PM: PM QOS update fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / include / asm / cacheflush.h
1 /*
2 * arch/arm/include/asm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12
13 #include <linux/mm.h>
14
15 #include <asm/glue.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 #include <asm/outercache.h>
19
20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21
22 /*
23 * Cache Model
24 * ===========
25 */
26 #undef _CACHE
27 #undef MULTI_CACHE
28
29 #if defined(CONFIG_CPU_CACHE_V3)
30 # ifdef _CACHE
31 # define MULTI_CACHE 1
32 # else
33 # define _CACHE v3
34 # endif
35 #endif
36
37 #if defined(CONFIG_CPU_CACHE_V4)
38 # ifdef _CACHE
39 # define MULTI_CACHE 1
40 # else
41 # define _CACHE v4
42 # endif
43 #endif
44
45 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) || \
47 defined(CONFIG_CPU_ARM1026)
48 # define MULTI_CACHE 1
49 #endif
50
51 #if defined(CONFIG_CPU_FA526)
52 # ifdef _CACHE
53 # define MULTI_CACHE 1
54 # else
55 # define _CACHE fa
56 # endif
57 #endif
58
59 #if defined(CONFIG_CPU_ARM926T)
60 # ifdef _CACHE
61 # define MULTI_CACHE 1
62 # else
63 # define _CACHE arm926
64 # endif
65 #endif
66
67 #if defined(CONFIG_CPU_ARM940T)
68 # ifdef _CACHE
69 # define MULTI_CACHE 1
70 # else
71 # define _CACHE arm940
72 # endif
73 #endif
74
75 #if defined(CONFIG_CPU_ARM946E)
76 # ifdef _CACHE
77 # define MULTI_CACHE 1
78 # else
79 # define _CACHE arm946
80 # endif
81 #endif
82
83 #if defined(CONFIG_CPU_CACHE_V4WB)
84 # ifdef _CACHE
85 # define MULTI_CACHE 1
86 # else
87 # define _CACHE v4wb
88 # endif
89 #endif
90
91 #if defined(CONFIG_CPU_XSCALE)
92 # ifdef _CACHE
93 # define MULTI_CACHE 1
94 # else
95 # define _CACHE xscale
96 # endif
97 #endif
98
99 #if defined(CONFIG_CPU_XSC3)
100 # ifdef _CACHE
101 # define MULTI_CACHE 1
102 # else
103 # define _CACHE xsc3
104 # endif
105 #endif
106
107 #if defined(CONFIG_CPU_MOHAWK)
108 # ifdef _CACHE
109 # define MULTI_CACHE 1
110 # else
111 # define _CACHE mohawk
112 # endif
113 #endif
114
115 #if defined(CONFIG_CPU_FEROCEON)
116 # define MULTI_CACHE 1
117 #endif
118
119 #if defined(CONFIG_CPU_V6)
120 //# ifdef _CACHE
121 # define MULTI_CACHE 1
122 //# else
123 //# define _CACHE v6
124 //# endif
125 #endif
126
127 #if defined(CONFIG_CPU_V7)
128 //# ifdef _CACHE
129 # define MULTI_CACHE 1
130 //# else
131 //# define _CACHE v7
132 //# endif
133 #endif
134
135 #if !defined(_CACHE) && !defined(MULTI_CACHE)
136 #error Unknown cache maintainence model
137 #endif
138
139 /*
140 * This flag is used to indicate that the page pointed to by a pte
141 * is dirty and requires cleaning before returning it to the user.
142 */
143 #define PG_dcache_dirty PG_arch_1
144
145 /*
146 * MM Cache Management
147 * ===================
148 *
149 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
150 * implement these methods.
151 *
152 * Start addresses are inclusive and end addresses are exclusive;
153 * start addresses should be rounded down, end addresses up.
154 *
155 * See Documentation/cachetlb.txt for more information.
156 * Please note that the implementation of these, and the required
157 * effects are cache-type (VIVT/VIPT/PIPT) specific.
158 *
159 * flush_kern_all()
160 *
161 * Unconditionally clean and invalidate the entire cache.
162 *
163 * flush_user_all()
164 *
165 * Clean and invalidate all user space cache entries
166 * before a change of page tables.
167 *
168 * flush_user_range(start, end, flags)
169 *
170 * Clean and invalidate a range of cache entries in the
171 * specified address space before a change of page tables.
172 * - start - user start address (inclusive, page aligned)
173 * - end - user end address (exclusive, page aligned)
174 * - flags - vma->vm_flags field
175 *
176 * coherent_kern_range(start, end)
177 *
178 * Ensure coherency between the Icache and the Dcache in the
179 * region described by start, end. If you have non-snooping
180 * Harvard caches, you need to implement this function.
181 * - start - virtual start address
182 * - end - virtual end address
183 *
184 * coherent_user_range(start, end)
185 *
186 * Ensure coherency between the Icache and the Dcache in the
187 * region described by start, end. If you have non-snooping
188 * Harvard caches, you need to implement this function.
189 * - start - virtual start address
190 * - end - virtual end address
191 *
192 * flush_kern_dcache_area(kaddr, size)
193 *
194 * Ensure that the data held in page is written back.
195 * - kaddr - page address
196 * - size - region size
197 *
198 * DMA Cache Coherency
199 * ===================
200 *
201 * dma_flush_range(start, end)
202 *
203 * Clean and invalidate the specified virtual address range.
204 * - start - virtual start address
205 * - end - virtual end address
206 */
207
208 struct cpu_cache_fns {
209 void (*flush_kern_all)(void);
210 void (*flush_user_all)(void);
211 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
212
213 void (*coherent_kern_range)(unsigned long, unsigned long);
214 void (*coherent_user_range)(unsigned long, unsigned long);
215 void (*flush_kern_dcache_area)(void *, size_t);
216
217 void (*dma_map_area)(const void *, size_t, int);
218 void (*dma_unmap_area)(const void *, size_t, int);
219
220 void (*dma_flush_range)(const void *, const void *);
221 };
222
223 /*
224 * Select the calling method
225 */
226 #ifdef MULTI_CACHE
227
228 extern struct cpu_cache_fns cpu_cache;
229
230 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
231 #define __cpuc_flush_user_all cpu_cache.flush_user_all
232 #define __cpuc_flush_user_range cpu_cache.flush_user_range
233 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
234 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
235 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
236
237 /*
238 * These are private to the dma-mapping API. Do not use directly.
239 * Their sole purpose is to ensure that data held in the cache
240 * is visible to DMA, or data written by DMA to system memory is
241 * visible to the CPU.
242 */
243 #define dmac_map_area cpu_cache.dma_map_area
244 #define dmac_unmap_area cpu_cache.dma_unmap_area
245 #define dmac_flush_range cpu_cache.dma_flush_range
246
247 #else
248
249 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
250 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
251 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
252 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
253 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
254 #define __cpuc_flush_dcache_area __glue(_CACHE,_flush_kern_dcache_area)
255
256 extern void __cpuc_flush_kern_all(void);
257 extern void __cpuc_flush_user_all(void);
258 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
259 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
260 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
261 extern void __cpuc_flush_dcache_area(void *, size_t);
262
263 /*
264 * These are private to the dma-mapping API. Do not use directly.
265 * Their sole purpose is to ensure that data held in the cache
266 * is visible to DMA, or data written by DMA to system memory is
267 * visible to the CPU.
268 */
269 #define dmac_map_area __glue(_CACHE,_dma_map_area)
270 #define dmac_unmap_area __glue(_CACHE,_dma_unmap_area)
271 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
272
273 extern void dmac_map_area(const void *, size_t, int);
274 extern void dmac_unmap_area(const void *, size_t, int);
275 extern void dmac_flush_range(const void *, const void *);
276
277 #endif
278
279 /*
280 * Copy user data from/to a page which is mapped into a different
281 * processes address space. Really, we want to allow our "user
282 * space" model to handle this.
283 */
284 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
285 unsigned long, void *, const void *, unsigned long);
286 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
287 do { \
288 memcpy(dst, src, len); \
289 } while (0)
290
291 /*
292 * Convert calls to our calling convention.
293 */
294 #define flush_cache_all() __cpuc_flush_kern_all()
295
296 static inline void vivt_flush_cache_mm(struct mm_struct *mm)
297 {
298 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
299 __cpuc_flush_user_all();
300 }
301
302 static inline void
303 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
304 {
305 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
306 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
307 vma->vm_flags);
308 }
309
310 static inline void
311 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
312 {
313 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
314 unsigned long addr = user_addr & PAGE_MASK;
315 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
316 }
317 }
318
319 #ifndef CONFIG_CPU_CACHE_VIPT
320 #define flush_cache_mm(mm) \
321 vivt_flush_cache_mm(mm)
322 #define flush_cache_range(vma,start,end) \
323 vivt_flush_cache_range(vma,start,end)
324 #define flush_cache_page(vma,addr,pfn) \
325 vivt_flush_cache_page(vma,addr,pfn)
326 #else
327 extern void flush_cache_mm(struct mm_struct *mm);
328 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
329 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
330 #endif
331
332 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
333
334 /*
335 * flush_cache_user_range is used when we want to ensure that the
336 * Harvard caches are synchronised for the user space address range.
337 * This is used for the ARM private sys_cacheflush system call.
338 */
339 #define flush_cache_user_range(vma,start,end) \
340 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
341
342 /*
343 * Perform necessary cache operations to ensure that data previously
344 * stored within this range of addresses can be executed by the CPU.
345 */
346 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
347
348 /*
349 * Perform necessary cache operations to ensure that the TLB will
350 * see data written in the specified area.
351 */
352 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
353
354 /*
355 * flush_dcache_page is used when the kernel has written to the page
356 * cache page at virtual address page->virtual.
357 *
358 * If this page isn't mapped (ie, page_mapping == NULL), or it might
359 * have userspace mappings, then we _must_ always clean + invalidate
360 * the dcache entries associated with the kernel mapping.
361 *
362 * Otherwise we can defer the operation, and clean the cache when we are
363 * about to change to user space. This is the same method as used on SPARC64.
364 * See update_mmu_cache for the user space part.
365 */
366 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
367 extern void flush_dcache_page(struct page *);
368
369 static inline void __flush_icache_all(void)
370 {
371 #ifdef CONFIG_ARM_ERRATA_411920
372 extern void v6_icache_inval_all(void);
373 v6_icache_inval_all();
374 #else
375 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n"
376 :
377 : "r" (0));
378 #endif
379 }
380 static inline void flush_kernel_vmap_range(void *addr, int size)
381 {
382 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
383 __cpuc_flush_dcache_area(addr, (size_t)size);
384 }
385 static inline void invalidate_kernel_vmap_range(void *addr, int size)
386 {
387 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
388 __cpuc_flush_dcache_area(addr, (size_t)size);
389 }
390
391 #define ARCH_HAS_FLUSH_ANON_PAGE
392 static inline void flush_anon_page(struct vm_area_struct *vma,
393 struct page *page, unsigned long vmaddr)
394 {
395 extern void __flush_anon_page(struct vm_area_struct *vma,
396 struct page *, unsigned long);
397 if (PageAnon(page))
398 __flush_anon_page(vma, page, vmaddr);
399 }
400
401 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
402 static inline void flush_kernel_dcache_page(struct page *page)
403 {
404 /* highmem pages are always flushed upon kunmap already */
405 if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page))
406 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
407 }
408
409 #define flush_dcache_mmap_lock(mapping) \
410 spin_lock_irq(&(mapping)->tree_lock)
411 #define flush_dcache_mmap_unlock(mapping) \
412 spin_unlock_irq(&(mapping)->tree_lock)
413
414 #define flush_icache_user_range(vma,page,addr,len) \
415 flush_dcache_page(page)
416
417 /*
418 * We don't appear to need to do anything here. In fact, if we did, we'd
419 * duplicate cache flushing elsewhere performed by flush_dcache_page().
420 */
421 #define flush_icache_page(vma,page) do { } while (0)
422
423 /*
424 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
425 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
426 * caches, since the direct-mappings of these pages may contain cached
427 * data, we need to do a full cache flush to ensure that writebacks
428 * don't corrupt data placed into these pages via the new mappings.
429 */
430 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
431 {
432 if (!cache_is_vipt_nonaliasing())
433 flush_cache_all();
434 else
435 /*
436 * set_pte_at() called from vmap_pte_range() does not
437 * have a DSB after cleaning the cache line.
438 */
439 dsb();
440 }
441
442 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
443 {
444 if (!cache_is_vipt_nonaliasing())
445 flush_cache_all();
446 }
447
448 #endif