Merge branch 'for-3.8/upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mach-omap2 / timer.c
1 /*
2 * linux/arch/arm/mach-omap2/timer.c
3 *
4 * OMAP2 GP timer support.
5 *
6 * Copyright (C) 2009 Nokia Corporation
7 *
8 * Update to use new clocksource/clockevent layers
9 * Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com>
10 * Copyright (C) 2007 MontaVista Software, Inc.
11 *
12 * Original driver:
13 * Copyright (C) 2005 Nokia Corporation
14 * Author: Paul Mundt <paul.mundt@nokia.com>
15 * Juha Yrjölä <juha.yrjola@nokia.com>
16 * OMAP Dual-mode timer framework support by Timo Teras
17 *
18 * Some parts based off of TI's 24xx code:
19 *
20 * Copyright (C) 2004-2009 Texas Instruments, Inc.
21 *
22 * Roughly modelled after the OMAP1 MPU timer code.
23 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
24 *
25 * This file is subject to the terms and conditions of the GNU General Public
26 * License. See the file "COPYING" in the main directory of this archive
27 * for more details.
28 */
29 #include <linux/init.h>
30 #include <linux/time.h>
31 #include <linux/interrupt.h>
32 #include <linux/err.h>
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/irq.h>
36 #include <linux/clocksource.h>
37 #include <linux/clockchips.h>
38 #include <linux/slab.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/of_irq.h>
42 #include <linux/platform_device.h>
43 #include <linux/platform_data/dmtimer-omap.h>
44
45 #include <asm/mach/time.h>
46 #include <asm/smp_twd.h>
47 #include <asm/sched_clock.h>
48
49 #include <asm/arch_timer.h>
50 #include "omap_hwmod.h"
51 #include "omap_device.h"
52 #include <plat/counter-32k.h>
53 #include <plat/dmtimer.h>
54 #include "omap-pm.h"
55
56 #include "soc.h"
57 #include "common.h"
58 #include "powerdomain.h"
59
60 /* Parent clocks, eventually these will come from the clock framework */
61
62 #define OMAP2_MPU_SOURCE "sys_ck"
63 #define OMAP3_MPU_SOURCE OMAP2_MPU_SOURCE
64 #define OMAP4_MPU_SOURCE "sys_clkin_ck"
65 #define OMAP2_32K_SOURCE "func_32k_ck"
66 #define OMAP3_32K_SOURCE "omap_32k_fck"
67 #define OMAP4_32K_SOURCE "sys_32k_ck"
68
69 #define REALTIME_COUNTER_BASE 0x48243200
70 #define INCREMENTER_NUMERATOR_OFFSET 0x10
71 #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14
72 #define NUMERATOR_DENUMERATOR_MASK 0xfffff000
73
74 /* Clockevent code */
75
76 static struct omap_dm_timer clkev;
77 static struct clock_event_device clockevent_gpt;
78
79 static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id)
80 {
81 struct clock_event_device *evt = &clockevent_gpt;
82
83 __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW);
84
85 evt->event_handler(evt);
86 return IRQ_HANDLED;
87 }
88
89 static struct irqaction omap2_gp_timer_irq = {
90 .name = "gp_timer",
91 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
92 .handler = omap2_gp_timer_interrupt,
93 };
94
95 static int omap2_gp_timer_set_next_event(unsigned long cycles,
96 struct clock_event_device *evt)
97 {
98 __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST,
99 0xffffffff - cycles, OMAP_TIMER_POSTED);
100
101 return 0;
102 }
103
104 static void omap2_gp_timer_set_mode(enum clock_event_mode mode,
105 struct clock_event_device *evt)
106 {
107 u32 period;
108
109 __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate);
110
111 switch (mode) {
112 case CLOCK_EVT_MODE_PERIODIC:
113 period = clkev.rate / HZ;
114 period -= 1;
115 /* Looks like we need to first set the load value separately */
116 __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG,
117 0xffffffff - period, OMAP_TIMER_POSTED);
118 __omap_dm_timer_load_start(&clkev,
119 OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST,
120 0xffffffff - period, OMAP_TIMER_POSTED);
121 break;
122 case CLOCK_EVT_MODE_ONESHOT:
123 break;
124 case CLOCK_EVT_MODE_UNUSED:
125 case CLOCK_EVT_MODE_SHUTDOWN:
126 case CLOCK_EVT_MODE_RESUME:
127 break;
128 }
129 }
130
131 static struct clock_event_device clockevent_gpt = {
132 .name = "gp_timer",
133 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
134 .shift = 32,
135 .rating = 300,
136 .set_next_event = omap2_gp_timer_set_next_event,
137 .set_mode = omap2_gp_timer_set_mode,
138 };
139
140 static struct property device_disabled = {
141 .name = "status",
142 .length = sizeof("disabled"),
143 .value = "disabled",
144 };
145
146 static struct of_device_id omap_timer_match[] __initdata = {
147 { .compatible = "ti,omap2-timer", },
148 { }
149 };
150
151 /**
152 * omap_get_timer_dt - get a timer using device-tree
153 * @match - device-tree match structure for matching a device type
154 * @property - optional timer property to match
155 *
156 * Helper function to get a timer during early boot using device-tree for use
157 * as kernel system timer. Optionally, the property argument can be used to
158 * select a timer with a specific property. Once a timer is found then mark
159 * the timer node in device-tree as disabled, to prevent the kernel from
160 * registering this timer as a platform device and so no one else can use it.
161 */
162 static struct device_node * __init omap_get_timer_dt(struct of_device_id *match,
163 const char *property)
164 {
165 struct device_node *np;
166
167 for_each_matching_node(np, match) {
168 if (!of_device_is_available(np))
169 continue;
170
171 if (property && !of_get_property(np, property, NULL))
172 continue;
173
174 of_add_property(np, &device_disabled);
175 return np;
176 }
177
178 return NULL;
179 }
180
181 /**
182 * omap_dmtimer_init - initialisation function when device tree is used
183 *
184 * For secure OMAP3 devices, timers with device type "timer-secure" cannot
185 * be used by the kernel as they are reserved. Therefore, to prevent the
186 * kernel registering these devices remove them dynamically from the device
187 * tree on boot.
188 */
189 static void __init omap_dmtimer_init(void)
190 {
191 struct device_node *np;
192
193 if (!cpu_is_omap34xx())
194 return;
195
196 /* If we are a secure device, remove any secure timer nodes */
197 if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) {
198 np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure");
199 if (np)
200 of_node_put(np);
201 }
202 }
203
204 /**
205 * omap_dm_timer_get_errata - get errata flags for a timer
206 *
207 * Get the timer errata flags that are specific to the OMAP device being used.
208 */
209 static u32 __init omap_dm_timer_get_errata(void)
210 {
211 if (cpu_is_omap24xx())
212 return 0;
213
214 return OMAP_TIMER_ERRATA_I103_I767;
215 }
216
217 static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer,
218 int gptimer_id,
219 const char *fck_source,
220 const char *property,
221 int posted)
222 {
223 char name[10]; /* 10 = sizeof("gptXX_Xck0") */
224 const char *oh_name;
225 struct device_node *np;
226 struct omap_hwmod *oh;
227 struct resource irq, mem;
228 int r = 0;
229
230 if (of_have_populated_dt()) {
231 np = omap_get_timer_dt(omap_timer_match, NULL);
232 if (!np)
233 return -ENODEV;
234
235 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
236 if (!oh_name)
237 return -ENODEV;
238
239 timer->irq = irq_of_parse_and_map(np, 0);
240 if (!timer->irq)
241 return -ENXIO;
242
243 timer->io_base = of_iomap(np, 0);
244
245 of_node_put(np);
246 } else {
247 if (omap_dm_timer_reserve_systimer(gptimer_id))
248 return -ENODEV;
249
250 sprintf(name, "timer%d", gptimer_id);
251 oh_name = name;
252 }
253
254 oh = omap_hwmod_lookup(oh_name);
255 if (!oh)
256 return -ENODEV;
257
258 if (!of_have_populated_dt()) {
259 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL,
260 &irq);
261 if (r)
262 return -ENXIO;
263 timer->irq = irq.start;
264
265 r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL,
266 &mem);
267 if (r)
268 return -ENXIO;
269
270 /* Static mapping, never released */
271 timer->io_base = ioremap(mem.start, mem.end - mem.start);
272 }
273
274 if (!timer->io_base)
275 return -ENXIO;
276
277 /* After the dmtimer is using hwmod these clocks won't be needed */
278 timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh));
279 if (IS_ERR(timer->fclk))
280 return -ENODEV;
281
282 /* FIXME: Need to remove hard-coded test on timer ID */
283 if (gptimer_id != 12) {
284 struct clk *src;
285
286 src = clk_get(NULL, fck_source);
287 if (IS_ERR(src)) {
288 r = -EINVAL;
289 } else {
290 r = clk_set_parent(timer->fclk, src);
291 if (IS_ERR_VALUE(r))
292 pr_warn("%s: %s cannot set source\n",
293 __func__, oh->name);
294 clk_put(src);
295 }
296 }
297
298 omap_hwmod_setup_one(oh_name);
299 omap_hwmod_enable(oh);
300 __omap_dm_timer_init_regs(timer);
301
302 if (posted)
303 __omap_dm_timer_enable_posted(timer);
304
305 /* Check that the intended posted configuration matches the actual */
306 if (posted != timer->posted)
307 return -EINVAL;
308
309 timer->rate = clk_get_rate(timer->fclk);
310 timer->reserved = 1;
311
312 return r;
313 }
314
315 static void __init omap2_gp_clockevent_init(int gptimer_id,
316 const char *fck_source,
317 const char *property)
318 {
319 int res;
320
321 clkev.errata = omap_dm_timer_get_errata();
322
323 /*
324 * For clock-event timers we never read the timer counter and
325 * so we are not impacted by errata i103 and i767. Therefore,
326 * we can safely ignore this errata for clock-event timers.
327 */
328 __omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767);
329
330 res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source, property,
331 OMAP_TIMER_POSTED);
332 BUG_ON(res);
333
334 omap2_gp_timer_irq.dev_id = &clkev;
335 setup_irq(clkev.irq, &omap2_gp_timer_irq);
336
337 __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW);
338
339 clockevent_gpt.mult = div_sc(clkev.rate, NSEC_PER_SEC,
340 clockevent_gpt.shift);
341 clockevent_gpt.max_delta_ns =
342 clockevent_delta2ns(0xffffffff, &clockevent_gpt);
343 clockevent_gpt.min_delta_ns =
344 clockevent_delta2ns(3, &clockevent_gpt);
345 /* Timer internal resynch latency. */
346
347 clockevent_gpt.cpumask = cpu_possible_mask;
348 clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev);
349 clockevents_register_device(&clockevent_gpt);
350
351 pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n",
352 gptimer_id, clkev.rate);
353 }
354
355 /* Clocksource code */
356 static struct omap_dm_timer clksrc;
357 static bool use_gptimer_clksrc;
358
359 /*
360 * clocksource
361 */
362 static cycle_t clocksource_read_cycles(struct clocksource *cs)
363 {
364 return (cycle_t)__omap_dm_timer_read_counter(&clksrc,
365 OMAP_TIMER_NONPOSTED);
366 }
367
368 static struct clocksource clocksource_gpt = {
369 .name = "gp_timer",
370 .rating = 300,
371 .read = clocksource_read_cycles,
372 .mask = CLOCKSOURCE_MASK(32),
373 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
374 };
375
376 static u32 notrace dmtimer_read_sched_clock(void)
377 {
378 if (clksrc.reserved)
379 return __omap_dm_timer_read_counter(&clksrc,
380 OMAP_TIMER_NONPOSTED);
381
382 return 0;
383 }
384
385 static struct of_device_id omap_counter_match[] __initdata = {
386 { .compatible = "ti,omap-counter32k", },
387 { }
388 };
389
390 /* Setup free-running counter for clocksource */
391 static int __init __maybe_unused omap2_sync32k_clocksource_init(void)
392 {
393 int ret;
394 struct device_node *np = NULL;
395 struct omap_hwmod *oh;
396 void __iomem *vbase;
397 const char *oh_name = "counter_32k";
398
399 /*
400 * If device-tree is present, then search the DT blob
401 * to see if the 32kHz counter is supported.
402 */
403 if (of_have_populated_dt()) {
404 np = omap_get_timer_dt(omap_counter_match, NULL);
405 if (!np)
406 return -ENODEV;
407
408 of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
409 if (!oh_name)
410 return -ENODEV;
411 }
412
413 /*
414 * First check hwmod data is available for sync32k counter
415 */
416 oh = omap_hwmod_lookup(oh_name);
417 if (!oh || oh->slaves_cnt == 0)
418 return -ENODEV;
419
420 omap_hwmod_setup_one(oh_name);
421
422 if (np) {
423 vbase = of_iomap(np, 0);
424 of_node_put(np);
425 } else {
426 vbase = omap_hwmod_get_mpu_rt_va(oh);
427 }
428
429 if (!vbase) {
430 pr_warn("%s: failed to get counter_32k resource\n", __func__);
431 return -ENXIO;
432 }
433
434 ret = omap_hwmod_enable(oh);
435 if (ret) {
436 pr_warn("%s: failed to enable counter_32k module (%d)\n",
437 __func__, ret);
438 return ret;
439 }
440
441 ret = omap_init_clocksource_32k(vbase);
442 if (ret) {
443 pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n",
444 __func__, ret);
445 omap_hwmod_idle(oh);
446 }
447
448 return ret;
449 }
450
451 static void __init omap2_gptimer_clocksource_init(int gptimer_id,
452 const char *fck_source)
453 {
454 int res;
455
456 clksrc.errata = omap_dm_timer_get_errata();
457
458 res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source, NULL,
459 OMAP_TIMER_NONPOSTED);
460 BUG_ON(res);
461
462 __omap_dm_timer_load_start(&clksrc,
463 OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0,
464 OMAP_TIMER_NONPOSTED);
465 setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate);
466
467 if (clocksource_register_hz(&clocksource_gpt, clksrc.rate))
468 pr_err("Could not register clocksource %s\n",
469 clocksource_gpt.name);
470 else
471 pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n",
472 gptimer_id, clksrc.rate);
473 }
474
475 #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER
476 /*
477 * The realtime counter also called master counter, is a free-running
478 * counter, which is related to real time. It produces the count used
479 * by the CPU local timer peripherals in the MPU cluster. The timer counts
480 * at a rate of 6.144 MHz. Because the device operates on different clocks
481 * in different power modes, the master counter shifts operation between
482 * clocks, adjusting the increment per clock in hardware accordingly to
483 * maintain a constant count rate.
484 */
485 static void __init realtime_counter_init(void)
486 {
487 void __iomem *base;
488 static struct clk *sys_clk;
489 unsigned long rate;
490 unsigned int reg, num, den;
491
492 base = ioremap(REALTIME_COUNTER_BASE, SZ_32);
493 if (!base) {
494 pr_err("%s: ioremap failed\n", __func__);
495 return;
496 }
497 sys_clk = clk_get(NULL, "sys_clkin_ck");
498 if (IS_ERR(sys_clk)) {
499 pr_err("%s: failed to get system clock handle\n", __func__);
500 iounmap(base);
501 return;
502 }
503
504 rate = clk_get_rate(sys_clk);
505 /* Numerator/denumerator values refer TRM Realtime Counter section */
506 switch (rate) {
507 case 1200000:
508 num = 64;
509 den = 125;
510 break;
511 case 1300000:
512 num = 768;
513 den = 1625;
514 break;
515 case 19200000:
516 num = 8;
517 den = 25;
518 break;
519 case 2600000:
520 num = 384;
521 den = 1625;
522 break;
523 case 2700000:
524 num = 256;
525 den = 1125;
526 break;
527 case 38400000:
528 default:
529 /* Program it for 38.4 MHz */
530 num = 4;
531 den = 25;
532 break;
533 }
534
535 /* Program numerator and denumerator registers */
536 reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) &
537 NUMERATOR_DENUMERATOR_MASK;
538 reg |= num;
539 __raw_writel(reg, base + INCREMENTER_NUMERATOR_OFFSET);
540
541 reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) &
542 NUMERATOR_DENUMERATOR_MASK;
543 reg |= den;
544 __raw_writel(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET);
545
546 iounmap(base);
547 }
548 #else
549 static inline void __init realtime_counter_init(void)
550 {}
551 #endif
552
553 #define OMAP_SYS_GP_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \
554 clksrc_nr, clksrc_src) \
555 static void __init omap##name##_gptimer_timer_init(void) \
556 { \
557 omap_dmtimer_init(); \
558 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \
559 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src); \
560 }
561
562 #define OMAP_SYS_32K_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \
563 clksrc_nr, clksrc_src) \
564 static void __init omap##name##_sync32k_timer_init(void) \
565 { \
566 omap_dmtimer_init(); \
567 omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \
568 /* Enable the use of clocksource="gp_timer" kernel parameter */ \
569 if (use_gptimer_clksrc) \
570 omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src);\
571 else \
572 omap2_sync32k_clocksource_init(); \
573 }
574
575 #define OMAP_SYS_TIMER(name, clksrc) \
576 struct sys_timer omap##name##_timer = { \
577 .init = omap##name##_##clksrc##_timer_init, \
578 };
579
580 #ifdef CONFIG_ARCH_OMAP2
581 OMAP_SYS_32K_TIMER_INIT(2, 1, OMAP2_32K_SOURCE, "ti,timer-alwon",
582 2, OMAP2_MPU_SOURCE);
583 OMAP_SYS_TIMER(2, sync32k);
584 #endif /* CONFIG_ARCH_OMAP2 */
585
586 #ifdef CONFIG_ARCH_OMAP3
587 OMAP_SYS_32K_TIMER_INIT(3, 1, OMAP3_32K_SOURCE, "ti,timer-alwon",
588 2, OMAP3_MPU_SOURCE);
589 OMAP_SYS_TIMER(3, sync32k);
590 OMAP_SYS_32K_TIMER_INIT(3_secure, 12, OMAP3_32K_SOURCE, "ti,timer-secure",
591 2, OMAP3_MPU_SOURCE);
592 OMAP_SYS_TIMER(3_secure, sync32k);
593 OMAP_SYS_GP_TIMER_INIT(3_gp, 1, OMAP3_MPU_SOURCE, "ti,timer-alwon",
594 2, OMAP3_MPU_SOURCE);
595 OMAP_SYS_TIMER(3_gp, gptimer);
596 #endif /* CONFIG_ARCH_OMAP3 */
597
598 #ifdef CONFIG_SOC_AM33XX
599 OMAP_SYS_GP_TIMER_INIT(3_am33xx, 1, OMAP4_MPU_SOURCE, "ti,timer-alwon",
600 2, OMAP4_MPU_SOURCE);
601 OMAP_SYS_TIMER(3_am33xx, gptimer);
602 #endif /* CONFIG_SOC_AM33XX */
603
604 #ifdef CONFIG_ARCH_OMAP4
605 OMAP_SYS_32K_TIMER_INIT(4, 1, OMAP4_32K_SOURCE, "ti,timer-alwon",
606 2, OMAP4_MPU_SOURCE);
607 #ifdef CONFIG_LOCAL_TIMERS
608 static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, OMAP44XX_LOCAL_TWD_BASE, 29);
609 static void __init omap4_local_timer_init(void)
610 {
611 omap4_sync32k_timer_init();
612 /* Local timers are not supprted on OMAP4430 ES1.0 */
613 if (omap_rev() != OMAP4430_REV_ES1_0) {
614 int err;
615
616 if (of_have_populated_dt()) {
617 twd_local_timer_of_register();
618 return;
619 }
620
621 err = twd_local_timer_register(&twd_local_timer);
622 if (err)
623 pr_err("twd_local_timer_register failed %d\n", err);
624 }
625 }
626 #else /* CONFIG_LOCAL_TIMERS */
627 static void __init omap4_local_timer_init(void)
628 {
629 omap4_sync32k_timer_init();
630 }
631 #endif /* CONFIG_LOCAL_TIMERS */
632 OMAP_SYS_TIMER(4, local);
633 #endif /* CONFIG_ARCH_OMAP4 */
634
635 #ifdef CONFIG_SOC_OMAP5
636 OMAP_SYS_32K_TIMER_INIT(5, 1, OMAP4_32K_SOURCE, "ti,timer-alwon",
637 2, OMAP4_MPU_SOURCE);
638 static void __init omap5_realtime_timer_init(void)
639 {
640 int err;
641
642 omap5_sync32k_timer_init();
643 realtime_counter_init();
644
645 err = arch_timer_of_register();
646 if (err)
647 pr_err("%s: arch_timer_register failed %d\n", __func__, err);
648 }
649 OMAP_SYS_TIMER(5, realtime);
650 #endif /* CONFIG_SOC_OMAP5 */
651
652 /**
653 * omap_timer_init - build and register timer device with an
654 * associated timer hwmod
655 * @oh: timer hwmod pointer to be used to build timer device
656 * @user: parameter that can be passed from calling hwmod API
657 *
658 * Called by omap_hwmod_for_each_by_class to register each of the timer
659 * devices present in the system. The number of timer devices is known
660 * by parsing through the hwmod database for a given class name. At the
661 * end of function call memory is allocated for timer device and it is
662 * registered to the framework ready to be proved by the driver.
663 */
664 static int __init omap_timer_init(struct omap_hwmod *oh, void *unused)
665 {
666 int id;
667 int ret = 0;
668 char *name = "omap_timer";
669 struct dmtimer_platform_data *pdata;
670 struct platform_device *pdev;
671 struct omap_timer_capability_dev_attr *timer_dev_attr;
672
673 pr_debug("%s: %s\n", __func__, oh->name);
674
675 /* on secure device, do not register secure timer */
676 timer_dev_attr = oh->dev_attr;
677 if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr)
678 if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE)
679 return ret;
680
681 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
682 if (!pdata) {
683 pr_err("%s: No memory for [%s]\n", __func__, oh->name);
684 return -ENOMEM;
685 }
686
687 /*
688 * Extract the IDs from name field in hwmod database
689 * and use the same for constructing ids' for the
690 * timer devices. In a way, we are avoiding usage of
691 * static variable witin the function to do the same.
692 * CAUTION: We have to be careful and make sure the
693 * name in hwmod database does not change in which case
694 * we might either make corresponding change here or
695 * switch back static variable mechanism.
696 */
697 sscanf(oh->name, "timer%2d", &id);
698
699 if (timer_dev_attr)
700 pdata->timer_capability = timer_dev_attr->timer_capability;
701
702 pdata->timer_errata = omap_dm_timer_get_errata();
703 pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count;
704
705 pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata),
706 NULL, 0, 0);
707
708 if (IS_ERR(pdev)) {
709 pr_err("%s: Can't build omap_device for %s: %s.\n",
710 __func__, name, oh->name);
711 ret = -EINVAL;
712 }
713
714 kfree(pdata);
715
716 return ret;
717 }
718
719 /**
720 * omap2_dm_timer_init - top level regular device initialization
721 *
722 * Uses dedicated hwmod api to parse through hwmod database for
723 * given class name and then build and register the timer device.
724 */
725 static int __init omap2_dm_timer_init(void)
726 {
727 int ret;
728
729 /* If dtb is there, the devices will be created dynamically */
730 if (of_have_populated_dt())
731 return -ENODEV;
732
733 ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL);
734 if (unlikely(ret)) {
735 pr_err("%s: device registration failed.\n", __func__);
736 return -EINVAL;
737 }
738
739 return 0;
740 }
741 arch_initcall(omap2_dm_timer_init);
742
743 /**
744 * omap2_override_clocksource - clocksource override with user configuration
745 *
746 * Allows user to override default clocksource, using kernel parameter
747 * clocksource="gp_timer" (For all OMAP2PLUS architectures)
748 *
749 * Note that, here we are using same standard kernel parameter "clocksource=",
750 * and not introducing any OMAP specific interface.
751 */
752 static int __init omap2_override_clocksource(char *str)
753 {
754 if (!str)
755 return 0;
756 /*
757 * For OMAP architecture, we only have two options
758 * - sync_32k (default)
759 * - gp_timer (sys_clk based)
760 */
761 if (!strcmp(str, "gp_timer"))
762 use_gptimer_clksrc = true;
763
764 return 0;
765 }
766 early_param("clocksource", omap2_override_clocksource);