Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/ftrace.h>
20 #include <linux/mm.h>
21 #include <linux/err.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/percpu.h>
27 #include <linux/clockchips.h>
28 #include <linux/completion.h>
29
30 #include <asm/atomic.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/sections.h>
39 #include <asm/tlbflush.h>
40 #include <asm/ptrace.h>
41 #include <asm/localtimer.h>
42
43 /*
44 * as from 2.5, kernels no longer have an init_tasks structure
45 * so we need some other way of telling a new secondary core
46 * where to place its SVC stack
47 */
48 struct secondary_data secondary_data;
49
50 enum ipi_msg_type {
51 IPI_TIMER = 2,
52 IPI_RESCHEDULE,
53 IPI_CALL_FUNC,
54 IPI_CALL_FUNC_SINGLE,
55 IPI_CPU_STOP,
56 };
57
58 int __cpuinit __cpu_up(unsigned int cpu)
59 {
60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
61 struct task_struct *idle = ci->idle;
62 pgd_t *pgd;
63 int ret;
64
65 /*
66 * Spawn a new process manually, if not already done.
67 * Grab a pointer to its task struct so we can mess with it
68 */
69 if (!idle) {
70 idle = fork_idle(cpu);
71 if (IS_ERR(idle)) {
72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
73 return PTR_ERR(idle);
74 }
75 ci->idle = idle;
76 } else {
77 /*
78 * Since this idle thread is being re-used, call
79 * init_idle() to reinitialize the thread structure.
80 */
81 init_idle(idle, cpu);
82 }
83
84 /*
85 * Allocate initial page tables to allow the new CPU to
86 * enable the MMU safely. This essentially means a set
87 * of our "standard" page tables, with the addition of
88 * a 1:1 mapping for the physical address of the kernel.
89 */
90 pgd = pgd_alloc(&init_mm);
91 if (!pgd)
92 return -ENOMEM;
93
94 if (PHYS_OFFSET != PAGE_OFFSET) {
95 #ifndef CONFIG_HOTPLUG_CPU
96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
97 #endif
98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100 }
101
102 /*
103 * We need to tell the secondary core where to find
104 * its stack and the page tables.
105 */
106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107 secondary_data.pgdir = virt_to_phys(pgd);
108 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
109 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
110
111 /*
112 * Now bring the CPU into our world.
113 */
114 ret = boot_secondary(cpu, idle);
115 if (ret == 0) {
116 unsigned long timeout;
117
118 /*
119 * CPU was successfully started, wait for it
120 * to come online or time out.
121 */
122 timeout = jiffies + HZ;
123 while (time_before(jiffies, timeout)) {
124 if (cpu_online(cpu))
125 break;
126
127 udelay(10);
128 barrier();
129 }
130
131 if (!cpu_online(cpu)) {
132 pr_crit("CPU%u: failed to come online\n", cpu);
133 ret = -EIO;
134 }
135 } else {
136 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
137 }
138
139 secondary_data.stack = NULL;
140 secondary_data.pgdir = 0;
141
142 if (PHYS_OFFSET != PAGE_OFFSET) {
143 #ifndef CONFIG_HOTPLUG_CPU
144 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
145 #endif
146 identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
147 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
148 }
149
150 pgd_free(&init_mm, pgd);
151
152 return ret;
153 }
154
155 #ifdef CONFIG_HOTPLUG_CPU
156 static void percpu_timer_stop(void);
157
158 /*
159 * __cpu_disable runs on the processor to be shutdown.
160 */
161 int __cpu_disable(void)
162 {
163 unsigned int cpu = smp_processor_id();
164 struct task_struct *p;
165 int ret;
166
167 ret = platform_cpu_disable(cpu);
168 if (ret)
169 return ret;
170
171 /*
172 * Take this CPU offline. Once we clear this, we can't return,
173 * and we must not schedule until we're ready to give up the cpu.
174 */
175 set_cpu_online(cpu, false);
176
177 /*
178 * OK - migrate IRQs away from this CPU
179 */
180 migrate_irqs();
181
182 /*
183 * Stop the local timer for this CPU.
184 */
185 percpu_timer_stop();
186
187 /*
188 * Flush user cache and TLB mappings, and then remove this CPU
189 * from the vm mask set of all processes.
190 */
191 flush_cache_all();
192 local_flush_tlb_all();
193
194 read_lock(&tasklist_lock);
195 for_each_process(p) {
196 if (p->mm)
197 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
198 }
199 read_unlock(&tasklist_lock);
200
201 return 0;
202 }
203
204 static DECLARE_COMPLETION(cpu_died);
205
206 /*
207 * called on the thread which is asking for a CPU to be shutdown -
208 * waits until shutdown has completed, or it is timed out.
209 */
210 void __cpu_die(unsigned int cpu)
211 {
212 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
213 pr_err("CPU%u: cpu didn't die\n", cpu);
214 return;
215 }
216 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
217
218 if (!platform_cpu_kill(cpu))
219 printk("CPU%u: unable to kill\n", cpu);
220 }
221
222 /*
223 * Called from the idle thread for the CPU which has been shutdown.
224 *
225 * Note that we disable IRQs here, but do not re-enable them
226 * before returning to the caller. This is also the behaviour
227 * of the other hotplug-cpu capable cores, so presumably coming
228 * out of idle fixes this.
229 */
230 void __ref cpu_die(void)
231 {
232 unsigned int cpu = smp_processor_id();
233
234 idle_task_exit();
235
236 local_irq_disable();
237 mb();
238
239 /* Tell __cpu_die() that this CPU is now safe to dispose of */
240 complete(&cpu_died);
241
242 /*
243 * actual CPU shutdown procedure is at least platform (if not
244 * CPU) specific.
245 */
246 platform_cpu_die(cpu);
247
248 /*
249 * Do not return to the idle loop - jump back to the secondary
250 * cpu initialisation. There's some initialisation which needs
251 * to be repeated to undo the effects of taking the CPU offline.
252 */
253 __asm__("mov sp, %0\n"
254 " mov fp, #0\n"
255 " b secondary_start_kernel"
256 :
257 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
258 }
259 #endif /* CONFIG_HOTPLUG_CPU */
260
261 /*
262 * Called by both boot and secondaries to move global data into
263 * per-processor storage.
264 */
265 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
266 {
267 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
268
269 cpu_info->loops_per_jiffy = loops_per_jiffy;
270 }
271
272 /*
273 * This is the secondary CPU boot entry. We're using this CPUs
274 * idle thread stack, but a set of temporary page tables.
275 */
276 asmlinkage void __cpuinit secondary_start_kernel(void)
277 {
278 struct mm_struct *mm = &init_mm;
279 unsigned int cpu = smp_processor_id();
280
281 printk("CPU%u: Booted secondary processor\n", cpu);
282
283 /*
284 * All kernel threads share the same mm context; grab a
285 * reference and switch to it.
286 */
287 atomic_inc(&mm->mm_count);
288 current->active_mm = mm;
289 cpumask_set_cpu(cpu, mm_cpumask(mm));
290 cpu_switch_mm(mm->pgd, mm);
291 enter_lazy_tlb(mm, current);
292 local_flush_tlb_all();
293
294 cpu_init();
295 preempt_disable();
296 trace_hardirqs_off();
297
298 /*
299 * Give the platform a chance to do its own initialisation.
300 */
301 platform_secondary_init(cpu);
302
303 /*
304 * Enable local interrupts.
305 */
306 notify_cpu_starting(cpu);
307 local_irq_enable();
308 local_fiq_enable();
309
310 /*
311 * Setup the percpu timer for this CPU.
312 */
313 percpu_timer_setup();
314
315 calibrate_delay();
316
317 smp_store_cpu_info(cpu);
318
319 /*
320 * OK, now it's safe to let the boot CPU continue
321 */
322 set_cpu_online(cpu, true);
323
324 /*
325 * OK, it's off to the idle thread for us
326 */
327 cpu_idle();
328 }
329
330 void __init smp_cpus_done(unsigned int max_cpus)
331 {
332 int cpu;
333 unsigned long bogosum = 0;
334
335 for_each_online_cpu(cpu)
336 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
337
338 printk(KERN_INFO "SMP: Total of %d processors activated "
339 "(%lu.%02lu BogoMIPS).\n",
340 num_online_cpus(),
341 bogosum / (500000/HZ),
342 (bogosum / (5000/HZ)) % 100);
343 }
344
345 void __init smp_prepare_boot_cpu(void)
346 {
347 unsigned int cpu = smp_processor_id();
348
349 per_cpu(cpu_data, cpu).idle = current;
350 }
351
352 void __init smp_prepare_cpus(unsigned int max_cpus)
353 {
354 unsigned int ncores = num_possible_cpus();
355
356 smp_store_cpu_info(smp_processor_id());
357
358 /*
359 * are we trying to boot more cores than exist?
360 */
361 if (max_cpus > ncores)
362 max_cpus = ncores;
363
364 if (max_cpus > 1) {
365 /*
366 * Enable the local timer or broadcast device for the
367 * boot CPU, but only if we have more than one CPU.
368 */
369 percpu_timer_setup();
370
371 /*
372 * Initialise the SCU if there are more than one CPU
373 * and let them know where to start.
374 */
375 platform_smp_prepare_cpus(max_cpus);
376 }
377 }
378
379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
380 {
381 smp_cross_call(mask, IPI_CALL_FUNC);
382 }
383
384 void arch_send_call_function_single_ipi(int cpu)
385 {
386 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
387 }
388
389 static const char *ipi_types[NR_IPI] = {
390 #define S(x,s) [x - IPI_TIMER] = s
391 S(IPI_TIMER, "Timer broadcast interrupts"),
392 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
393 S(IPI_CALL_FUNC, "Function call interrupts"),
394 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
395 S(IPI_CPU_STOP, "CPU stop interrupts"),
396 };
397
398 void show_ipi_list(struct seq_file *p, int prec)
399 {
400 unsigned int cpu, i;
401
402 for (i = 0; i < NR_IPI; i++) {
403 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
404
405 for_each_present_cpu(cpu)
406 seq_printf(p, "%10u ",
407 __get_irq_stat(cpu, ipi_irqs[i]));
408
409 seq_printf(p, " %s\n", ipi_types[i]);
410 }
411 }
412
413 u64 smp_irq_stat_cpu(unsigned int cpu)
414 {
415 u64 sum = 0;
416 int i;
417
418 for (i = 0; i < NR_IPI; i++)
419 sum += __get_irq_stat(cpu, ipi_irqs[i]);
420
421 #ifdef CONFIG_LOCAL_TIMERS
422 sum += __get_irq_stat(cpu, local_timer_irqs);
423 #endif
424
425 return sum;
426 }
427
428 /*
429 * Timer (local or broadcast) support
430 */
431 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
432
433 static void ipi_timer(void)
434 {
435 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
436 irq_enter();
437 evt->event_handler(evt);
438 irq_exit();
439 }
440
441 #ifdef CONFIG_LOCAL_TIMERS
442 asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
443 {
444 struct pt_regs *old_regs = set_irq_regs(regs);
445 int cpu = smp_processor_id();
446
447 if (local_timer_ack()) {
448 __inc_irq_stat(cpu, local_timer_irqs);
449 ipi_timer();
450 }
451
452 set_irq_regs(old_regs);
453 }
454
455 void show_local_irqs(struct seq_file *p, int prec)
456 {
457 unsigned int cpu;
458
459 seq_printf(p, "%*s: ", prec, "LOC");
460
461 for_each_present_cpu(cpu)
462 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
463
464 seq_printf(p, " Local timer interrupts\n");
465 }
466 #endif
467
468 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
469 static void smp_timer_broadcast(const struct cpumask *mask)
470 {
471 smp_cross_call(mask, IPI_TIMER);
472 }
473 #else
474 #define smp_timer_broadcast NULL
475 #endif
476
477 static void broadcast_timer_set_mode(enum clock_event_mode mode,
478 struct clock_event_device *evt)
479 {
480 }
481
482 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
483 {
484 evt->name = "dummy_timer";
485 evt->features = CLOCK_EVT_FEAT_ONESHOT |
486 CLOCK_EVT_FEAT_PERIODIC |
487 CLOCK_EVT_FEAT_DUMMY;
488 evt->rating = 400;
489 evt->mult = 1;
490 evt->set_mode = broadcast_timer_set_mode;
491
492 clockevents_register_device(evt);
493 }
494
495 void __cpuinit percpu_timer_setup(void)
496 {
497 unsigned int cpu = smp_processor_id();
498 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
499
500 evt->cpumask = cpumask_of(cpu);
501 evt->broadcast = smp_timer_broadcast;
502
503 if (local_timer_setup(evt))
504 broadcast_timer_setup(evt);
505 }
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 /*
509 * The generic clock events code purposely does not stop the local timer
510 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
511 * manually here.
512 */
513 static void percpu_timer_stop(void)
514 {
515 unsigned int cpu = smp_processor_id();
516 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
517
518 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
519 }
520 #endif
521
522 static DEFINE_SPINLOCK(stop_lock);
523
524 /*
525 * ipi_cpu_stop - handle IPI from smp_send_stop()
526 */
527 static void ipi_cpu_stop(unsigned int cpu)
528 {
529 if (system_state == SYSTEM_BOOTING ||
530 system_state == SYSTEM_RUNNING) {
531 spin_lock(&stop_lock);
532 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
533 dump_stack();
534 spin_unlock(&stop_lock);
535 }
536
537 set_cpu_online(cpu, false);
538
539 local_fiq_disable();
540 local_irq_disable();
541
542 while (1)
543 cpu_relax();
544 }
545
546 /*
547 * Main handler for inter-processor interrupts
548 */
549 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550 {
551 unsigned int cpu = smp_processor_id();
552 struct pt_regs *old_regs = set_irq_regs(regs);
553
554 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
555 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
556
557 switch (ipinr) {
558 case IPI_TIMER:
559 ipi_timer();
560 break;
561
562 case IPI_RESCHEDULE:
563 /*
564 * nothing more to do - eveything is
565 * done on the interrupt return path
566 */
567 break;
568
569 case IPI_CALL_FUNC:
570 generic_smp_call_function_interrupt();
571 break;
572
573 case IPI_CALL_FUNC_SINGLE:
574 generic_smp_call_function_single_interrupt();
575 break;
576
577 case IPI_CPU_STOP:
578 ipi_cpu_stop(cpu);
579 break;
580
581 default:
582 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
583 cpu, ipinr);
584 break;
585 }
586 set_irq_regs(old_regs);
587 }
588
589 void smp_send_reschedule(int cpu)
590 {
591 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
592 }
593
594 void smp_send_stop(void)
595 {
596 unsigned long timeout;
597
598 if (num_online_cpus() > 1) {
599 cpumask_t mask = cpu_online_map;
600 cpu_clear(smp_processor_id(), mask);
601
602 smp_cross_call(&mask, IPI_CPU_STOP);
603 }
604
605 /* Wait up to one second for other CPUs to stop */
606 timeout = USEC_PER_SEC;
607 while (num_online_cpus() > 1 && timeout--)
608 udelay(1);
609
610 if (num_online_cpus() > 1)
611 pr_warning("SMP: failed to stop secondary CPUs\n");
612 }
613
614 /*
615 * not supported here
616 */
617 int setup_profiling_timer(unsigned int multiplier)
618 {
619 return -EINVAL;
620 }