Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / alpha / kernel / traps.c
1 /*
2 * arch/alpha/kernel/traps.c
3 *
4 * (C) Copyright 1994 Linus Torvalds
5 */
6
7 /*
8 * This file initializes the trap entry points
9 */
10
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/tty.h>
14 #include <linux/delay.h>
15 #include <linux/smp_lock.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19
20 #include <asm/gentrap.h>
21 #include <asm/uaccess.h>
22 #include <asm/unaligned.h>
23 #include <asm/sysinfo.h>
24 #include <asm/hwrpb.h>
25 #include <asm/mmu_context.h>
26
27 #include "proto.h"
28
29 /* Work-around for some SRMs which mishandle opDEC faults. */
30
31 static int opDEC_fix;
32
33 static void __init
34 opDEC_check(void)
35 {
36 __asm__ __volatile__ (
37 /* Load the address of... */
38 " br $16, 1f\n"
39 /* A stub instruction fault handler. Just add 4 to the
40 pc and continue. */
41 " ldq $16, 8($sp)\n"
42 " addq $16, 4, $16\n"
43 " stq $16, 8($sp)\n"
44 " call_pal %[rti]\n"
45 /* Install the instruction fault handler. */
46 "1: lda $17, 3\n"
47 " call_pal %[wrent]\n"
48 /* With that in place, the fault from the round-to-minf fp
49 insn will arrive either at the "lda 4" insn (bad) or one
50 past that (good). This places the correct fixup in %0. */
51 " lda %[fix], 0\n"
52 " cvttq/svm $f31,$f31\n"
53 " lda %[fix], 4"
54 : [fix] "=r" (opDEC_fix)
55 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
56 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
57
58 if (opDEC_fix)
59 printk("opDEC fixup enabled.\n");
60 }
61
62 void
63 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
64 {
65 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
66 regs->pc, regs->r26, regs->ps, print_tainted());
67 print_symbol("pc is at %s\n", regs->pc);
68 print_symbol("ra is at %s\n", regs->r26 );
69 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
70 regs->r0, regs->r1, regs->r2);
71 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
72 regs->r3, regs->r4, regs->r5);
73 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
74 regs->r6, regs->r7, regs->r8);
75
76 if (r9_15) {
77 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
78 r9_15[9], r9_15[10], r9_15[11]);
79 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
80 r9_15[12], r9_15[13], r9_15[14]);
81 printk("s6 = %016lx\n", r9_15[15]);
82 }
83
84 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
85 regs->r16, regs->r17, regs->r18);
86 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
87 regs->r19, regs->r20, regs->r21);
88 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
89 regs->r22, regs->r23, regs->r24);
90 printk("t11= %016lx pv = %016lx at = %016lx\n",
91 regs->r25, regs->r27, regs->r28);
92 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
93 #if 0
94 __halt();
95 #endif
96 }
97
98 #if 0
99 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
100 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
101 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
102 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
103 #endif
104
105 static void
106 dik_show_code(unsigned int *pc)
107 {
108 long i;
109
110 printk("Code:");
111 for (i = -6; i < 2; i++) {
112 unsigned int insn;
113 if (__get_user(insn, (unsigned int __user *)pc + i))
114 break;
115 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
116 }
117 printk("\n");
118 }
119
120 static void
121 dik_show_trace(unsigned long *sp)
122 {
123 long i = 0;
124 printk("Trace:\n");
125 while (0x1ff8 & (unsigned long) sp) {
126 extern char _stext[], _etext[];
127 unsigned long tmp = *sp;
128 sp++;
129 if (tmp < (unsigned long) &_stext)
130 continue;
131 if (tmp >= (unsigned long) &_etext)
132 continue;
133 printk("[<%lx>]", tmp);
134 print_symbol(" %s", tmp);
135 printk("\n");
136 if (i > 40) {
137 printk(" ...");
138 break;
139 }
140 }
141 printk("\n");
142 }
143
144 static int kstack_depth_to_print = 24;
145
146 void show_stack(struct task_struct *task, unsigned long *sp)
147 {
148 unsigned long *stack;
149 int i;
150
151 /*
152 * debugging aid: "show_stack(NULL);" prints the
153 * back trace for this cpu.
154 */
155 if(sp==NULL)
156 sp=(unsigned long*)&sp;
157
158 stack = sp;
159 for(i=0; i < kstack_depth_to_print; i++) {
160 if (((long) stack & (THREAD_SIZE-1)) == 0)
161 break;
162 if (i && ((i % 4) == 0))
163 printk("\n ");
164 printk("%016lx ", *stack++);
165 }
166 printk("\n");
167 dik_show_trace(sp);
168 }
169
170 void dump_stack(void)
171 {
172 show_stack(NULL, NULL);
173 }
174
175 EXPORT_SYMBOL(dump_stack);
176
177 void
178 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
179 {
180 if (regs->ps & 8)
181 return;
182 #ifdef CONFIG_SMP
183 printk("CPU %d ", hard_smp_processor_id());
184 #endif
185 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
186 dik_show_regs(regs, r9_15);
187 add_taint(TAINT_DIE);
188 dik_show_trace((unsigned long *)(regs+1));
189 dik_show_code((unsigned int *)regs->pc);
190
191 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
192 printk("die_if_kernel recursion detected.\n");
193 local_irq_enable();
194 while (1);
195 }
196 do_exit(SIGSEGV);
197 }
198
199 #ifndef CONFIG_MATHEMU
200 static long dummy_emul(void) { return 0; }
201 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
202 = (void *)dummy_emul;
203 long (*alpha_fp_emul) (unsigned long pc)
204 = (void *)dummy_emul;
205 #else
206 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
207 long alpha_fp_emul (unsigned long pc);
208 #endif
209
210 asmlinkage void
211 do_entArith(unsigned long summary, unsigned long write_mask,
212 struct pt_regs *regs)
213 {
214 long si_code = FPE_FLTINV;
215 siginfo_t info;
216
217 if (summary & 1) {
218 /* Software-completion summary bit is set, so try to
219 emulate the instruction. If the processor supports
220 precise exceptions, we don't have to search. */
221 if (!amask(AMASK_PRECISE_TRAP))
222 si_code = alpha_fp_emul(regs->pc - 4);
223 else
224 si_code = alpha_fp_emul_imprecise(regs, write_mask);
225 if (si_code == 0)
226 return;
227 }
228 die_if_kernel("Arithmetic fault", regs, 0, NULL);
229
230 info.si_signo = SIGFPE;
231 info.si_errno = 0;
232 info.si_code = si_code;
233 info.si_addr = (void __user *) regs->pc;
234 send_sig_info(SIGFPE, &info, current);
235 }
236
237 asmlinkage void
238 do_entIF(unsigned long type, struct pt_regs *regs)
239 {
240 siginfo_t info;
241 int signo, code;
242
243 if ((regs->ps & ~IPL_MAX) == 0) {
244 if (type == 1) {
245 const unsigned int *data
246 = (const unsigned int *) regs->pc;
247 printk("Kernel bug at %s:%d\n",
248 (const char *)(data[1] | (long)data[2] << 32),
249 data[0]);
250 }
251 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
252 regs, type, NULL);
253 }
254
255 switch (type) {
256 case 0: /* breakpoint */
257 info.si_signo = SIGTRAP;
258 info.si_errno = 0;
259 info.si_code = TRAP_BRKPT;
260 info.si_trapno = 0;
261 info.si_addr = (void __user *) regs->pc;
262
263 if (ptrace_cancel_bpt(current)) {
264 regs->pc -= 4; /* make pc point to former bpt */
265 }
266
267 send_sig_info(SIGTRAP, &info, current);
268 return;
269
270 case 1: /* bugcheck */
271 info.si_signo = SIGTRAP;
272 info.si_errno = 0;
273 info.si_code = __SI_FAULT;
274 info.si_addr = (void __user *) regs->pc;
275 info.si_trapno = 0;
276 send_sig_info(SIGTRAP, &info, current);
277 return;
278
279 case 2: /* gentrap */
280 info.si_addr = (void __user *) regs->pc;
281 info.si_trapno = regs->r16;
282 switch ((long) regs->r16) {
283 case GEN_INTOVF:
284 signo = SIGFPE;
285 code = FPE_INTOVF;
286 break;
287 case GEN_INTDIV:
288 signo = SIGFPE;
289 code = FPE_INTDIV;
290 break;
291 case GEN_FLTOVF:
292 signo = SIGFPE;
293 code = FPE_FLTOVF;
294 break;
295 case GEN_FLTDIV:
296 signo = SIGFPE;
297 code = FPE_FLTDIV;
298 break;
299 case GEN_FLTUND:
300 signo = SIGFPE;
301 code = FPE_FLTUND;
302 break;
303 case GEN_FLTINV:
304 signo = SIGFPE;
305 code = FPE_FLTINV;
306 break;
307 case GEN_FLTINE:
308 signo = SIGFPE;
309 code = FPE_FLTRES;
310 break;
311 case GEN_ROPRAND:
312 signo = SIGFPE;
313 code = __SI_FAULT;
314 break;
315
316 case GEN_DECOVF:
317 case GEN_DECDIV:
318 case GEN_DECINV:
319 case GEN_ASSERTERR:
320 case GEN_NULPTRERR:
321 case GEN_STKOVF:
322 case GEN_STRLENERR:
323 case GEN_SUBSTRERR:
324 case GEN_RANGERR:
325 case GEN_SUBRNG:
326 case GEN_SUBRNG1:
327 case GEN_SUBRNG2:
328 case GEN_SUBRNG3:
329 case GEN_SUBRNG4:
330 case GEN_SUBRNG5:
331 case GEN_SUBRNG6:
332 case GEN_SUBRNG7:
333 default:
334 signo = SIGTRAP;
335 code = __SI_FAULT;
336 break;
337 }
338
339 info.si_signo = signo;
340 info.si_errno = 0;
341 info.si_code = code;
342 info.si_addr = (void __user *) regs->pc;
343 send_sig_info(signo, &info, current);
344 return;
345
346 case 4: /* opDEC */
347 if (implver() == IMPLVER_EV4) {
348 long si_code;
349
350 /* The some versions of SRM do not handle
351 the opDEC properly - they return the PC of the
352 opDEC fault, not the instruction after as the
353 Alpha architecture requires. Here we fix it up.
354 We do this by intentionally causing an opDEC
355 fault during the boot sequence and testing if
356 we get the correct PC. If not, we set a flag
357 to correct it every time through. */
358 regs->pc += opDEC_fix;
359
360 /* EV4 does not implement anything except normal
361 rounding. Everything else will come here as
362 an illegal instruction. Emulate them. */
363 si_code = alpha_fp_emul(regs->pc - 4);
364 if (si_code == 0)
365 return;
366 if (si_code > 0) {
367 info.si_signo = SIGFPE;
368 info.si_errno = 0;
369 info.si_code = si_code;
370 info.si_addr = (void __user *) regs->pc;
371 send_sig_info(SIGFPE, &info, current);
372 return;
373 }
374 }
375 break;
376
377 case 3: /* FEN fault */
378 /* Irritating users can call PAL_clrfen to disable the
379 FPU for the process. The kernel will then trap in
380 do_switch_stack and undo_switch_stack when we try
381 to save and restore the FP registers.
382
383 Given that GCC by default generates code that uses the
384 FP registers, PAL_clrfen is not useful except for DoS
385 attacks. So turn the bleeding FPU back on and be done
386 with it. */
387 current_thread_info()->pcb.flags |= 1;
388 __reload_thread(&current_thread_info()->pcb);
389 return;
390
391 case 5: /* illoc */
392 default: /* unexpected instruction-fault type */
393 ;
394 }
395
396 info.si_signo = SIGILL;
397 info.si_errno = 0;
398 info.si_code = ILL_ILLOPC;
399 info.si_addr = (void __user *) regs->pc;
400 send_sig_info(SIGILL, &info, current);
401 }
402
403 /* There is an ifdef in the PALcode in MILO that enables a
404 "kernel debugging entry point" as an unprivileged call_pal.
405
406 We don't want to have anything to do with it, but unfortunately
407 several versions of MILO included in distributions have it enabled,
408 and if we don't put something on the entry point we'll oops. */
409
410 asmlinkage void
411 do_entDbg(struct pt_regs *regs)
412 {
413 siginfo_t info;
414
415 die_if_kernel("Instruction fault", regs, 0, NULL);
416
417 info.si_signo = SIGILL;
418 info.si_errno = 0;
419 info.si_code = ILL_ILLOPC;
420 info.si_addr = (void __user *) regs->pc;
421 force_sig_info(SIGILL, &info, current);
422 }
423
424
425 /*
426 * entUna has a different register layout to be reasonably simple. It
427 * needs access to all the integer registers (the kernel doesn't use
428 * fp-regs), and it needs to have them in order for simpler access.
429 *
430 * Due to the non-standard register layout (and because we don't want
431 * to handle floating-point regs), user-mode unaligned accesses are
432 * handled separately by do_entUnaUser below.
433 *
434 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
435 * on a gp-register unaligned load/store, something is _very_ wrong
436 * in the kernel anyway..
437 */
438 struct allregs {
439 unsigned long regs[32];
440 unsigned long ps, pc, gp, a0, a1, a2;
441 };
442
443 struct unaligned_stat {
444 unsigned long count, va, pc;
445 } unaligned[2];
446
447
448 /* Macro for exception fixup code to access integer registers. */
449 #define una_reg(r) (regs->regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
450
451
452 asmlinkage void
453 do_entUna(void * va, unsigned long opcode, unsigned long reg,
454 struct allregs *regs)
455 {
456 long error, tmp1, tmp2, tmp3, tmp4;
457 unsigned long pc = regs->pc - 4;
458 const struct exception_table_entry *fixup;
459
460 unaligned[0].count++;
461 unaligned[0].va = (unsigned long) va;
462 unaligned[0].pc = pc;
463
464 /* We don't want to use the generic get/put unaligned macros as
465 we want to trap exceptions. Only if we actually get an
466 exception will we decide whether we should have caught it. */
467
468 switch (opcode) {
469 case 0x0c: /* ldwu */
470 __asm__ __volatile__(
471 "1: ldq_u %1,0(%3)\n"
472 "2: ldq_u %2,1(%3)\n"
473 " extwl %1,%3,%1\n"
474 " extwh %2,%3,%2\n"
475 "3:\n"
476 ".section __ex_table,\"a\"\n"
477 " .long 1b - .\n"
478 " lda %1,3b-1b(%0)\n"
479 " .long 2b - .\n"
480 " lda %2,3b-2b(%0)\n"
481 ".previous"
482 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
483 : "r"(va), "0"(0));
484 if (error)
485 goto got_exception;
486 una_reg(reg) = tmp1|tmp2;
487 return;
488
489 case 0x28: /* ldl */
490 __asm__ __volatile__(
491 "1: ldq_u %1,0(%3)\n"
492 "2: ldq_u %2,3(%3)\n"
493 " extll %1,%3,%1\n"
494 " extlh %2,%3,%2\n"
495 "3:\n"
496 ".section __ex_table,\"a\"\n"
497 " .long 1b - .\n"
498 " lda %1,3b-1b(%0)\n"
499 " .long 2b - .\n"
500 " lda %2,3b-2b(%0)\n"
501 ".previous"
502 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
503 : "r"(va), "0"(0));
504 if (error)
505 goto got_exception;
506 una_reg(reg) = (int)(tmp1|tmp2);
507 return;
508
509 case 0x29: /* ldq */
510 __asm__ __volatile__(
511 "1: ldq_u %1,0(%3)\n"
512 "2: ldq_u %2,7(%3)\n"
513 " extql %1,%3,%1\n"
514 " extqh %2,%3,%2\n"
515 "3:\n"
516 ".section __ex_table,\"a\"\n"
517 " .long 1b - .\n"
518 " lda %1,3b-1b(%0)\n"
519 " .long 2b - .\n"
520 " lda %2,3b-2b(%0)\n"
521 ".previous"
522 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
523 : "r"(va), "0"(0));
524 if (error)
525 goto got_exception;
526 una_reg(reg) = tmp1|tmp2;
527 return;
528
529 /* Note that the store sequences do not indicate that they change
530 memory because it _should_ be affecting nothing in this context.
531 (Otherwise we have other, much larger, problems.) */
532 case 0x0d: /* stw */
533 __asm__ __volatile__(
534 "1: ldq_u %2,1(%5)\n"
535 "2: ldq_u %1,0(%5)\n"
536 " inswh %6,%5,%4\n"
537 " inswl %6,%5,%3\n"
538 " mskwh %2,%5,%2\n"
539 " mskwl %1,%5,%1\n"
540 " or %2,%4,%2\n"
541 " or %1,%3,%1\n"
542 "3: stq_u %2,1(%5)\n"
543 "4: stq_u %1,0(%5)\n"
544 "5:\n"
545 ".section __ex_table,\"a\"\n"
546 " .long 1b - .\n"
547 " lda %2,5b-1b(%0)\n"
548 " .long 2b - .\n"
549 " lda %1,5b-2b(%0)\n"
550 " .long 3b - .\n"
551 " lda $31,5b-3b(%0)\n"
552 " .long 4b - .\n"
553 " lda $31,5b-4b(%0)\n"
554 ".previous"
555 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
556 "=&r"(tmp3), "=&r"(tmp4)
557 : "r"(va), "r"(una_reg(reg)), "0"(0));
558 if (error)
559 goto got_exception;
560 return;
561
562 case 0x2c: /* stl */
563 __asm__ __volatile__(
564 "1: ldq_u %2,3(%5)\n"
565 "2: ldq_u %1,0(%5)\n"
566 " inslh %6,%5,%4\n"
567 " insll %6,%5,%3\n"
568 " msklh %2,%5,%2\n"
569 " mskll %1,%5,%1\n"
570 " or %2,%4,%2\n"
571 " or %1,%3,%1\n"
572 "3: stq_u %2,3(%5)\n"
573 "4: stq_u %1,0(%5)\n"
574 "5:\n"
575 ".section __ex_table,\"a\"\n"
576 " .long 1b - .\n"
577 " lda %2,5b-1b(%0)\n"
578 " .long 2b - .\n"
579 " lda %1,5b-2b(%0)\n"
580 " .long 3b - .\n"
581 " lda $31,5b-3b(%0)\n"
582 " .long 4b - .\n"
583 " lda $31,5b-4b(%0)\n"
584 ".previous"
585 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
586 "=&r"(tmp3), "=&r"(tmp4)
587 : "r"(va), "r"(una_reg(reg)), "0"(0));
588 if (error)
589 goto got_exception;
590 return;
591
592 case 0x2d: /* stq */
593 __asm__ __volatile__(
594 "1: ldq_u %2,7(%5)\n"
595 "2: ldq_u %1,0(%5)\n"
596 " insqh %6,%5,%4\n"
597 " insql %6,%5,%3\n"
598 " mskqh %2,%5,%2\n"
599 " mskql %1,%5,%1\n"
600 " or %2,%4,%2\n"
601 " or %1,%3,%1\n"
602 "3: stq_u %2,7(%5)\n"
603 "4: stq_u %1,0(%5)\n"
604 "5:\n"
605 ".section __ex_table,\"a\"\n\t"
606 " .long 1b - .\n"
607 " lda %2,5b-1b(%0)\n"
608 " .long 2b - .\n"
609 " lda %1,5b-2b(%0)\n"
610 " .long 3b - .\n"
611 " lda $31,5b-3b(%0)\n"
612 " .long 4b - .\n"
613 " lda $31,5b-4b(%0)\n"
614 ".previous"
615 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
616 "=&r"(tmp3), "=&r"(tmp4)
617 : "r"(va), "r"(una_reg(reg)), "0"(0));
618 if (error)
619 goto got_exception;
620 return;
621 }
622
623 lock_kernel();
624 printk("Bad unaligned kernel access at %016lx: %p %lx %ld\n",
625 pc, va, opcode, reg);
626 do_exit(SIGSEGV);
627
628 got_exception:
629 /* Ok, we caught the exception, but we don't want it. Is there
630 someone to pass it along to? */
631 if ((fixup = search_exception_tables(pc)) != 0) {
632 unsigned long newpc;
633 newpc = fixup_exception(una_reg, fixup, pc);
634
635 printk("Forwarding unaligned exception at %lx (%lx)\n",
636 pc, newpc);
637
638 regs->pc = newpc;
639 return;
640 }
641
642 /*
643 * Yikes! No one to forward the exception to.
644 * Since the registers are in a weird format, dump them ourselves.
645 */
646 lock_kernel();
647
648 printk("%s(%d): unhandled unaligned exception\n",
649 current->comm, task_pid_nr(current));
650
651 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
652 pc, una_reg(26), regs->ps);
653 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
654 una_reg(0), una_reg(1), una_reg(2));
655 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
656 una_reg(3), una_reg(4), una_reg(5));
657 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
658 una_reg(6), una_reg(7), una_reg(8));
659 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
660 una_reg(9), una_reg(10), una_reg(11));
661 printk("r12= %016lx r13= %016lx r14= %016lx\n",
662 una_reg(12), una_reg(13), una_reg(14));
663 printk("r15= %016lx\n", una_reg(15));
664 printk("r16= %016lx r17= %016lx r18= %016lx\n",
665 una_reg(16), una_reg(17), una_reg(18));
666 printk("r19= %016lx r20= %016lx r21= %016lx\n",
667 una_reg(19), una_reg(20), una_reg(21));
668 printk("r22= %016lx r23= %016lx r24= %016lx\n",
669 una_reg(22), una_reg(23), una_reg(24));
670 printk("r25= %016lx r27= %016lx r28= %016lx\n",
671 una_reg(25), una_reg(27), una_reg(28));
672 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
673
674 dik_show_code((unsigned int *)pc);
675 dik_show_trace((unsigned long *)(regs+1));
676
677 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
678 printk("die_if_kernel recursion detected.\n");
679 local_irq_enable();
680 while (1);
681 }
682 do_exit(SIGSEGV);
683 }
684
685 /*
686 * Convert an s-floating point value in memory format to the
687 * corresponding value in register format. The exponent
688 * needs to be remapped to preserve non-finite values
689 * (infinities, not-a-numbers, denormals).
690 */
691 static inline unsigned long
692 s_mem_to_reg (unsigned long s_mem)
693 {
694 unsigned long frac = (s_mem >> 0) & 0x7fffff;
695 unsigned long sign = (s_mem >> 31) & 0x1;
696 unsigned long exp_msb = (s_mem >> 30) & 0x1;
697 unsigned long exp_low = (s_mem >> 23) & 0x7f;
698 unsigned long exp;
699
700 exp = (exp_msb << 10) | exp_low; /* common case */
701 if (exp_msb) {
702 if (exp_low == 0x7f) {
703 exp = 0x7ff;
704 }
705 } else {
706 if (exp_low == 0x00) {
707 exp = 0x000;
708 } else {
709 exp |= (0x7 << 7);
710 }
711 }
712 return (sign << 63) | (exp << 52) | (frac << 29);
713 }
714
715 /*
716 * Convert an s-floating point value in register format to the
717 * corresponding value in memory format.
718 */
719 static inline unsigned long
720 s_reg_to_mem (unsigned long s_reg)
721 {
722 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
723 }
724
725 /*
726 * Handle user-level unaligned fault. Handling user-level unaligned
727 * faults is *extremely* slow and produces nasty messages. A user
728 * program *should* fix unaligned faults ASAP.
729 *
730 * Notice that we have (almost) the regular kernel stack layout here,
731 * so finding the appropriate registers is a little more difficult
732 * than in the kernel case.
733 *
734 * Finally, we handle regular integer load/stores only. In
735 * particular, load-linked/store-conditionally and floating point
736 * load/stores are not supported. The former make no sense with
737 * unaligned faults (they are guaranteed to fail) and I don't think
738 * the latter will occur in any decent program.
739 *
740 * Sigh. We *do* have to handle some FP operations, because GCC will
741 * uses them as temporary storage for integer memory to memory copies.
742 * However, we need to deal with stt/ldt and sts/lds only.
743 */
744
745 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
746 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
747 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
748 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
749
750 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
751 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
752 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
753
754 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
755
756 static int unauser_reg_offsets[32] = {
757 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
758 /* r9 ... r15 are stored in front of regs. */
759 -56, -48, -40, -32, -24, -16, -8,
760 R(r16), R(r17), R(r18),
761 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
762 R(r27), R(r28), R(gp),
763 0, 0
764 };
765
766 #undef R
767
768 asmlinkage void
769 do_entUnaUser(void __user * va, unsigned long opcode,
770 unsigned long reg, struct pt_regs *regs)
771 {
772 static int cnt = 0;
773 static long last_time = 0;
774
775 unsigned long tmp1, tmp2, tmp3, tmp4;
776 unsigned long fake_reg, *reg_addr = &fake_reg;
777 siginfo_t info;
778 long error;
779
780 /* Check the UAC bits to decide what the user wants us to do
781 with the unaliged access. */
782
783 if (!test_thread_flag (TIF_UAC_NOPRINT)) {
784 if (cnt >= 5 && jiffies - last_time > 5*HZ) {
785 cnt = 0;
786 }
787 if (++cnt < 5) {
788 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
789 current->comm, task_pid_nr(current),
790 regs->pc - 4, va, opcode, reg);
791 }
792 last_time = jiffies;
793 }
794 if (test_thread_flag (TIF_UAC_SIGBUS))
795 goto give_sigbus;
796 /* Not sure why you'd want to use this, but... */
797 if (test_thread_flag (TIF_UAC_NOFIX))
798 return;
799
800 /* Don't bother reading ds in the access check since we already
801 know that this came from the user. Also rely on the fact that
802 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
803 if (!__access_ok((unsigned long)va, 0, USER_DS))
804 goto give_sigsegv;
805
806 ++unaligned[1].count;
807 unaligned[1].va = (unsigned long)va;
808 unaligned[1].pc = regs->pc - 4;
809
810 if ((1L << opcode) & OP_INT_MASK) {
811 /* it's an integer load/store */
812 if (reg < 30) {
813 reg_addr = (unsigned long *)
814 ((char *)regs + unauser_reg_offsets[reg]);
815 } else if (reg == 30) {
816 /* usp in PAL regs */
817 fake_reg = rdusp();
818 } else {
819 /* zero "register" */
820 fake_reg = 0;
821 }
822 }
823
824 /* We don't want to use the generic get/put unaligned macros as
825 we want to trap exceptions. Only if we actually get an
826 exception will we decide whether we should have caught it. */
827
828 switch (opcode) {
829 case 0x0c: /* ldwu */
830 __asm__ __volatile__(
831 "1: ldq_u %1,0(%3)\n"
832 "2: ldq_u %2,1(%3)\n"
833 " extwl %1,%3,%1\n"
834 " extwh %2,%3,%2\n"
835 "3:\n"
836 ".section __ex_table,\"a\"\n"
837 " .long 1b - .\n"
838 " lda %1,3b-1b(%0)\n"
839 " .long 2b - .\n"
840 " lda %2,3b-2b(%0)\n"
841 ".previous"
842 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
843 : "r"(va), "0"(0));
844 if (error)
845 goto give_sigsegv;
846 *reg_addr = tmp1|tmp2;
847 break;
848
849 case 0x22: /* lds */
850 __asm__ __volatile__(
851 "1: ldq_u %1,0(%3)\n"
852 "2: ldq_u %2,3(%3)\n"
853 " extll %1,%3,%1\n"
854 " extlh %2,%3,%2\n"
855 "3:\n"
856 ".section __ex_table,\"a\"\n"
857 " .long 1b - .\n"
858 " lda %1,3b-1b(%0)\n"
859 " .long 2b - .\n"
860 " lda %2,3b-2b(%0)\n"
861 ".previous"
862 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
863 : "r"(va), "0"(0));
864 if (error)
865 goto give_sigsegv;
866 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
867 return;
868
869 case 0x23: /* ldt */
870 __asm__ __volatile__(
871 "1: ldq_u %1,0(%3)\n"
872 "2: ldq_u %2,7(%3)\n"
873 " extql %1,%3,%1\n"
874 " extqh %2,%3,%2\n"
875 "3:\n"
876 ".section __ex_table,\"a\"\n"
877 " .long 1b - .\n"
878 " lda %1,3b-1b(%0)\n"
879 " .long 2b - .\n"
880 " lda %2,3b-2b(%0)\n"
881 ".previous"
882 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
883 : "r"(va), "0"(0));
884 if (error)
885 goto give_sigsegv;
886 alpha_write_fp_reg(reg, tmp1|tmp2);
887 return;
888
889 case 0x28: /* ldl */
890 __asm__ __volatile__(
891 "1: ldq_u %1,0(%3)\n"
892 "2: ldq_u %2,3(%3)\n"
893 " extll %1,%3,%1\n"
894 " extlh %2,%3,%2\n"
895 "3:\n"
896 ".section __ex_table,\"a\"\n"
897 " .long 1b - .\n"
898 " lda %1,3b-1b(%0)\n"
899 " .long 2b - .\n"
900 " lda %2,3b-2b(%0)\n"
901 ".previous"
902 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
903 : "r"(va), "0"(0));
904 if (error)
905 goto give_sigsegv;
906 *reg_addr = (int)(tmp1|tmp2);
907 break;
908
909 case 0x29: /* ldq */
910 __asm__ __volatile__(
911 "1: ldq_u %1,0(%3)\n"
912 "2: ldq_u %2,7(%3)\n"
913 " extql %1,%3,%1\n"
914 " extqh %2,%3,%2\n"
915 "3:\n"
916 ".section __ex_table,\"a\"\n"
917 " .long 1b - .\n"
918 " lda %1,3b-1b(%0)\n"
919 " .long 2b - .\n"
920 " lda %2,3b-2b(%0)\n"
921 ".previous"
922 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
923 : "r"(va), "0"(0));
924 if (error)
925 goto give_sigsegv;
926 *reg_addr = tmp1|tmp2;
927 break;
928
929 /* Note that the store sequences do not indicate that they change
930 memory because it _should_ be affecting nothing in this context.
931 (Otherwise we have other, much larger, problems.) */
932 case 0x0d: /* stw */
933 __asm__ __volatile__(
934 "1: ldq_u %2,1(%5)\n"
935 "2: ldq_u %1,0(%5)\n"
936 " inswh %6,%5,%4\n"
937 " inswl %6,%5,%3\n"
938 " mskwh %2,%5,%2\n"
939 " mskwl %1,%5,%1\n"
940 " or %2,%4,%2\n"
941 " or %1,%3,%1\n"
942 "3: stq_u %2,1(%5)\n"
943 "4: stq_u %1,0(%5)\n"
944 "5:\n"
945 ".section __ex_table,\"a\"\n"
946 " .long 1b - .\n"
947 " lda %2,5b-1b(%0)\n"
948 " .long 2b - .\n"
949 " lda %1,5b-2b(%0)\n"
950 " .long 3b - .\n"
951 " lda $31,5b-3b(%0)\n"
952 " .long 4b - .\n"
953 " lda $31,5b-4b(%0)\n"
954 ".previous"
955 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
956 "=&r"(tmp3), "=&r"(tmp4)
957 : "r"(va), "r"(*reg_addr), "0"(0));
958 if (error)
959 goto give_sigsegv;
960 return;
961
962 case 0x26: /* sts */
963 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
964 /* FALLTHRU */
965
966 case 0x2c: /* stl */
967 __asm__ __volatile__(
968 "1: ldq_u %2,3(%5)\n"
969 "2: ldq_u %1,0(%5)\n"
970 " inslh %6,%5,%4\n"
971 " insll %6,%5,%3\n"
972 " msklh %2,%5,%2\n"
973 " mskll %1,%5,%1\n"
974 " or %2,%4,%2\n"
975 " or %1,%3,%1\n"
976 "3: stq_u %2,3(%5)\n"
977 "4: stq_u %1,0(%5)\n"
978 "5:\n"
979 ".section __ex_table,\"a\"\n"
980 " .long 1b - .\n"
981 " lda %2,5b-1b(%0)\n"
982 " .long 2b - .\n"
983 " lda %1,5b-2b(%0)\n"
984 " .long 3b - .\n"
985 " lda $31,5b-3b(%0)\n"
986 " .long 4b - .\n"
987 " lda $31,5b-4b(%0)\n"
988 ".previous"
989 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
990 "=&r"(tmp3), "=&r"(tmp4)
991 : "r"(va), "r"(*reg_addr), "0"(0));
992 if (error)
993 goto give_sigsegv;
994 return;
995
996 case 0x27: /* stt */
997 fake_reg = alpha_read_fp_reg(reg);
998 /* FALLTHRU */
999
1000 case 0x2d: /* stq */
1001 __asm__ __volatile__(
1002 "1: ldq_u %2,7(%5)\n"
1003 "2: ldq_u %1,0(%5)\n"
1004 " insqh %6,%5,%4\n"
1005 " insql %6,%5,%3\n"
1006 " mskqh %2,%5,%2\n"
1007 " mskql %1,%5,%1\n"
1008 " or %2,%4,%2\n"
1009 " or %1,%3,%1\n"
1010 "3: stq_u %2,7(%5)\n"
1011 "4: stq_u %1,0(%5)\n"
1012 "5:\n"
1013 ".section __ex_table,\"a\"\n\t"
1014 " .long 1b - .\n"
1015 " lda %2,5b-1b(%0)\n"
1016 " .long 2b - .\n"
1017 " lda %1,5b-2b(%0)\n"
1018 " .long 3b - .\n"
1019 " lda $31,5b-3b(%0)\n"
1020 " .long 4b - .\n"
1021 " lda $31,5b-4b(%0)\n"
1022 ".previous"
1023 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1024 "=&r"(tmp3), "=&r"(tmp4)
1025 : "r"(va), "r"(*reg_addr), "0"(0));
1026 if (error)
1027 goto give_sigsegv;
1028 return;
1029
1030 default:
1031 /* What instruction were you trying to use, exactly? */
1032 goto give_sigbus;
1033 }
1034
1035 /* Only integer loads should get here; everyone else returns early. */
1036 if (reg == 30)
1037 wrusp(fake_reg);
1038 return;
1039
1040 give_sigsegv:
1041 regs->pc -= 4; /* make pc point to faulting insn */
1042 info.si_signo = SIGSEGV;
1043 info.si_errno = 0;
1044
1045 /* We need to replicate some of the logic in mm/fault.c,
1046 since we don't have access to the fault code in the
1047 exception handling return path. */
1048 if (!__access_ok((unsigned long)va, 0, USER_DS))
1049 info.si_code = SEGV_ACCERR;
1050 else {
1051 struct mm_struct *mm = current->mm;
1052 down_read(&mm->mmap_sem);
1053 if (find_vma(mm, (unsigned long)va))
1054 info.si_code = SEGV_ACCERR;
1055 else
1056 info.si_code = SEGV_MAPERR;
1057 up_read(&mm->mmap_sem);
1058 }
1059 info.si_addr = va;
1060 send_sig_info(SIGSEGV, &info, current);
1061 return;
1062
1063 give_sigbus:
1064 regs->pc -= 4;
1065 info.si_signo = SIGBUS;
1066 info.si_errno = 0;
1067 info.si_code = BUS_ADRALN;
1068 info.si_addr = va;
1069 send_sig_info(SIGBUS, &info, current);
1070 return;
1071 }
1072
1073 void __init
1074 trap_init(void)
1075 {
1076 /* Tell PAL-code what global pointer we want in the kernel. */
1077 register unsigned long gptr __asm__("$29");
1078 wrkgp(gptr);
1079
1080 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1081 a bug in the handling of the opDEC fault. Fix it up if so. */
1082 if (implver() == IMPLVER_EV4)
1083 opDEC_check();
1084
1085 wrent(entArith, 1);
1086 wrent(entMM, 2);
1087 wrent(entIF, 3);
1088 wrent(entUna, 4);
1089 wrent(entSys, 5);
1090 wrent(entDbg, 6);
1091 }