Merge remote-tracking branch 'spi/fix/atmel' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / include / asm / spinlock.h
1 #ifndef __ASM_SPINLOCK_H
2 #define __ASM_SPINLOCK_H
3
4 #if __LINUX_ARM_ARCH__ < 6
5 #error SMP not supported on pre-ARMv6 CPUs
6 #endif
7
8 #include <asm/processor.h>
9
10 /*
11 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
12 * extensions, so when running on UP, we have to patch these instructions away.
13 */
14 #define ALT_SMP(smp, up) \
15 "9998: " smp "\n" \
16 " .pushsection \".alt.smp.init\", \"a\"\n" \
17 " .long 9998b\n" \
18 " " up "\n" \
19 " .popsection\n"
20
21 #ifdef CONFIG_THUMB2_KERNEL
22 #define SEV ALT_SMP("sev.w", "nop.w")
23 /*
24 * For Thumb-2, special care is needed to ensure that the conditional WFE
25 * instruction really does assemble to exactly 4 bytes (as required by
26 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
27 * assembler to insert a extra (16-bit) IT instruction, depending on the
28 * presence or absence of neighbouring conditional instructions.
29 *
30 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
31 * the assembler won't change IT instructions which are explicitly present
32 * in the input.
33 */
34 #define WFE(cond) ALT_SMP( \
35 "it " cond "\n\t" \
36 "wfe" cond ".n", \
37 \
38 "nop.w" \
39 )
40 #else
41 #define SEV ALT_SMP("sev", "nop")
42 #define WFE(cond) ALT_SMP("wfe" cond, "nop")
43 #endif
44
45 static inline void dsb_sev(void)
46 {
47 #if __LINUX_ARM_ARCH__ >= 7
48 __asm__ __volatile__ (
49 "dsb\n"
50 SEV
51 );
52 #else
53 __asm__ __volatile__ (
54 "mcr p15, 0, %0, c7, c10, 4\n"
55 SEV
56 : : "r" (0)
57 );
58 #endif
59 }
60
61 /*
62 * ARMv6 ticket-based spin-locking.
63 *
64 * A memory barrier is required after we get a lock, and before we
65 * release it, because V6 CPUs are assumed to have weakly ordered
66 * memory.
67 */
68
69 #define arch_spin_unlock_wait(lock) \
70 do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
71
72 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
73
74 static inline void arch_spin_lock(arch_spinlock_t *lock)
75 {
76 unsigned long tmp;
77 u32 newval;
78 arch_spinlock_t lockval;
79
80 __asm__ __volatile__(
81 "1: ldrex %0, [%3]\n"
82 " add %1, %0, %4\n"
83 " strex %2, %1, [%3]\n"
84 " teq %2, #0\n"
85 " bne 1b"
86 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
87 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
88 : "cc");
89
90 while (lockval.tickets.next != lockval.tickets.owner) {
91 wfe();
92 lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
93 }
94
95 smp_mb();
96 }
97
98 static inline int arch_spin_trylock(arch_spinlock_t *lock)
99 {
100 unsigned long tmp;
101 u32 slock;
102
103 __asm__ __volatile__(
104 " ldrex %0, [%2]\n"
105 " subs %1, %0, %0, ror #16\n"
106 " addeq %0, %0, %3\n"
107 " strexeq %1, %0, [%2]"
108 : "=&r" (slock), "=&r" (tmp)
109 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
110 : "cc");
111
112 if (tmp == 0) {
113 smp_mb();
114 return 1;
115 } else {
116 return 0;
117 }
118 }
119
120 static inline void arch_spin_unlock(arch_spinlock_t *lock)
121 {
122 smp_mb();
123 lock->tickets.owner++;
124 dsb_sev();
125 }
126
127 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
128 {
129 struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
130 return tickets.owner != tickets.next;
131 }
132
133 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
134 {
135 struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
136 return (tickets.next - tickets.owner) > 1;
137 }
138 #define arch_spin_is_contended arch_spin_is_contended
139
140 /*
141 * RWLOCKS
142 *
143 *
144 * Write locks are easy - we just set bit 31. When unlocking, we can
145 * just write zero since the lock is exclusively held.
146 */
147
148 static inline void arch_write_lock(arch_rwlock_t *rw)
149 {
150 unsigned long tmp;
151
152 __asm__ __volatile__(
153 "1: ldrex %0, [%1]\n"
154 " teq %0, #0\n"
155 WFE("ne")
156 " strexeq %0, %2, [%1]\n"
157 " teq %0, #0\n"
158 " bne 1b"
159 : "=&r" (tmp)
160 : "r" (&rw->lock), "r" (0x80000000)
161 : "cc");
162
163 smp_mb();
164 }
165
166 static inline int arch_write_trylock(arch_rwlock_t *rw)
167 {
168 unsigned long tmp;
169
170 __asm__ __volatile__(
171 " ldrex %0, [%1]\n"
172 " teq %0, #0\n"
173 " strexeq %0, %2, [%1]"
174 : "=&r" (tmp)
175 : "r" (&rw->lock), "r" (0x80000000)
176 : "cc");
177
178 if (tmp == 0) {
179 smp_mb();
180 return 1;
181 } else {
182 return 0;
183 }
184 }
185
186 static inline void arch_write_unlock(arch_rwlock_t *rw)
187 {
188 smp_mb();
189
190 __asm__ __volatile__(
191 "str %1, [%0]\n"
192 :
193 : "r" (&rw->lock), "r" (0)
194 : "cc");
195
196 dsb_sev();
197 }
198
199 /* write_can_lock - would write_trylock() succeed? */
200 #define arch_write_can_lock(x) ((x)->lock == 0)
201
202 /*
203 * Read locks are a bit more hairy:
204 * - Exclusively load the lock value.
205 * - Increment it.
206 * - Store new lock value if positive, and we still own this location.
207 * If the value is negative, we've already failed.
208 * - If we failed to store the value, we want a negative result.
209 * - If we failed, try again.
210 * Unlocking is similarly hairy. We may have multiple read locks
211 * currently active. However, we know we won't have any write
212 * locks.
213 */
214 static inline void arch_read_lock(arch_rwlock_t *rw)
215 {
216 unsigned long tmp, tmp2;
217
218 __asm__ __volatile__(
219 "1: ldrex %0, [%2]\n"
220 " adds %0, %0, #1\n"
221 " strexpl %1, %0, [%2]\n"
222 WFE("mi")
223 " rsbpls %0, %1, #0\n"
224 " bmi 1b"
225 : "=&r" (tmp), "=&r" (tmp2)
226 : "r" (&rw->lock)
227 : "cc");
228
229 smp_mb();
230 }
231
232 static inline void arch_read_unlock(arch_rwlock_t *rw)
233 {
234 unsigned long tmp, tmp2;
235
236 smp_mb();
237
238 __asm__ __volatile__(
239 "1: ldrex %0, [%2]\n"
240 " sub %0, %0, #1\n"
241 " strex %1, %0, [%2]\n"
242 " teq %1, #0\n"
243 " bne 1b"
244 : "=&r" (tmp), "=&r" (tmp2)
245 : "r" (&rw->lock)
246 : "cc");
247
248 if (tmp == 0)
249 dsb_sev();
250 }
251
252 static inline int arch_read_trylock(arch_rwlock_t *rw)
253 {
254 unsigned long tmp, tmp2 = 1;
255
256 __asm__ __volatile__(
257 " ldrex %0, [%2]\n"
258 " adds %0, %0, #1\n"
259 " strexpl %1, %0, [%2]\n"
260 : "=&r" (tmp), "+r" (tmp2)
261 : "r" (&rw->lock)
262 : "cc");
263
264 smp_mb();
265 return tmp2 == 0;
266 }
267
268 /* read_can_lock - would read_trylock() succeed? */
269 #define arch_read_can_lock(x) ((x)->lock < 0x80000000)
270
271 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
272 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
273
274 #define arch_spin_relax(lock) cpu_relax()
275 #define arch_read_relax(lock) cpu_relax()
276 #define arch_write_relax(lock) cpu_relax()
277
278 #endif /* __ASM_SPINLOCK_H */