_all();
303 set_bit(PG_dcache_clean, &page->flags);
304 }
305 }
306 EXPORT_SYMBOL(flush_dcache_page);
307
308 /*
309 * Flush an anonymous page so that users of get_user_pages()
310 * can safely access the data. The expected sequence is:
311 *
312 * get_user_pages()
313 * -> flush_anon_page
314 * memcpy() to/from page
315 * if written to page, flush_dcache_page()
316 */
317 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
318 {
319 unsigned long pfn;
320
321 /* VIPT non-aliasing caches need do nothing */
322 if (cache_is_vipt_nonaliasing())
323 return;
324
325 /*
326 * Write back and invalidate userspace mapping.
327 */
328 pfn = page_to_pfn(page);
329 if (cache_is_vivt()) {
330 flush_cache_page(vma, vmaddr, pfn);
331 } else {
332 /*
333 * For aliasing VIPT, we can flush an alias of the
334 * userspace address only.
335 */
336 flush_pfn_alias(pfn, vmaddr);
337 __flush_icache_all();
338 }
339
340 /*
341 * Invalidate kernel mapping. No data should be contained
342 * in this mapping of the page. FIXME: this is overkill
343 * since we actually ask for a write-back and invalidate.
344 */
345 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
346 }