scripts/coccinelle: Find threaded IRQs requests which are missing IRQF_ONESHOT
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / remoteproc.txt
1 Remote Processor Framework
2
3 1. Introduction
4
5 Modern SoCs typically have heterogeneous remote processor devices in asymmetric
6 multiprocessing (AMP) configurations, which may be running different instances
7 of operating system, whether it's Linux or any other flavor of real-time OS.
8
9 OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP.
10 In a typical configuration, the dual cortex-A9 is running Linux in a SMP
11 configuration, and each of the other three cores (two M3 cores and a DSP)
12 is running its own instance of RTOS in an AMP configuration.
13
14 The remoteproc framework allows different platforms/architectures to
15 control (power on, load firmware, power off) those remote processors while
16 abstracting the hardware differences, so the entire driver doesn't need to be
17 duplicated. In addition, this framework also adds rpmsg virtio devices
18 for remote processors that supports this kind of communication. This way,
19 platform-specific remoteproc drivers only need to provide a few low-level
20 handlers, and then all rpmsg drivers will then just work
21 (for more information about the virtio-based rpmsg bus and its drivers,
22 please read Documentation/rpmsg.txt).
23 Registration of other types of virtio devices is now also possible. Firmwares
24 just need to publish what kind of virtio devices do they support, and then
25 remoteproc will add those devices. This makes it possible to reuse the
26 existing virtio drivers with remote processor backends at a minimal development
27 cost.
28
29 2. User API
30
31 int rproc_boot(struct rproc *rproc)
32 - Boot a remote processor (i.e. load its firmware, power it on, ...).
33 If the remote processor is already powered on, this function immediately
34 returns (successfully).
35 Returns 0 on success, and an appropriate error value otherwise.
36 Note: to use this function you should already have a valid rproc
37 handle. There are several ways to achieve that cleanly (devres, pdata,
38 the way remoteproc_rpmsg.c does this, or, if this becomes prevalent, we
39 might also consider using dev_archdata for this). See also
40 rproc_get_by_name() below.
41
42 void rproc_shutdown(struct rproc *rproc)
43 - Power off a remote processor (previously booted with rproc_boot()).
44 In case @rproc is still being used by an additional user(s), then
45 this function will just decrement the power refcount and exit,
46 without really powering off the device.
47 Every call to rproc_boot() must (eventually) be accompanied by a call
48 to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
49 Notes:
50 - we're not decrementing the rproc's refcount, only the power refcount.
51 which means that the @rproc handle stays valid even after
52 rproc_shutdown() returns, and users can still use it with a subsequent
53 rproc_boot(), if needed.
54 - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
55 because rproc_shutdown() _does not_ decrement the refcount of @rproc.
56 To decrement the refcount of @rproc, use rproc_put() (but _only_ if
57 you acquired @rproc using rproc_get_by_name()).
58
59 struct rproc *rproc_get_by_name(const char *name)
60 - Find an rproc handle using the remote processor's name, and then
61 boot it. If it's already powered on, then just immediately return
62 (successfully). Returns the rproc handle on success, and NULL on failure.
63 This function increments the remote processor's refcount, so always
64 use rproc_put() to decrement it back once rproc isn't needed anymore.
65 Note: currently rproc_get_by_name() and rproc_put() are not used anymore
66 by the rpmsg bus and its drivers. We need to scrutinize the use cases
67 that still need them, and see if we can migrate them to use the non
68 name-based boot/shutdown interface.
69
70 void rproc_put(struct rproc *rproc)
71 - Decrement @rproc's power refcount and shut it down if it reaches zero
72 (essentially by just calling rproc_shutdown), and then decrement @rproc's
73 validity refcount too.
74 After this function returns, @rproc may _not_ be used anymore, and its
75 handle should be considered invalid.
76 This function should be called _iff_ the @rproc handle was grabbed by
77 calling rproc_get_by_name().
78
79 3. Typical usage
80
81 #include <linux/remoteproc.h>
82
83 /* in case we were given a valid 'rproc' handle */
84 int dummy_rproc_example(struct rproc *my_rproc)
85 {
86 int ret;
87
88 /* let's power on and boot our remote processor */
89 ret = rproc_boot(my_rproc);
90 if (ret) {
91 /*
92 * something went wrong. handle it and leave.
93 */
94 }
95
96 /*
97 * our remote processor is now powered on... give it some work
98 */
99
100 /* let's shut it down now */
101 rproc_shutdown(my_rproc);
102 }
103
104 4. API for implementors
105
106 struct rproc *rproc_alloc(struct device *dev, const char *name,
107 const struct rproc_ops *ops,
108 const char *firmware, int len)
109 - Allocate a new remote processor handle, but don't register
110 it yet. Required parameters are the underlying device, the
111 name of this remote processor, platform-specific ops handlers,
112 the name of the firmware to boot this rproc with, and the
113 length of private data needed by the allocating rproc driver (in bytes).
114
115 This function should be used by rproc implementations during
116 initialization of the remote processor.
117 After creating an rproc handle using this function, and when ready,
118 implementations should then call rproc_register() to complete
119 the registration of the remote processor.
120 On success, the new rproc is returned, and on failure, NULL.
121
122 Note: _never_ directly deallocate @rproc, even if it was not registered
123 yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
124
125 void rproc_free(struct rproc *rproc)
126 - Free an rproc handle that was allocated by rproc_alloc.
127 This function should _only_ be used if @rproc was only allocated,
128 but not registered yet.
129 If @rproc was already successfully registered (by calling
130 rproc_register()), then use rproc_unregister() instead.
131
132 int rproc_register(struct rproc *rproc)
133 - Register @rproc with the remoteproc framework, after it has been
134 allocated with rproc_alloc().
135 This is called by the platform-specific rproc implementation, whenever
136 a new remote processor device is probed.
137 Returns 0 on success and an appropriate error code otherwise.
138 Note: this function initiates an asynchronous firmware loading
139 context, which will look for virtio devices supported by the rproc's
140 firmware.
141 If found, those virtio devices will be created and added, so as a result
142 of registering this remote processor, additional virtio drivers might get
143 probed.
144
145 int rproc_unregister(struct rproc *rproc)
146 - Unregister a remote processor, and decrement its refcount.
147 If its refcount drops to zero, then @rproc will be freed. If not,
148 it will be freed later once the last reference is dropped.
149
150 This function should be called when the platform specific rproc
151 implementation decides to remove the rproc device. it should
152 _only_ be called if a previous invocation of rproc_register()
153 has completed successfully.
154
155 After rproc_unregister() returns, @rproc is _not_ valid anymore and
156 it shouldn't be used. More specifically, don't call rproc_free()
157 or try to directly free @rproc after rproc_unregister() returns;
158 none of these are needed, and calling them is a bug.
159
160 Returns 0 on success and -EINVAL if @rproc isn't valid.
161
162 5. Implementation callbacks
163
164 These callbacks should be provided by platform-specific remoteproc
165 drivers:
166
167 /**
168 * struct rproc_ops - platform-specific device handlers
169 * @start: power on the device and boot it
170 * @stop: power off the device
171 * @kick: kick a virtqueue (virtqueue id given as a parameter)
172 */
173 struct rproc_ops {
174 int (*start)(struct rproc *rproc);
175 int (*stop)(struct rproc *rproc);
176 void (*kick)(struct rproc *rproc, int vqid);
177 };
178
179 Every remoteproc implementation should at least provide the ->start and ->stop
180 handlers. If rpmsg/virtio functionality is also desired, then the ->kick handler
181 should be provided as well.
182
183 The ->start() handler takes an rproc handle and should then power on the
184 device and boot it (use rproc->priv to access platform-specific private data).
185 The boot address, in case needed, can be found in rproc->bootaddr (remoteproc
186 core puts there the ELF entry point).
187 On success, 0 should be returned, and on failure, an appropriate error code.
188
189 The ->stop() handler takes an rproc handle and powers the device down.
190 On success, 0 is returned, and on failure, an appropriate error code.
191
192 The ->kick() handler takes an rproc handle, and an index of a virtqueue
193 where new message was placed in. Implementations should interrupt the remote
194 processor and let it know it has pending messages. Notifying remote processors
195 the exact virtqueue index to look in is optional: it is easy (and not
196 too expensive) to go through the existing virtqueues and look for new buffers
197 in the used rings.
198
199 6. Binary Firmware Structure
200
201 At this point remoteproc only supports ELF32 firmware binaries. However,
202 it is quite expected that other platforms/devices which we'd want to
203 support with this framework will be based on different binary formats.
204
205 When those use cases show up, we will have to decouple the binary format
206 from the framework core, so we can support several binary formats without
207 duplicating common code.
208
209 When the firmware is parsed, its various segments are loaded to memory
210 according to the specified device address (might be a physical address
211 if the remote processor is accessing memory directly).
212
213 In addition to the standard ELF segments, most remote processors would
214 also include a special section which we call "the resource table".
215
216 The resource table contains system resources that the remote processor
217 requires before it should be powered on, such as allocation of physically
218 contiguous memory, or iommu mapping of certain on-chip peripherals.
219 Remotecore will only power up the device after all the resource table's
220 requirement are met.
221
222 In addition to system resources, the resource table may also contain
223 resource entries that publish the existence of supported features
224 or configurations by the remote processor, such as trace buffers and
225 supported virtio devices (and their configurations).
226
227 The resource table begins with this header:
228
229 /**
230 * struct resource_table - firmware resource table header
231 * @ver: version number
232 * @num: number of resource entries
233 * @reserved: reserved (must be zero)
234 * @offset: array of offsets pointing at the various resource entries
235 *
236 * The header of the resource table, as expressed by this structure,
237 * contains a version number (should we need to change this format in the
238 * future), the number of available resource entries, and their offsets
239 * in the table.
240 */
241 struct resource_table {
242 u32 ver;
243 u32 num;
244 u32 reserved[2];
245 u32 offset[0];
246 } __packed;
247
248 Immediately following this header are the resource entries themselves,
249 each of which begins with the following resource entry header:
250
251 /**
252 * struct fw_rsc_hdr - firmware resource entry header
253 * @type: resource type
254 * @data: resource data
255 *
256 * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
257 * its @type. The content of the entry itself will immediately follow
258 * this header, and it should be parsed according to the resource type.
259 */
260 struct fw_rsc_hdr {
261 u32 type;
262 u8 data[0];
263 } __packed;
264
265 Some resources entries are mere announcements, where the host is informed
266 of specific remoteproc configuration. Other entries require the host to
267 do something (e.g. allocate a system resource). Sometimes a negotiation
268 is expected, where the firmware requests a resource, and once allocated,
269 the host should provide back its details (e.g. address of an allocated
270 memory region).
271
272 Here are the various resource types that are currently supported:
273
274 /**
275 * enum fw_resource_type - types of resource entries
276 *
277 * @RSC_CARVEOUT: request for allocation of a physically contiguous
278 * memory region.
279 * @RSC_DEVMEM: request to iommu_map a memory-based peripheral.
280 * @RSC_TRACE: announces the availability of a trace buffer into which
281 * the remote processor will be writing logs.
282 * @RSC_VDEV: declare support for a virtio device, and serve as its
283 * virtio header.
284 * @RSC_LAST: just keep this one at the end
285 *
286 * Please note that these values are used as indices to the rproc_handle_rsc
287 * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
288 * check the validity of an index before the lookup table is accessed, so
289 * please update it as needed.
290 */
291 enum fw_resource_type {
292 RSC_CARVEOUT = 0,
293 RSC_DEVMEM = 1,
294 RSC_TRACE = 2,
295 RSC_VDEV = 3,
296 RSC_LAST = 4,
297 };
298
299 For more details regarding a specific resource type, please see its
300 dedicated structure in include/linux/remoteproc.h.
301
302 We also expect that platform-specific resource entries will show up
303 at some point. When that happens, we could easily add a new RSC_PLATFORM
304 type, and hand those resources to the platform-specific rproc driver to handle.
305
306 7. Virtio and remoteproc
307
308 The firmware should provide remoteproc information about virtio devices
309 that it supports, and their configurations: a RSC_VDEV resource entry
310 should specify the virtio device id (as in virtio_ids.h), virtio features,
311 virtio config space, vrings information, etc.
312
313 When a new remote processor is registered, the remoteproc framework
314 will look for its resource table and will register the virtio devices
315 it supports. A firmware may support any number of virtio devices, and
316 of any type (a single remote processor can also easily support several
317 rpmsg virtio devices this way, if desired).
318
319 Of course, RSC_VDEV resource entries are only good enough for static
320 allocation of virtio devices. Dynamic allocations will also be made possible
321 using the rpmsg bus (similar to how we already do dynamic allocations of
322 rpmsg channels; read more about it in rpmsg.txt).