lguest: get more serious about wmb() in example Launcher code
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49 * want to draw attention to the use of kernel-style types.
50 *
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
60
61 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
71
72 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
77 /*:*/
78
79 /* File descriptors for the Waker. */
80 struct {
81 int pipe[2];
82 } waker_fds;
83
84 /* The pointer to the start of guest memory. */
85 static void *guest_base;
86 /* The maximum guest physical address allowed, and maximum possible. */
87 static unsigned long guest_limit, guest_max;
88 /* The pipe for signal hander to write to. */
89 static int timeoutpipe[2];
90 static unsigned int timeout_usec = 500;
91 /* The /dev/lguest file descriptor. */
92 static int lguest_fd;
93
94 /* a per-cpu variable indicating whose vcpu is currently running */
95 static unsigned int __thread cpu_id;
96
97 /* This is our list of devices. */
98 struct device_list
99 {
100 /* Summary information about the devices in our list: ready to pass to
101 * select() to ask which need servicing.*/
102 fd_set infds;
103 int max_infd;
104
105 /* Counter to assign interrupt numbers. */
106 unsigned int next_irq;
107
108 /* Counter to print out convenient device numbers. */
109 unsigned int device_num;
110
111 /* The descriptor page for the devices. */
112 u8 *descpage;
113
114 /* A single linked list of devices. */
115 struct device *dev;
116 /* And a pointer to the last device for easy append and also for
117 * configuration appending. */
118 struct device *lastdev;
119 };
120
121 /* The list of Guest devices, based on command line arguments. */
122 static struct device_list devices;
123
124 /* The device structure describes a single device. */
125 struct device
126 {
127 /* The linked-list pointer. */
128 struct device *next;
129
130 /* The device's descriptor, as mapped into the Guest. */
131 struct lguest_device_desc *desc;
132
133 /* We can't trust desc values once Guest has booted: we use these. */
134 unsigned int feature_len;
135 unsigned int num_vq;
136
137 /* The name of this device, for --verbose. */
138 const char *name;
139
140 /* If handle_input is set, it wants to be called when this file
141 * descriptor is ready. */
142 int fd;
143 bool (*handle_input)(struct device *me);
144
145 /* Any queues attached to this device */
146 struct virtqueue *vq;
147
148 /* Handle status being finalized (ie. feature bits stable). */
149 void (*ready)(struct device *me);
150
151 /* Device-specific data. */
152 void *priv;
153 };
154
155 /* The virtqueue structure describes a queue attached to a device. */
156 struct virtqueue
157 {
158 struct virtqueue *next;
159
160 /* Which device owns me. */
161 struct device *dev;
162
163 /* The configuration for this queue. */
164 struct lguest_vqconfig config;
165
166 /* The actual ring of buffers. */
167 struct vring vring;
168
169 /* Last available index we saw. */
170 u16 last_avail_idx;
171
172 /* The routine to call when the Guest pings us, or timeout. */
173 void (*handle_output)(struct virtqueue *me, bool timeout);
174
175 /* Outstanding buffers */
176 unsigned int inflight;
177
178 /* Is this blocked awaiting a timer? */
179 bool blocked;
180 };
181
182 /* Remember the arguments to the program so we can "reboot" */
183 static char **main_args;
184
185 /* We have to be careful with barriers: our devices are all run in separate
186 * threads and so we need to make sure that changes visible to the Guest happen
187 * in precise order. */
188 #define wmb() __asm__ __volatile__("" : : : "memory")
189
190 /* Convert an iovec element to the given type.
191 *
192 * This is a fairly ugly trick: we need to know the size of the type and
193 * alignment requirement to check the pointer is kosher. It's also nice to
194 * have the name of the type in case we report failure.
195 *
196 * Typing those three things all the time is cumbersome and error prone, so we
197 * have a macro which sets them all up and passes to the real function. */
198 #define convert(iov, type) \
199 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
200
201 static void *_convert(struct iovec *iov, size_t size, size_t align,
202 const char *name)
203 {
204 if (iov->iov_len != size)
205 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
206 if ((unsigned long)iov->iov_base % align != 0)
207 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
208 return iov->iov_base;
209 }
210
211 /* Wrapper for the last available index. Makes it easier to change. */
212 #define lg_last_avail(vq) ((vq)->last_avail_idx)
213
214 /* The virtio configuration space is defined to be little-endian. x86 is
215 * little-endian too, but it's nice to be explicit so we have these helpers. */
216 #define cpu_to_le16(v16) (v16)
217 #define cpu_to_le32(v32) (v32)
218 #define cpu_to_le64(v64) (v64)
219 #define le16_to_cpu(v16) (v16)
220 #define le32_to_cpu(v32) (v32)
221 #define le64_to_cpu(v64) (v64)
222
223 /* Is this iovec empty? */
224 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
225 {
226 unsigned int i;
227
228 for (i = 0; i < num_iov; i++)
229 if (iov[i].iov_len)
230 return false;
231 return true;
232 }
233
234 /* Take len bytes from the front of this iovec. */
235 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
236 {
237 unsigned int i;
238
239 for (i = 0; i < num_iov; i++) {
240 unsigned int used;
241
242 used = iov[i].iov_len < len ? iov[i].iov_len : len;
243 iov[i].iov_base += used;
244 iov[i].iov_len -= used;
245 len -= used;
246 }
247 assert(len == 0);
248 }
249
250 /* The device virtqueue descriptors are followed by feature bitmasks. */
251 static u8 *get_feature_bits(struct device *dev)
252 {
253 return (u8 *)(dev->desc + 1)
254 + dev->num_vq * sizeof(struct lguest_vqconfig);
255 }
256
257 /*L:100 The Launcher code itself takes us out into userspace, that scary place
258 * where pointers run wild and free! Unfortunately, like most userspace
259 * programs, it's quite boring (which is why everyone likes to hack on the
260 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
261 * will get you through this section. Or, maybe not.
262 *
263 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
264 * memory and stores it in "guest_base". In other words, Guest physical ==
265 * Launcher virtual with an offset.
266 *
267 * This can be tough to get your head around, but usually it just means that we
268 * use these trivial conversion functions when the Guest gives us it's
269 * "physical" addresses: */
270 static void *from_guest_phys(unsigned long addr)
271 {
272 return guest_base + addr;
273 }
274
275 static unsigned long to_guest_phys(const void *addr)
276 {
277 return (addr - guest_base);
278 }
279
280 /*L:130
281 * Loading the Kernel.
282 *
283 * We start with couple of simple helper routines. open_or_die() avoids
284 * error-checking code cluttering the callers: */
285 static int open_or_die(const char *name, int flags)
286 {
287 int fd = open(name, flags);
288 if (fd < 0)
289 err(1, "Failed to open %s", name);
290 return fd;
291 }
292
293 /* map_zeroed_pages() takes a number of pages. */
294 static void *map_zeroed_pages(unsigned int num)
295 {
296 int fd = open_or_die("/dev/zero", O_RDONLY);
297 void *addr;
298
299 /* We use a private mapping (ie. if we write to the page, it will be
300 * copied). */
301 addr = mmap(NULL, getpagesize() * num,
302 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
303 if (addr == MAP_FAILED)
304 err(1, "Mmaping %u pages of /dev/zero", num);
305 close(fd);
306
307 return addr;
308 }
309
310 /* Get some more pages for a device. */
311 static void *get_pages(unsigned int num)
312 {
313 void *addr = from_guest_phys(guest_limit);
314
315 guest_limit += num * getpagesize();
316 if (guest_limit > guest_max)
317 errx(1, "Not enough memory for devices");
318 return addr;
319 }
320
321 /* This routine is used to load the kernel or initrd. It tries mmap, but if
322 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
323 * it falls back to reading the memory in. */
324 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
325 {
326 ssize_t r;
327
328 /* We map writable even though for some segments are marked read-only.
329 * The kernel really wants to be writable: it patches its own
330 * instructions.
331 *
332 * MAP_PRIVATE means that the page won't be copied until a write is
333 * done to it. This allows us to share untouched memory between
334 * Guests. */
335 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
336 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
337 return;
338
339 /* pread does a seek and a read in one shot: saves a few lines. */
340 r = pread(fd, addr, len, offset);
341 if (r != len)
342 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
343 }
344
345 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
346 * the Guest memory. ELF = Embedded Linking Format, which is the format used
347 * by all modern binaries on Linux including the kernel.
348 *
349 * The ELF headers give *two* addresses: a physical address, and a virtual
350 * address. We use the physical address; the Guest will map itself to the
351 * virtual address.
352 *
353 * We return the starting address. */
354 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
355 {
356 Elf32_Phdr phdr[ehdr->e_phnum];
357 unsigned int i;
358
359 /* Sanity checks on the main ELF header: an x86 executable with a
360 * reasonable number of correctly-sized program headers. */
361 if (ehdr->e_type != ET_EXEC
362 || ehdr->e_machine != EM_386
363 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
364 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
365 errx(1, "Malformed elf header");
366
367 /* An ELF executable contains an ELF header and a number of "program"
368 * headers which indicate which parts ("segments") of the program to
369 * load where. */
370
371 /* We read in all the program headers at once: */
372 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
373 err(1, "Seeking to program headers");
374 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
375 err(1, "Reading program headers");
376
377 /* Try all the headers: there are usually only three. A read-only one,
378 * a read-write one, and a "note" section which we don't load. */
379 for (i = 0; i < ehdr->e_phnum; i++) {
380 /* If this isn't a loadable segment, we ignore it */
381 if (phdr[i].p_type != PT_LOAD)
382 continue;
383
384 verbose("Section %i: size %i addr %p\n",
385 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
386
387 /* We map this section of the file at its physical address. */
388 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
389 phdr[i].p_offset, phdr[i].p_filesz);
390 }
391
392 /* The entry point is given in the ELF header. */
393 return ehdr->e_entry;
394 }
395
396 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
397 * supposed to jump into it and it will unpack itself. We used to have to
398 * perform some hairy magic because the unpacking code scared me.
399 *
400 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
401 * a small patch to jump over the tricky bits in the Guest, so now we just read
402 * the funky header so we know where in the file to load, and away we go! */
403 static unsigned long load_bzimage(int fd)
404 {
405 struct boot_params boot;
406 int r;
407 /* Modern bzImages get loaded at 1M. */
408 void *p = from_guest_phys(0x100000);
409
410 /* Go back to the start of the file and read the header. It should be
411 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
412 lseek(fd, 0, SEEK_SET);
413 read(fd, &boot, sizeof(boot));
414
415 /* Inside the setup_hdr, we expect the magic "HdrS" */
416 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
417 errx(1, "This doesn't look like a bzImage to me");
418
419 /* Skip over the extra sectors of the header. */
420 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
421
422 /* Now read everything into memory. in nice big chunks. */
423 while ((r = read(fd, p, 65536)) > 0)
424 p += r;
425
426 /* Finally, code32_start tells us where to enter the kernel. */
427 return boot.hdr.code32_start;
428 }
429
430 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
431 * come wrapped up in the self-decompressing "bzImage" format. With a little
432 * work, we can load those, too. */
433 static unsigned long load_kernel(int fd)
434 {
435 Elf32_Ehdr hdr;
436
437 /* Read in the first few bytes. */
438 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
439 err(1, "Reading kernel");
440
441 /* If it's an ELF file, it starts with "\177ELF" */
442 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
443 return map_elf(fd, &hdr);
444
445 /* Otherwise we assume it's a bzImage, and try to load it. */
446 return load_bzimage(fd);
447 }
448
449 /* This is a trivial little helper to align pages. Andi Kleen hated it because
450 * it calls getpagesize() twice: "it's dumb code."
451 *
452 * Kernel guys get really het up about optimization, even when it's not
453 * necessary. I leave this code as a reaction against that. */
454 static inline unsigned long page_align(unsigned long addr)
455 {
456 /* Add upwards and truncate downwards. */
457 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
458 }
459
460 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
461 * the kernel which the kernel can use to boot from without needing any
462 * drivers. Most distributions now use this as standard: the initrd contains
463 * the code to load the appropriate driver modules for the current machine.
464 *
465 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
466 * kernels. He sent me this (and tells me when I break it). */
467 static unsigned long load_initrd(const char *name, unsigned long mem)
468 {
469 int ifd;
470 struct stat st;
471 unsigned long len;
472
473 ifd = open_or_die(name, O_RDONLY);
474 /* fstat() is needed to get the file size. */
475 if (fstat(ifd, &st) < 0)
476 err(1, "fstat() on initrd '%s'", name);
477
478 /* We map the initrd at the top of memory, but mmap wants it to be
479 * page-aligned, so we round the size up for that. */
480 len = page_align(st.st_size);
481 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
482 /* Once a file is mapped, you can close the file descriptor. It's a
483 * little odd, but quite useful. */
484 close(ifd);
485 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
486
487 /* We return the initrd size. */
488 return len;
489 }
490 /*:*/
491
492 /* Simple routine to roll all the commandline arguments together with spaces
493 * between them. */
494 static void concat(char *dst, char *args[])
495 {
496 unsigned int i, len = 0;
497
498 for (i = 0; args[i]; i++) {
499 if (i) {
500 strcat(dst+len, " ");
501 len++;
502 }
503 strcpy(dst+len, args[i]);
504 len += strlen(args[i]);
505 }
506 /* In case it's empty. */
507 dst[len] = '\0';
508 }
509
510 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
511 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
512 * the base of Guest "physical" memory, the top physical page to allow and the
513 * entry point for the Guest. */
514 static void tell_kernel(unsigned long start)
515 {
516 unsigned long args[] = { LHREQ_INITIALIZE,
517 (unsigned long)guest_base,
518 guest_limit / getpagesize(), start };
519 verbose("Guest: %p - %p (%#lx)\n",
520 guest_base, guest_base + guest_limit, guest_limit);
521 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
522 if (write(lguest_fd, args, sizeof(args)) < 0)
523 err(1, "Writing to /dev/lguest");
524 }
525 /*:*/
526
527 static void add_device_fd(int fd)
528 {
529 FD_SET(fd, &devices.infds);
530 if (fd > devices.max_infd)
531 devices.max_infd = fd;
532 }
533
534 /*L:200
535 * The Waker.
536 *
537 * With console, block and network devices, we can have lots of input which we
538 * need to process. We could try to tell the kernel what file descriptors to
539 * watch, but handing a file descriptor mask through to the kernel is fairly
540 * icky.
541 *
542 * Instead, we clone off a thread which watches the file descriptors and writes
543 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
544 * stop running the Guest. This causes the Launcher to return from the
545 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
546 * the LHREQ_BREAK and wake us up again.
547 *
548 * This, of course, is merely a different *kind* of icky.
549 *
550 * Given my well-known antipathy to threads, I'd prefer to use processes. But
551 * it's easier to share Guest memory with threads, and trivial to share the
552 * devices.infds as the Launcher changes it.
553 */
554 static int waker(void *unused)
555 {
556 /* Close the write end of the pipe: only the Launcher has it open. */
557 close(waker_fds.pipe[1]);
558
559 for (;;) {
560 fd_set rfds = devices.infds;
561 unsigned long args[] = { LHREQ_BREAK, 1 };
562 unsigned int maxfd = devices.max_infd;
563
564 /* We also listen to the pipe from the Launcher. */
565 FD_SET(waker_fds.pipe[0], &rfds);
566 if (waker_fds.pipe[0] > maxfd)
567 maxfd = waker_fds.pipe[0];
568
569 /* Wait until input is ready from one of the devices. */
570 select(maxfd+1, &rfds, NULL, NULL, NULL);
571
572 /* Message from Launcher? */
573 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
574 char c;
575 /* If this fails, then assume Launcher has exited.
576 * Don't do anything on exit: we're just a thread! */
577 if (read(waker_fds.pipe[0], &c, 1) != 1)
578 _exit(0);
579 continue;
580 }
581
582 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
583 pwrite(lguest_fd, args, sizeof(args), cpu_id);
584 }
585 return 0;
586 }
587
588 /* This routine just sets up a pipe to the Waker process. */
589 static void setup_waker(void)
590 {
591 /* This pipe is closed when Launcher dies, telling Waker. */
592 if (pipe(waker_fds.pipe) != 0)
593 err(1, "Creating pipe for Waker");
594
595 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
596 err(1, "Creating Waker");
597 }
598
599 /*
600 * Device Handling.
601 *
602 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
603 * We need to make sure it's not trying to reach into the Launcher itself, so
604 * we have a convenient routine which checks it and exits with an error message
605 * if something funny is going on:
606 */
607 static void *_check_pointer(unsigned long addr, unsigned int size,
608 unsigned int line)
609 {
610 /* We have to separately check addr and addr+size, because size could
611 * be huge and addr + size might wrap around. */
612 if (addr >= guest_limit || addr + size >= guest_limit)
613 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
614 /* We return a pointer for the caller's convenience, now we know it's
615 * safe to use. */
616 return from_guest_phys(addr);
617 }
618 /* A macro which transparently hands the line number to the real function. */
619 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
620
621 /* Each buffer in the virtqueues is actually a chain of descriptors. This
622 * function returns the next descriptor in the chain, or vq->vring.num if we're
623 * at the end. */
624 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
625 {
626 unsigned int next;
627
628 /* If this descriptor says it doesn't chain, we're done. */
629 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
630 return vq->vring.num;
631
632 /* Check they're not leading us off end of descriptors. */
633 next = vq->vring.desc[i].next;
634 /* Make sure compiler knows to grab that: we don't want it changing! */
635 wmb();
636
637 if (next >= vq->vring.num)
638 errx(1, "Desc next is %u", next);
639
640 return next;
641 }
642
643 /* This looks in the virtqueue and for the first available buffer, and converts
644 * it to an iovec for convenient access. Since descriptors consist of some
645 * number of output then some number of input descriptors, it's actually two
646 * iovecs, but we pack them into one and note how many of each there were.
647 *
648 * This function returns the descriptor number found, or vq->vring.num (which
649 * is never a valid descriptor number) if none was found. */
650 static unsigned get_vq_desc(struct virtqueue *vq,
651 struct iovec iov[],
652 unsigned int *out_num, unsigned int *in_num)
653 {
654 unsigned int i, head;
655 u16 last_avail;
656
657 /* Check it isn't doing very strange things with descriptor numbers. */
658 last_avail = lg_last_avail(vq);
659 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
660 errx(1, "Guest moved used index from %u to %u",
661 last_avail, vq->vring.avail->idx);
662
663 /* If there's nothing new since last we looked, return invalid. */
664 if (vq->vring.avail->idx == last_avail)
665 return vq->vring.num;
666
667 /* Grab the next descriptor number they're advertising, and increment
668 * the index we've seen. */
669 head = vq->vring.avail->ring[last_avail % vq->vring.num];
670 lg_last_avail(vq)++;
671
672 /* If their number is silly, that's a fatal mistake. */
673 if (head >= vq->vring.num)
674 errx(1, "Guest says index %u is available", head);
675
676 /* When we start there are none of either input nor output. */
677 *out_num = *in_num = 0;
678
679 i = head;
680 do {
681 /* Grab the first descriptor, and check it's OK. */
682 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
683 iov[*out_num + *in_num].iov_base
684 = check_pointer(vq->vring.desc[i].addr,
685 vq->vring.desc[i].len);
686 /* If this is an input descriptor, increment that count. */
687 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
688 (*in_num)++;
689 else {
690 /* If it's an output descriptor, they're all supposed
691 * to come before any input descriptors. */
692 if (*in_num)
693 errx(1, "Descriptor has out after in");
694 (*out_num)++;
695 }
696
697 /* If we've got too many, that implies a descriptor loop. */
698 if (*out_num + *in_num > vq->vring.num)
699 errx(1, "Looped descriptor");
700 } while ((i = next_desc(vq, i)) != vq->vring.num);
701
702 vq->inflight++;
703 return head;
704 }
705
706 /* After we've used one of their buffers, we tell them about it. We'll then
707 * want to send them an interrupt, using trigger_irq(). */
708 static void add_used(struct virtqueue *vq, unsigned int head, int len)
709 {
710 struct vring_used_elem *used;
711
712 /* The virtqueue contains a ring of used buffers. Get a pointer to the
713 * next entry in that used ring. */
714 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
715 used->id = head;
716 used->len = len;
717 /* Make sure buffer is written before we update index. */
718 wmb();
719 vq->vring.used->idx++;
720 vq->inflight--;
721 }
722
723 /* This actually sends the interrupt for this virtqueue */
724 static void trigger_irq(struct virtqueue *vq)
725 {
726 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
727
728 /* If they don't want an interrupt, don't send one, unless empty. */
729 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
730 && vq->inflight)
731 return;
732
733 /* Send the Guest an interrupt tell them we used something up. */
734 if (write(lguest_fd, buf, sizeof(buf)) != 0)
735 err(1, "Triggering irq %i", vq->config.irq);
736 }
737
738 /* And here's the combo meal deal. Supersize me! */
739 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
740 {
741 add_used(vq, head, len);
742 trigger_irq(vq);
743 }
744
745 /*
746 * The Console
747 *
748 * Here is the input terminal setting we save, and the routine to restore them
749 * on exit so the user gets their terminal back. */
750 static struct termios orig_term;
751 static void restore_term(void)
752 {
753 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
754 }
755
756 /* We associate some data with the console for our exit hack. */
757 struct console_abort
758 {
759 /* How many times have they hit ^C? */
760 int count;
761 /* When did they start? */
762 struct timeval start;
763 };
764
765 /* This is the routine which handles console input (ie. stdin). */
766 static bool handle_console_input(struct device *dev)
767 {
768 int len;
769 unsigned int head, in_num, out_num;
770 struct iovec iov[dev->vq->vring.num];
771 struct console_abort *abort = dev->priv;
772
773 /* First we need a console buffer from the Guests's input virtqueue. */
774 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
775
776 /* If they're not ready for input, stop listening to this file
777 * descriptor. We'll start again once they add an input buffer. */
778 if (head == dev->vq->vring.num)
779 return false;
780
781 if (out_num)
782 errx(1, "Output buffers in console in queue?");
783
784 /* This is why we convert to iovecs: the readv() call uses them, and so
785 * it reads straight into the Guest's buffer. */
786 len = readv(dev->fd, iov, in_num);
787 if (len <= 0) {
788 /* This implies that the console is closed, is /dev/null, or
789 * something went terribly wrong. */
790 warnx("Failed to get console input, ignoring console.");
791 /* Put the input terminal back. */
792 restore_term();
793 /* Remove callback from input vq, so it doesn't restart us. */
794 dev->vq->handle_output = NULL;
795 /* Stop listening to this fd: don't call us again. */
796 return false;
797 }
798
799 /* Tell the Guest about the new input. */
800 add_used_and_trigger(dev->vq, head, len);
801
802 /* Three ^C within one second? Exit.
803 *
804 * This is such a hack, but works surprisingly well. Each ^C has to be
805 * in a buffer by itself, so they can't be too fast. But we check that
806 * we get three within about a second, so they can't be too slow. */
807 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
808 if (!abort->count++)
809 gettimeofday(&abort->start, NULL);
810 else if (abort->count == 3) {
811 struct timeval now;
812 gettimeofday(&now, NULL);
813 if (now.tv_sec <= abort->start.tv_sec+1) {
814 unsigned long args[] = { LHREQ_BREAK, 0 };
815 /* Close the fd so Waker will know it has to
816 * exit. */
817 close(waker_fds.pipe[1]);
818 /* Just in case Waker is blocked in BREAK, send
819 * unbreak now. */
820 write(lguest_fd, args, sizeof(args));
821 exit(2);
822 }
823 abort->count = 0;
824 }
825 } else
826 /* Any other key resets the abort counter. */
827 abort->count = 0;
828
829 /* Everything went OK! */
830 return true;
831 }
832
833 /* Handling output for console is simple: we just get all the output buffers
834 * and write them to stdout. */
835 static void handle_console_output(struct virtqueue *vq, bool timeout)
836 {
837 unsigned int head, out, in;
838 int len;
839 struct iovec iov[vq->vring.num];
840
841 /* Keep getting output buffers from the Guest until we run out. */
842 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
843 if (in)
844 errx(1, "Input buffers in output queue?");
845 len = writev(STDOUT_FILENO, iov, out);
846 add_used_and_trigger(vq, head, len);
847 }
848 }
849
850 /* This is called when we no longer want to hear about Guest changes to a
851 * virtqueue. This is more efficient in high-traffic cases, but it means we
852 * have to set a timer to check if any more changes have occurred. */
853 static void block_vq(struct virtqueue *vq)
854 {
855 struct itimerval itm;
856
857 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
858 vq->blocked = true;
859
860 itm.it_interval.tv_sec = 0;
861 itm.it_interval.tv_usec = 0;
862 itm.it_value.tv_sec = 0;
863 itm.it_value.tv_usec = timeout_usec;
864
865 setitimer(ITIMER_REAL, &itm, NULL);
866 }
867
868 /*
869 * The Network
870 *
871 * Handling output for network is also simple: we get all the output buffers
872 * and write them (ignoring the first element) to this device's file descriptor
873 * (/dev/net/tun).
874 */
875 static void handle_net_output(struct virtqueue *vq, bool timeout)
876 {
877 unsigned int head, out, in, num = 0;
878 int len;
879 struct iovec iov[vq->vring.num];
880 static int last_timeout_num;
881
882 /* Keep getting output buffers from the Guest until we run out. */
883 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
884 if (in)
885 errx(1, "Input buffers in output queue?");
886 len = writev(vq->dev->fd, iov, out);
887 if (len < 0)
888 err(1, "Writing network packet to tun");
889 add_used_and_trigger(vq, head, len);
890 num++;
891 }
892
893 /* Block further kicks and set up a timer if we saw anything. */
894 if (!timeout && num)
895 block_vq(vq);
896
897 /* We never quite know how long should we wait before we check the
898 * queue again for more packets. We start at 500 microseconds, and if
899 * we get fewer packets than last time, we assume we made the timeout
900 * too small and increase it by 10 microseconds. Otherwise, we drop it
901 * by one microsecond every time. It seems to work well enough. */
902 if (timeout) {
903 if (num < last_timeout_num)
904 timeout_usec += 10;
905 else if (timeout_usec > 1)
906 timeout_usec--;
907 last_timeout_num = num;
908 }
909 }
910
911 /* This is where we handle a packet coming in from the tun device to our
912 * Guest. */
913 static bool handle_tun_input(struct device *dev)
914 {
915 unsigned int head, in_num, out_num;
916 int len;
917 struct iovec iov[dev->vq->vring.num];
918
919 /* First we need a network buffer from the Guests's recv virtqueue. */
920 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
921 if (head == dev->vq->vring.num) {
922 /* Now, it's expected that if we try to send a packet too
923 * early, the Guest won't be ready yet. Wait until the device
924 * status says it's ready. */
925 /* FIXME: Actually want DRIVER_ACTIVE here. */
926
927 /* Now tell it we want to know if new things appear. */
928 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
929 wmb();
930
931 /* We'll turn this back on if input buffers are registered. */
932 return false;
933 } else if (out_num)
934 errx(1, "Output buffers in network recv queue?");
935
936 /* Read the packet from the device directly into the Guest's buffer. */
937 len = readv(dev->fd, iov, in_num);
938 if (len <= 0)
939 err(1, "reading network");
940
941 /* Tell the Guest about the new packet. */
942 add_used_and_trigger(dev->vq, head, len);
943
944 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
945 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
946 head != dev->vq->vring.num ? "sent" : "discarded");
947
948 /* All good. */
949 return true;
950 }
951
952 /*L:215 This is the callback attached to the network and console input
953 * virtqueues: it ensures we try again, in case we stopped console or net
954 * delivery because Guest didn't have any buffers. */
955 static void enable_fd(struct virtqueue *vq, bool timeout)
956 {
957 add_device_fd(vq->dev->fd);
958 /* Snap the Waker out of its select loop. */
959 write(waker_fds.pipe[1], "", 1);
960 }
961
962 static void net_enable_fd(struct virtqueue *vq, bool timeout)
963 {
964 /* We don't need to know again when Guest refills receive buffer. */
965 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
966 enable_fd(vq, timeout);
967 }
968
969 /* When the Guest tells us they updated the status field, we handle it. */
970 static void update_device_status(struct device *dev)
971 {
972 struct virtqueue *vq;
973
974 /* This is a reset. */
975 if (dev->desc->status == 0) {
976 verbose("Resetting device %s\n", dev->name);
977
978 /* Clear any features they've acked. */
979 memset(get_feature_bits(dev) + dev->feature_len, 0,
980 dev->feature_len);
981
982 /* Zero out the virtqueues. */
983 for (vq = dev->vq; vq; vq = vq->next) {
984 memset(vq->vring.desc, 0,
985 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
986 lg_last_avail(vq) = 0;
987 }
988 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
989 warnx("Device %s configuration FAILED", dev->name);
990 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
991 unsigned int i;
992
993 verbose("Device %s OK: offered", dev->name);
994 for (i = 0; i < dev->feature_len; i++)
995 verbose(" %02x", get_feature_bits(dev)[i]);
996 verbose(", accepted");
997 for (i = 0; i < dev->feature_len; i++)
998 verbose(" %02x", get_feature_bits(dev)
999 [dev->feature_len+i]);
1000
1001 if (dev->ready)
1002 dev->ready(dev);
1003 }
1004 }
1005
1006 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1007 static void handle_output(unsigned long addr)
1008 {
1009 struct device *i;
1010 struct virtqueue *vq;
1011
1012 /* Check each device and virtqueue. */
1013 for (i = devices.dev; i; i = i->next) {
1014 /* Notifications to device descriptors update device status. */
1015 if (from_guest_phys(addr) == i->desc) {
1016 update_device_status(i);
1017 return;
1018 }
1019
1020 /* Notifications to virtqueues mean output has occurred. */
1021 for (vq = i->vq; vq; vq = vq->next) {
1022 if (vq->config.pfn != addr/getpagesize())
1023 continue;
1024
1025 /* Guest should acknowledge (and set features!) before
1026 * using the device. */
1027 if (i->desc->status == 0) {
1028 warnx("%s gave early output", i->name);
1029 return;
1030 }
1031
1032 if (strcmp(vq->dev->name, "console") != 0)
1033 verbose("Output to %s\n", vq->dev->name);
1034 if (vq->handle_output)
1035 vq->handle_output(vq, false);
1036 return;
1037 }
1038 }
1039
1040 /* Early console write is done using notify on a nul-terminated string
1041 * in Guest memory. */
1042 if (addr >= guest_limit)
1043 errx(1, "Bad NOTIFY %#lx", addr);
1044
1045 write(STDOUT_FILENO, from_guest_phys(addr),
1046 strnlen(from_guest_phys(addr), guest_limit - addr));
1047 }
1048
1049 static void handle_timeout(void)
1050 {
1051 char buf[32];
1052 struct device *i;
1053 struct virtqueue *vq;
1054
1055 /* Clear the pipe */
1056 read(timeoutpipe[0], buf, sizeof(buf));
1057
1058 /* Check each device and virtqueue: flush blocked ones. */
1059 for (i = devices.dev; i; i = i->next) {
1060 for (vq = i->vq; vq; vq = vq->next) {
1061 if (!vq->blocked)
1062 continue;
1063
1064 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1065 vq->blocked = false;
1066 if (vq->handle_output)
1067 vq->handle_output(vq, true);
1068 }
1069 }
1070 }
1071
1072 /* This is called when the Waker wakes us up: check for incoming file
1073 * descriptors. */
1074 static void handle_input(void)
1075 {
1076 /* select() wants a zeroed timeval to mean "don't wait". */
1077 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1078
1079 for (;;) {
1080 struct device *i;
1081 fd_set fds = devices.infds;
1082 int num;
1083
1084 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1085 /* Could get interrupted */
1086 if (num < 0)
1087 continue;
1088 /* If nothing is ready, we're done. */
1089 if (num == 0)
1090 break;
1091
1092 /* Otherwise, call the device(s) which have readable file
1093 * descriptors and a method of handling them. */
1094 for (i = devices.dev; i; i = i->next) {
1095 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1096 if (i->handle_input(i))
1097 continue;
1098
1099 /* If handle_input() returns false, it means we
1100 * should no longer service it. Networking and
1101 * console do this when there's no input
1102 * buffers to deliver into. Console also uses
1103 * it when it discovers that stdin is closed. */
1104 FD_CLR(i->fd, &devices.infds);
1105 }
1106 }
1107
1108 /* Is this the timeout fd? */
1109 if (FD_ISSET(timeoutpipe[0], &fds))
1110 handle_timeout();
1111 }
1112 }
1113
1114 /*L:190
1115 * Device Setup
1116 *
1117 * All devices need a descriptor so the Guest knows it exists, and a "struct
1118 * device" so the Launcher can keep track of it. We have common helper
1119 * routines to allocate and manage them.
1120 */
1121
1122 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1123 * number of virtqueue descriptors, then two sets of feature bits, then an
1124 * array of configuration bytes. This routine returns the configuration
1125 * pointer. */
1126 static u8 *device_config(const struct device *dev)
1127 {
1128 return (void *)(dev->desc + 1)
1129 + dev->num_vq * sizeof(struct lguest_vqconfig)
1130 + dev->feature_len * 2;
1131 }
1132
1133 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1134 * table page just above the Guest's normal memory. It returns a pointer to
1135 * that descriptor. */
1136 static struct lguest_device_desc *new_dev_desc(u16 type)
1137 {
1138 struct lguest_device_desc d = { .type = type };
1139 void *p;
1140
1141 /* Figure out where the next device config is, based on the last one. */
1142 if (devices.lastdev)
1143 p = device_config(devices.lastdev)
1144 + devices.lastdev->desc->config_len;
1145 else
1146 p = devices.descpage;
1147
1148 /* We only have one page for all the descriptors. */
1149 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1150 errx(1, "Too many devices");
1151
1152 /* p might not be aligned, so we memcpy in. */
1153 return memcpy(p, &d, sizeof(d));
1154 }
1155
1156 /* Each device descriptor is followed by the description of its virtqueues. We
1157 * specify how many descriptors the virtqueue is to have. */
1158 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1159 void (*handle_output)(struct virtqueue *, bool))
1160 {
1161 unsigned int pages;
1162 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1163 void *p;
1164
1165 /* First we need some memory for this virtqueue. */
1166 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1167 / getpagesize();
1168 p = get_pages(pages);
1169
1170 /* Initialize the virtqueue */
1171 vq->next = NULL;
1172 vq->last_avail_idx = 0;
1173 vq->dev = dev;
1174 vq->inflight = 0;
1175 vq->blocked = false;
1176
1177 /* Initialize the configuration. */
1178 vq->config.num = num_descs;
1179 vq->config.irq = devices.next_irq++;
1180 vq->config.pfn = to_guest_phys(p) / getpagesize();
1181
1182 /* Initialize the vring. */
1183 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1184
1185 /* Append virtqueue to this device's descriptor. We use
1186 * device_config() to get the end of the device's current virtqueues;
1187 * we check that we haven't added any config or feature information
1188 * yet, otherwise we'd be overwriting them. */
1189 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1190 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1191 dev->num_vq++;
1192 dev->desc->num_vq++;
1193
1194 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1195
1196 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1197 * second. */
1198 for (i = &dev->vq; *i; i = &(*i)->next);
1199 *i = vq;
1200
1201 /* Set the routine to call when the Guest does something to this
1202 * virtqueue. */
1203 vq->handle_output = handle_output;
1204
1205 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1206 * don't have a handler */
1207 if (!handle_output)
1208 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1209 }
1210
1211 /* The first half of the feature bitmask is for us to advertise features. The
1212 * second half is for the Guest to accept features. */
1213 static void add_feature(struct device *dev, unsigned bit)
1214 {
1215 u8 *features = get_feature_bits(dev);
1216
1217 /* We can't extend the feature bits once we've added config bytes */
1218 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1219 assert(dev->desc->config_len == 0);
1220 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1221 }
1222
1223 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1224 }
1225
1226 /* This routine sets the configuration fields for an existing device's
1227 * descriptor. It only works for the last device, but that's OK because that's
1228 * how we use it. */
1229 static void set_config(struct device *dev, unsigned len, const void *conf)
1230 {
1231 /* Check we haven't overflowed our single page. */
1232 if (device_config(dev) + len > devices.descpage + getpagesize())
1233 errx(1, "Too many devices");
1234
1235 /* Copy in the config information, and store the length. */
1236 memcpy(device_config(dev), conf, len);
1237 dev->desc->config_len = len;
1238 }
1239
1240 /* This routine does all the creation and setup of a new device, including
1241 * calling new_dev_desc() to allocate the descriptor and device memory.
1242 *
1243 * See what I mean about userspace being boring? */
1244 static struct device *new_device(const char *name, u16 type, int fd,
1245 bool (*handle_input)(struct device *))
1246 {
1247 struct device *dev = malloc(sizeof(*dev));
1248
1249 /* Now we populate the fields one at a time. */
1250 dev->fd = fd;
1251 /* If we have an input handler for this file descriptor, then we add it
1252 * to the device_list's fdset and maxfd. */
1253 if (handle_input)
1254 add_device_fd(dev->fd);
1255 dev->desc = new_dev_desc(type);
1256 dev->handle_input = handle_input;
1257 dev->name = name;
1258 dev->vq = NULL;
1259 dev->ready = NULL;
1260 dev->feature_len = 0;
1261 dev->num_vq = 0;
1262
1263 /* Append to device list. Prepending to a single-linked list is
1264 * easier, but the user expects the devices to be arranged on the bus
1265 * in command-line order. The first network device on the command line
1266 * is eth0, the first block device /dev/vda, etc. */
1267 if (devices.lastdev)
1268 devices.lastdev->next = dev;
1269 else
1270 devices.dev = dev;
1271 devices.lastdev = dev;
1272
1273 return dev;
1274 }
1275
1276 /* Our first setup routine is the console. It's a fairly simple device, but
1277 * UNIX tty handling makes it uglier than it could be. */
1278 static void setup_console(void)
1279 {
1280 struct device *dev;
1281
1282 /* If we can save the initial standard input settings... */
1283 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1284 struct termios term = orig_term;
1285 /* Then we turn off echo, line buffering and ^C etc. We want a
1286 * raw input stream to the Guest. */
1287 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1288 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1289 /* If we exit gracefully, the original settings will be
1290 * restored so the user can see what they're typing. */
1291 atexit(restore_term);
1292 }
1293
1294 dev = new_device("console", VIRTIO_ID_CONSOLE,
1295 STDIN_FILENO, handle_console_input);
1296 /* We store the console state in dev->priv, and initialize it. */
1297 dev->priv = malloc(sizeof(struct console_abort));
1298 ((struct console_abort *)dev->priv)->count = 0;
1299
1300 /* The console needs two virtqueues: the input then the output. When
1301 * they put something the input queue, we make sure we're listening to
1302 * stdin. When they put something in the output queue, we write it to
1303 * stdout. */
1304 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1305 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1306
1307 verbose("device %u: console\n", devices.device_num++);
1308 }
1309 /*:*/
1310
1311 static void timeout_alarm(int sig)
1312 {
1313 write(timeoutpipe[1], "", 1);
1314 }
1315
1316 static void setup_timeout(void)
1317 {
1318 if (pipe(timeoutpipe) != 0)
1319 err(1, "Creating timeout pipe");
1320
1321 if (fcntl(timeoutpipe[1], F_SETFL,
1322 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1323 err(1, "Making timeout pipe nonblocking");
1324
1325 add_device_fd(timeoutpipe[0]);
1326 signal(SIGALRM, timeout_alarm);
1327 }
1328
1329 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1330 * --sharenet=<name> option which opens or creates a named pipe. This can be
1331 * used to send packets to another guest in a 1:1 manner.
1332 *
1333 * More sopisticated is to use one of the tools developed for project like UML
1334 * to do networking.
1335 *
1336 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1337 * completely generic ("here's my vring, attach to your vring") and would work
1338 * for any traffic. Of course, namespace and permissions issues need to be
1339 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1340 * multiple inter-guest channels behind one interface, although it would
1341 * require some manner of hotplugging new virtio channels.
1342 *
1343 * Finally, we could implement a virtio network switch in the kernel. :*/
1344
1345 static u32 str2ip(const char *ipaddr)
1346 {
1347 unsigned int b[4];
1348
1349 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1350 errx(1, "Failed to parse IP address '%s'", ipaddr);
1351 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1352 }
1353
1354 static void str2mac(const char *macaddr, unsigned char mac[6])
1355 {
1356 unsigned int m[6];
1357 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1358 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1359 errx(1, "Failed to parse mac address '%s'", macaddr);
1360 mac[0] = m[0];
1361 mac[1] = m[1];
1362 mac[2] = m[2];
1363 mac[3] = m[3];
1364 mac[4] = m[4];
1365 mac[5] = m[5];
1366 }
1367
1368 /* This code is "adapted" from libbridge: it attaches the Host end of the
1369 * network device to the bridge device specified by the command line.
1370 *
1371 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1372 * dislike bridging), and I just try not to break it. */
1373 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1374 {
1375 int ifidx;
1376 struct ifreq ifr;
1377
1378 if (!*br_name)
1379 errx(1, "must specify bridge name");
1380
1381 ifidx = if_nametoindex(if_name);
1382 if (!ifidx)
1383 errx(1, "interface %s does not exist!", if_name);
1384
1385 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1386 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1387 ifr.ifr_ifindex = ifidx;
1388 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1389 err(1, "can't add %s to bridge %s", if_name, br_name);
1390 }
1391
1392 /* This sets up the Host end of the network device with an IP address, brings
1393 * it up so packets will flow, the copies the MAC address into the hwaddr
1394 * pointer. */
1395 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1396 {
1397 struct ifreq ifr;
1398 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1399
1400 memset(&ifr, 0, sizeof(ifr));
1401 strcpy(ifr.ifr_name, tapif);
1402
1403 /* Don't read these incantations. Just cut & paste them like I did! */
1404 sin->sin_family = AF_INET;
1405 sin->sin_addr.s_addr = htonl(ipaddr);
1406 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1407 err(1, "Setting %s interface address", tapif);
1408 ifr.ifr_flags = IFF_UP;
1409 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1410 err(1, "Bringing interface %s up", tapif);
1411 }
1412
1413 static int get_tun_device(char tapif[IFNAMSIZ])
1414 {
1415 struct ifreq ifr;
1416 int netfd;
1417
1418 /* Start with this zeroed. Messy but sure. */
1419 memset(&ifr, 0, sizeof(ifr));
1420
1421 /* We open the /dev/net/tun device and tell it we want a tap device. A
1422 * tap device is like a tun device, only somehow different. To tell
1423 * the truth, I completely blundered my way through this code, but it
1424 * works now! */
1425 netfd = open_or_die("/dev/net/tun", O_RDWR);
1426 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1427 strcpy(ifr.ifr_name, "tap%d");
1428 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1429 err(1, "configuring /dev/net/tun");
1430
1431 if (ioctl(netfd, TUNSETOFFLOAD,
1432 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1433 err(1, "Could not set features for tun device");
1434
1435 /* We don't need checksums calculated for packets coming in this
1436 * device: trust us! */
1437 ioctl(netfd, TUNSETNOCSUM, 1);
1438
1439 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1440 return netfd;
1441 }
1442
1443 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1444 * routing, but the principle is the same: it uses the "tun" device to inject
1445 * packets into the Host as if they came in from a normal network card. We
1446 * just shunt packets between the Guest and the tun device. */
1447 static void setup_tun_net(char *arg)
1448 {
1449 struct device *dev;
1450 int netfd, ipfd;
1451 u32 ip = INADDR_ANY;
1452 bool bridging = false;
1453 char tapif[IFNAMSIZ], *p;
1454 struct virtio_net_config conf;
1455
1456 netfd = get_tun_device(tapif);
1457
1458 /* First we create a new network device. */
1459 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1460
1461 /* Network devices need a receive and a send queue, just like
1462 * console. */
1463 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1464 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1465
1466 /* We need a socket to perform the magic network ioctls to bring up the
1467 * tap interface, connect to the bridge etc. Any socket will do! */
1468 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1469 if (ipfd < 0)
1470 err(1, "opening IP socket");
1471
1472 /* If the command line was --tunnet=bridge:<name> do bridging. */
1473 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1474 arg += strlen(BRIDGE_PFX);
1475 bridging = true;
1476 }
1477
1478 /* A mac address may follow the bridge name or IP address */
1479 p = strchr(arg, ':');
1480 if (p) {
1481 str2mac(p+1, conf.mac);
1482 add_feature(dev, VIRTIO_NET_F_MAC);
1483 *p = '\0';
1484 }
1485
1486 /* arg is now either an IP address or a bridge name */
1487 if (bridging)
1488 add_to_bridge(ipfd, tapif, arg);
1489 else
1490 ip = str2ip(arg);
1491
1492 /* Set up the tun device. */
1493 configure_device(ipfd, tapif, ip);
1494
1495 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1496 /* Expect Guest to handle everything except UFO */
1497 add_feature(dev, VIRTIO_NET_F_CSUM);
1498 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1499 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1500 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1501 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1502 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1503 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1504 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1505 set_config(dev, sizeof(conf), &conf);
1506
1507 /* We don't need the socket any more; setup is done. */
1508 close(ipfd);
1509
1510 devices.device_num++;
1511
1512 if (bridging)
1513 verbose("device %u: tun %s attached to bridge: %s\n",
1514 devices.device_num, tapif, arg);
1515 else
1516 verbose("device %u: tun %s: %s\n",
1517 devices.device_num, tapif, arg);
1518 }
1519
1520 /* Our block (disk) device should be really simple: the Guest asks for a block
1521 * number and we read or write that position in the file. Unfortunately, that
1522 * was amazingly slow: the Guest waits until the read is finished before
1523 * running anything else, even if it could have been doing useful work.
1524 *
1525 * We could use async I/O, except it's reputed to suck so hard that characters
1526 * actually go missing from your code when you try to use it.
1527 *
1528 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1529
1530 /* This hangs off device->priv. */
1531 struct vblk_info
1532 {
1533 /* The size of the file. */
1534 off64_t len;
1535
1536 /* The file descriptor for the file. */
1537 int fd;
1538
1539 /* IO thread listens on this file descriptor [0]. */
1540 int workpipe[2];
1541
1542 /* IO thread writes to this file descriptor to mark it done, then
1543 * Launcher triggers interrupt to Guest. */
1544 int done_fd;
1545 };
1546
1547 /*L:210
1548 * The Disk
1549 *
1550 * Remember that the block device is handled by a separate I/O thread. We head
1551 * straight into the core of that thread here:
1552 */
1553 static bool service_io(struct device *dev)
1554 {
1555 struct vblk_info *vblk = dev->priv;
1556 unsigned int head, out_num, in_num, wlen;
1557 int ret;
1558 u8 *in;
1559 struct virtio_blk_outhdr *out;
1560 struct iovec iov[dev->vq->vring.num];
1561 off64_t off;
1562
1563 /* See if there's a request waiting. If not, nothing to do. */
1564 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1565 if (head == dev->vq->vring.num)
1566 return false;
1567
1568 /* Every block request should contain at least one output buffer
1569 * (detailing the location on disk and the type of request) and one
1570 * input buffer (to hold the result). */
1571 if (out_num == 0 || in_num == 0)
1572 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1573 head, out_num, in_num);
1574
1575 out = convert(&iov[0], struct virtio_blk_outhdr);
1576 in = convert(&iov[out_num+in_num-1], u8);
1577 off = out->sector * 512;
1578
1579 /* The block device implements "barriers", where the Guest indicates
1580 * that it wants all previous writes to occur before this write. We
1581 * don't have a way of asking our kernel to do a barrier, so we just
1582 * synchronize all the data in the file. Pretty poor, no? */
1583 if (out->type & VIRTIO_BLK_T_BARRIER)
1584 fdatasync(vblk->fd);
1585
1586 /* In general the virtio block driver is allowed to try SCSI commands.
1587 * It'd be nice if we supported eject, for example, but we don't. */
1588 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1589 fprintf(stderr, "Scsi commands unsupported\n");
1590 *in = VIRTIO_BLK_S_UNSUPP;
1591 wlen = sizeof(*in);
1592 } else if (out->type & VIRTIO_BLK_T_OUT) {
1593 /* Write */
1594
1595 /* Move to the right location in the block file. This can fail
1596 * if they try to write past end. */
1597 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1598 err(1, "Bad seek to sector %llu", out->sector);
1599
1600 ret = writev(vblk->fd, iov+1, out_num-1);
1601 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1602
1603 /* Grr... Now we know how long the descriptor they sent was, we
1604 * make sure they didn't try to write over the end of the block
1605 * file (possibly extending it). */
1606 if (ret > 0 && off + ret > vblk->len) {
1607 /* Trim it back to the correct length */
1608 ftruncate64(vblk->fd, vblk->len);
1609 /* Die, bad Guest, die. */
1610 errx(1, "Write past end %llu+%u", off, ret);
1611 }
1612 wlen = sizeof(*in);
1613 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1614 } else {
1615 /* Read */
1616
1617 /* Move to the right location in the block file. This can fail
1618 * if they try to read past end. */
1619 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1620 err(1, "Bad seek to sector %llu", out->sector);
1621
1622 ret = readv(vblk->fd, iov+1, in_num-1);
1623 verbose("READ from sector %llu: %i\n", out->sector, ret);
1624 if (ret >= 0) {
1625 wlen = sizeof(*in) + ret;
1626 *in = VIRTIO_BLK_S_OK;
1627 } else {
1628 wlen = sizeof(*in);
1629 *in = VIRTIO_BLK_S_IOERR;
1630 }
1631 }
1632
1633 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1634 * barrier. But Christoph Hellwig points out that we need a sync
1635 * *afterwards* as well: "Barriers specify no reordering to the front
1636 * or the back." And Jens Axboe confirmed it, so here we are: */
1637 if (out->type & VIRTIO_BLK_T_BARRIER)
1638 fdatasync(vblk->fd);
1639
1640 /* We can't trigger an IRQ, because we're not the Launcher. It does
1641 * that when we tell it we're done. */
1642 add_used(dev->vq, head, wlen);
1643 return true;
1644 }
1645
1646 /* This is the thread which actually services the I/O. */
1647 static int io_thread(void *_dev)
1648 {
1649 struct device *dev = _dev;
1650 struct vblk_info *vblk = dev->priv;
1651 char c;
1652
1653 /* Close other side of workpipe so we get 0 read when main dies. */
1654 close(vblk->workpipe[1]);
1655 /* Close the other side of the done_fd pipe. */
1656 close(dev->fd);
1657
1658 /* When this read fails, it means Launcher died, so we follow. */
1659 while (read(vblk->workpipe[0], &c, 1) == 1) {
1660 /* We acknowledge each request immediately to reduce latency,
1661 * rather than waiting until we've done them all. I haven't
1662 * measured to see if it makes any difference.
1663 *
1664 * That would be an interesting test, wouldn't it? You could
1665 * also try having more than one I/O thread. */
1666 while (service_io(dev))
1667 write(vblk->done_fd, &c, 1);
1668 }
1669 return 0;
1670 }
1671
1672 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1673 * when that thread tells us it's completed some I/O. */
1674 static bool handle_io_finish(struct device *dev)
1675 {
1676 char c;
1677
1678 /* If the I/O thread died, presumably it printed the error, so we
1679 * simply exit. */
1680 if (read(dev->fd, &c, 1) != 1)
1681 exit(1);
1682
1683 /* It did some work, so trigger the irq. */
1684 trigger_irq(dev->vq);
1685 return true;
1686 }
1687
1688 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1689 static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
1690 {
1691 struct vblk_info *vblk = vq->dev->priv;
1692 char c = 0;
1693
1694 /* Wake up I/O thread and tell it to go to work! */
1695 if (write(vblk->workpipe[1], &c, 1) != 1)
1696 /* Presumably it indicated why it died. */
1697 exit(1);
1698 }
1699
1700 /*L:198 This actually sets up a virtual block device. */
1701 static void setup_block_file(const char *filename)
1702 {
1703 int p[2];
1704 struct device *dev;
1705 struct vblk_info *vblk;
1706 void *stack;
1707 struct virtio_blk_config conf;
1708
1709 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1710 pipe(p);
1711
1712 /* The device responds to return from I/O thread. */
1713 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1714
1715 /* The device has one virtqueue, where the Guest places requests. */
1716 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1717
1718 /* Allocate the room for our own bookkeeping */
1719 vblk = dev->priv = malloc(sizeof(*vblk));
1720
1721 /* First we open the file and store the length. */
1722 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1723 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1724
1725 /* We support barriers. */
1726 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1727
1728 /* Tell Guest how many sectors this device has. */
1729 conf.capacity = cpu_to_le64(vblk->len / 512);
1730
1731 /* Tell Guest not to put in too many descriptors at once: two are used
1732 * for the in and out elements. */
1733 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1734 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1735
1736 set_config(dev, sizeof(conf), &conf);
1737
1738 /* The I/O thread writes to this end of the pipe when done. */
1739 vblk->done_fd = p[1];
1740
1741 /* This is the second pipe, which is how we tell the I/O thread about
1742 * more work. */
1743 pipe(vblk->workpipe);
1744
1745 /* Create stack for thread and run it. Since stack grows upwards, we
1746 * point the stack pointer to the end of this region. */
1747 stack = malloc(32768);
1748 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1749 * becoming a zombie. */
1750 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1751 err(1, "Creating clone");
1752
1753 /* We don't need to keep the I/O thread's end of the pipes open. */
1754 close(vblk->done_fd);
1755 close(vblk->workpipe[0]);
1756
1757 verbose("device %u: virtblock %llu sectors\n",
1758 devices.device_num, le64_to_cpu(conf.capacity));
1759 }
1760
1761 /* Our random number generator device reads from /dev/random into the Guest's
1762 * input buffers. The usual case is that the Guest doesn't want random numbers
1763 * and so has no buffers although /dev/random is still readable, whereas
1764 * console is the reverse.
1765 *
1766 * The same logic applies, however. */
1767 static bool handle_rng_input(struct device *dev)
1768 {
1769 int len;
1770 unsigned int head, in_num, out_num, totlen = 0;
1771 struct iovec iov[dev->vq->vring.num];
1772
1773 /* First we need a buffer from the Guests's virtqueue. */
1774 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1775
1776 /* If they're not ready for input, stop listening to this file
1777 * descriptor. We'll start again once they add an input buffer. */
1778 if (head == dev->vq->vring.num)
1779 return false;
1780
1781 if (out_num)
1782 errx(1, "Output buffers in rng?");
1783
1784 /* This is why we convert to iovecs: the readv() call uses them, and so
1785 * it reads straight into the Guest's buffer. We loop to make sure we
1786 * fill it. */
1787 while (!iov_empty(iov, in_num)) {
1788 len = readv(dev->fd, iov, in_num);
1789 if (len <= 0)
1790 err(1, "Read from /dev/random gave %i", len);
1791 iov_consume(iov, in_num, len);
1792 totlen += len;
1793 }
1794
1795 /* Tell the Guest about the new input. */
1796 add_used_and_trigger(dev->vq, head, totlen);
1797
1798 /* Everything went OK! */
1799 return true;
1800 }
1801
1802 /* And this creates a "hardware" random number device for the Guest. */
1803 static void setup_rng(void)
1804 {
1805 struct device *dev;
1806 int fd;
1807
1808 fd = open_or_die("/dev/random", O_RDONLY);
1809
1810 /* The device responds to return from I/O thread. */
1811 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1812
1813 /* The device has one virtqueue, where the Guest places inbufs. */
1814 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1815
1816 verbose("device %u: rng\n", devices.device_num++);
1817 }
1818 /* That's the end of device setup. */
1819
1820 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1821 static void __attribute__((noreturn)) restart_guest(void)
1822 {
1823 unsigned int i;
1824
1825 /* Since we don't track all open fds, we simply close everything beyond
1826 * stderr. */
1827 for (i = 3; i < FD_SETSIZE; i++)
1828 close(i);
1829
1830 /* The exec automatically gets rid of the I/O and Waker threads. */
1831 execv(main_args[0], main_args);
1832 err(1, "Could not exec %s", main_args[0]);
1833 }
1834
1835 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1836 * its input and output, and finally, lays it to rest. */
1837 static void __attribute__((noreturn)) run_guest(void)
1838 {
1839 for (;;) {
1840 unsigned long args[] = { LHREQ_BREAK, 0 };
1841 unsigned long notify_addr;
1842 int readval;
1843
1844 /* We read from the /dev/lguest device to run the Guest. */
1845 readval = pread(lguest_fd, &notify_addr,
1846 sizeof(notify_addr), cpu_id);
1847
1848 /* One unsigned long means the Guest did HCALL_NOTIFY */
1849 if (readval == sizeof(notify_addr)) {
1850 verbose("Notify on address %#lx\n", notify_addr);
1851 handle_output(notify_addr);
1852 continue;
1853 /* ENOENT means the Guest died. Reading tells us why. */
1854 } else if (errno == ENOENT) {
1855 char reason[1024] = { 0 };
1856 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1857 errx(1, "%s", reason);
1858 /* ERESTART means that we need to reboot the guest */
1859 } else if (errno == ERESTART) {
1860 restart_guest();
1861 /* EAGAIN means a signal (timeout).
1862 * Anything else means a bug or incompatible change. */
1863 } else if (errno != EAGAIN)
1864 err(1, "Running guest failed");
1865
1866 /* Only service input on thread for CPU 0. */
1867 if (cpu_id != 0)
1868 continue;
1869
1870 /* Service input, then unset the BREAK to release the Waker. */
1871 handle_input();
1872 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1873 err(1, "Resetting break");
1874 }
1875 }
1876 /*L:240
1877 * This is the end of the Launcher. The good news: we are over halfway
1878 * through! The bad news: the most fiendish part of the code still lies ahead
1879 * of us.
1880 *
1881 * Are you ready? Take a deep breath and join me in the core of the Host, in
1882 * "make Host".
1883 :*/
1884
1885 static struct option opts[] = {
1886 { "verbose", 0, NULL, 'v' },
1887 { "tunnet", 1, NULL, 't' },
1888 { "block", 1, NULL, 'b' },
1889 { "rng", 0, NULL, 'r' },
1890 { "initrd", 1, NULL, 'i' },
1891 { NULL },
1892 };
1893 static void usage(void)
1894 {
1895 errx(1, "Usage: lguest [--verbose] "
1896 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1897 "|--block=<filename>|--initrd=<filename>]...\n"
1898 "<mem-in-mb> vmlinux [args...]");
1899 }
1900
1901 /*L:105 The main routine is where the real work begins: */
1902 int main(int argc, char *argv[])
1903 {
1904 /* Memory, top-level pagetable, code startpoint and size of the
1905 * (optional) initrd. */
1906 unsigned long mem = 0, start, initrd_size = 0;
1907 /* Two temporaries. */
1908 int i, c;
1909 /* The boot information for the Guest. */
1910 struct boot_params *boot;
1911 /* If they specify an initrd file to load. */
1912 const char *initrd_name = NULL;
1913
1914 /* Save the args: we "reboot" by execing ourselves again. */
1915 main_args = argv;
1916 /* We don't "wait" for the children, so prevent them from becoming
1917 * zombies. */
1918 signal(SIGCHLD, SIG_IGN);
1919
1920 /* First we initialize the device list. Since console and network
1921 * device receive input from a file descriptor, we keep an fdset
1922 * (infds) and the maximum fd number (max_infd) with the head of the
1923 * list. We also keep a pointer to the last device. Finally, we keep
1924 * the next interrupt number to use for devices (1: remember that 0 is
1925 * used by the timer). */
1926 FD_ZERO(&devices.infds);
1927 devices.max_infd = -1;
1928 devices.lastdev = NULL;
1929 devices.next_irq = 1;
1930
1931 cpu_id = 0;
1932 /* We need to know how much memory so we can set up the device
1933 * descriptor and memory pages for the devices as we parse the command
1934 * line. So we quickly look through the arguments to find the amount
1935 * of memory now. */
1936 for (i = 1; i < argc; i++) {
1937 if (argv[i][0] != '-') {
1938 mem = atoi(argv[i]) * 1024 * 1024;
1939 /* We start by mapping anonymous pages over all of
1940 * guest-physical memory range. This fills it with 0,
1941 * and ensures that the Guest won't be killed when it
1942 * tries to access it. */
1943 guest_base = map_zeroed_pages(mem / getpagesize()
1944 + DEVICE_PAGES);
1945 guest_limit = mem;
1946 guest_max = mem + DEVICE_PAGES*getpagesize();
1947 devices.descpage = get_pages(1);
1948 break;
1949 }
1950 }
1951
1952 /* The options are fairly straight-forward */
1953 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1954 switch (c) {
1955 case 'v':
1956 verbose = true;
1957 break;
1958 case 't':
1959 setup_tun_net(optarg);
1960 break;
1961 case 'b':
1962 setup_block_file(optarg);
1963 break;
1964 case 'r':
1965 setup_rng();
1966 break;
1967 case 'i':
1968 initrd_name = optarg;
1969 break;
1970 default:
1971 warnx("Unknown argument %s", argv[optind]);
1972 usage();
1973 }
1974 }
1975 /* After the other arguments we expect memory and kernel image name,
1976 * followed by command line arguments for the kernel. */
1977 if (optind + 2 > argc)
1978 usage();
1979
1980 verbose("Guest base is at %p\n", guest_base);
1981
1982 /* We always have a console device */
1983 setup_console();
1984
1985 /* We can timeout waiting for Guest network transmit. */
1986 setup_timeout();
1987
1988 /* Now we load the kernel */
1989 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1990
1991 /* Boot information is stashed at physical address 0 */
1992 boot = from_guest_phys(0);
1993
1994 /* Map the initrd image if requested (at top of physical memory) */
1995 if (initrd_name) {
1996 initrd_size = load_initrd(initrd_name, mem);
1997 /* These are the location in the Linux boot header where the
1998 * start and size of the initrd are expected to be found. */
1999 boot->hdr.ramdisk_image = mem - initrd_size;
2000 boot->hdr.ramdisk_size = initrd_size;
2001 /* The bootloader type 0xFF means "unknown"; that's OK. */
2002 boot->hdr.type_of_loader = 0xFF;
2003 }
2004
2005 /* The Linux boot header contains an "E820" memory map: ours is a
2006 * simple, single region. */
2007 boot->e820_entries = 1;
2008 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2009 /* The boot header contains a command line pointer: we put the command
2010 * line after the boot header. */
2011 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2012 /* We use a simple helper to copy the arguments separated by spaces. */
2013 concat((char *)(boot + 1), argv+optind+2);
2014
2015 /* Boot protocol version: 2.07 supports the fields for lguest. */
2016 boot->hdr.version = 0x207;
2017
2018 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2019 boot->hdr.hardware_subarch = 1;
2020
2021 /* Tell the entry path not to try to reload segment registers. */
2022 boot->hdr.loadflags |= KEEP_SEGMENTS;
2023
2024 /* We tell the kernel to initialize the Guest: this returns the open
2025 * /dev/lguest file descriptor. */
2026 tell_kernel(start);
2027
2028 /* We clone off a thread, which wakes the Launcher whenever one of the
2029 * input file descriptors needs attention. We call this the Waker, and
2030 * we'll cover it in a moment. */
2031 setup_waker();
2032
2033 /* Finally, run the Guest. This doesn't return. */
2034 run_guest();
2035 }
2036 /*:*/
2037
2038 /*M:999
2039 * Mastery is done: you now know everything I do.
2040 *
2041 * But surely you have seen code, features and bugs in your wanderings which
2042 * you now yearn to attack? That is the real game, and I look forward to you
2043 * patching and forking lguest into the Your-Name-Here-visor.
2044 *
2045 * Farewell, and good coding!
2046 * Rusty Russell.
2047 */