ARM: convert arm/arm64 arch timer to use CLKSRC_OF init
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23
24 #include <asm/localtimer.h>
25
26 #include <plat/cpu.h>
27
28 #include <mach/map.h>
29 #include <mach/irqs.h>
30 #include <mach/regs-mct.h>
31 #include <asm/mach/time.h>
32
33 #define TICK_BASE_CNT 1
34
35 enum {
36 MCT_INT_SPI,
37 MCT_INT_PPI
38 };
39
40 static unsigned long clk_rate;
41 static unsigned int mct_int_type;
42
43 struct mct_clock_event_device {
44 struct clock_event_device *evt;
45 void __iomem *base;
46 char name[10];
47 };
48
49 static void exynos4_mct_write(unsigned int value, void *addr)
50 {
51 void __iomem *stat_addr;
52 u32 mask;
53 u32 i;
54
55 __raw_writel(value, addr);
56
57 if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
58 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
59 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
60 case (u32) MCT_L_TCON_OFFSET:
61 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
62 mask = 1 << 3; /* L_TCON write status */
63 break;
64 case (u32) MCT_L_ICNTB_OFFSET:
65 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
66 mask = 1 << 1; /* L_ICNTB write status */
67 break;
68 case (u32) MCT_L_TCNTB_OFFSET:
69 stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
70 mask = 1 << 0; /* L_TCNTB write status */
71 break;
72 default:
73 return;
74 }
75 } else {
76 switch ((u32) addr) {
77 case (u32) EXYNOS4_MCT_G_TCON:
78 stat_addr = EXYNOS4_MCT_G_WSTAT;
79 mask = 1 << 16; /* G_TCON write status */
80 break;
81 case (u32) EXYNOS4_MCT_G_COMP0_L:
82 stat_addr = EXYNOS4_MCT_G_WSTAT;
83 mask = 1 << 0; /* G_COMP0_L write status */
84 break;
85 case (u32) EXYNOS4_MCT_G_COMP0_U:
86 stat_addr = EXYNOS4_MCT_G_WSTAT;
87 mask = 1 << 1; /* G_COMP0_U write status */
88 break;
89 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
90 stat_addr = EXYNOS4_MCT_G_WSTAT;
91 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
92 break;
93 case (u32) EXYNOS4_MCT_G_CNT_L:
94 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
95 mask = 1 << 0; /* G_CNT_L write status */
96 break;
97 case (u32) EXYNOS4_MCT_G_CNT_U:
98 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
99 mask = 1 << 1; /* G_CNT_U write status */
100 break;
101 default:
102 return;
103 }
104 }
105
106 /* Wait maximum 1 ms until written values are applied */
107 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
108 if (__raw_readl(stat_addr) & mask) {
109 __raw_writel(mask, stat_addr);
110 return;
111 }
112
113 panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
114 }
115
116 /* Clocksource handling */
117 static void exynos4_mct_frc_start(u32 hi, u32 lo)
118 {
119 u32 reg;
120
121 exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
122 exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
123
124 reg = __raw_readl(EXYNOS4_MCT_G_TCON);
125 reg |= MCT_G_TCON_START;
126 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
127 }
128
129 static cycle_t exynos4_frc_read(struct clocksource *cs)
130 {
131 unsigned int lo, hi;
132 u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
133
134 do {
135 hi = hi2;
136 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
137 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
138 } while (hi != hi2);
139
140 return ((cycle_t)hi << 32) | lo;
141 }
142
143 static void exynos4_frc_resume(struct clocksource *cs)
144 {
145 exynos4_mct_frc_start(0, 0);
146 }
147
148 struct clocksource mct_frc = {
149 .name = "mct-frc",
150 .rating = 400,
151 .read = exynos4_frc_read,
152 .mask = CLOCKSOURCE_MASK(64),
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 .resume = exynos4_frc_resume,
155 };
156
157 static void __init exynos4_clocksource_init(void)
158 {
159 exynos4_mct_frc_start(0, 0);
160
161 if (clocksource_register_hz(&mct_frc, clk_rate))
162 panic("%s: can't register clocksource\n", mct_frc.name);
163 }
164
165 static void exynos4_mct_comp0_stop(void)
166 {
167 unsigned int tcon;
168
169 tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
170 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
171
172 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
173 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
174 }
175
176 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
177 unsigned long cycles)
178 {
179 unsigned int tcon;
180 cycle_t comp_cycle;
181
182 tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
183
184 if (mode == CLOCK_EVT_MODE_PERIODIC) {
185 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
186 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
187 }
188
189 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
190 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
191 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
192
193 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
194
195 tcon |= MCT_G_TCON_COMP0_ENABLE;
196 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
197 }
198
199 static int exynos4_comp_set_next_event(unsigned long cycles,
200 struct clock_event_device *evt)
201 {
202 exynos4_mct_comp0_start(evt->mode, cycles);
203
204 return 0;
205 }
206
207 static void exynos4_comp_set_mode(enum clock_event_mode mode,
208 struct clock_event_device *evt)
209 {
210 unsigned long cycles_per_jiffy;
211 exynos4_mct_comp0_stop();
212
213 switch (mode) {
214 case CLOCK_EVT_MODE_PERIODIC:
215 cycles_per_jiffy =
216 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
217 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
218 break;
219
220 case CLOCK_EVT_MODE_ONESHOT:
221 case CLOCK_EVT_MODE_UNUSED:
222 case CLOCK_EVT_MODE_SHUTDOWN:
223 case CLOCK_EVT_MODE_RESUME:
224 break;
225 }
226 }
227
228 static struct clock_event_device mct_comp_device = {
229 .name = "mct-comp",
230 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231 .rating = 250,
232 .set_next_event = exynos4_comp_set_next_event,
233 .set_mode = exynos4_comp_set_mode,
234 };
235
236 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
237 {
238 struct clock_event_device *evt = dev_id;
239
240 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
241
242 evt->event_handler(evt);
243
244 return IRQ_HANDLED;
245 }
246
247 static struct irqaction mct_comp_event_irq = {
248 .name = "mct_comp_irq",
249 .flags = IRQF_TIMER | IRQF_IRQPOLL,
250 .handler = exynos4_mct_comp_isr,
251 .dev_id = &mct_comp_device,
252 };
253
254 static void exynos4_clockevent_init(void)
255 {
256 mct_comp_device.cpumask = cpumask_of(0);
257 clockevents_config_and_register(&mct_comp_device, clk_rate,
258 0xf, 0xffffffff);
259
260 if (soc_is_exynos5250())
261 setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
262 else
263 setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
264 }
265
266 #ifdef CONFIG_LOCAL_TIMERS
267
268 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
269
270 /* Clock event handling */
271 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
272 {
273 unsigned long tmp;
274 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
275 void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
276
277 tmp = __raw_readl(addr);
278 if (tmp & mask) {
279 tmp &= ~mask;
280 exynos4_mct_write(tmp, addr);
281 }
282 }
283
284 static void exynos4_mct_tick_start(unsigned long cycles,
285 struct mct_clock_event_device *mevt)
286 {
287 unsigned long tmp;
288
289 exynos4_mct_tick_stop(mevt);
290
291 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
292
293 /* update interrupt count buffer */
294 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
295
296 /* enable MCT tick interrupt */
297 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
298
299 tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
300 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
301 MCT_L_TCON_INTERVAL_MODE;
302 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
303 }
304
305 static int exynos4_tick_set_next_event(unsigned long cycles,
306 struct clock_event_device *evt)
307 {
308 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
309
310 exynos4_mct_tick_start(cycles, mevt);
311
312 return 0;
313 }
314
315 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
316 struct clock_event_device *evt)
317 {
318 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
319 unsigned long cycles_per_jiffy;
320
321 exynos4_mct_tick_stop(mevt);
322
323 switch (mode) {
324 case CLOCK_EVT_MODE_PERIODIC:
325 cycles_per_jiffy =
326 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
327 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
328 break;
329
330 case CLOCK_EVT_MODE_ONESHOT:
331 case CLOCK_EVT_MODE_UNUSED:
332 case CLOCK_EVT_MODE_SHUTDOWN:
333 case CLOCK_EVT_MODE_RESUME:
334 break;
335 }
336 }
337
338 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
339 {
340 struct clock_event_device *evt = mevt->evt;
341
342 /*
343 * This is for supporting oneshot mode.
344 * Mct would generate interrupt periodically
345 * without explicit stopping.
346 */
347 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
348 exynos4_mct_tick_stop(mevt);
349
350 /* Clear the MCT tick interrupt */
351 if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
352 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
353 return 1;
354 } else {
355 return 0;
356 }
357 }
358
359 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
360 {
361 struct mct_clock_event_device *mevt = dev_id;
362 struct clock_event_device *evt = mevt->evt;
363
364 exynos4_mct_tick_clear(mevt);
365
366 evt->event_handler(evt);
367
368 return IRQ_HANDLED;
369 }
370
371 static struct irqaction mct_tick0_event_irq = {
372 .name = "mct_tick0_irq",
373 .flags = IRQF_TIMER | IRQF_NOBALANCING,
374 .handler = exynos4_mct_tick_isr,
375 };
376
377 static struct irqaction mct_tick1_event_irq = {
378 .name = "mct_tick1_irq",
379 .flags = IRQF_TIMER | IRQF_NOBALANCING,
380 .handler = exynos4_mct_tick_isr,
381 };
382
383 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
384 {
385 struct mct_clock_event_device *mevt;
386 unsigned int cpu = smp_processor_id();
387 int mct_lx_irq;
388
389 mevt = this_cpu_ptr(&percpu_mct_tick);
390 mevt->evt = evt;
391
392 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
393 sprintf(mevt->name, "mct_tick%d", cpu);
394
395 evt->name = mevt->name;
396 evt->cpumask = cpumask_of(cpu);
397 evt->set_next_event = exynos4_tick_set_next_event;
398 evt->set_mode = exynos4_tick_set_mode;
399 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
400 evt->rating = 450;
401 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
402 0xf, 0x7fffffff);
403
404 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
405
406 if (mct_int_type == MCT_INT_SPI) {
407 if (cpu == 0) {
408 mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
409 EXYNOS5_IRQ_MCT_L0;
410 mct_tick0_event_irq.dev_id = mevt;
411 evt->irq = mct_lx_irq;
412 setup_irq(mct_lx_irq, &mct_tick0_event_irq);
413 } else {
414 mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
415 EXYNOS5_IRQ_MCT_L1;
416 mct_tick1_event_irq.dev_id = mevt;
417 evt->irq = mct_lx_irq;
418 setup_irq(mct_lx_irq, &mct_tick1_event_irq);
419 irq_set_affinity(mct_lx_irq, cpumask_of(1));
420 }
421 } else {
422 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
423 }
424
425 return 0;
426 }
427
428 static void exynos4_local_timer_stop(struct clock_event_device *evt)
429 {
430 unsigned int cpu = smp_processor_id();
431 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
432 if (mct_int_type == MCT_INT_SPI)
433 if (cpu == 0)
434 remove_irq(evt->irq, &mct_tick0_event_irq);
435 else
436 remove_irq(evt->irq, &mct_tick1_event_irq);
437 else
438 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
439 }
440
441 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
442 .setup = exynos4_local_timer_setup,
443 .stop = exynos4_local_timer_stop,
444 };
445 #endif /* CONFIG_LOCAL_TIMERS */
446
447 static void __init exynos4_timer_resources(void)
448 {
449 struct clk *mct_clk;
450 mct_clk = clk_get(NULL, "xtal");
451
452 clk_rate = clk_get_rate(mct_clk);
453
454 #ifdef CONFIG_LOCAL_TIMERS
455 if (mct_int_type == MCT_INT_PPI) {
456 int err;
457
458 err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
459 exynos4_mct_tick_isr, "MCT",
460 &percpu_mct_tick);
461 WARN(err, "MCT: can't request IRQ %d (%d)\n",
462 EXYNOS_IRQ_MCT_LOCALTIMER, err);
463 }
464
465 local_timer_register(&exynos4_mct_tick_ops);
466 #endif /* CONFIG_LOCAL_TIMERS */
467 }
468
469 void __init exynos4_timer_init(void)
470 {
471 if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
472 mct_int_type = MCT_INT_SPI;
473 else
474 mct_int_type = MCT_INT_PPI;
475
476 exynos4_timer_resources();
477 exynos4_clocksource_init();
478 exynos4_clockevent_init();
479 }