Merge branch 'topic/hda' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/cputype.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/pmu.h>
27 #include <asm/stacktrace.h>
28
29 static struct platform_device *pmu_device;
30
31 /*
32 * Hardware lock to serialize accesses to PMU registers. Needed for the
33 * read/modify/write sequences.
34 */
35 static DEFINE_RAW_SPINLOCK(pmu_lock);
36
37 /*
38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
39 * another platform that supports more, we need to increase this to be the
40 * largest of all platforms.
41 *
42 * ARMv7 supports up to 32 events:
43 * cycle counter CCNT + 31 events counters CNT0..30.
44 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
45 */
46 #define ARMPMU_MAX_HWEVENTS 33
47
48 /* The events for a given CPU. */
49 struct cpu_hw_events {
50 /*
51 * The events that are active on the CPU for the given index. Index 0
52 * is reserved.
53 */
54 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
55
56 /*
57 * A 1 bit for an index indicates that the counter is being used for
58 * an event. A 0 means that the counter can be used.
59 */
60 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
61
62 /*
63 * A 1 bit for an index indicates that the counter is actively being
64 * used.
65 */
66 unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
67 };
68 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
69
70 struct arm_pmu {
71 enum arm_perf_pmu_ids id;
72 const char *name;
73 irqreturn_t (*handle_irq)(int irq_num, void *dev);
74 void (*enable)(struct hw_perf_event *evt, int idx);
75 void (*disable)(struct hw_perf_event *evt, int idx);
76 int (*get_event_idx)(struct cpu_hw_events *cpuc,
77 struct hw_perf_event *hwc);
78 u32 (*read_counter)(int idx);
79 void (*write_counter)(int idx, u32 val);
80 void (*start)(void);
81 void (*stop)(void);
82 void (*reset)(void *);
83 const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
84 [PERF_COUNT_HW_CACHE_OP_MAX]
85 [PERF_COUNT_HW_CACHE_RESULT_MAX];
86 const unsigned (*event_map)[PERF_COUNT_HW_MAX];
87 u32 raw_event_mask;
88 int num_events;
89 u64 max_period;
90 };
91
92 /* Set at runtime when we know what CPU type we are. */
93 static const struct arm_pmu *armpmu;
94
95 enum arm_perf_pmu_ids
96 armpmu_get_pmu_id(void)
97 {
98 int id = -ENODEV;
99
100 if (armpmu != NULL)
101 id = armpmu->id;
102
103 return id;
104 }
105 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
106
107 int
108 armpmu_get_max_events(void)
109 {
110 int max_events = 0;
111
112 if (armpmu != NULL)
113 max_events = armpmu->num_events;
114
115 return max_events;
116 }
117 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
118
119 int perf_num_counters(void)
120 {
121 return armpmu_get_max_events();
122 }
123 EXPORT_SYMBOL_GPL(perf_num_counters);
124
125 #define HW_OP_UNSUPPORTED 0xFFFF
126
127 #define C(_x) \
128 PERF_COUNT_HW_CACHE_##_x
129
130 #define CACHE_OP_UNSUPPORTED 0xFFFF
131
132 static int
133 armpmu_map_cache_event(u64 config)
134 {
135 unsigned int cache_type, cache_op, cache_result, ret;
136
137 cache_type = (config >> 0) & 0xff;
138 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
139 return -EINVAL;
140
141 cache_op = (config >> 8) & 0xff;
142 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
143 return -EINVAL;
144
145 cache_result = (config >> 16) & 0xff;
146 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
147 return -EINVAL;
148
149 ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
150
151 if (ret == CACHE_OP_UNSUPPORTED)
152 return -ENOENT;
153
154 return ret;
155 }
156
157 static int
158 armpmu_map_event(u64 config)
159 {
160 int mapping = (*armpmu->event_map)[config];
161 return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
162 }
163
164 static int
165 armpmu_map_raw_event(u64 config)
166 {
167 return (int)(config & armpmu->raw_event_mask);
168 }
169
170 static int
171 armpmu_event_set_period(struct perf_event *event,
172 struct hw_perf_event *hwc,
173 int idx)
174 {
175 s64 left = local64_read(&hwc->period_left);
176 s64 period = hwc->sample_period;
177 int ret = 0;
178
179 if (unlikely(left <= -period)) {
180 left = period;
181 local64_set(&hwc->period_left, left);
182 hwc->last_period = period;
183 ret = 1;
184 }
185
186 if (unlikely(left <= 0)) {
187 left += period;
188 local64_set(&hwc->period_left, left);
189 hwc->last_period = period;
190 ret = 1;
191 }
192
193 if (left > (s64)armpmu->max_period)
194 left = armpmu->max_period;
195
196 local64_set(&hwc->prev_count, (u64)-left);
197
198 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
199
200 perf_event_update_userpage(event);
201
202 return ret;
203 }
204
205 static u64
206 armpmu_event_update(struct perf_event *event,
207 struct hw_perf_event *hwc,
208 int idx, int overflow)
209 {
210 u64 delta, prev_raw_count, new_raw_count;
211
212 again:
213 prev_raw_count = local64_read(&hwc->prev_count);
214 new_raw_count = armpmu->read_counter(idx);
215
216 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
217 new_raw_count) != prev_raw_count)
218 goto again;
219
220 new_raw_count &= armpmu->max_period;
221 prev_raw_count &= armpmu->max_period;
222
223 if (overflow)
224 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
225 else
226 delta = new_raw_count - prev_raw_count;
227
228 local64_add(delta, &event->count);
229 local64_sub(delta, &hwc->period_left);
230
231 return new_raw_count;
232 }
233
234 static void
235 armpmu_read(struct perf_event *event)
236 {
237 struct hw_perf_event *hwc = &event->hw;
238
239 /* Don't read disabled counters! */
240 if (hwc->idx < 0)
241 return;
242
243 armpmu_event_update(event, hwc, hwc->idx, 0);
244 }
245
246 static void
247 armpmu_stop(struct perf_event *event, int flags)
248 {
249 struct hw_perf_event *hwc = &event->hw;
250
251 if (!armpmu)
252 return;
253
254 /*
255 * ARM pmu always has to update the counter, so ignore
256 * PERF_EF_UPDATE, see comments in armpmu_start().
257 */
258 if (!(hwc->state & PERF_HES_STOPPED)) {
259 armpmu->disable(hwc, hwc->idx);
260 barrier(); /* why? */
261 armpmu_event_update(event, hwc, hwc->idx, 0);
262 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
263 }
264 }
265
266 static void
267 armpmu_start(struct perf_event *event, int flags)
268 {
269 struct hw_perf_event *hwc = &event->hw;
270
271 if (!armpmu)
272 return;
273
274 /*
275 * ARM pmu always has to reprogram the period, so ignore
276 * PERF_EF_RELOAD, see the comment below.
277 */
278 if (flags & PERF_EF_RELOAD)
279 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
280
281 hwc->state = 0;
282 /*
283 * Set the period again. Some counters can't be stopped, so when we
284 * were stopped we simply disabled the IRQ source and the counter
285 * may have been left counting. If we don't do this step then we may
286 * get an interrupt too soon or *way* too late if the overflow has
287 * happened since disabling.
288 */
289 armpmu_event_set_period(event, hwc, hwc->idx);
290 armpmu->enable(hwc, hwc->idx);
291 }
292
293 static void
294 armpmu_del(struct perf_event *event, int flags)
295 {
296 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
297 struct hw_perf_event *hwc = &event->hw;
298 int idx = hwc->idx;
299
300 WARN_ON(idx < 0);
301
302 clear_bit(idx, cpuc->active_mask);
303 armpmu_stop(event, PERF_EF_UPDATE);
304 cpuc->events[idx] = NULL;
305 clear_bit(idx, cpuc->used_mask);
306
307 perf_event_update_userpage(event);
308 }
309
310 static int
311 armpmu_add(struct perf_event *event, int flags)
312 {
313 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
314 struct hw_perf_event *hwc = &event->hw;
315 int idx;
316 int err = 0;
317
318 perf_pmu_disable(event->pmu);
319
320 /* If we don't have a space for the counter then finish early. */
321 idx = armpmu->get_event_idx(cpuc, hwc);
322 if (idx < 0) {
323 err = idx;
324 goto out;
325 }
326
327 /*
328 * If there is an event in the counter we are going to use then make
329 * sure it is disabled.
330 */
331 event->hw.idx = idx;
332 armpmu->disable(hwc, idx);
333 cpuc->events[idx] = event;
334 set_bit(idx, cpuc->active_mask);
335
336 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
337 if (flags & PERF_EF_START)
338 armpmu_start(event, PERF_EF_RELOAD);
339
340 /* Propagate our changes to the userspace mapping. */
341 perf_event_update_userpage(event);
342
343 out:
344 perf_pmu_enable(event->pmu);
345 return err;
346 }
347
348 static struct pmu pmu;
349
350 static int
351 validate_event(struct cpu_hw_events *cpuc,
352 struct perf_event *event)
353 {
354 struct hw_perf_event fake_event = event->hw;
355
356 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
357 return 1;
358
359 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
360 }
361
362 static int
363 validate_group(struct perf_event *event)
364 {
365 struct perf_event *sibling, *leader = event->group_leader;
366 struct cpu_hw_events fake_pmu;
367
368 memset(&fake_pmu, 0, sizeof(fake_pmu));
369
370 if (!validate_event(&fake_pmu, leader))
371 return -ENOSPC;
372
373 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
374 if (!validate_event(&fake_pmu, sibling))
375 return -ENOSPC;
376 }
377
378 if (!validate_event(&fake_pmu, event))
379 return -ENOSPC;
380
381 return 0;
382 }
383
384 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
385 {
386 struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
387
388 return plat->handle_irq(irq, dev, armpmu->handle_irq);
389 }
390
391 static int
392 armpmu_reserve_hardware(void)
393 {
394 struct arm_pmu_platdata *plat;
395 irq_handler_t handle_irq;
396 int i, err = -ENODEV, irq;
397
398 pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
399 if (IS_ERR(pmu_device)) {
400 pr_warning("unable to reserve pmu\n");
401 return PTR_ERR(pmu_device);
402 }
403
404 init_pmu(ARM_PMU_DEVICE_CPU);
405
406 plat = dev_get_platdata(&pmu_device->dev);
407 if (plat && plat->handle_irq)
408 handle_irq = armpmu_platform_irq;
409 else
410 handle_irq = armpmu->handle_irq;
411
412 if (pmu_device->num_resources < 1) {
413 pr_err("no irqs for PMUs defined\n");
414 return -ENODEV;
415 }
416
417 for (i = 0; i < pmu_device->num_resources; ++i) {
418 irq = platform_get_irq(pmu_device, i);
419 if (irq < 0)
420 continue;
421
422 err = request_irq(irq, handle_irq,
423 IRQF_DISABLED | IRQF_NOBALANCING,
424 "armpmu", NULL);
425 if (err) {
426 pr_warning("unable to request IRQ%d for ARM perf "
427 "counters\n", irq);
428 break;
429 }
430 }
431
432 if (err) {
433 for (i = i - 1; i >= 0; --i) {
434 irq = platform_get_irq(pmu_device, i);
435 if (irq >= 0)
436 free_irq(irq, NULL);
437 }
438 release_pmu(pmu_device);
439 pmu_device = NULL;
440 }
441
442 return err;
443 }
444
445 static void
446 armpmu_release_hardware(void)
447 {
448 int i, irq;
449
450 for (i = pmu_device->num_resources - 1; i >= 0; --i) {
451 irq = platform_get_irq(pmu_device, i);
452 if (irq >= 0)
453 free_irq(irq, NULL);
454 }
455 armpmu->stop();
456
457 release_pmu(pmu_device);
458 pmu_device = NULL;
459 }
460
461 static atomic_t active_events = ATOMIC_INIT(0);
462 static DEFINE_MUTEX(pmu_reserve_mutex);
463
464 static void
465 hw_perf_event_destroy(struct perf_event *event)
466 {
467 if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
468 armpmu_release_hardware();
469 mutex_unlock(&pmu_reserve_mutex);
470 }
471 }
472
473 static int
474 __hw_perf_event_init(struct perf_event *event)
475 {
476 struct hw_perf_event *hwc = &event->hw;
477 int mapping, err;
478
479 /* Decode the generic type into an ARM event identifier. */
480 if (PERF_TYPE_HARDWARE == event->attr.type) {
481 mapping = armpmu_map_event(event->attr.config);
482 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
483 mapping = armpmu_map_cache_event(event->attr.config);
484 } else if (PERF_TYPE_RAW == event->attr.type) {
485 mapping = armpmu_map_raw_event(event->attr.config);
486 } else {
487 pr_debug("event type %x not supported\n", event->attr.type);
488 return -EOPNOTSUPP;
489 }
490
491 if (mapping < 0) {
492 pr_debug("event %x:%llx not supported\n", event->attr.type,
493 event->attr.config);
494 return mapping;
495 }
496
497 /*
498 * Check whether we need to exclude the counter from certain modes.
499 * The ARM performance counters are on all of the time so if someone
500 * has asked us for some excludes then we have to fail.
501 */
502 if (event->attr.exclude_kernel || event->attr.exclude_user ||
503 event->attr.exclude_hv || event->attr.exclude_idle) {
504 pr_debug("ARM performance counters do not support "
505 "mode exclusion\n");
506 return -EPERM;
507 }
508
509 /*
510 * We don't assign an index until we actually place the event onto
511 * hardware. Use -1 to signify that we haven't decided where to put it
512 * yet. For SMP systems, each core has it's own PMU so we can't do any
513 * clever allocation or constraints checking at this point.
514 */
515 hwc->idx = -1;
516
517 /*
518 * Store the event encoding into the config_base field. config and
519 * event_base are unused as the only 2 things we need to know are
520 * the event mapping and the counter to use. The counter to use is
521 * also the indx and the config_base is the event type.
522 */
523 hwc->config_base = (unsigned long)mapping;
524 hwc->config = 0;
525 hwc->event_base = 0;
526
527 if (!hwc->sample_period) {
528 hwc->sample_period = armpmu->max_period;
529 hwc->last_period = hwc->sample_period;
530 local64_set(&hwc->period_left, hwc->sample_period);
531 }
532
533 err = 0;
534 if (event->group_leader != event) {
535 err = validate_group(event);
536 if (err)
537 return -EINVAL;
538 }
539
540 return err;
541 }
542
543 static int armpmu_event_init(struct perf_event *event)
544 {
545 int err = 0;
546
547 switch (event->attr.type) {
548 case PERF_TYPE_RAW:
549 case PERF_TYPE_HARDWARE:
550 case PERF_TYPE_HW_CACHE:
551 break;
552
553 default:
554 return -ENOENT;
555 }
556
557 if (!armpmu)
558 return -ENODEV;
559
560 event->destroy = hw_perf_event_destroy;
561
562 if (!atomic_inc_not_zero(&active_events)) {
563 if (atomic_read(&active_events) > armpmu->num_events) {
564 atomic_dec(&active_events);
565 return -ENOSPC;
566 }
567
568 mutex_lock(&pmu_reserve_mutex);
569 if (atomic_read(&active_events) == 0) {
570 err = armpmu_reserve_hardware();
571 }
572
573 if (!err)
574 atomic_inc(&active_events);
575 mutex_unlock(&pmu_reserve_mutex);
576 }
577
578 if (err)
579 return err;
580
581 err = __hw_perf_event_init(event);
582 if (err)
583 hw_perf_event_destroy(event);
584
585 return err;
586 }
587
588 static void armpmu_enable(struct pmu *pmu)
589 {
590 /* Enable all of the perf events on hardware. */
591 int idx;
592 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
593
594 if (!armpmu)
595 return;
596
597 for (idx = 0; idx <= armpmu->num_events; ++idx) {
598 struct perf_event *event = cpuc->events[idx];
599
600 if (!event)
601 continue;
602
603 armpmu->enable(&event->hw, idx);
604 }
605
606 armpmu->start();
607 }
608
609 static void armpmu_disable(struct pmu *pmu)
610 {
611 if (armpmu)
612 armpmu->stop();
613 }
614
615 static struct pmu pmu = {
616 .pmu_enable = armpmu_enable,
617 .pmu_disable = armpmu_disable,
618 .event_init = armpmu_event_init,
619 .add = armpmu_add,
620 .del = armpmu_del,
621 .start = armpmu_start,
622 .stop = armpmu_stop,
623 .read = armpmu_read,
624 };
625
626 /* Include the PMU-specific implementations. */
627 #include "perf_event_xscale.c"
628 #include "perf_event_v6.c"
629 #include "perf_event_v7.c"
630
631 /*
632 * Ensure the PMU has sane values out of reset.
633 * This requires SMP to be available, so exists as a separate initcall.
634 */
635 static int __init
636 armpmu_reset(void)
637 {
638 if (armpmu && armpmu->reset)
639 return on_each_cpu(armpmu->reset, NULL, 1);
640 return 0;
641 }
642 arch_initcall(armpmu_reset);
643
644 static int __init
645 init_hw_perf_events(void)
646 {
647 unsigned long cpuid = read_cpuid_id();
648 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
649 unsigned long part_number = (cpuid & 0xFFF0);
650
651 /* ARM Ltd CPUs. */
652 if (0x41 == implementor) {
653 switch (part_number) {
654 case 0xB360: /* ARM1136 */
655 case 0xB560: /* ARM1156 */
656 case 0xB760: /* ARM1176 */
657 armpmu = armv6pmu_init();
658 break;
659 case 0xB020: /* ARM11mpcore */
660 armpmu = armv6mpcore_pmu_init();
661 break;
662 case 0xC080: /* Cortex-A8 */
663 armpmu = armv7_a8_pmu_init();
664 break;
665 case 0xC090: /* Cortex-A9 */
666 armpmu = armv7_a9_pmu_init();
667 break;
668 }
669 /* Intel CPUs [xscale]. */
670 } else if (0x69 == implementor) {
671 part_number = (cpuid >> 13) & 0x7;
672 switch (part_number) {
673 case 1:
674 armpmu = xscale1pmu_init();
675 break;
676 case 2:
677 armpmu = xscale2pmu_init();
678 break;
679 }
680 }
681
682 if (armpmu) {
683 pr_info("enabled with %s PMU driver, %d counters available\n",
684 armpmu->name, armpmu->num_events);
685 } else {
686 pr_info("no hardware support available\n");
687 }
688
689 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
690
691 return 0;
692 }
693 early_initcall(init_hw_perf_events);
694
695 /*
696 * Callchain handling code.
697 */
698
699 /*
700 * The registers we're interested in are at the end of the variable
701 * length saved register structure. The fp points at the end of this
702 * structure so the address of this struct is:
703 * (struct frame_tail *)(xxx->fp)-1
704 *
705 * This code has been adapted from the ARM OProfile support.
706 */
707 struct frame_tail {
708 struct frame_tail __user *fp;
709 unsigned long sp;
710 unsigned long lr;
711 } __attribute__((packed));
712
713 /*
714 * Get the return address for a single stackframe and return a pointer to the
715 * next frame tail.
716 */
717 static struct frame_tail __user *
718 user_backtrace(struct frame_tail __user *tail,
719 struct perf_callchain_entry *entry)
720 {
721 struct frame_tail buftail;
722
723 /* Also check accessibility of one struct frame_tail beyond */
724 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
725 return NULL;
726 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
727 return NULL;
728
729 perf_callchain_store(entry, buftail.lr);
730
731 /*
732 * Frame pointers should strictly progress back up the stack
733 * (towards higher addresses).
734 */
735 if (tail + 1 >= buftail.fp)
736 return NULL;
737
738 return buftail.fp - 1;
739 }
740
741 void
742 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
743 {
744 struct frame_tail __user *tail;
745
746
747 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
748
749 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
750 tail && !((unsigned long)tail & 0x3))
751 tail = user_backtrace(tail, entry);
752 }
753
754 /*
755 * Gets called by walk_stackframe() for every stackframe. This will be called
756 * whist unwinding the stackframe and is like a subroutine return so we use
757 * the PC.
758 */
759 static int
760 callchain_trace(struct stackframe *fr,
761 void *data)
762 {
763 struct perf_callchain_entry *entry = data;
764 perf_callchain_store(entry, fr->pc);
765 return 0;
766 }
767
768 void
769 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
770 {
771 struct stackframe fr;
772
773 fr.fp = regs->ARM_fp;
774 fr.sp = regs->ARM_sp;
775 fr.lr = regs->ARM_lr;
776 fr.pc = regs->ARM_pc;
777 walk_stackframe(&fr, callchain_trace, entry);
778 }