a37745f2abba74a3f479a1dca7321c25de87bd75
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / kprobes-decode.c
1 /*
2 * arch/arm/kernel/kprobes-decode.c
3 *
4 * Copyright (C) 2006, 2007 Motorola Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 */
15
16 /*
17 * We do not have hardware single-stepping on ARM, This
18 * effort is further complicated by the ARM not having a
19 * "next PC" register. Instructions that change the PC
20 * can't be safely single-stepped in a MP environment, so
21 * we have a lot of work to do:
22 *
23 * In the prepare phase:
24 * *) If it is an instruction that does anything
25 * with the CPU mode, we reject it for a kprobe.
26 * (This is out of laziness rather than need. The
27 * instructions could be simulated.)
28 *
29 * *) Otherwise, decode the instruction rewriting its
30 * registers to take fixed, ordered registers and
31 * setting a handler for it to run the instruction.
32 *
33 * In the execution phase by an instruction's handler:
34 *
35 * *) If the PC is written to by the instruction, the
36 * instruction must be fully simulated in software.
37 * If it is a conditional instruction, the handler
38 * will use insn[0] to copy its condition code to
39 * set r0 to 1 and insn[1] to "mov pc, lr" to return.
40 *
41 * *) Otherwise, a modified form of the instruction is
42 * directly executed. Its handler calls the
43 * instruction in insn[0]. In insn[1] is a
44 * "mov pc, lr" to return.
45 *
46 * Before calling, load up the reordered registers
47 * from the original instruction's registers. If one
48 * of the original input registers is the PC, compute
49 * and adjust the appropriate input register.
50 *
51 * After call completes, copy the output registers to
52 * the original instruction's original registers.
53 *
54 * We don't use a real breakpoint instruction since that
55 * would have us in the kernel go from SVC mode to SVC
56 * mode losing the link register. Instead we use an
57 * undefined instruction. To simplify processing, the
58 * undefined instruction used for kprobes must be reserved
59 * exclusively for kprobes use.
60 *
61 * TODO: ifdef out some instruction decoding based on architecture.
62 */
63
64 #include <linux/kernel.h>
65 #include <linux/kprobes.h>
66
67 #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
68
69 #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
70
71 #define is_r15(insn, bitpos) (((insn) & (0xf << bitpos)) == (0xf << bitpos))
72
73 /*
74 * Test if load/store instructions writeback the address register.
75 * if P (bit 24) == 0 or W (bit 21) == 1
76 */
77 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
78
79 #define PSR_fs (PSR_f|PSR_s)
80
81 #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
82
83 typedef long (insn_0arg_fn_t)(void);
84 typedef long (insn_1arg_fn_t)(long);
85 typedef long (insn_2arg_fn_t)(long, long);
86 typedef long (insn_3arg_fn_t)(long, long, long);
87 typedef long (insn_4arg_fn_t)(long, long, long, long);
88 typedef long long (insn_llret_0arg_fn_t)(void);
89 typedef long long (insn_llret_3arg_fn_t)(long, long, long);
90 typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
91
92 union reg_pair {
93 long long dr;
94 #ifdef __LITTLE_ENDIAN
95 struct { long r0, r1; };
96 #else
97 struct { long r1, r0; };
98 #endif
99 };
100
101 /*
102 * For STR and STM instructions, an ARM core may choose to use either
103 * a +8 or a +12 displacement from the current instruction's address.
104 * Whichever value is chosen for a given core, it must be the same for
105 * both instructions and may not change. This function measures it.
106 */
107
108 static int str_pc_offset;
109
110 static void __init find_str_pc_offset(void)
111 {
112 int addr, scratch, ret;
113
114 __asm__ (
115 "sub %[ret], pc, #4 \n\t"
116 "str pc, %[addr] \n\t"
117 "ldr %[scr], %[addr] \n\t"
118 "sub %[ret], %[scr], %[ret] \n\t"
119 : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
120
121 str_pc_offset = ret;
122 }
123
124 /*
125 * The insnslot_?arg_r[w]flags() functions below are to keep the
126 * msr -> *fn -> mrs instruction sequences indivisible so that
127 * the state of the CPSR flags aren't inadvertently modified
128 * just before or just after the call.
129 */
130
131 static inline long __kprobes
132 insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
133 {
134 register long ret asm("r0");
135
136 __asm__ __volatile__ (
137 "msr cpsr_fs, %[cpsr] \n\t"
138 "mov lr, pc \n\t"
139 "mov pc, %[fn] \n\t"
140 : "=r" (ret)
141 : [cpsr] "r" (cpsr), [fn] "r" (fn)
142 : "lr", "cc"
143 );
144 return ret;
145 }
146
147 static inline long long __kprobes
148 insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
149 {
150 register long ret0 asm("r0");
151 register long ret1 asm("r1");
152 union reg_pair fnr;
153
154 __asm__ __volatile__ (
155 "msr cpsr_fs, %[cpsr] \n\t"
156 "mov lr, pc \n\t"
157 "mov pc, %[fn] \n\t"
158 : "=r" (ret0), "=r" (ret1)
159 : [cpsr] "r" (cpsr), [fn] "r" (fn)
160 : "lr", "cc"
161 );
162 fnr.r0 = ret0;
163 fnr.r1 = ret1;
164 return fnr.dr;
165 }
166
167 static inline long __kprobes
168 insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
169 {
170 register long rr0 asm("r0") = r0;
171 register long ret asm("r0");
172
173 __asm__ __volatile__ (
174 "msr cpsr_fs, %[cpsr] \n\t"
175 "mov lr, pc \n\t"
176 "mov pc, %[fn] \n\t"
177 : "=r" (ret)
178 : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
179 : "lr", "cc"
180 );
181 return ret;
182 }
183
184 static inline long __kprobes
185 insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
186 {
187 register long rr0 asm("r0") = r0;
188 register long rr1 asm("r1") = r1;
189 register long ret asm("r0");
190
191 __asm__ __volatile__ (
192 "msr cpsr_fs, %[cpsr] \n\t"
193 "mov lr, pc \n\t"
194 "mov pc, %[fn] \n\t"
195 : "=r" (ret)
196 : "0" (rr0), "r" (rr1),
197 [cpsr] "r" (cpsr), [fn] "r" (fn)
198 : "lr", "cc"
199 );
200 return ret;
201 }
202
203 static inline long __kprobes
204 insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
205 {
206 register long rr0 asm("r0") = r0;
207 register long rr1 asm("r1") = r1;
208 register long rr2 asm("r2") = r2;
209 register long ret asm("r0");
210
211 __asm__ __volatile__ (
212 "msr cpsr_fs, %[cpsr] \n\t"
213 "mov lr, pc \n\t"
214 "mov pc, %[fn] \n\t"
215 : "=r" (ret)
216 : "0" (rr0), "r" (rr1), "r" (rr2),
217 [cpsr] "r" (cpsr), [fn] "r" (fn)
218 : "lr", "cc"
219 );
220 return ret;
221 }
222
223 static inline long long __kprobes
224 insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
225 insn_llret_3arg_fn_t *fn)
226 {
227 register long rr0 asm("r0") = r0;
228 register long rr1 asm("r1") = r1;
229 register long rr2 asm("r2") = r2;
230 register long ret0 asm("r0");
231 register long ret1 asm("r1");
232 union reg_pair fnr;
233
234 __asm__ __volatile__ (
235 "msr cpsr_fs, %[cpsr] \n\t"
236 "mov lr, pc \n\t"
237 "mov pc, %[fn] \n\t"
238 : "=r" (ret0), "=r" (ret1)
239 : "0" (rr0), "r" (rr1), "r" (rr2),
240 [cpsr] "r" (cpsr), [fn] "r" (fn)
241 : "lr", "cc"
242 );
243 fnr.r0 = ret0;
244 fnr.r1 = ret1;
245 return fnr.dr;
246 }
247
248 static inline long __kprobes
249 insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
250 insn_4arg_fn_t *fn)
251 {
252 register long rr0 asm("r0") = r0;
253 register long rr1 asm("r1") = r1;
254 register long rr2 asm("r2") = r2;
255 register long rr3 asm("r3") = r3;
256 register long ret asm("r0");
257
258 __asm__ __volatile__ (
259 "msr cpsr_fs, %[cpsr] \n\t"
260 "mov lr, pc \n\t"
261 "mov pc, %[fn] \n\t"
262 : "=r" (ret)
263 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
264 [cpsr] "r" (cpsr), [fn] "r" (fn)
265 : "lr", "cc"
266 );
267 return ret;
268 }
269
270 static inline long __kprobes
271 insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
272 {
273 register long rr0 asm("r0") = r0;
274 register long ret asm("r0");
275 long oldcpsr = *cpsr;
276 long newcpsr;
277
278 __asm__ __volatile__ (
279 "msr cpsr_fs, %[oldcpsr] \n\t"
280 "mov lr, pc \n\t"
281 "mov pc, %[fn] \n\t"
282 "mrs %[newcpsr], cpsr \n\t"
283 : "=r" (ret), [newcpsr] "=r" (newcpsr)
284 : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
285 : "lr", "cc"
286 );
287 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
288 return ret;
289 }
290
291 static inline long __kprobes
292 insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
293 {
294 register long rr0 asm("r0") = r0;
295 register long rr1 asm("r1") = r1;
296 register long ret asm("r0");
297 long oldcpsr = *cpsr;
298 long newcpsr;
299
300 __asm__ __volatile__ (
301 "msr cpsr_fs, %[oldcpsr] \n\t"
302 "mov lr, pc \n\t"
303 "mov pc, %[fn] \n\t"
304 "mrs %[newcpsr], cpsr \n\t"
305 : "=r" (ret), [newcpsr] "=r" (newcpsr)
306 : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
307 : "lr", "cc"
308 );
309 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
310 return ret;
311 }
312
313 static inline long __kprobes
314 insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
315 insn_3arg_fn_t *fn)
316 {
317 register long rr0 asm("r0") = r0;
318 register long rr1 asm("r1") = r1;
319 register long rr2 asm("r2") = r2;
320 register long ret asm("r0");
321 long oldcpsr = *cpsr;
322 long newcpsr;
323
324 __asm__ __volatile__ (
325 "msr cpsr_fs, %[oldcpsr] \n\t"
326 "mov lr, pc \n\t"
327 "mov pc, %[fn] \n\t"
328 "mrs %[newcpsr], cpsr \n\t"
329 : "=r" (ret), [newcpsr] "=r" (newcpsr)
330 : "0" (rr0), "r" (rr1), "r" (rr2),
331 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
332 : "lr", "cc"
333 );
334 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
335 return ret;
336 }
337
338 static inline long __kprobes
339 insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
340 insn_4arg_fn_t *fn)
341 {
342 register long rr0 asm("r0") = r0;
343 register long rr1 asm("r1") = r1;
344 register long rr2 asm("r2") = r2;
345 register long rr3 asm("r3") = r3;
346 register long ret asm("r0");
347 long oldcpsr = *cpsr;
348 long newcpsr;
349
350 __asm__ __volatile__ (
351 "msr cpsr_fs, %[oldcpsr] \n\t"
352 "mov lr, pc \n\t"
353 "mov pc, %[fn] \n\t"
354 "mrs %[newcpsr], cpsr \n\t"
355 : "=r" (ret), [newcpsr] "=r" (newcpsr)
356 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
357 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
358 : "lr", "cc"
359 );
360 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
361 return ret;
362 }
363
364 static inline long long __kprobes
365 insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
366 insn_llret_4arg_fn_t *fn)
367 {
368 register long rr0 asm("r0") = r0;
369 register long rr1 asm("r1") = r1;
370 register long rr2 asm("r2") = r2;
371 register long rr3 asm("r3") = r3;
372 register long ret0 asm("r0");
373 register long ret1 asm("r1");
374 long oldcpsr = *cpsr;
375 long newcpsr;
376 union reg_pair fnr;
377
378 __asm__ __volatile__ (
379 "msr cpsr_fs, %[oldcpsr] \n\t"
380 "mov lr, pc \n\t"
381 "mov pc, %[fn] \n\t"
382 "mrs %[newcpsr], cpsr \n\t"
383 : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
384 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
385 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
386 : "lr", "cc"
387 );
388 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
389 fnr.r0 = ret0;
390 fnr.r1 = ret1;
391 return fnr.dr;
392 }
393
394 /*
395 * To avoid the complications of mimicing single-stepping on a
396 * processor without a Next-PC or a single-step mode, and to
397 * avoid having to deal with the side-effects of boosting, we
398 * simulate or emulate (almost) all ARM instructions.
399 *
400 * "Simulation" is where the instruction's behavior is duplicated in
401 * C code. "Emulation" is where the original instruction is rewritten
402 * and executed, often by altering its registers.
403 *
404 * By having all behavior of the kprobe'd instruction completed before
405 * returning from the kprobe_handler(), all locks (scheduler and
406 * interrupt) can safely be released. There is no need for secondary
407 * breakpoints, no race with MP or preemptable kernels, nor having to
408 * clean up resources counts at a later time impacting overall system
409 * performance. By rewriting the instruction, only the minimum registers
410 * need to be loaded and saved back optimizing performance.
411 *
412 * Calling the insnslot_*_rwflags version of a function doesn't hurt
413 * anything even when the CPSR flags aren't updated by the
414 * instruction. It's just a little slower in return for saving
415 * a little space by not having a duplicate function that doesn't
416 * update the flags. (The same optimization can be said for
417 * instructions that do or don't perform register writeback)
418 * Also, instructions can either read the flags, only write the
419 * flags, or read and write the flags. To save combinations
420 * rather than for sheer performance, flag functions just assume
421 * read and write of flags.
422 */
423
424 static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
425 {
426 kprobe_opcode_t insn = p->opcode;
427 long iaddr = (long)p->addr;
428 int disp = branch_displacement(insn);
429
430 if (insn & (1 << 24))
431 regs->ARM_lr = iaddr + 4;
432
433 regs->ARM_pc = iaddr + 8 + disp;
434 }
435
436 static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
437 {
438 kprobe_opcode_t insn = p->opcode;
439 long iaddr = (long)p->addr;
440 int disp = branch_displacement(insn);
441
442 regs->ARM_lr = iaddr + 4;
443 regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
444 regs->ARM_cpsr |= PSR_T_BIT;
445 }
446
447 static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
448 {
449 kprobe_opcode_t insn = p->opcode;
450 int rm = insn & 0xf;
451 long rmv = regs->uregs[rm];
452
453 if (insn & (1 << 5))
454 regs->ARM_lr = (long)p->addr + 4;
455
456 regs->ARM_pc = rmv & ~0x1;
457 regs->ARM_cpsr &= ~PSR_T_BIT;
458 if (rmv & 0x1)
459 regs->ARM_cpsr |= PSR_T_BIT;
460 }
461
462 static void __kprobes simulate_mrs(struct kprobe *p, struct pt_regs *regs)
463 {
464 kprobe_opcode_t insn = p->opcode;
465 int rd = (insn >> 12) & 0xf;
466 unsigned long mask = 0xf8ff03df; /* Mask out execution state */
467 regs->uregs[rd] = regs->ARM_cpsr & mask;
468 }
469
470 static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
471 {
472 kprobe_opcode_t insn = p->opcode;
473 int rn = (insn >> 16) & 0xf;
474 int lbit = insn & (1 << 20);
475 int wbit = insn & (1 << 21);
476 int ubit = insn & (1 << 23);
477 int pbit = insn & (1 << 24);
478 long *addr = (long *)regs->uregs[rn];
479 int reg_bit_vector;
480 int reg_count;
481
482 reg_count = 0;
483 reg_bit_vector = insn & 0xffff;
484 while (reg_bit_vector) {
485 reg_bit_vector &= (reg_bit_vector - 1);
486 ++reg_count;
487 }
488
489 if (!ubit)
490 addr -= reg_count;
491 addr += (!pbit == !ubit);
492
493 reg_bit_vector = insn & 0xffff;
494 while (reg_bit_vector) {
495 int reg = __ffs(reg_bit_vector);
496 reg_bit_vector &= (reg_bit_vector - 1);
497 if (lbit)
498 regs->uregs[reg] = *addr++;
499 else
500 *addr++ = regs->uregs[reg];
501 }
502
503 if (wbit) {
504 if (!ubit)
505 addr -= reg_count;
506 addr -= (!pbit == !ubit);
507 regs->uregs[rn] = (long)addr;
508 }
509 }
510
511 static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
512 {
513 regs->ARM_pc = (long)p->addr + str_pc_offset;
514 simulate_ldm1stm1(p, regs);
515 regs->ARM_pc = (long)p->addr + 4;
516 }
517
518 static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
519 {
520 regs->uregs[12] = regs->uregs[13];
521 }
522
523 static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
524 {
525 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
526 kprobe_opcode_t insn = p->opcode;
527 int rn = (insn >> 16) & 0xf;
528 long rnv = regs->uregs[rn];
529
530 /* Save Rn in case of writeback. */
531 regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
532 }
533
534 static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
535 {
536 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
537 kprobe_opcode_t insn = p->opcode;
538 long ppc = (long)p->addr + 8;
539 int rd = (insn >> 12) & 0xf;
540 int rn = (insn >> 16) & 0xf;
541 int rm = insn & 0xf; /* rm may be invalid, don't care. */
542 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
543 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
544
545 /* Not following the C calling convention here, so need asm(). */
546 __asm__ __volatile__ (
547 "ldr r0, %[rn] \n\t"
548 "ldr r1, %[rm] \n\t"
549 "msr cpsr_fs, %[cpsr]\n\t"
550 "mov lr, pc \n\t"
551 "mov pc, %[i_fn] \n\t"
552 "str r0, %[rn] \n\t" /* in case of writeback */
553 "str r2, %[rd0] \n\t"
554 "str r3, %[rd1] \n\t"
555 : [rn] "+m" (rnv),
556 [rd0] "=m" (regs->uregs[rd]),
557 [rd1] "=m" (regs->uregs[rd+1])
558 : [rm] "m" (rmv),
559 [cpsr] "r" (regs->ARM_cpsr),
560 [i_fn] "r" (i_fn)
561 : "r0", "r1", "r2", "r3", "lr", "cc"
562 );
563 if (is_writeback(insn))
564 regs->uregs[rn] = rnv;
565 }
566
567 static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
568 {
569 insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
570 kprobe_opcode_t insn = p->opcode;
571 long ppc = (long)p->addr + 8;
572 int rd = (insn >> 12) & 0xf;
573 int rn = (insn >> 16) & 0xf;
574 int rm = insn & 0xf;
575 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
576 /* rm/rmv may be invalid, don't care. */
577 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
578 long rnv_wb;
579
580 rnv_wb = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
581 regs->uregs[rd+1],
582 regs->ARM_cpsr, i_fn);
583 if (is_writeback(insn))
584 regs->uregs[rn] = rnv_wb;
585 }
586
587 static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
588 {
589 insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
590 kprobe_opcode_t insn = p->opcode;
591 long ppc = (long)p->addr + 8;
592 union reg_pair fnr;
593 int rd = (insn >> 12) & 0xf;
594 int rn = (insn >> 16) & 0xf;
595 int rm = insn & 0xf;
596 long rdv;
597 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
598 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
599 long cpsr = regs->ARM_cpsr;
600
601 fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
602 if (rn != 15)
603 regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
604 rdv = fnr.r1;
605
606 if (rd == 15) {
607 #if __LINUX_ARM_ARCH__ >= 5
608 cpsr &= ~PSR_T_BIT;
609 if (rdv & 0x1)
610 cpsr |= PSR_T_BIT;
611 regs->ARM_cpsr = cpsr;
612 rdv &= ~0x1;
613 #else
614 rdv &= ~0x2;
615 #endif
616 }
617 regs->uregs[rd] = rdv;
618 }
619
620 static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
621 {
622 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
623 kprobe_opcode_t insn = p->opcode;
624 long iaddr = (long)p->addr;
625 int rd = (insn >> 12) & 0xf;
626 int rn = (insn >> 16) & 0xf;
627 int rm = insn & 0xf;
628 long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
629 long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
630 long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
631 long rnv_wb;
632
633 rnv_wb = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
634 if (rn != 15)
635 regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
636 }
637
638 static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
639 {
640 insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
641 kprobe_opcode_t insn = p->opcode;
642 union reg_pair fnr;
643 int rd = (insn >> 12) & 0xf;
644 int rn = (insn >> 16) & 0xf;
645
646 fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
647 regs->uregs[rn] = fnr.r0;
648 regs->uregs[rd] = fnr.r1;
649 }
650
651 static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
652 {
653 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
654 kprobe_opcode_t insn = p->opcode;
655 int rd = (insn >> 12) & 0xf;
656 int rn = (insn >> 16) & 0xf;
657 long rnv = regs->uregs[rn];
658 long rdv = regs->uregs[rd];
659
660 insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
661 }
662
663 static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
664 {
665 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
666 kprobe_opcode_t insn = p->opcode;
667 int rd = (insn >> 12) & 0xf;
668 int rm = insn & 0xf;
669 long rmv = regs->uregs[rm];
670
671 /* Writes Q flag */
672 regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
673 }
674
675 static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
676 {
677 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
678 kprobe_opcode_t insn = p->opcode;
679 int rd = (insn >> 12) & 0xf;
680 int rn = (insn >> 16) & 0xf;
681 int rm = insn & 0xf;
682 long rnv = regs->uregs[rn];
683 long rmv = regs->uregs[rm];
684
685 /* Reads GE bits */
686 regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
687 }
688
689 static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
690 {
691 insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
692
693 insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
694 }
695
696 static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
697 {
698 insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
699 kprobe_opcode_t insn = p->opcode;
700 int rd = (insn >> 12) & 0xf;
701
702 regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
703 }
704
705 static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
706 {
707 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
708 kprobe_opcode_t insn = p->opcode;
709 int ird = (insn >> 12) & 0xf;
710
711 insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
712 }
713
714 static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
715 {
716 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
717 kprobe_opcode_t insn = p->opcode;
718 int rn = (insn >> 16) & 0xf;
719 long rnv = regs->uregs[rn];
720
721 insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
722 }
723
724 static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
725 {
726 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
727 kprobe_opcode_t insn = p->opcode;
728 int rd = (insn >> 12) & 0xf;
729 int rm = insn & 0xf;
730 long rmv = regs->uregs[rm];
731
732 regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
733 }
734
735 static void __kprobes
736 emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
737 {
738 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
739 kprobe_opcode_t insn = p->opcode;
740 int rd = (insn >> 12) & 0xf;
741 int rn = (insn >> 16) & 0xf;
742 int rm = insn & 0xf;
743 long rnv = regs->uregs[rn];
744 long rmv = regs->uregs[rm];
745
746 regs->uregs[rd] =
747 insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
748 }
749
750 static void __kprobes
751 emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
752 {
753 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
754 kprobe_opcode_t insn = p->opcode;
755 int rd = (insn >> 16) & 0xf;
756 int rn = (insn >> 12) & 0xf;
757 int rs = (insn >> 8) & 0xf;
758 int rm = insn & 0xf;
759 long rnv = regs->uregs[rn];
760 long rsv = regs->uregs[rs];
761 long rmv = regs->uregs[rm];
762
763 regs->uregs[rd] =
764 insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
765 }
766
767 static void __kprobes
768 emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
769 {
770 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
771 kprobe_opcode_t insn = p->opcode;
772 int rd = (insn >> 16) & 0xf;
773 int rs = (insn >> 8) & 0xf;
774 int rm = insn & 0xf;
775 long rsv = regs->uregs[rs];
776 long rmv = regs->uregs[rm];
777
778 regs->uregs[rd] =
779 insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
780 }
781
782 static void __kprobes
783 emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
784 {
785 insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
786 kprobe_opcode_t insn = p->opcode;
787 union reg_pair fnr;
788 int rdhi = (insn >> 16) & 0xf;
789 int rdlo = (insn >> 12) & 0xf;
790 int rs = (insn >> 8) & 0xf;
791 int rm = insn & 0xf;
792 long rsv = regs->uregs[rs];
793 long rmv = regs->uregs[rm];
794
795 fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
796 regs->uregs[rdlo], rsv, rmv,
797 &regs->ARM_cpsr, i_fn);
798 regs->uregs[rdhi] = fnr.r0;
799 regs->uregs[rdlo] = fnr.r1;
800 }
801
802 static void __kprobes
803 emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
804 {
805 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
806 kprobe_opcode_t insn = p->opcode;
807 int rd = (insn >> 12) & 0xf;
808 int rn = (insn >> 16) & 0xf;
809 long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
810
811 regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
812 }
813
814 static void __kprobes
815 emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
816 {
817 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
818 kprobe_opcode_t insn = p->opcode;
819 int rd = (insn >> 12) & 0xf;
820 int rn = (insn >> 16) & 0xf;
821 long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
822
823 regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
824 }
825
826 static void __kprobes
827 emulate_alu_tests_imm(struct kprobe *p, struct pt_regs *regs)
828 {
829 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
830 kprobe_opcode_t insn = p->opcode;
831 int rn = (insn >> 16) & 0xf;
832 long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
833
834 insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
835 }
836
837 static void __kprobes
838 emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
839 {
840 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
841 kprobe_opcode_t insn = p->opcode;
842 long ppc = (long)p->addr + 8;
843 int rd = (insn >> 12) & 0xf;
844 int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
845 int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
846 int rm = insn & 0xf;
847 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
848 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
849 long rsv = regs->uregs[rs];
850
851 regs->uregs[rd] =
852 insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
853 }
854
855 static void __kprobes
856 emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
857 {
858 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
859 kprobe_opcode_t insn = p->opcode;
860 long ppc = (long)p->addr + 8;
861 int rd = (insn >> 12) & 0xf;
862 int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
863 int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
864 int rm = insn & 0xf;
865 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
866 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
867 long rsv = regs->uregs[rs];
868
869 regs->uregs[rd] =
870 insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
871 }
872
873 static void __kprobes
874 emulate_alu_tests(struct kprobe *p, struct pt_regs *regs)
875 {
876 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
877 kprobe_opcode_t insn = p->opcode;
878 long ppc = (long)p->addr + 8;
879 int rn = (insn >> 16) & 0xf;
880 int rs = (insn >> 8) & 0xf; /* rs/rsv may be invalid, don't care. */
881 int rm = insn & 0xf;
882 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
883 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
884 long rsv = regs->uregs[rs];
885
886 insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
887 }
888
889 static enum kprobe_insn __kprobes
890 prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
891 {
892 int not_imm = (insn & (1 << 26)) ? (insn & (1 << 25))
893 : (~insn & (1 << 22));
894
895 if (is_writeback(insn) && is_r15(insn, 16))
896 return INSN_REJECTED; /* Writeback to PC */
897
898 insn &= 0xfff00fff;
899 insn |= 0x00001000; /* Rn = r0, Rd = r1 */
900 if (not_imm) {
901 insn &= ~0xf;
902 insn |= 2; /* Rm = r2 */
903 }
904 asi->insn[0] = insn;
905 asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
906 return INSN_GOOD;
907 }
908
909 static enum kprobe_insn __kprobes
910 prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
911 {
912 if (is_r15(insn, 12))
913 return INSN_REJECTED; /* Rd is PC */
914
915 insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
916 asi->insn[0] = insn;
917 asi->insn_handler = emulate_rd12rm0;
918 return INSN_GOOD;
919 }
920
921 static enum kprobe_insn __kprobes
922 prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
923 struct arch_specific_insn *asi)
924 {
925 if (is_r15(insn, 12))
926 return INSN_REJECTED; /* Rd is PC */
927
928 insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
929 insn |= 0x00000001; /* Rm = r1 */
930 asi->insn[0] = insn;
931 asi->insn_handler = emulate_rd12rn16rm0_rwflags;
932 return INSN_GOOD;
933 }
934
935 static enum kprobe_insn __kprobes
936 prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
937 struct arch_specific_insn *asi)
938 {
939 if (is_r15(insn, 16))
940 return INSN_REJECTED; /* Rd is PC */
941
942 insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
943 insn |= 0x00000001; /* Rm = r1 */
944 asi->insn[0] = insn;
945 asi->insn_handler = emulate_rd16rs8rm0_rwflags;
946 return INSN_GOOD;
947 }
948
949 static enum kprobe_insn __kprobes
950 prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
951 struct arch_specific_insn *asi)
952 {
953 if (is_r15(insn, 16))
954 return INSN_REJECTED; /* Rd is PC */
955
956 insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
957 insn |= 0x00000102; /* Rs = r1, Rm = r2 */
958 asi->insn[0] = insn;
959 asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
960 return INSN_GOOD;
961 }
962
963 static enum kprobe_insn __kprobes
964 prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
965 struct arch_specific_insn *asi)
966 {
967 if (is_r15(insn, 16) || is_r15(insn, 12))
968 return INSN_REJECTED; /* RdHi or RdLo is PC */
969
970 insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
971 insn |= 0x00001203; /* Rs = r2, Rm = r3 */
972 asi->insn[0] = insn;
973 asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
974 return INSN_GOOD;
975 }
976
977 /*
978 * For the instruction masking and comparisons in all the "space_*"
979 * functions below, Do _not_ rearrange the order of tests unless
980 * you're very, very sure of what you are doing. For the sake of
981 * efficiency, the masks for some tests sometimes assume other test
982 * have been done prior to them so the number of patterns to test
983 * for an instruction set can be as broad as possible to reduce the
984 * number of tests needed.
985 */
986
987 static enum kprobe_insn __kprobes
988 space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
989 {
990 /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
991 /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
992 /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
993 if ((insn & 0xfff30020) == 0xf1020000 ||
994 (insn & 0xfe500f00) == 0xf8100a00 ||
995 (insn & 0xfe5f0f00) == 0xf84d0500)
996 return INSN_REJECTED;
997
998 /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
999 if ((insn & 0xfd700000) == 0xf4500000) {
1000 insn &= 0xfff0ffff; /* Rn = r0 */
1001 asi->insn[0] = insn;
1002 asi->insn_handler = emulate_rn16;
1003 return INSN_GOOD;
1004 }
1005
1006 /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
1007 if ((insn & 0xfe000000) == 0xfa000000) {
1008 asi->insn_handler = simulate_blx1;
1009 return INSN_GOOD_NO_SLOT;
1010 }
1011
1012 /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
1013 /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
1014 if ((insn & 0xffff00f0) == 0xf1010000 ||
1015 (insn & 0xff000010) == 0xfe000000) {
1016 asi->insn[0] = insn;
1017 asi->insn_handler = emulate_none;
1018 return INSN_GOOD;
1019 }
1020
1021 /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
1022 /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
1023 if ((insn & 0xffe00000) == 0xfc400000) {
1024 insn &= 0xfff00fff; /* Rn = r0 */
1025 insn |= 0x00001000; /* Rd = r1 */
1026 asi->insn[0] = insn;
1027 asi->insn_handler =
1028 (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
1029 return INSN_GOOD;
1030 }
1031
1032 /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
1033 /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
1034 if ((insn & 0xfe000000) == 0xfc000000) {
1035 insn &= 0xfff0ffff; /* Rn = r0 */
1036 asi->insn[0] = insn;
1037 asi->insn_handler = emulate_ldcstc;
1038 return INSN_GOOD;
1039 }
1040
1041 /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
1042 /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
1043 insn &= 0xffff0fff; /* Rd = r0 */
1044 asi->insn[0] = insn;
1045 asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
1046 return INSN_GOOD;
1047 }
1048
1049 static enum kprobe_insn __kprobes
1050 space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1051 {
1052 /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
1053 if ((insn & 0x0f900010) == 0x01000000) {
1054
1055 /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
1056 /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
1057 /* MRS spsr : cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
1058 if ((insn & 0x0ff000f0) == 0x01200020 ||
1059 (insn & 0x0fb000f0) == 0x01200000 ||
1060 (insn & 0x0ff000f0) == 0x01400000)
1061 return INSN_REJECTED;
1062
1063 /* MRS cpsr : cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
1064 if ((insn & 0x0ff000f0) == 0x01000000) {
1065 if (is_r15(insn, 12))
1066 return INSN_REJECTED; /* Rd is PC */
1067 asi->insn_handler = simulate_mrs;
1068 return INSN_GOOD_NO_SLOT;
1069 }
1070
1071 /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
1072 if ((insn & 0x0ff00090) == 0x01400080)
1073 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1074
1075 /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
1076 /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
1077 if ((insn & 0x0ff000b0) == 0x012000a0 ||
1078 (insn & 0x0ff00090) == 0x01600080)
1079 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1080
1081 /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
1082 /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx : Q */
1083 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1084
1085 }
1086
1087 /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
1088 else if ((insn & 0x0f900090) == 0x01000010) {
1089
1090 /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
1091 if ((insn & 0xfff000f0) == 0xe1200070)
1092 return INSN_REJECTED;
1093
1094 /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
1095 /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
1096 if ((insn & 0x0ff000d0) == 0x01200010) {
1097 if ((insn & 0x0ff000ff) == 0x0120003f)
1098 return INSN_REJECTED; /* BLX pc */
1099 asi->insn_handler = simulate_blx2bx;
1100 return INSN_GOOD_NO_SLOT;
1101 }
1102
1103 /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
1104 if ((insn & 0x0ff000f0) == 0x01600010)
1105 return prep_emulate_rd12rm0(insn, asi);
1106
1107 /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
1108 /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
1109 /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
1110 /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
1111 return prep_emulate_rd12rn16rm0_wflags(insn, asi);
1112 }
1113
1114 /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
1115 else if ((insn & 0x0f0000f0) == 0x00000090) {
1116
1117 /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
1118 /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
1119 /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
1120 /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
1121 /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
1122 /* undef : cccc 0000 0101 xxxx xxxx xxxx 1001 xxxx : */
1123 /* MLS : cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx : */
1124 /* undef : cccc 0000 0111 xxxx xxxx xxxx 1001 xxxx : */
1125 /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
1126 /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
1127 /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
1128 /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
1129 /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
1130 /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
1131 /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
1132 /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
1133 if ((insn & 0x00d00000) == 0x00500000) {
1134 return INSN_REJECTED;
1135 } else if ((insn & 0x00e00000) == 0x00000000) {
1136 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1137 } else if ((insn & 0x00a00000) == 0x00200000) {
1138 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1139 } else {
1140 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1141 }
1142 }
1143
1144 /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
1145 else if ((insn & 0x0e000090) == 0x00000090) {
1146
1147 /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
1148 /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
1149 /* ??? : cccc 0001 0x01 xxxx xxxx xxxx 1001 xxxx */
1150 /* ??? : cccc 0001 0x10 xxxx xxxx xxxx 1001 xxxx */
1151 /* ??? : cccc 0001 0x11 xxxx xxxx xxxx 1001 xxxx */
1152 /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
1153 /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
1154 /* STREXD: cccc 0001 1010 xxxx xxxx xxxx 1001 xxxx */
1155 /* LDREXD: cccc 0001 1011 xxxx xxxx xxxx 1001 xxxx */
1156 /* STREXB: cccc 0001 1100 xxxx xxxx xxxx 1001 xxxx */
1157 /* LDREXB: cccc 0001 1101 xxxx xxxx xxxx 1001 xxxx */
1158 /* STREXH: cccc 0001 1110 xxxx xxxx xxxx 1001 xxxx */
1159 /* LDREXH: cccc 0001 1111 xxxx xxxx xxxx 1001 xxxx */
1160
1161 /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
1162 /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
1163 /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
1164 /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
1165 /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
1166 /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
1167 if ((insn & 0x0f0000f0) == 0x01000090) {
1168 if ((insn & 0x0fb000f0) == 0x01000090) {
1169 /* SWP/SWPB */
1170 return prep_emulate_rd12rn16rm0_wflags(insn,
1171 asi);
1172 } else {
1173 /* STREX/LDREX variants and unallocaed space */
1174 return INSN_REJECTED;
1175 }
1176
1177 } else if ((insn & 0x0e1000d0) == 0x00000d0) {
1178 /* STRD/LDRD */
1179 if ((insn & 0x0000e000) == 0x0000e000)
1180 return INSN_REJECTED; /* Rd is LR or PC */
1181 if (is_writeback(insn) && is_r15(insn, 16))
1182 return INSN_REJECTED; /* Writeback to PC */
1183
1184 insn &= 0xfff00fff;
1185 insn |= 0x00002000; /* Rn = r0, Rd = r2 */
1186 if (!(insn & (1 << 22))) {
1187 /* Register index */
1188 insn &= ~0xf;
1189 insn |= 1; /* Rm = r1 */
1190 }
1191 asi->insn[0] = insn;
1192 asi->insn_handler =
1193 (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
1194 return INSN_GOOD;
1195 }
1196
1197 /* LDRH/STRH/LDRSB/LDRSH */
1198 if (is_r15(insn, 12))
1199 return INSN_REJECTED; /* Rd is PC */
1200 return prep_emulate_ldr_str(insn, asi);
1201 }
1202
1203 /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
1204
1205 /*
1206 * ALU op with S bit and Rd == 15 :
1207 * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
1208 */
1209 if ((insn & 0x0e10f000) == 0x0010f000)
1210 return INSN_REJECTED;
1211
1212 /*
1213 * "mov ip, sp" is the most common kprobe'd instruction by far.
1214 * Check and optimize for it explicitly.
1215 */
1216 if (insn == 0xe1a0c00d) {
1217 asi->insn_handler = simulate_mov_ipsp;
1218 return INSN_GOOD_NO_SLOT;
1219 }
1220
1221 /*
1222 * Data processing: Immediate-shift / Register-shift
1223 * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
1224 * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
1225 * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
1226 * *S (bit 20) updates condition codes
1227 * ADC/SBC/RSC reads the C flag
1228 */
1229 insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
1230 insn |= 0x00000001; /* Rm = r1 */
1231 if (insn & 0x010) {
1232 insn &= 0xfffff0ff; /* register shift */
1233 insn |= 0x00000200; /* Rs = r2 */
1234 }
1235 asi->insn[0] = insn;
1236
1237 if ((insn & 0x0f900000) == 0x01100000) {
1238 /*
1239 * TST : cccc 0001 0001 xxxx xxxx xxxx xxxx xxxx
1240 * TEQ : cccc 0001 0011 xxxx xxxx xxxx xxxx xxxx
1241 * CMP : cccc 0001 0101 xxxx xxxx xxxx xxxx xxxx
1242 * CMN : cccc 0001 0111 xxxx xxxx xxxx xxxx xxxx
1243 */
1244 asi->insn_handler = emulate_alu_tests;
1245 } else {
1246 /* ALU ops which write to Rd */
1247 asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
1248 emulate_alu_rwflags : emulate_alu_rflags;
1249 }
1250 return INSN_GOOD;
1251 }
1252
1253 static enum kprobe_insn __kprobes
1254 space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1255 {
1256 /*
1257 * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
1258 * Undef : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx
1259 * ALU op with S bit and Rd == 15 :
1260 * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
1261 */
1262 if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */
1263 (insn & 0x0ff00000) == 0x03400000 || /* Undef */
1264 (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
1265 return INSN_REJECTED;
1266
1267 /*
1268 * Data processing: 32-bit Immediate
1269 * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
1270 * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
1271 * *S (bit 20) updates condition codes
1272 * ADC/SBC/RSC reads the C flag
1273 */
1274 insn &= 0xfff00fff; /* Rn = r0 and Rd = r0 */
1275 asi->insn[0] = insn;
1276
1277 if ((insn & 0x0f900000) == 0x03100000) {
1278 /*
1279 * TST : cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx
1280 * TEQ : cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx
1281 * CMP : cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx
1282 * CMN : cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx
1283 */
1284 asi->insn_handler = emulate_alu_tests_imm;
1285 } else {
1286 /* ALU ops which write to Rd */
1287 asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
1288 emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
1289 }
1290 return INSN_GOOD;
1291 }
1292
1293 static enum kprobe_insn __kprobes
1294 space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1295 {
1296 /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
1297 if ((insn & 0x0ff000f0) == 0x068000b0) {
1298 if (is_r15(insn, 12))
1299 return INSN_REJECTED; /* Rd is PC */
1300 insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
1301 insn |= 0x00000001; /* Rm = r1 */
1302 asi->insn[0] = insn;
1303 asi->insn_handler = emulate_sel;
1304 return INSN_GOOD;
1305 }
1306
1307 /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
1308 /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
1309 /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
1310 /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
1311 if ((insn & 0x0fa00030) == 0x06a00010 ||
1312 (insn & 0x0fb000f0) == 0x06a00030) {
1313 if (is_r15(insn, 12))
1314 return INSN_REJECTED; /* Rd is PC */
1315 insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
1316 asi->insn[0] = insn;
1317 asi->insn_handler = emulate_sat;
1318 return INSN_GOOD;
1319 }
1320
1321 /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
1322 /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
1323 /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
1324 if ((insn & 0x0ff00070) == 0x06b00030 ||
1325 (insn & 0x0ff000f0) == 0x06f000b0)
1326 return prep_emulate_rd12rm0(insn, asi);
1327
1328 /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
1329 /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
1330 /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
1331 /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
1332 /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
1333 /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
1334 /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
1335 /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
1336 /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
1337 /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
1338 /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
1339 /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
1340 /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
1341 /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
1342 /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
1343 /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
1344 /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
1345 /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
1346 /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
1347 /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
1348 /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
1349 /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
1350 /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
1351 /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
1352 /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
1353 /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
1354 /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
1355 /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
1356 /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
1357 /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
1358 /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
1359 /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
1360 /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
1361 /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
1362 /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
1363 /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
1364 /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
1365 /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
1366 /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
1367 /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
1368 /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
1369 /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
1370 /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
1371 /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
1372 /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
1373 return prep_emulate_rd12rn16rm0_wflags(insn, asi);
1374 }
1375
1376 static enum kprobe_insn __kprobes
1377 space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1378 {
1379 /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
1380 if ((insn & 0x0ff000f0) == 0x03f000f0)
1381 return INSN_REJECTED;
1382
1383 /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
1384 /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
1385 if ((insn & 0x0ff000f0) == 0x07800010)
1386 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1387
1388 /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
1389 /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
1390 if ((insn & 0x0ff00090) == 0x07400010)
1391 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1392
1393 /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
1394 /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
1395 /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
1396 /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
1397 if ((insn & 0x0ff00090) == 0x07000010 ||
1398 (insn & 0x0ff000d0) == 0x07500010 ||
1399 (insn & 0x0ff000d0) == 0x075000d0)
1400 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1401
1402 /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
1403 /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
1404 /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
1405 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1406 }
1407
1408 static enum kprobe_insn __kprobes
1409 space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1410 {
1411 /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
1412 /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
1413 /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
1414 /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
1415 /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
1416 /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
1417 /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
1418 /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
1419
1420 if ((insn & 0x00500000) == 0x00500000 && is_r15(insn, 12))
1421 return INSN_REJECTED; /* LDRB into PC */
1422
1423 return prep_emulate_ldr_str(insn, asi);
1424 }
1425
1426 static enum kprobe_insn __kprobes
1427 space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1428 {
1429 /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
1430 /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
1431 if ((insn & 0x0e708000) == 0x85000000 ||
1432 (insn & 0x0e508000) == 0x85010000)
1433 return INSN_REJECTED;
1434
1435 /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
1436 /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
1437 asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
1438 simulate_stm1_pc : simulate_ldm1stm1;
1439 return INSN_GOOD_NO_SLOT;
1440 }
1441
1442 static enum kprobe_insn __kprobes
1443 space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1444 {
1445 /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
1446 /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
1447 asi->insn_handler = simulate_bbl;
1448 return INSN_GOOD_NO_SLOT;
1449 }
1450
1451 static enum kprobe_insn __kprobes
1452 space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1453 {
1454 /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
1455 /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
1456 if (is_r15(insn, 16) || is_r15(insn, 12))
1457 return INSN_REJECTED; /* Rn or Rd is PC */
1458
1459 insn &= 0xfff00fff;
1460 insn |= 0x00001000; /* Rn = r0, Rd = r1 */
1461 asi->insn[0] = insn;
1462 asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
1463 return INSN_GOOD;
1464 }
1465
1466 static enum kprobe_insn __kprobes
1467 space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1468 {
1469 /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
1470 /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
1471 insn &= 0xfff0ffff; /* Rn = r0 */
1472 asi->insn[0] = insn;
1473 asi->insn_handler = emulate_ldcstc;
1474 return INSN_GOOD;
1475 }
1476
1477 static enum kprobe_insn __kprobes
1478 space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1479 {
1480 /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
1481 /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
1482 if ((insn & 0xfff000f0) == 0xe1200070 ||
1483 (insn & 0x0f000000) == 0x0f000000)
1484 return INSN_REJECTED;
1485
1486 /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
1487 if ((insn & 0x0f000010) == 0x0e000000) {
1488 asi->insn[0] = insn;
1489 asi->insn_handler = emulate_none;
1490 return INSN_GOOD;
1491 }
1492
1493 /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
1494 /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
1495 insn &= 0xffff0fff; /* Rd = r0 */
1496 asi->insn[0] = insn;
1497 asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
1498 return INSN_GOOD;
1499 }
1500
1501 static unsigned long __kprobes __check_eq(unsigned long cpsr)
1502 {
1503 return cpsr & PSR_Z_BIT;
1504 }
1505
1506 static unsigned long __kprobes __check_ne(unsigned long cpsr)
1507 {
1508 return (~cpsr) & PSR_Z_BIT;
1509 }
1510
1511 static unsigned long __kprobes __check_cs(unsigned long cpsr)
1512 {
1513 return cpsr & PSR_C_BIT;
1514 }
1515
1516 static unsigned long __kprobes __check_cc(unsigned long cpsr)
1517 {
1518 return (~cpsr) & PSR_C_BIT;
1519 }
1520
1521 static unsigned long __kprobes __check_mi(unsigned long cpsr)
1522 {
1523 return cpsr & PSR_N_BIT;
1524 }
1525
1526 static unsigned long __kprobes __check_pl(unsigned long cpsr)
1527 {
1528 return (~cpsr) & PSR_N_BIT;
1529 }
1530
1531 static unsigned long __kprobes __check_vs(unsigned long cpsr)
1532 {
1533 return cpsr & PSR_V_BIT;
1534 }
1535
1536 static unsigned long __kprobes __check_vc(unsigned long cpsr)
1537 {
1538 return (~cpsr) & PSR_V_BIT;
1539 }
1540
1541 static unsigned long __kprobes __check_hi(unsigned long cpsr)
1542 {
1543 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
1544 return cpsr & PSR_C_BIT;
1545 }
1546
1547 static unsigned long __kprobes __check_ls(unsigned long cpsr)
1548 {
1549 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
1550 return (~cpsr) & PSR_C_BIT;
1551 }
1552
1553 static unsigned long __kprobes __check_ge(unsigned long cpsr)
1554 {
1555 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
1556 return (~cpsr) & PSR_N_BIT;
1557 }
1558
1559 static unsigned long __kprobes __check_lt(unsigned long cpsr)
1560 {
1561 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
1562 return cpsr & PSR_N_BIT;
1563 }
1564
1565 static unsigned long __kprobes __check_gt(unsigned long cpsr)
1566 {
1567 unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
1568 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
1569 return (~temp) & PSR_N_BIT;
1570 }
1571
1572 static unsigned long __kprobes __check_le(unsigned long cpsr)
1573 {
1574 unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
1575 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
1576 return temp & PSR_N_BIT;
1577 }
1578
1579 static unsigned long __kprobes __check_al(unsigned long cpsr)
1580 {
1581 return true;
1582 }
1583
1584 static kprobe_check_cc * const condition_checks[16] = {
1585 &__check_eq, &__check_ne, &__check_cs, &__check_cc,
1586 &__check_mi, &__check_pl, &__check_vs, &__check_vc,
1587 &__check_hi, &__check_ls, &__check_ge, &__check_lt,
1588 &__check_gt, &__check_le, &__check_al, &__check_al
1589 };
1590
1591 /* Return:
1592 * INSN_REJECTED If instruction is one not allowed to kprobe,
1593 * INSN_GOOD If instruction is supported and uses instruction slot,
1594 * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
1595 *
1596 * For instructions we don't want to kprobe (INSN_REJECTED return result):
1597 * These are generally ones that modify the processor state making
1598 * them "hard" to simulate such as switches processor modes or
1599 * make accesses in alternate modes. Any of these could be simulated
1600 * if the work was put into it, but low return considering they
1601 * should also be very rare.
1602 */
1603 enum kprobe_insn __kprobes
1604 arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1605 {
1606 asi->insn_check_cc = condition_checks[insn>>28];
1607 asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
1608
1609 if ((insn & 0xf0000000) == 0xf0000000) {
1610
1611 return space_1111(insn, asi);
1612
1613 } else if ((insn & 0x0e000000) == 0x00000000) {
1614
1615 return space_cccc_000x(insn, asi);
1616
1617 } else if ((insn & 0x0e000000) == 0x02000000) {
1618
1619 return space_cccc_001x(insn, asi);
1620
1621 } else if ((insn & 0x0f000010) == 0x06000010) {
1622
1623 return space_cccc_0110__1(insn, asi);
1624
1625 } else if ((insn & 0x0f000010) == 0x07000010) {
1626
1627 return space_cccc_0111__1(insn, asi);
1628
1629 } else if ((insn & 0x0c000000) == 0x04000000) {
1630
1631 return space_cccc_01xx(insn, asi);
1632
1633 } else if ((insn & 0x0e000000) == 0x08000000) {
1634
1635 return space_cccc_100x(insn, asi);
1636
1637 } else if ((insn & 0x0e000000) == 0x0a000000) {
1638
1639 return space_cccc_101x(insn, asi);
1640
1641 } else if ((insn & 0x0fe00000) == 0x0c400000) {
1642
1643 return space_cccc_1100_010x(insn, asi);
1644
1645 } else if ((insn & 0x0e000000) == 0x0c000000) {
1646
1647 return space_cccc_110x(insn, asi);
1648
1649 }
1650
1651 return space_cccc_111x(insn, asi);
1652 }
1653
1654 void __init arm_kprobe_decode_init(void)
1655 {
1656 find_str_pc_offset();
1657 }
1658
1659
1660 /*
1661 * All ARM instructions listed below.
1662 *
1663 * Instructions and their general purpose registers are given.
1664 * If a particular register may not use R15, it is prefixed with a "!".
1665 * If marked with a "*" means the value returned by reading R15
1666 * is implementation defined.
1667 *
1668 * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
1669 * TST: Rd, Rn, Rm, !Rs
1670 * BX: Rm
1671 * BLX(2): !Rm
1672 * BX: Rm (R15 legal, but discouraged)
1673 * BXJ: !Rm,
1674 * CLZ: !Rd, !Rm
1675 * CPY: Rd, Rm
1676 * LDC/2,STC/2 immediate offset & unindex: Rn
1677 * LDC/2,STC/2 immediate pre/post-indexed: !Rn
1678 * LDM(1/3): !Rn, register_list
1679 * LDM(2): !Rn, !register_list
1680 * LDR,STR,PLD immediate offset: Rd, Rn
1681 * LDR,STR,PLD register offset: Rd, Rn, !Rm
1682 * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
1683 * LDR,STR immediate pre/post-indexed: Rd, !Rn
1684 * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
1685 * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
1686 * LDRB,STRB immediate offset: !Rd, Rn
1687 * LDRB,STRB register offset: !Rd, Rn, !Rm
1688 * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
1689 * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
1690 * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
1691 * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
1692 * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
1693 * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
1694 * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
1695 * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
1696 * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
1697 * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
1698 * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
1699 * LDREX: !Rd, !Rn
1700 * MCR/2: !Rd
1701 * MCRR/2,MRRC/2: !Rd, !Rn
1702 * MLA: !Rd, !Rn, !Rm, !Rs
1703 * MOV: Rd
1704 * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
1705 * MRS,MSR: !Rd
1706 * MUL: !Rd, !Rm, !Rs
1707 * PKH{BT,TB}: !Rd, !Rn, !Rm
1708 * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
1709 * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
1710 * REV/16/SH: !Rd, !Rm
1711 * RFE: !Rn
1712 * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
1713 * SEL: !Rd, !Rn, !Rm
1714 * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
1715 * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
1716 * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
1717 * SSAT/16: !Rd, !Rm
1718 * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
1719 * STRT immediate pre/post-indexed: Rd*, !Rn
1720 * STRT register pre/post-indexed: Rd*, !Rn, !Rm
1721 * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
1722 * STREX: !Rd, !Rn, !Rm
1723 * SWP/B: !Rd, !Rn, !Rm
1724 * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
1725 * {S,U}XT{B,B16,H}: !Rd, !Rm
1726 * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
1727 * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
1728 *
1729 * May transfer control by writing R15 (possible mode changes or alternate
1730 * mode accesses marked by "*"):
1731 * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
1732 * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
1733 *
1734 * Instructions that do not take general registers, nor transfer control:
1735 * CDP/2, SETEND, SRS*
1736 */