x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / arc / mm / cache.c
1 /*
2 * ARC Cache Management
3 *
4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23
24 static int l2_line_sz;
25 static int ioc_exists;
26 int slc_enable = 1, ioc_enable = 0;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
28 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
29
30 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
31 unsigned long sz, const int cacheop);
32
33 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
35 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
36
37 char *arc_cache_mumbojumbo(int c, char *buf, int len)
38 {
39 int n = 0;
40 struct cpuinfo_arc_cache *p;
41
42 #define PR_CACHE(p, cfg, str) \
43 if (!(p)->line_len) \
44 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
45 else \
46 n += scnprintf(buf + n, len - n, \
47 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
48 (p)->sz_k, (p)->assoc, (p)->line_len, \
49 (p)->vipt ? "VIPT" : "PIPT", \
50 (p)->alias ? " aliasing" : "", \
51 IS_USED_CFG(cfg));
52
53 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
54 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
55
56 p = &cpuinfo_arc700[c].slc;
57 if (p->line_len)
58 n += scnprintf(buf + n, len - n,
59 "SLC\t\t: %uK, %uB Line%s\n",
60 p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
61
62 n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
63 perip_base,
64 IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
65
66 return buf;
67 }
68
69 /*
70 * Read the Cache Build Confuration Registers, Decode them and save into
71 * the cpuinfo structure for later use.
72 * No Validation done here, simply read/convert the BCRs
73 */
74 static void read_decode_cache_bcr_arcv2(int cpu)
75 {
76 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
77 struct bcr_generic sbcr;
78
79 struct bcr_slc_cfg {
80 #ifdef CONFIG_CPU_BIG_ENDIAN
81 unsigned int pad:24, way:2, lsz:2, sz:4;
82 #else
83 unsigned int sz:4, lsz:2, way:2, pad:24;
84 #endif
85 } slc_cfg;
86
87 struct bcr_clust_cfg {
88 #ifdef CONFIG_CPU_BIG_ENDIAN
89 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
90 #else
91 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
92 #endif
93 } cbcr;
94
95 struct bcr_volatile {
96 #ifdef CONFIG_CPU_BIG_ENDIAN
97 unsigned int start:4, limit:4, pad:22, order:1, disable:1;
98 #else
99 unsigned int disable:1, order:1, pad:22, limit:4, start:4;
100 #endif
101 } vol;
102
103
104 READ_BCR(ARC_REG_SLC_BCR, sbcr);
105 if (sbcr.ver) {
106 READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
107 p_slc->sz_k = 128 << slc_cfg.sz;
108 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
109 }
110
111 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
112 if (cbcr.c)
113 ioc_exists = 1;
114 else
115 ioc_enable = 0;
116
117 /* HS 2.0 didn't have AUX_VOL */
118 if (cpuinfo_arc700[cpu].core.family > 0x51) {
119 READ_BCR(AUX_VOL, vol);
120 perip_base = vol.start << 28;
121 /* HS 3.0 has limit and strict-ordering fields */
122 if (cpuinfo_arc700[cpu].core.family > 0x52)
123 perip_end = (vol.limit << 28) - 1;
124 }
125 }
126
127 void read_decode_cache_bcr(void)
128 {
129 struct cpuinfo_arc_cache *p_ic, *p_dc;
130 unsigned int cpu = smp_processor_id();
131 struct bcr_cache {
132 #ifdef CONFIG_CPU_BIG_ENDIAN
133 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
134 #else
135 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
136 #endif
137 } ibcr, dbcr;
138
139 p_ic = &cpuinfo_arc700[cpu].icache;
140 READ_BCR(ARC_REG_IC_BCR, ibcr);
141
142 if (!ibcr.ver)
143 goto dc_chk;
144
145 if (ibcr.ver <= 3) {
146 BUG_ON(ibcr.config != 3);
147 p_ic->assoc = 2; /* Fixed to 2w set assoc */
148 } else if (ibcr.ver >= 4) {
149 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */
150 }
151
152 p_ic->line_len = 8 << ibcr.line_len;
153 p_ic->sz_k = 1 << (ibcr.sz - 1);
154 p_ic->vipt = 1;
155 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
156
157 dc_chk:
158 p_dc = &cpuinfo_arc700[cpu].dcache;
159 READ_BCR(ARC_REG_DC_BCR, dbcr);
160
161 if (!dbcr.ver)
162 goto slc_chk;
163
164 if (dbcr.ver <= 3) {
165 BUG_ON(dbcr.config != 2);
166 p_dc->assoc = 4; /* Fixed to 4w set assoc */
167 p_dc->vipt = 1;
168 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
169 } else if (dbcr.ver >= 4) {
170 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */
171 p_dc->vipt = 0;
172 p_dc->alias = 0; /* PIPT so can't VIPT alias */
173 }
174
175 p_dc->line_len = 16 << dbcr.line_len;
176 p_dc->sz_k = 1 << (dbcr.sz - 1);
177
178 slc_chk:
179 if (is_isa_arcv2())
180 read_decode_cache_bcr_arcv2(cpu);
181 }
182
183 /*
184 * Line Operation on {I,D}-Cache
185 */
186
187 #define OP_INV 0x1
188 #define OP_FLUSH 0x2
189 #define OP_FLUSH_N_INV 0x3
190 #define OP_INV_IC 0x4
191
192 /*
193 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
194 *
195 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
196 * The orig Cache Management Module "CDU" only required paddr to invalidate a
197 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
198 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
199 * the exact same line.
200 *
201 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
202 * paddr alone could not be used to correctly index the cache.
203 *
204 * ------------------
205 * MMU v1/v2 (Fixed Page Size 8k)
206 * ------------------
207 * The solution was to provide CDU with these additonal vaddr bits. These
208 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
209 * standard page size of 8k.
210 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
211 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
212 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
213 * represent the offset within cache-line. The adv of using this "clumsy"
214 * interface for additional info was no new reg was needed in CDU programming
215 * model.
216 *
217 * 17:13 represented the max num of bits passable, actual bits needed were
218 * fewer, based on the num-of-aliases possible.
219 * -for 2 alias possibility, only bit 13 needed (32K cache)
220 * -for 4 alias possibility, bits 14:13 needed (64K cache)
221 *
222 * ------------------
223 * MMU v3
224 * ------------------
225 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
226 * only support 8k (default), 16k and 4k.
227 * However from hardware perspective, smaller page sizes aggravate aliasing
228 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
229 * the existing scheme of piggybacking won't work for certain configurations.
230 * Two new registers IC_PTAG and DC_PTAG inttoduced.
231 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
232 */
233
234 static inline
235 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
236 unsigned long sz, const int op)
237 {
238 unsigned int aux_cmd;
239 int num_lines;
240 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
241
242 if (op == OP_INV_IC) {
243 aux_cmd = ARC_REG_IC_IVIL;
244 } else {
245 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
246 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
247 }
248
249 /* Ensure we properly floor/ceil the non-line aligned/sized requests
250 * and have @paddr - aligned to cache line and integral @num_lines.
251 * This however can be avoided for page sized since:
252 * -@paddr will be cache-line aligned already (being page aligned)
253 * -@sz will be integral multiple of line size (being page sized).
254 */
255 if (!full_page) {
256 sz += paddr & ~CACHE_LINE_MASK;
257 paddr &= CACHE_LINE_MASK;
258 vaddr &= CACHE_LINE_MASK;
259 }
260
261 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
262
263 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
264 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
265
266 while (num_lines-- > 0) {
267 write_aux_reg(aux_cmd, paddr);
268 paddr += L1_CACHE_BYTES;
269 }
270 }
271
272 /*
273 * For ARC700 MMUv3 I-cache and D-cache flushes
274 * Also reused for HS38 aliasing I-cache configuration
275 */
276 static inline
277 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
278 unsigned long sz, const int op)
279 {
280 unsigned int aux_cmd, aux_tag;
281 int num_lines;
282 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
283
284 if (op == OP_INV_IC) {
285 aux_cmd = ARC_REG_IC_IVIL;
286 aux_tag = ARC_REG_IC_PTAG;
287 } else {
288 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
289 aux_tag = ARC_REG_DC_PTAG;
290 }
291
292 /* Ensure we properly floor/ceil the non-line aligned/sized requests
293 * and have @paddr - aligned to cache line and integral @num_lines.
294 * This however can be avoided for page sized since:
295 * -@paddr will be cache-line aligned already (being page aligned)
296 * -@sz will be integral multiple of line size (being page sized).
297 */
298 if (!full_page) {
299 sz += paddr & ~CACHE_LINE_MASK;
300 paddr &= CACHE_LINE_MASK;
301 vaddr &= CACHE_LINE_MASK;
302 }
303 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
304
305 /*
306 * MMUv3, cache ops require paddr in PTAG reg
307 * if V-P const for loop, PTAG can be written once outside loop
308 */
309 if (full_page)
310 write_aux_reg(aux_tag, paddr);
311
312 /*
313 * This is technically for MMU v4, using the MMU v3 programming model
314 * Special work for HS38 aliasing I-cache configuration with PAE40
315 * - upper 8 bits of paddr need to be written into PTAG_HI
316 * - (and needs to be written before the lower 32 bits)
317 * Note that PTAG_HI is hoisted outside the line loop
318 */
319 if (is_pae40_enabled() && op == OP_INV_IC)
320 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
321
322 while (num_lines-- > 0) {
323 if (!full_page) {
324 write_aux_reg(aux_tag, paddr);
325 paddr += L1_CACHE_BYTES;
326 }
327
328 write_aux_reg(aux_cmd, vaddr);
329 vaddr += L1_CACHE_BYTES;
330 }
331 }
332
333 /*
334 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
335 * Here's how cache ops are implemented
336 *
337 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
338 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
339 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
340 * respectively, similar to MMU v3 programming model, hence
341 * __cache_line_loop_v3() is used)
342 *
343 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
344 * needs to be written into PTAG_HI
345 */
346 static inline
347 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
348 unsigned long sz, const int cacheop)
349 {
350 unsigned int aux_cmd;
351 int num_lines;
352 const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
353
354 if (cacheop == OP_INV_IC) {
355 aux_cmd = ARC_REG_IC_IVIL;
356 } else {
357 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
358 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
359 }
360
361 /* Ensure we properly floor/ceil the non-line aligned/sized requests
362 * and have @paddr - aligned to cache line and integral @num_lines.
363 * This however can be avoided for page sized since:
364 * -@paddr will be cache-line aligned already (being page aligned)
365 * -@sz will be integral multiple of line size (being page sized).
366 */
367 if (!full_page_op) {
368 sz += paddr & ~CACHE_LINE_MASK;
369 paddr &= CACHE_LINE_MASK;
370 }
371
372 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
373
374 /*
375 * For HS38 PAE40 configuration
376 * - upper 8 bits of paddr need to be written into PTAG_HI
377 * - (and needs to be written before the lower 32 bits)
378 */
379 if (is_pae40_enabled()) {
380 if (cacheop == OP_INV_IC)
381 /*
382 * Non aliasing I-cache in HS38,
383 * aliasing I-cache handled in __cache_line_loop_v3()
384 */
385 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
386 else
387 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
388 }
389
390 while (num_lines-- > 0) {
391 write_aux_reg(aux_cmd, paddr);
392 paddr += L1_CACHE_BYTES;
393 }
394 }
395
396 #if (CONFIG_ARC_MMU_VER < 3)
397 #define __cache_line_loop __cache_line_loop_v2
398 #elif (CONFIG_ARC_MMU_VER == 3)
399 #define __cache_line_loop __cache_line_loop_v3
400 #elif (CONFIG_ARC_MMU_VER > 3)
401 #define __cache_line_loop __cache_line_loop_v4
402 #endif
403
404 #ifdef CONFIG_ARC_HAS_DCACHE
405
406 /***************************************************************
407 * Machine specific helpers for Entire D-Cache or Per Line ops
408 */
409
410 static inline void __before_dc_op(const int op)
411 {
412 if (op == OP_FLUSH_N_INV) {
413 /* Dcache provides 2 cmd: FLUSH or INV
414 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
415 * flush-n-inv is achieved by INV cmd but with IM=1
416 * So toggle INV sub-mode depending on op request and default
417 */
418 const unsigned int ctl = ARC_REG_DC_CTRL;
419 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
420 }
421 }
422
423 static inline void __after_dc_op(const int op)
424 {
425 if (op & OP_FLUSH) {
426 const unsigned int ctl = ARC_REG_DC_CTRL;
427 unsigned int reg;
428
429 /* flush / flush-n-inv both wait */
430 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
431 ;
432
433 /* Switch back to default Invalidate mode */
434 if (op == OP_FLUSH_N_INV)
435 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
436 }
437 }
438
439 /*
440 * Operation on Entire D-Cache
441 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
442 * Note that constant propagation ensures all the checks are gone
443 * in generated code
444 */
445 static inline void __dc_entire_op(const int op)
446 {
447 int aux;
448
449 __before_dc_op(op);
450
451 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */
452 aux = ARC_REG_DC_IVDC;
453 else
454 aux = ARC_REG_DC_FLSH;
455
456 write_aux_reg(aux, 0x1);
457
458 __after_dc_op(op);
459 }
460
461 /* For kernel mappings cache operation: index is same as paddr */
462 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
463
464 /*
465 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
466 */
467 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
468 unsigned long sz, const int op)
469 {
470 unsigned long flags;
471
472 local_irq_save(flags);
473
474 __before_dc_op(op);
475
476 __cache_line_loop(paddr, vaddr, sz, op);
477
478 __after_dc_op(op);
479
480 local_irq_restore(flags);
481 }
482
483 #else
484
485 #define __dc_entire_op(op)
486 #define __dc_line_op(paddr, vaddr, sz, op)
487 #define __dc_line_op_k(paddr, sz, op)
488
489 #endif /* CONFIG_ARC_HAS_DCACHE */
490
491 #ifdef CONFIG_ARC_HAS_ICACHE
492
493 static inline void __ic_entire_inv(void)
494 {
495 write_aux_reg(ARC_REG_IC_IVIC, 1);
496 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */
497 }
498
499 static inline void
500 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
501 unsigned long sz)
502 {
503 unsigned long flags;
504
505 local_irq_save(flags);
506 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
507 local_irq_restore(flags);
508 }
509
510 #ifndef CONFIG_SMP
511
512 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
513
514 #else
515
516 struct ic_inv_args {
517 phys_addr_t paddr, vaddr;
518 int sz;
519 };
520
521 static void __ic_line_inv_vaddr_helper(void *info)
522 {
523 struct ic_inv_args *ic_inv = info;
524
525 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
526 }
527
528 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
529 unsigned long sz)
530 {
531 struct ic_inv_args ic_inv = {
532 .paddr = paddr,
533 .vaddr = vaddr,
534 .sz = sz
535 };
536
537 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
538 }
539
540 #endif /* CONFIG_SMP */
541
542 #else /* !CONFIG_ARC_HAS_ICACHE */
543
544 #define __ic_entire_inv()
545 #define __ic_line_inv_vaddr(pstart, vstart, sz)
546
547 #endif /* CONFIG_ARC_HAS_ICACHE */
548
549 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
550 {
551 #ifdef CONFIG_ISA_ARCV2
552 /*
553 * SLC is shared between all cores and concurrent aux operations from
554 * multiple cores need to be serialized using a spinlock
555 * A concurrent operation can be silently ignored and/or the old/new
556 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
557 * below)
558 */
559 static DEFINE_SPINLOCK(lock);
560 unsigned long flags;
561 unsigned int ctrl;
562
563 spin_lock_irqsave(&lock, flags);
564
565 /*
566 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
567 * - b'000 (default) is Flush,
568 * - b'001 is Invalidate if CTRL.IM == 0
569 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
570 */
571 ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
572
573 /* Don't rely on default value of IM bit */
574 if (!(op & OP_FLUSH)) /* i.e. OP_INV */
575 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
576 else
577 ctrl |= SLC_CTRL_IM;
578
579 if (op & OP_INV)
580 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */
581 else
582 ctrl &= ~SLC_CTRL_RGN_OP_INV;
583
584 write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
585
586 /*
587 * Lower bits are ignored, no need to clip
588 * END needs to be setup before START (latter triggers the operation)
589 * END can't be same as START, so add (l2_line_sz - 1) to sz
590 */
591 write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
592 write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
593
594 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
595
596 spin_unlock_irqrestore(&lock, flags);
597 #endif
598 }
599
600 /***********************************************************
601 * Exported APIs
602 */
603
604 /*
605 * Handle cache congruency of kernel and userspace mappings of page when kernel
606 * writes-to/reads-from
607 *
608 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
609 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
610 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
611 * -In SMP, if hardware caches are coherent
612 *
613 * There's a corollary case, where kernel READs from a userspace mapped page.
614 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
615 */
616 void flush_dcache_page(struct page *page)
617 {
618 struct address_space *mapping;
619
620 if (!cache_is_vipt_aliasing()) {
621 clear_bit(PG_dc_clean, &page->flags);
622 return;
623 }
624
625 /* don't handle anon pages here */
626 mapping = page_mapping(page);
627 if (!mapping)
628 return;
629
630 /*
631 * pagecache page, file not yet mapped to userspace
632 * Make a note that K-mapping is dirty
633 */
634 if (!mapping_mapped(mapping)) {
635 clear_bit(PG_dc_clean, &page->flags);
636 } else if (page_mapcount(page)) {
637
638 /* kernel reading from page with U-mapping */
639 phys_addr_t paddr = (unsigned long)page_address(page);
640 unsigned long vaddr = page->index << PAGE_SHIFT;
641
642 if (addr_not_cache_congruent(paddr, vaddr))
643 __flush_dcache_page(paddr, vaddr);
644 }
645 }
646 EXPORT_SYMBOL(flush_dcache_page);
647
648 /*
649 * DMA ops for systems with L1 cache only
650 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
651 */
652 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
653 {
654 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
655 }
656
657 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
658 {
659 __dc_line_op_k(start, sz, OP_INV);
660 }
661
662 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
663 {
664 __dc_line_op_k(start, sz, OP_FLUSH);
665 }
666
667 /*
668 * DMA ops for systems with both L1 and L2 caches, but without IOC
669 * Both L1 and L2 lines need to be explicitly flushed/invalidated
670 */
671 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
672 {
673 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
674 slc_op(start, sz, OP_FLUSH_N_INV);
675 }
676
677 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
678 {
679 __dc_line_op_k(start, sz, OP_INV);
680 slc_op(start, sz, OP_INV);
681 }
682
683 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
684 {
685 __dc_line_op_k(start, sz, OP_FLUSH);
686 slc_op(start, sz, OP_FLUSH);
687 }
688
689 /*
690 * DMA ops for systems with IOC
691 * IOC hardware snoops all DMA traffic keeping the caches consistent with
692 * memory - eliding need for any explicit cache maintenance of DMA buffers
693 */
694 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
695 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
696 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
697
698 /*
699 * Exported DMA API
700 */
701 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
702 {
703 __dma_cache_wback_inv(start, sz);
704 }
705 EXPORT_SYMBOL(dma_cache_wback_inv);
706
707 void dma_cache_inv(phys_addr_t start, unsigned long sz)
708 {
709 __dma_cache_inv(start, sz);
710 }
711 EXPORT_SYMBOL(dma_cache_inv);
712
713 void dma_cache_wback(phys_addr_t start, unsigned long sz)
714 {
715 __dma_cache_wback(start, sz);
716 }
717 EXPORT_SYMBOL(dma_cache_wback);
718
719 /*
720 * This is API for making I/D Caches consistent when modifying
721 * kernel code (loadable modules, kprobes, kgdb...)
722 * This is called on insmod, with kernel virtual address for CODE of
723 * the module. ARC cache maintenance ops require PHY address thus we
724 * need to convert vmalloc addr to PHY addr
725 */
726 void flush_icache_range(unsigned long kstart, unsigned long kend)
727 {
728 unsigned int tot_sz;
729
730 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
731
732 /* Shortcut for bigger flush ranges.
733 * Here we don't care if this was kernel virtual or phy addr
734 */
735 tot_sz = kend - kstart;
736 if (tot_sz > PAGE_SIZE) {
737 flush_cache_all();
738 return;
739 }
740
741 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
742 if (likely(kstart > PAGE_OFFSET)) {
743 /*
744 * The 2nd arg despite being paddr will be used to index icache
745 * This is OK since no alternate virtual mappings will exist
746 * given the callers for this case: kprobe/kgdb in built-in
747 * kernel code only.
748 */
749 __sync_icache_dcache(kstart, kstart, kend - kstart);
750 return;
751 }
752
753 /*
754 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
755 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
756 * handling of kernel vaddr.
757 *
758 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
759 * it still needs to handle a 2 page scenario, where the range
760 * straddles across 2 virtual pages and hence need for loop
761 */
762 while (tot_sz > 0) {
763 unsigned int off, sz;
764 unsigned long phy, pfn;
765
766 off = kstart % PAGE_SIZE;
767 pfn = vmalloc_to_pfn((void *)kstart);
768 phy = (pfn << PAGE_SHIFT) + off;
769 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
770 __sync_icache_dcache(phy, kstart, sz);
771 kstart += sz;
772 tot_sz -= sz;
773 }
774 }
775 EXPORT_SYMBOL(flush_icache_range);
776
777 /*
778 * General purpose helper to make I and D cache lines consistent.
779 * @paddr is phy addr of region
780 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
781 * However in one instance, when called by kprobe (for a breakpt in
782 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
783 * use a paddr to index the cache (despite VIPT). This is fine since since a
784 * builtin kernel page will not have any virtual mappings.
785 * kprobe on loadable module will be kernel vaddr.
786 */
787 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
788 {
789 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
790 __ic_line_inv_vaddr(paddr, vaddr, len);
791 }
792
793 /* wrapper to compile time eliminate alignment checks in flush loop */
794 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
795 {
796 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
797 }
798
799 /*
800 * wrapper to clearout kernel or userspace mappings of a page
801 * For kernel mappings @vaddr == @paddr
802 */
803 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
804 {
805 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
806 }
807
808 noinline void flush_cache_all(void)
809 {
810 unsigned long flags;
811
812 local_irq_save(flags);
813
814 __ic_entire_inv();
815 __dc_entire_op(OP_FLUSH_N_INV);
816
817 local_irq_restore(flags);
818
819 }
820
821 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
822
823 void flush_cache_mm(struct mm_struct *mm)
824 {
825 flush_cache_all();
826 }
827
828 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
829 unsigned long pfn)
830 {
831 unsigned int paddr = pfn << PAGE_SHIFT;
832
833 u_vaddr &= PAGE_MASK;
834
835 __flush_dcache_page(paddr, u_vaddr);
836
837 if (vma->vm_flags & VM_EXEC)
838 __inv_icache_page(paddr, u_vaddr);
839 }
840
841 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
842 unsigned long end)
843 {
844 flush_cache_all();
845 }
846
847 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
848 unsigned long u_vaddr)
849 {
850 /* TBD: do we really need to clear the kernel mapping */
851 __flush_dcache_page(page_address(page), u_vaddr);
852 __flush_dcache_page(page_address(page), page_address(page));
853
854 }
855
856 #endif
857
858 void copy_user_highpage(struct page *to, struct page *from,
859 unsigned long u_vaddr, struct vm_area_struct *vma)
860 {
861 void *kfrom = kmap_atomic(from);
862 void *kto = kmap_atomic(to);
863 int clean_src_k_mappings = 0;
864
865 /*
866 * If SRC page was already mapped in userspace AND it's U-mapping is
867 * not congruent with K-mapping, sync former to physical page so that
868 * K-mapping in memcpy below, sees the right data
869 *
870 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
871 * equally valid for SRC page as well
872 *
873 * For !VIPT cache, all of this gets compiled out as
874 * addr_not_cache_congruent() is 0
875 */
876 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
877 __flush_dcache_page((unsigned long)kfrom, u_vaddr);
878 clean_src_k_mappings = 1;
879 }
880
881 copy_page(kto, kfrom);
882
883 /*
884 * Mark DST page K-mapping as dirty for a later finalization by
885 * update_mmu_cache(). Although the finalization could have been done
886 * here as well (given that both vaddr/paddr are available).
887 * But update_mmu_cache() already has code to do that for other
888 * non copied user pages (e.g. read faults which wire in pagecache page
889 * directly).
890 */
891 clear_bit(PG_dc_clean, &to->flags);
892
893 /*
894 * if SRC was already usermapped and non-congruent to kernel mapping
895 * sync the kernel mapping back to physical page
896 */
897 if (clean_src_k_mappings) {
898 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
899 set_bit(PG_dc_clean, &from->flags);
900 } else {
901 clear_bit(PG_dc_clean, &from->flags);
902 }
903
904 kunmap_atomic(kto);
905 kunmap_atomic(kfrom);
906 }
907
908 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
909 {
910 clear_page(to);
911 clear_bit(PG_dc_clean, &page->flags);
912 }
913
914
915 /**********************************************************************
916 * Explicit Cache flush request from user space via syscall
917 * Needed for JITs which generate code on the fly
918 */
919 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
920 {
921 /* TBD: optimize this */
922 flush_cache_all();
923 return 0;
924 }
925
926 void arc_cache_init(void)
927 {
928 unsigned int __maybe_unused cpu = smp_processor_id();
929 char str[256];
930
931 printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
932
933 /*
934 * Only master CPU needs to execute rest of function:
935 * - Assume SMP so all cores will have same cache config so
936 * any geomtry checks will be same for all
937 * - IOC setup / dma callbacks only need to be setup once
938 */
939 if (cpu)
940 return;
941
942 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
943 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
944
945 if (!ic->line_len)
946 panic("cache support enabled but non-existent cache\n");
947
948 if (ic->line_len != L1_CACHE_BYTES)
949 panic("ICache line [%d] != kernel Config [%d]",
950 ic->line_len, L1_CACHE_BYTES);
951
952 /*
953 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
954 * pair to provide vaddr/paddr respectively, just as in MMU v3
955 */
956 if (is_isa_arcv2() && ic->alias)
957 _cache_line_loop_ic_fn = __cache_line_loop_v3;
958 else
959 _cache_line_loop_ic_fn = __cache_line_loop;
960 }
961
962 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
963 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
964
965 if (!dc->line_len)
966 panic("cache support enabled but non-existent cache\n");
967
968 if (dc->line_len != L1_CACHE_BYTES)
969 panic("DCache line [%d] != kernel Config [%d]",
970 dc->line_len, L1_CACHE_BYTES);
971
972 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
973 if (is_isa_arcompact()) {
974 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
975 int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
976
977 if (dc->alias) {
978 if (!handled)
979 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
980 if (CACHE_COLORS_NUM != num_colors)
981 panic("CACHE_COLORS_NUM not optimized for config\n");
982 } else if (!dc->alias && handled) {
983 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
984 }
985 }
986 }
987
988 if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
989
990 /* IM set : flush before invalidate */
991 write_aux_reg(ARC_REG_SLC_CTRL,
992 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
993
994 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
995
996 /* Important to wait for flush to complete */
997 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
998 write_aux_reg(ARC_REG_SLC_CTRL,
999 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
1000 }
1001
1002 if (is_isa_arcv2() && ioc_enable) {
1003 /* IO coherency base - 0x8z */
1004 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
1005 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */
1006 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
1007 /* Enable partial writes */
1008 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1009 /* Enable IO coherency */
1010 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1011
1012 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1013 __dma_cache_inv = __dma_cache_inv_ioc;
1014 __dma_cache_wback = __dma_cache_wback_ioc;
1015 } else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1016 __dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1017 __dma_cache_inv = __dma_cache_inv_slc;
1018 __dma_cache_wback = __dma_cache_wback_slc;
1019 } else {
1020 __dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1021 __dma_cache_inv = __dma_cache_inv_l1;
1022 __dma_cache_wback = __dma_cache_wback_l1;
1023 }
1024 }