lguest: clean up length-used value in example launcher
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49 * want to draw attention to the use of kernel-style types.
50 *
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
60
61 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
71
72 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
77 /*:*/
78
79 /* File descriptors for the Waker. */
80 struct {
81 int pipe[2];
82 } waker_fds;
83
84 /* The pointer to the start of guest memory. */
85 static void *guest_base;
86 /* The maximum guest physical address allowed, and maximum possible. */
87 static unsigned long guest_limit, guest_max;
88 /* The pipe for signal hander to write to. */
89 static int timeoutpipe[2];
90 static unsigned int timeout_usec = 500;
91 /* The /dev/lguest file descriptor. */
92 static int lguest_fd;
93
94 /* a per-cpu variable indicating whose vcpu is currently running */
95 static unsigned int __thread cpu_id;
96
97 /* This is our list of devices. */
98 struct device_list
99 {
100 /* Summary information about the devices in our list: ready to pass to
101 * select() to ask which need servicing.*/
102 fd_set infds;
103 int max_infd;
104
105 /* Counter to assign interrupt numbers. */
106 unsigned int next_irq;
107
108 /* Counter to print out convenient device numbers. */
109 unsigned int device_num;
110
111 /* The descriptor page for the devices. */
112 u8 *descpage;
113
114 /* A single linked list of devices. */
115 struct device *dev;
116 /* And a pointer to the last device for easy append and also for
117 * configuration appending. */
118 struct device *lastdev;
119 };
120
121 /* The list of Guest devices, based on command line arguments. */
122 static struct device_list devices;
123
124 /* The device structure describes a single device. */
125 struct device
126 {
127 /* The linked-list pointer. */
128 struct device *next;
129
130 /* The device's descriptor, as mapped into the Guest. */
131 struct lguest_device_desc *desc;
132
133 /* We can't trust desc values once Guest has booted: we use these. */
134 unsigned int feature_len;
135 unsigned int num_vq;
136
137 /* The name of this device, for --verbose. */
138 const char *name;
139
140 /* If handle_input is set, it wants to be called when this file
141 * descriptor is ready. */
142 int fd;
143 bool (*handle_input)(struct device *me);
144
145 /* Any queues attached to this device */
146 struct virtqueue *vq;
147
148 /* Handle status being finalized (ie. feature bits stable). */
149 void (*ready)(struct device *me);
150
151 /* Device-specific data. */
152 void *priv;
153 };
154
155 /* The virtqueue structure describes a queue attached to a device. */
156 struct virtqueue
157 {
158 struct virtqueue *next;
159
160 /* Which device owns me. */
161 struct device *dev;
162
163 /* The configuration for this queue. */
164 struct lguest_vqconfig config;
165
166 /* The actual ring of buffers. */
167 struct vring vring;
168
169 /* Last available index we saw. */
170 u16 last_avail_idx;
171
172 /* The routine to call when the Guest pings us, or timeout. */
173 void (*handle_output)(struct virtqueue *me, bool timeout);
174
175 /* Is this blocked awaiting a timer? */
176 bool blocked;
177 };
178
179 /* Remember the arguments to the program so we can "reboot" */
180 static char **main_args;
181
182 /* We have to be careful with barriers: our devices are all run in separate
183 * threads and so we need to make sure that changes visible to the Guest happen
184 * in precise order. */
185 #define wmb() __asm__ __volatile__("" : : : "memory")
186
187 /* Convert an iovec element to the given type.
188 *
189 * This is a fairly ugly trick: we need to know the size of the type and
190 * alignment requirement to check the pointer is kosher. It's also nice to
191 * have the name of the type in case we report failure.
192 *
193 * Typing those three things all the time is cumbersome and error prone, so we
194 * have a macro which sets them all up and passes to the real function. */
195 #define convert(iov, type) \
196 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
197
198 static void *_convert(struct iovec *iov, size_t size, size_t align,
199 const char *name)
200 {
201 if (iov->iov_len != size)
202 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
203 if ((unsigned long)iov->iov_base % align != 0)
204 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
205 return iov->iov_base;
206 }
207
208 /* Wrapper for the last available index. Makes it easier to change. */
209 #define lg_last_avail(vq) ((vq)->last_avail_idx)
210
211 /* The virtio configuration space is defined to be little-endian. x86 is
212 * little-endian too, but it's nice to be explicit so we have these helpers. */
213 #define cpu_to_le16(v16) (v16)
214 #define cpu_to_le32(v32) (v32)
215 #define cpu_to_le64(v64) (v64)
216 #define le16_to_cpu(v16) (v16)
217 #define le32_to_cpu(v32) (v32)
218 #define le64_to_cpu(v64) (v64)
219
220 /* Is this iovec empty? */
221 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
222 {
223 unsigned int i;
224
225 for (i = 0; i < num_iov; i++)
226 if (iov[i].iov_len)
227 return false;
228 return true;
229 }
230
231 /* Take len bytes from the front of this iovec. */
232 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
233 {
234 unsigned int i;
235
236 for (i = 0; i < num_iov; i++) {
237 unsigned int used;
238
239 used = iov[i].iov_len < len ? iov[i].iov_len : len;
240 iov[i].iov_base += used;
241 iov[i].iov_len -= used;
242 len -= used;
243 }
244 assert(len == 0);
245 }
246
247 /* The device virtqueue descriptors are followed by feature bitmasks. */
248 static u8 *get_feature_bits(struct device *dev)
249 {
250 return (u8 *)(dev->desc + 1)
251 + dev->num_vq * sizeof(struct lguest_vqconfig);
252 }
253
254 /*L:100 The Launcher code itself takes us out into userspace, that scary place
255 * where pointers run wild and free! Unfortunately, like most userspace
256 * programs, it's quite boring (which is why everyone likes to hack on the
257 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
258 * will get you through this section. Or, maybe not.
259 *
260 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
261 * memory and stores it in "guest_base". In other words, Guest physical ==
262 * Launcher virtual with an offset.
263 *
264 * This can be tough to get your head around, but usually it just means that we
265 * use these trivial conversion functions when the Guest gives us it's
266 * "physical" addresses: */
267 static void *from_guest_phys(unsigned long addr)
268 {
269 return guest_base + addr;
270 }
271
272 static unsigned long to_guest_phys(const void *addr)
273 {
274 return (addr - guest_base);
275 }
276
277 /*L:130
278 * Loading the Kernel.
279 *
280 * We start with couple of simple helper routines. open_or_die() avoids
281 * error-checking code cluttering the callers: */
282 static int open_or_die(const char *name, int flags)
283 {
284 int fd = open(name, flags);
285 if (fd < 0)
286 err(1, "Failed to open %s", name);
287 return fd;
288 }
289
290 /* map_zeroed_pages() takes a number of pages. */
291 static void *map_zeroed_pages(unsigned int num)
292 {
293 int fd = open_or_die("/dev/zero", O_RDONLY);
294 void *addr;
295
296 /* We use a private mapping (ie. if we write to the page, it will be
297 * copied). */
298 addr = mmap(NULL, getpagesize() * num,
299 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
300 if (addr == MAP_FAILED)
301 err(1, "Mmaping %u pages of /dev/zero", num);
302 close(fd);
303
304 return addr;
305 }
306
307 /* Get some more pages for a device. */
308 static void *get_pages(unsigned int num)
309 {
310 void *addr = from_guest_phys(guest_limit);
311
312 guest_limit += num * getpagesize();
313 if (guest_limit > guest_max)
314 errx(1, "Not enough memory for devices");
315 return addr;
316 }
317
318 /* This routine is used to load the kernel or initrd. It tries mmap, but if
319 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
320 * it falls back to reading the memory in. */
321 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
322 {
323 ssize_t r;
324
325 /* We map writable even though for some segments are marked read-only.
326 * The kernel really wants to be writable: it patches its own
327 * instructions.
328 *
329 * MAP_PRIVATE means that the page won't be copied until a write is
330 * done to it. This allows us to share untouched memory between
331 * Guests. */
332 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
333 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
334 return;
335
336 /* pread does a seek and a read in one shot: saves a few lines. */
337 r = pread(fd, addr, len, offset);
338 if (r != len)
339 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
340 }
341
342 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
343 * the Guest memory. ELF = Embedded Linking Format, which is the format used
344 * by all modern binaries on Linux including the kernel.
345 *
346 * The ELF headers give *two* addresses: a physical address, and a virtual
347 * address. We use the physical address; the Guest will map itself to the
348 * virtual address.
349 *
350 * We return the starting address. */
351 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
352 {
353 Elf32_Phdr phdr[ehdr->e_phnum];
354 unsigned int i;
355
356 /* Sanity checks on the main ELF header: an x86 executable with a
357 * reasonable number of correctly-sized program headers. */
358 if (ehdr->e_type != ET_EXEC
359 || ehdr->e_machine != EM_386
360 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
361 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
362 errx(1, "Malformed elf header");
363
364 /* An ELF executable contains an ELF header and a number of "program"
365 * headers which indicate which parts ("segments") of the program to
366 * load where. */
367
368 /* We read in all the program headers at once: */
369 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
370 err(1, "Seeking to program headers");
371 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
372 err(1, "Reading program headers");
373
374 /* Try all the headers: there are usually only three. A read-only one,
375 * a read-write one, and a "note" section which we don't load. */
376 for (i = 0; i < ehdr->e_phnum; i++) {
377 /* If this isn't a loadable segment, we ignore it */
378 if (phdr[i].p_type != PT_LOAD)
379 continue;
380
381 verbose("Section %i: size %i addr %p\n",
382 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
383
384 /* We map this section of the file at its physical address. */
385 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
386 phdr[i].p_offset, phdr[i].p_filesz);
387 }
388
389 /* The entry point is given in the ELF header. */
390 return ehdr->e_entry;
391 }
392
393 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
394 * supposed to jump into it and it will unpack itself. We used to have to
395 * perform some hairy magic because the unpacking code scared me.
396 *
397 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
398 * a small patch to jump over the tricky bits in the Guest, so now we just read
399 * the funky header so we know where in the file to load, and away we go! */
400 static unsigned long load_bzimage(int fd)
401 {
402 struct boot_params boot;
403 int r;
404 /* Modern bzImages get loaded at 1M. */
405 void *p = from_guest_phys(0x100000);
406
407 /* Go back to the start of the file and read the header. It should be
408 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
409 lseek(fd, 0, SEEK_SET);
410 read(fd, &boot, sizeof(boot));
411
412 /* Inside the setup_hdr, we expect the magic "HdrS" */
413 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
414 errx(1, "This doesn't look like a bzImage to me");
415
416 /* Skip over the extra sectors of the header. */
417 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
418
419 /* Now read everything into memory. in nice big chunks. */
420 while ((r = read(fd, p, 65536)) > 0)
421 p += r;
422
423 /* Finally, code32_start tells us where to enter the kernel. */
424 return boot.hdr.code32_start;
425 }
426
427 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
428 * come wrapped up in the self-decompressing "bzImage" format. With a little
429 * work, we can load those, too. */
430 static unsigned long load_kernel(int fd)
431 {
432 Elf32_Ehdr hdr;
433
434 /* Read in the first few bytes. */
435 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
436 err(1, "Reading kernel");
437
438 /* If it's an ELF file, it starts with "\177ELF" */
439 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
440 return map_elf(fd, &hdr);
441
442 /* Otherwise we assume it's a bzImage, and try to load it. */
443 return load_bzimage(fd);
444 }
445
446 /* This is a trivial little helper to align pages. Andi Kleen hated it because
447 * it calls getpagesize() twice: "it's dumb code."
448 *
449 * Kernel guys get really het up about optimization, even when it's not
450 * necessary. I leave this code as a reaction against that. */
451 static inline unsigned long page_align(unsigned long addr)
452 {
453 /* Add upwards and truncate downwards. */
454 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
455 }
456
457 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
458 * the kernel which the kernel can use to boot from without needing any
459 * drivers. Most distributions now use this as standard: the initrd contains
460 * the code to load the appropriate driver modules for the current machine.
461 *
462 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
463 * kernels. He sent me this (and tells me when I break it). */
464 static unsigned long load_initrd(const char *name, unsigned long mem)
465 {
466 int ifd;
467 struct stat st;
468 unsigned long len;
469
470 ifd = open_or_die(name, O_RDONLY);
471 /* fstat() is needed to get the file size. */
472 if (fstat(ifd, &st) < 0)
473 err(1, "fstat() on initrd '%s'", name);
474
475 /* We map the initrd at the top of memory, but mmap wants it to be
476 * page-aligned, so we round the size up for that. */
477 len = page_align(st.st_size);
478 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
479 /* Once a file is mapped, you can close the file descriptor. It's a
480 * little odd, but quite useful. */
481 close(ifd);
482 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
483
484 /* We return the initrd size. */
485 return len;
486 }
487 /*:*/
488
489 /* Simple routine to roll all the commandline arguments together with spaces
490 * between them. */
491 static void concat(char *dst, char *args[])
492 {
493 unsigned int i, len = 0;
494
495 for (i = 0; args[i]; i++) {
496 if (i) {
497 strcat(dst+len, " ");
498 len++;
499 }
500 strcpy(dst+len, args[i]);
501 len += strlen(args[i]);
502 }
503 /* In case it's empty. */
504 dst[len] = '\0';
505 }
506
507 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
508 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
509 * the base of Guest "physical" memory, the top physical page to allow and the
510 * entry point for the Guest. */
511 static void tell_kernel(unsigned long start)
512 {
513 unsigned long args[] = { LHREQ_INITIALIZE,
514 (unsigned long)guest_base,
515 guest_limit / getpagesize(), start };
516 verbose("Guest: %p - %p (%#lx)\n",
517 guest_base, guest_base + guest_limit, guest_limit);
518 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
519 if (write(lguest_fd, args, sizeof(args)) < 0)
520 err(1, "Writing to /dev/lguest");
521 }
522 /*:*/
523
524 static void add_device_fd(int fd)
525 {
526 FD_SET(fd, &devices.infds);
527 if (fd > devices.max_infd)
528 devices.max_infd = fd;
529 }
530
531 /*L:200
532 * The Waker.
533 *
534 * With console, block and network devices, we can have lots of input which we
535 * need to process. We could try to tell the kernel what file descriptors to
536 * watch, but handing a file descriptor mask through to the kernel is fairly
537 * icky.
538 *
539 * Instead, we clone off a thread which watches the file descriptors and writes
540 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
541 * stop running the Guest. This causes the Launcher to return from the
542 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
543 * the LHREQ_BREAK and wake us up again.
544 *
545 * This, of course, is merely a different *kind* of icky.
546 *
547 * Given my well-known antipathy to threads, I'd prefer to use processes. But
548 * it's easier to share Guest memory with threads, and trivial to share the
549 * devices.infds as the Launcher changes it.
550 */
551 static int waker(void *unused)
552 {
553 /* Close the write end of the pipe: only the Launcher has it open. */
554 close(waker_fds.pipe[1]);
555
556 for (;;) {
557 fd_set rfds = devices.infds;
558 unsigned long args[] = { LHREQ_BREAK, 1 };
559 unsigned int maxfd = devices.max_infd;
560
561 /* We also listen to the pipe from the Launcher. */
562 FD_SET(waker_fds.pipe[0], &rfds);
563 if (waker_fds.pipe[0] > maxfd)
564 maxfd = waker_fds.pipe[0];
565
566 /* Wait until input is ready from one of the devices. */
567 select(maxfd+1, &rfds, NULL, NULL, NULL);
568
569 /* Message from Launcher? */
570 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
571 char c;
572 /* If this fails, then assume Launcher has exited.
573 * Don't do anything on exit: we're just a thread! */
574 if (read(waker_fds.pipe[0], &c, 1) != 1)
575 _exit(0);
576 continue;
577 }
578
579 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
580 pwrite(lguest_fd, args, sizeof(args), cpu_id);
581 }
582 return 0;
583 }
584
585 /* This routine just sets up a pipe to the Waker process. */
586 static void setup_waker(void)
587 {
588 /* This pipe is closed when Launcher dies, telling Waker. */
589 if (pipe(waker_fds.pipe) != 0)
590 err(1, "Creating pipe for Waker");
591
592 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
593 err(1, "Creating Waker");
594 }
595
596 /*
597 * Device Handling.
598 *
599 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
600 * We need to make sure it's not trying to reach into the Launcher itself, so
601 * we have a convenient routine which checks it and exits with an error message
602 * if something funny is going on:
603 */
604 static void *_check_pointer(unsigned long addr, unsigned int size,
605 unsigned int line)
606 {
607 /* We have to separately check addr and addr+size, because size could
608 * be huge and addr + size might wrap around. */
609 if (addr >= guest_limit || addr + size >= guest_limit)
610 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
611 /* We return a pointer for the caller's convenience, now we know it's
612 * safe to use. */
613 return from_guest_phys(addr);
614 }
615 /* A macro which transparently hands the line number to the real function. */
616 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
617
618 /* Each buffer in the virtqueues is actually a chain of descriptors. This
619 * function returns the next descriptor in the chain, or vq->vring.num if we're
620 * at the end. */
621 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
622 {
623 unsigned int next;
624
625 /* If this descriptor says it doesn't chain, we're done. */
626 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
627 return vq->vring.num;
628
629 /* Check they're not leading us off end of descriptors. */
630 next = vq->vring.desc[i].next;
631 /* Make sure compiler knows to grab that: we don't want it changing! */
632 wmb();
633
634 if (next >= vq->vring.num)
635 errx(1, "Desc next is %u", next);
636
637 return next;
638 }
639
640 /* This looks in the virtqueue and for the first available buffer, and converts
641 * it to an iovec for convenient access. Since descriptors consist of some
642 * number of output then some number of input descriptors, it's actually two
643 * iovecs, but we pack them into one and note how many of each there were.
644 *
645 * This function returns the descriptor number found, or vq->vring.num (which
646 * is never a valid descriptor number) if none was found. */
647 static unsigned get_vq_desc(struct virtqueue *vq,
648 struct iovec iov[],
649 unsigned int *out_num, unsigned int *in_num)
650 {
651 unsigned int i, head;
652 u16 last_avail;
653
654 /* Check it isn't doing very strange things with descriptor numbers. */
655 last_avail = lg_last_avail(vq);
656 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
657 errx(1, "Guest moved used index from %u to %u",
658 last_avail, vq->vring.avail->idx);
659
660 /* If there's nothing new since last we looked, return invalid. */
661 if (vq->vring.avail->idx == last_avail)
662 return vq->vring.num;
663
664 /* Grab the next descriptor number they're advertising, and increment
665 * the index we've seen. */
666 head = vq->vring.avail->ring[last_avail % vq->vring.num];
667 lg_last_avail(vq)++;
668
669 /* If their number is silly, that's a fatal mistake. */
670 if (head >= vq->vring.num)
671 errx(1, "Guest says index %u is available", head);
672
673 /* When we start there are none of either input nor output. */
674 *out_num = *in_num = 0;
675
676 i = head;
677 do {
678 /* Grab the first descriptor, and check it's OK. */
679 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
680 iov[*out_num + *in_num].iov_base
681 = check_pointer(vq->vring.desc[i].addr,
682 vq->vring.desc[i].len);
683 /* If this is an input descriptor, increment that count. */
684 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
685 (*in_num)++;
686 else {
687 /* If it's an output descriptor, they're all supposed
688 * to come before any input descriptors. */
689 if (*in_num)
690 errx(1, "Descriptor has out after in");
691 (*out_num)++;
692 }
693
694 /* If we've got too many, that implies a descriptor loop. */
695 if (*out_num + *in_num > vq->vring.num)
696 errx(1, "Looped descriptor");
697 } while ((i = next_desc(vq, i)) != vq->vring.num);
698
699 return head;
700 }
701
702 /* After we've used one of their buffers, we tell them about it. We'll then
703 * want to send them an interrupt, using trigger_irq(). */
704 static void add_used(struct virtqueue *vq, unsigned int head, int len)
705 {
706 struct vring_used_elem *used;
707
708 /* The virtqueue contains a ring of used buffers. Get a pointer to the
709 * next entry in that used ring. */
710 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
711 used->id = head;
712 used->len = len;
713 /* Make sure buffer is written before we update index. */
714 wmb();
715 vq->vring.used->idx++;
716 }
717
718 /* This actually sends the interrupt for this virtqueue */
719 static void trigger_irq(struct virtqueue *vq)
720 {
721 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
722
723 /* If they don't want an interrupt, don't send one, unless empty. */
724 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
725 && lg_last_avail(vq) != vq->vring.avail->idx)
726 return;
727
728 /* Send the Guest an interrupt tell them we used something up. */
729 if (write(lguest_fd, buf, sizeof(buf)) != 0)
730 err(1, "Triggering irq %i", vq->config.irq);
731 }
732
733 /* And here's the combo meal deal. Supersize me! */
734 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
735 {
736 add_used(vq, head, len);
737 trigger_irq(vq);
738 }
739
740 /*
741 * The Console
742 *
743 * Here is the input terminal setting we save, and the routine to restore them
744 * on exit so the user gets their terminal back. */
745 static struct termios orig_term;
746 static void restore_term(void)
747 {
748 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
749 }
750
751 /* We associate some data with the console for our exit hack. */
752 struct console_abort
753 {
754 /* How many times have they hit ^C? */
755 int count;
756 /* When did they start? */
757 struct timeval start;
758 };
759
760 /* This is the routine which handles console input (ie. stdin). */
761 static bool handle_console_input(struct device *dev)
762 {
763 int len;
764 unsigned int head, in_num, out_num;
765 struct iovec iov[dev->vq->vring.num];
766 struct console_abort *abort = dev->priv;
767
768 /* First we need a console buffer from the Guests's input virtqueue. */
769 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
770
771 /* If they're not ready for input, stop listening to this file
772 * descriptor. We'll start again once they add an input buffer. */
773 if (head == dev->vq->vring.num)
774 return false;
775
776 if (out_num)
777 errx(1, "Output buffers in console in queue?");
778
779 /* This is why we convert to iovecs: the readv() call uses them, and so
780 * it reads straight into the Guest's buffer. */
781 len = readv(dev->fd, iov, in_num);
782 if (len <= 0) {
783 /* This implies that the console is closed, is /dev/null, or
784 * something went terribly wrong. */
785 warnx("Failed to get console input, ignoring console.");
786 /* Put the input terminal back. */
787 restore_term();
788 /* Remove callback from input vq, so it doesn't restart us. */
789 dev->vq->handle_output = NULL;
790 /* Stop listening to this fd: don't call us again. */
791 return false;
792 }
793
794 /* Tell the Guest about the new input. */
795 add_used_and_trigger(dev->vq, head, len);
796
797 /* Three ^C within one second? Exit.
798 *
799 * This is such a hack, but works surprisingly well. Each ^C has to be
800 * in a buffer by itself, so they can't be too fast. But we check that
801 * we get three within about a second, so they can't be too slow. */
802 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
803 if (!abort->count++)
804 gettimeofday(&abort->start, NULL);
805 else if (abort->count == 3) {
806 struct timeval now;
807 gettimeofday(&now, NULL);
808 if (now.tv_sec <= abort->start.tv_sec+1) {
809 unsigned long args[] = { LHREQ_BREAK, 0 };
810 /* Close the fd so Waker will know it has to
811 * exit. */
812 close(waker_fds.pipe[1]);
813 /* Just in case Waker is blocked in BREAK, send
814 * unbreak now. */
815 write(lguest_fd, args, sizeof(args));
816 exit(2);
817 }
818 abort->count = 0;
819 }
820 } else
821 /* Any other key resets the abort counter. */
822 abort->count = 0;
823
824 /* Everything went OK! */
825 return true;
826 }
827
828 /* Handling output for console is simple: we just get all the output buffers
829 * and write them to stdout. */
830 static void handle_console_output(struct virtqueue *vq, bool timeout)
831 {
832 unsigned int head, out, in;
833 struct iovec iov[vq->vring.num];
834
835 /* Keep getting output buffers from the Guest until we run out. */
836 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
837 if (in)
838 errx(1, "Input buffers in output queue?");
839 writev(STDOUT_FILENO, iov, out);
840 add_used_and_trigger(vq, head, 0);
841 }
842 }
843
844 /* This is called when we no longer want to hear about Guest changes to a
845 * virtqueue. This is more efficient in high-traffic cases, but it means we
846 * have to set a timer to check if any more changes have occurred. */
847 static void block_vq(struct virtqueue *vq)
848 {
849 struct itimerval itm;
850
851 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
852 vq->blocked = true;
853
854 itm.it_interval.tv_sec = 0;
855 itm.it_interval.tv_usec = 0;
856 itm.it_value.tv_sec = 0;
857 itm.it_value.tv_usec = timeout_usec;
858
859 setitimer(ITIMER_REAL, &itm, NULL);
860 }
861
862 /*
863 * The Network
864 *
865 * Handling output for network is also simple: we get all the output buffers
866 * and write them (ignoring the first element) to this device's file descriptor
867 * (/dev/net/tun).
868 */
869 static void handle_net_output(struct virtqueue *vq, bool timeout)
870 {
871 unsigned int head, out, in, num = 0;
872 struct iovec iov[vq->vring.num];
873 static int last_timeout_num;
874
875 /* Keep getting output buffers from the Guest until we run out. */
876 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
877 if (in)
878 errx(1, "Input buffers in output queue?");
879 if (writev(vq->dev->fd, iov, out) < 0)
880 err(1, "Writing network packet to tun");
881 add_used_and_trigger(vq, head, 0);
882 num++;
883 }
884
885 /* Block further kicks and set up a timer if we saw anything. */
886 if (!timeout && num)
887 block_vq(vq);
888
889 /* We never quite know how long should we wait before we check the
890 * queue again for more packets. We start at 500 microseconds, and if
891 * we get fewer packets than last time, we assume we made the timeout
892 * too small and increase it by 10 microseconds. Otherwise, we drop it
893 * by one microsecond every time. It seems to work well enough. */
894 if (timeout) {
895 if (num < last_timeout_num)
896 timeout_usec += 10;
897 else if (timeout_usec > 1)
898 timeout_usec--;
899 last_timeout_num = num;
900 }
901 }
902
903 /* This is where we handle a packet coming in from the tun device to our
904 * Guest. */
905 static bool handle_tun_input(struct device *dev)
906 {
907 unsigned int head, in_num, out_num;
908 int len;
909 struct iovec iov[dev->vq->vring.num];
910
911 /* First we need a network buffer from the Guests's recv virtqueue. */
912 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
913 if (head == dev->vq->vring.num) {
914 /* Now, it's expected that if we try to send a packet too
915 * early, the Guest won't be ready yet. Wait until the device
916 * status says it's ready. */
917 /* FIXME: Actually want DRIVER_ACTIVE here. */
918
919 /* Now tell it we want to know if new things appear. */
920 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
921 wmb();
922
923 /* We'll turn this back on if input buffers are registered. */
924 return false;
925 } else if (out_num)
926 errx(1, "Output buffers in network recv queue?");
927
928 /* Read the packet from the device directly into the Guest's buffer. */
929 len = readv(dev->fd, iov, in_num);
930 if (len <= 0)
931 err(1, "reading network");
932
933 /* Tell the Guest about the new packet. */
934 add_used_and_trigger(dev->vq, head, len);
935
936 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
937 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
938 head != dev->vq->vring.num ? "sent" : "discarded");
939
940 /* All good. */
941 return true;
942 }
943
944 /*L:215 This is the callback attached to the network and console input
945 * virtqueues: it ensures we try again, in case we stopped console or net
946 * delivery because Guest didn't have any buffers. */
947 static void enable_fd(struct virtqueue *vq, bool timeout)
948 {
949 add_device_fd(vq->dev->fd);
950 /* Snap the Waker out of its select loop. */
951 write(waker_fds.pipe[1], "", 1);
952 }
953
954 static void net_enable_fd(struct virtqueue *vq, bool timeout)
955 {
956 /* We don't need to know again when Guest refills receive buffer. */
957 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
958 enable_fd(vq, timeout);
959 }
960
961 /* When the Guest tells us they updated the status field, we handle it. */
962 static void update_device_status(struct device *dev)
963 {
964 struct virtqueue *vq;
965
966 /* This is a reset. */
967 if (dev->desc->status == 0) {
968 verbose("Resetting device %s\n", dev->name);
969
970 /* Clear any features they've acked. */
971 memset(get_feature_bits(dev) + dev->feature_len, 0,
972 dev->feature_len);
973
974 /* Zero out the virtqueues. */
975 for (vq = dev->vq; vq; vq = vq->next) {
976 memset(vq->vring.desc, 0,
977 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
978 lg_last_avail(vq) = 0;
979 }
980 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
981 warnx("Device %s configuration FAILED", dev->name);
982 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
983 unsigned int i;
984
985 verbose("Device %s OK: offered", dev->name);
986 for (i = 0; i < dev->feature_len; i++)
987 verbose(" %02x", get_feature_bits(dev)[i]);
988 verbose(", accepted");
989 for (i = 0; i < dev->feature_len; i++)
990 verbose(" %02x", get_feature_bits(dev)
991 [dev->feature_len+i]);
992
993 if (dev->ready)
994 dev->ready(dev);
995 }
996 }
997
998 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
999 static void handle_output(unsigned long addr)
1000 {
1001 struct device *i;
1002 struct virtqueue *vq;
1003
1004 /* Check each device and virtqueue. */
1005 for (i = devices.dev; i; i = i->next) {
1006 /* Notifications to device descriptors update device status. */
1007 if (from_guest_phys(addr) == i->desc) {
1008 update_device_status(i);
1009 return;
1010 }
1011
1012 /* Notifications to virtqueues mean output has occurred. */
1013 for (vq = i->vq; vq; vq = vq->next) {
1014 if (vq->config.pfn != addr/getpagesize())
1015 continue;
1016
1017 /* Guest should acknowledge (and set features!) before
1018 * using the device. */
1019 if (i->desc->status == 0) {
1020 warnx("%s gave early output", i->name);
1021 return;
1022 }
1023
1024 if (strcmp(vq->dev->name, "console") != 0)
1025 verbose("Output to %s\n", vq->dev->name);
1026 if (vq->handle_output)
1027 vq->handle_output(vq, false);
1028 return;
1029 }
1030 }
1031
1032 /* Early console write is done using notify on a nul-terminated string
1033 * in Guest memory. */
1034 if (addr >= guest_limit)
1035 errx(1, "Bad NOTIFY %#lx", addr);
1036
1037 write(STDOUT_FILENO, from_guest_phys(addr),
1038 strnlen(from_guest_phys(addr), guest_limit - addr));
1039 }
1040
1041 static void handle_timeout(void)
1042 {
1043 char buf[32];
1044 struct device *i;
1045 struct virtqueue *vq;
1046
1047 /* Clear the pipe */
1048 read(timeoutpipe[0], buf, sizeof(buf));
1049
1050 /* Check each device and virtqueue: flush blocked ones. */
1051 for (i = devices.dev; i; i = i->next) {
1052 for (vq = i->vq; vq; vq = vq->next) {
1053 if (!vq->blocked)
1054 continue;
1055
1056 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1057 vq->blocked = false;
1058 if (vq->handle_output)
1059 vq->handle_output(vq, true);
1060 }
1061 }
1062 }
1063
1064 /* This is called when the Waker wakes us up: check for incoming file
1065 * descriptors. */
1066 static void handle_input(void)
1067 {
1068 /* select() wants a zeroed timeval to mean "don't wait". */
1069 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1070
1071 for (;;) {
1072 struct device *i;
1073 fd_set fds = devices.infds;
1074 int num;
1075
1076 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1077 /* Could get interrupted */
1078 if (num < 0)
1079 continue;
1080 /* If nothing is ready, we're done. */
1081 if (num == 0)
1082 break;
1083
1084 /* Otherwise, call the device(s) which have readable file
1085 * descriptors and a method of handling them. */
1086 for (i = devices.dev; i; i = i->next) {
1087 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1088 if (i->handle_input(i))
1089 continue;
1090
1091 /* If handle_input() returns false, it means we
1092 * should no longer service it. Networking and
1093 * console do this when there's no input
1094 * buffers to deliver into. Console also uses
1095 * it when it discovers that stdin is closed. */
1096 FD_CLR(i->fd, &devices.infds);
1097 }
1098 }
1099
1100 /* Is this the timeout fd? */
1101 if (FD_ISSET(timeoutpipe[0], &fds))
1102 handle_timeout();
1103 }
1104 }
1105
1106 /*L:190
1107 * Device Setup
1108 *
1109 * All devices need a descriptor so the Guest knows it exists, and a "struct
1110 * device" so the Launcher can keep track of it. We have common helper
1111 * routines to allocate and manage them.
1112 */
1113
1114 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1115 * number of virtqueue descriptors, then two sets of feature bits, then an
1116 * array of configuration bytes. This routine returns the configuration
1117 * pointer. */
1118 static u8 *device_config(const struct device *dev)
1119 {
1120 return (void *)(dev->desc + 1)
1121 + dev->num_vq * sizeof(struct lguest_vqconfig)
1122 + dev->feature_len * 2;
1123 }
1124
1125 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1126 * table page just above the Guest's normal memory. It returns a pointer to
1127 * that descriptor. */
1128 static struct lguest_device_desc *new_dev_desc(u16 type)
1129 {
1130 struct lguest_device_desc d = { .type = type };
1131 void *p;
1132
1133 /* Figure out where the next device config is, based on the last one. */
1134 if (devices.lastdev)
1135 p = device_config(devices.lastdev)
1136 + devices.lastdev->desc->config_len;
1137 else
1138 p = devices.descpage;
1139
1140 /* We only have one page for all the descriptors. */
1141 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1142 errx(1, "Too many devices");
1143
1144 /* p might not be aligned, so we memcpy in. */
1145 return memcpy(p, &d, sizeof(d));
1146 }
1147
1148 /* Each device descriptor is followed by the description of its virtqueues. We
1149 * specify how many descriptors the virtqueue is to have. */
1150 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1151 void (*handle_output)(struct virtqueue *, bool))
1152 {
1153 unsigned int pages;
1154 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1155 void *p;
1156
1157 /* First we need some memory for this virtqueue. */
1158 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1159 / getpagesize();
1160 p = get_pages(pages);
1161
1162 /* Initialize the virtqueue */
1163 vq->next = NULL;
1164 vq->last_avail_idx = 0;
1165 vq->dev = dev;
1166 vq->blocked = false;
1167
1168 /* Initialize the configuration. */
1169 vq->config.num = num_descs;
1170 vq->config.irq = devices.next_irq++;
1171 vq->config.pfn = to_guest_phys(p) / getpagesize();
1172
1173 /* Initialize the vring. */
1174 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1175
1176 /* Append virtqueue to this device's descriptor. We use
1177 * device_config() to get the end of the device's current virtqueues;
1178 * we check that we haven't added any config or feature information
1179 * yet, otherwise we'd be overwriting them. */
1180 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1181 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1182 dev->num_vq++;
1183 dev->desc->num_vq++;
1184
1185 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1186
1187 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1188 * second. */
1189 for (i = &dev->vq; *i; i = &(*i)->next);
1190 *i = vq;
1191
1192 /* Set the routine to call when the Guest does something to this
1193 * virtqueue. */
1194 vq->handle_output = handle_output;
1195
1196 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1197 * don't have a handler */
1198 if (!handle_output)
1199 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1200 }
1201
1202 /* The first half of the feature bitmask is for us to advertise features. The
1203 * second half is for the Guest to accept features. */
1204 static void add_feature(struct device *dev, unsigned bit)
1205 {
1206 u8 *features = get_feature_bits(dev);
1207
1208 /* We can't extend the feature bits once we've added config bytes */
1209 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1210 assert(dev->desc->config_len == 0);
1211 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1212 }
1213
1214 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1215 }
1216
1217 /* This routine sets the configuration fields for an existing device's
1218 * descriptor. It only works for the last device, but that's OK because that's
1219 * how we use it. */
1220 static void set_config(struct device *dev, unsigned len, const void *conf)
1221 {
1222 /* Check we haven't overflowed our single page. */
1223 if (device_config(dev) + len > devices.descpage + getpagesize())
1224 errx(1, "Too many devices");
1225
1226 /* Copy in the config information, and store the length. */
1227 memcpy(device_config(dev), conf, len);
1228 dev->desc->config_len = len;
1229 }
1230
1231 /* This routine does all the creation and setup of a new device, including
1232 * calling new_dev_desc() to allocate the descriptor and device memory.
1233 *
1234 * See what I mean about userspace being boring? */
1235 static struct device *new_device(const char *name, u16 type, int fd,
1236 bool (*handle_input)(struct device *))
1237 {
1238 struct device *dev = malloc(sizeof(*dev));
1239
1240 /* Now we populate the fields one at a time. */
1241 dev->fd = fd;
1242 /* If we have an input handler for this file descriptor, then we add it
1243 * to the device_list's fdset and maxfd. */
1244 if (handle_input)
1245 add_device_fd(dev->fd);
1246 dev->desc = new_dev_desc(type);
1247 dev->handle_input = handle_input;
1248 dev->name = name;
1249 dev->vq = NULL;
1250 dev->ready = NULL;
1251 dev->feature_len = 0;
1252 dev->num_vq = 0;
1253
1254 /* Append to device list. Prepending to a single-linked list is
1255 * easier, but the user expects the devices to be arranged on the bus
1256 * in command-line order. The first network device on the command line
1257 * is eth0, the first block device /dev/vda, etc. */
1258 if (devices.lastdev)
1259 devices.lastdev->next = dev;
1260 else
1261 devices.dev = dev;
1262 devices.lastdev = dev;
1263
1264 return dev;
1265 }
1266
1267 /* Our first setup routine is the console. It's a fairly simple device, but
1268 * UNIX tty handling makes it uglier than it could be. */
1269 static void setup_console(void)
1270 {
1271 struct device *dev;
1272
1273 /* If we can save the initial standard input settings... */
1274 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1275 struct termios term = orig_term;
1276 /* Then we turn off echo, line buffering and ^C etc. We want a
1277 * raw input stream to the Guest. */
1278 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1279 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1280 /* If we exit gracefully, the original settings will be
1281 * restored so the user can see what they're typing. */
1282 atexit(restore_term);
1283 }
1284
1285 dev = new_device("console", VIRTIO_ID_CONSOLE,
1286 STDIN_FILENO, handle_console_input);
1287 /* We store the console state in dev->priv, and initialize it. */
1288 dev->priv = malloc(sizeof(struct console_abort));
1289 ((struct console_abort *)dev->priv)->count = 0;
1290
1291 /* The console needs two virtqueues: the input then the output. When
1292 * they put something the input queue, we make sure we're listening to
1293 * stdin. When they put something in the output queue, we write it to
1294 * stdout. */
1295 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1296 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1297
1298 verbose("device %u: console\n", devices.device_num++);
1299 }
1300 /*:*/
1301
1302 static void timeout_alarm(int sig)
1303 {
1304 write(timeoutpipe[1], "", 1);
1305 }
1306
1307 static void setup_timeout(void)
1308 {
1309 if (pipe(timeoutpipe) != 0)
1310 err(1, "Creating timeout pipe");
1311
1312 if (fcntl(timeoutpipe[1], F_SETFL,
1313 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1314 err(1, "Making timeout pipe nonblocking");
1315
1316 add_device_fd(timeoutpipe[0]);
1317 signal(SIGALRM, timeout_alarm);
1318 }
1319
1320 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1321 * --sharenet=<name> option which opens or creates a named pipe. This can be
1322 * used to send packets to another guest in a 1:1 manner.
1323 *
1324 * More sopisticated is to use one of the tools developed for project like UML
1325 * to do networking.
1326 *
1327 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1328 * completely generic ("here's my vring, attach to your vring") and would work
1329 * for any traffic. Of course, namespace and permissions issues need to be
1330 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1331 * multiple inter-guest channels behind one interface, although it would
1332 * require some manner of hotplugging new virtio channels.
1333 *
1334 * Finally, we could implement a virtio network switch in the kernel. :*/
1335
1336 static u32 str2ip(const char *ipaddr)
1337 {
1338 unsigned int b[4];
1339
1340 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1341 errx(1, "Failed to parse IP address '%s'", ipaddr);
1342 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1343 }
1344
1345 static void str2mac(const char *macaddr, unsigned char mac[6])
1346 {
1347 unsigned int m[6];
1348 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1349 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1350 errx(1, "Failed to parse mac address '%s'", macaddr);
1351 mac[0] = m[0];
1352 mac[1] = m[1];
1353 mac[2] = m[2];
1354 mac[3] = m[3];
1355 mac[4] = m[4];
1356 mac[5] = m[5];
1357 }
1358
1359 /* This code is "adapted" from libbridge: it attaches the Host end of the
1360 * network device to the bridge device specified by the command line.
1361 *
1362 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1363 * dislike bridging), and I just try not to break it. */
1364 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1365 {
1366 int ifidx;
1367 struct ifreq ifr;
1368
1369 if (!*br_name)
1370 errx(1, "must specify bridge name");
1371
1372 ifidx = if_nametoindex(if_name);
1373 if (!ifidx)
1374 errx(1, "interface %s does not exist!", if_name);
1375
1376 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1377 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1378 ifr.ifr_ifindex = ifidx;
1379 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1380 err(1, "can't add %s to bridge %s", if_name, br_name);
1381 }
1382
1383 /* This sets up the Host end of the network device with an IP address, brings
1384 * it up so packets will flow, the copies the MAC address into the hwaddr
1385 * pointer. */
1386 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1387 {
1388 struct ifreq ifr;
1389 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1390
1391 memset(&ifr, 0, sizeof(ifr));
1392 strcpy(ifr.ifr_name, tapif);
1393
1394 /* Don't read these incantations. Just cut & paste them like I did! */
1395 sin->sin_family = AF_INET;
1396 sin->sin_addr.s_addr = htonl(ipaddr);
1397 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1398 err(1, "Setting %s interface address", tapif);
1399 ifr.ifr_flags = IFF_UP;
1400 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1401 err(1, "Bringing interface %s up", tapif);
1402 }
1403
1404 static int get_tun_device(char tapif[IFNAMSIZ])
1405 {
1406 struct ifreq ifr;
1407 int netfd;
1408
1409 /* Start with this zeroed. Messy but sure. */
1410 memset(&ifr, 0, sizeof(ifr));
1411
1412 /* We open the /dev/net/tun device and tell it we want a tap device. A
1413 * tap device is like a tun device, only somehow different. To tell
1414 * the truth, I completely blundered my way through this code, but it
1415 * works now! */
1416 netfd = open_or_die("/dev/net/tun", O_RDWR);
1417 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1418 strcpy(ifr.ifr_name, "tap%d");
1419 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1420 err(1, "configuring /dev/net/tun");
1421
1422 if (ioctl(netfd, TUNSETOFFLOAD,
1423 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1424 err(1, "Could not set features for tun device");
1425
1426 /* We don't need checksums calculated for packets coming in this
1427 * device: trust us! */
1428 ioctl(netfd, TUNSETNOCSUM, 1);
1429
1430 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1431 return netfd;
1432 }
1433
1434 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1435 * routing, but the principle is the same: it uses the "tun" device to inject
1436 * packets into the Host as if they came in from a normal network card. We
1437 * just shunt packets between the Guest and the tun device. */
1438 static void setup_tun_net(char *arg)
1439 {
1440 struct device *dev;
1441 int netfd, ipfd;
1442 u32 ip = INADDR_ANY;
1443 bool bridging = false;
1444 char tapif[IFNAMSIZ], *p;
1445 struct virtio_net_config conf;
1446
1447 netfd = get_tun_device(tapif);
1448
1449 /* First we create a new network device. */
1450 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1451
1452 /* Network devices need a receive and a send queue, just like
1453 * console. */
1454 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1455 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1456
1457 /* We need a socket to perform the magic network ioctls to bring up the
1458 * tap interface, connect to the bridge etc. Any socket will do! */
1459 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1460 if (ipfd < 0)
1461 err(1, "opening IP socket");
1462
1463 /* If the command line was --tunnet=bridge:<name> do bridging. */
1464 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1465 arg += strlen(BRIDGE_PFX);
1466 bridging = true;
1467 }
1468
1469 /* A mac address may follow the bridge name or IP address */
1470 p = strchr(arg, ':');
1471 if (p) {
1472 str2mac(p+1, conf.mac);
1473 add_feature(dev, VIRTIO_NET_F_MAC);
1474 *p = '\0';
1475 }
1476
1477 /* arg is now either an IP address or a bridge name */
1478 if (bridging)
1479 add_to_bridge(ipfd, tapif, arg);
1480 else
1481 ip = str2ip(arg);
1482
1483 /* Set up the tun device. */
1484 configure_device(ipfd, tapif, ip);
1485
1486 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1487 /* Expect Guest to handle everything except UFO */
1488 add_feature(dev, VIRTIO_NET_F_CSUM);
1489 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1490 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1491 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1492 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1493 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1494 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1495 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1496 set_config(dev, sizeof(conf), &conf);
1497
1498 /* We don't need the socket any more; setup is done. */
1499 close(ipfd);
1500
1501 devices.device_num++;
1502
1503 if (bridging)
1504 verbose("device %u: tun %s attached to bridge: %s\n",
1505 devices.device_num, tapif, arg);
1506 else
1507 verbose("device %u: tun %s: %s\n",
1508 devices.device_num, tapif, arg);
1509 }
1510
1511 /* Our block (disk) device should be really simple: the Guest asks for a block
1512 * number and we read or write that position in the file. Unfortunately, that
1513 * was amazingly slow: the Guest waits until the read is finished before
1514 * running anything else, even if it could have been doing useful work.
1515 *
1516 * We could use async I/O, except it's reputed to suck so hard that characters
1517 * actually go missing from your code when you try to use it.
1518 *
1519 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1520
1521 /* This hangs off device->priv. */
1522 struct vblk_info
1523 {
1524 /* The size of the file. */
1525 off64_t len;
1526
1527 /* The file descriptor for the file. */
1528 int fd;
1529
1530 /* IO thread listens on this file descriptor [0]. */
1531 int workpipe[2];
1532
1533 /* IO thread writes to this file descriptor to mark it done, then
1534 * Launcher triggers interrupt to Guest. */
1535 int done_fd;
1536 };
1537
1538 /*L:210
1539 * The Disk
1540 *
1541 * Remember that the block device is handled by a separate I/O thread. We head
1542 * straight into the core of that thread here:
1543 */
1544 static bool service_io(struct device *dev)
1545 {
1546 struct vblk_info *vblk = dev->priv;
1547 unsigned int head, out_num, in_num, wlen;
1548 int ret;
1549 u8 *in;
1550 struct virtio_blk_outhdr *out;
1551 struct iovec iov[dev->vq->vring.num];
1552 off64_t off;
1553
1554 /* See if there's a request waiting. If not, nothing to do. */
1555 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1556 if (head == dev->vq->vring.num)
1557 return false;
1558
1559 /* Every block request should contain at least one output buffer
1560 * (detailing the location on disk and the type of request) and one
1561 * input buffer (to hold the result). */
1562 if (out_num == 0 || in_num == 0)
1563 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1564 head, out_num, in_num);
1565
1566 out = convert(&iov[0], struct virtio_blk_outhdr);
1567 in = convert(&iov[out_num+in_num-1], u8);
1568 off = out->sector * 512;
1569
1570 /* The block device implements "barriers", where the Guest indicates
1571 * that it wants all previous writes to occur before this write. We
1572 * don't have a way of asking our kernel to do a barrier, so we just
1573 * synchronize all the data in the file. Pretty poor, no? */
1574 if (out->type & VIRTIO_BLK_T_BARRIER)
1575 fdatasync(vblk->fd);
1576
1577 /* In general the virtio block driver is allowed to try SCSI commands.
1578 * It'd be nice if we supported eject, for example, but we don't. */
1579 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1580 fprintf(stderr, "Scsi commands unsupported\n");
1581 *in = VIRTIO_BLK_S_UNSUPP;
1582 wlen = sizeof(*in);
1583 } else if (out->type & VIRTIO_BLK_T_OUT) {
1584 /* Write */
1585
1586 /* Move to the right location in the block file. This can fail
1587 * if they try to write past end. */
1588 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1589 err(1, "Bad seek to sector %llu", out->sector);
1590
1591 ret = writev(vblk->fd, iov+1, out_num-1);
1592 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1593
1594 /* Grr... Now we know how long the descriptor they sent was, we
1595 * make sure they didn't try to write over the end of the block
1596 * file (possibly extending it). */
1597 if (ret > 0 && off + ret > vblk->len) {
1598 /* Trim it back to the correct length */
1599 ftruncate64(vblk->fd, vblk->len);
1600 /* Die, bad Guest, die. */
1601 errx(1, "Write past end %llu+%u", off, ret);
1602 }
1603 wlen = sizeof(*in);
1604 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1605 } else {
1606 /* Read */
1607
1608 /* Move to the right location in the block file. This can fail
1609 * if they try to read past end. */
1610 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1611 err(1, "Bad seek to sector %llu", out->sector);
1612
1613 ret = readv(vblk->fd, iov+1, in_num-1);
1614 verbose("READ from sector %llu: %i\n", out->sector, ret);
1615 if (ret >= 0) {
1616 wlen = sizeof(*in) + ret;
1617 *in = VIRTIO_BLK_S_OK;
1618 } else {
1619 wlen = sizeof(*in);
1620 *in = VIRTIO_BLK_S_IOERR;
1621 }
1622 }
1623
1624 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1625 * barrier. But Christoph Hellwig points out that we need a sync
1626 * *afterwards* as well: "Barriers specify no reordering to the front
1627 * or the back." And Jens Axboe confirmed it, so here we are: */
1628 if (out->type & VIRTIO_BLK_T_BARRIER)
1629 fdatasync(vblk->fd);
1630
1631 /* We can't trigger an IRQ, because we're not the Launcher. It does
1632 * that when we tell it we're done. */
1633 add_used(dev->vq, head, wlen);
1634 return true;
1635 }
1636
1637 /* This is the thread which actually services the I/O. */
1638 static int io_thread(void *_dev)
1639 {
1640 struct device *dev = _dev;
1641 struct vblk_info *vblk = dev->priv;
1642 char c;
1643
1644 /* Close other side of workpipe so we get 0 read when main dies. */
1645 close(vblk->workpipe[1]);
1646 /* Close the other side of the done_fd pipe. */
1647 close(dev->fd);
1648
1649 /* When this read fails, it means Launcher died, so we follow. */
1650 while (read(vblk->workpipe[0], &c, 1) == 1) {
1651 /* We acknowledge each request immediately to reduce latency,
1652 * rather than waiting until we've done them all. I haven't
1653 * measured to see if it makes any difference.
1654 *
1655 * That would be an interesting test, wouldn't it? You could
1656 * also try having more than one I/O thread. */
1657 while (service_io(dev))
1658 write(vblk->done_fd, &c, 1);
1659 }
1660 return 0;
1661 }
1662
1663 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1664 * when that thread tells us it's completed some I/O. */
1665 static bool handle_io_finish(struct device *dev)
1666 {
1667 char c;
1668
1669 /* If the I/O thread died, presumably it printed the error, so we
1670 * simply exit. */
1671 if (read(dev->fd, &c, 1) != 1)
1672 exit(1);
1673
1674 /* It did some work, so trigger the irq. */
1675 trigger_irq(dev->vq);
1676 return true;
1677 }
1678
1679 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1680 static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
1681 {
1682 struct vblk_info *vblk = vq->dev->priv;
1683 char c = 0;
1684
1685 /* Wake up I/O thread and tell it to go to work! */
1686 if (write(vblk->workpipe[1], &c, 1) != 1)
1687 /* Presumably it indicated why it died. */
1688 exit(1);
1689 }
1690
1691 /*L:198 This actually sets up a virtual block device. */
1692 static void setup_block_file(const char *filename)
1693 {
1694 int p[2];
1695 struct device *dev;
1696 struct vblk_info *vblk;
1697 void *stack;
1698 struct virtio_blk_config conf;
1699
1700 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1701 pipe(p);
1702
1703 /* The device responds to return from I/O thread. */
1704 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1705
1706 /* The device has one virtqueue, where the Guest places requests. */
1707 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1708
1709 /* Allocate the room for our own bookkeeping */
1710 vblk = dev->priv = malloc(sizeof(*vblk));
1711
1712 /* First we open the file and store the length. */
1713 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1714 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1715
1716 /* We support barriers. */
1717 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1718
1719 /* Tell Guest how many sectors this device has. */
1720 conf.capacity = cpu_to_le64(vblk->len / 512);
1721
1722 /* Tell Guest not to put in too many descriptors at once: two are used
1723 * for the in and out elements. */
1724 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1725 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1726
1727 set_config(dev, sizeof(conf), &conf);
1728
1729 /* The I/O thread writes to this end of the pipe when done. */
1730 vblk->done_fd = p[1];
1731
1732 /* This is the second pipe, which is how we tell the I/O thread about
1733 * more work. */
1734 pipe(vblk->workpipe);
1735
1736 /* Create stack for thread and run it. Since stack grows upwards, we
1737 * point the stack pointer to the end of this region. */
1738 stack = malloc(32768);
1739 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1740 * becoming a zombie. */
1741 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1742 err(1, "Creating clone");
1743
1744 /* We don't need to keep the I/O thread's end of the pipes open. */
1745 close(vblk->done_fd);
1746 close(vblk->workpipe[0]);
1747
1748 verbose("device %u: virtblock %llu sectors\n",
1749 devices.device_num, le64_to_cpu(conf.capacity));
1750 }
1751
1752 /* Our random number generator device reads from /dev/random into the Guest's
1753 * input buffers. The usual case is that the Guest doesn't want random numbers
1754 * and so has no buffers although /dev/random is still readable, whereas
1755 * console is the reverse.
1756 *
1757 * The same logic applies, however. */
1758 static bool handle_rng_input(struct device *dev)
1759 {
1760 int len;
1761 unsigned int head, in_num, out_num, totlen = 0;
1762 struct iovec iov[dev->vq->vring.num];
1763
1764 /* First we need a buffer from the Guests's virtqueue. */
1765 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1766
1767 /* If they're not ready for input, stop listening to this file
1768 * descriptor. We'll start again once they add an input buffer. */
1769 if (head == dev->vq->vring.num)
1770 return false;
1771
1772 if (out_num)
1773 errx(1, "Output buffers in rng?");
1774
1775 /* This is why we convert to iovecs: the readv() call uses them, and so
1776 * it reads straight into the Guest's buffer. We loop to make sure we
1777 * fill it. */
1778 while (!iov_empty(iov, in_num)) {
1779 len = readv(dev->fd, iov, in_num);
1780 if (len <= 0)
1781 err(1, "Read from /dev/random gave %i", len);
1782 iov_consume(iov, in_num, len);
1783 totlen += len;
1784 }
1785
1786 /* Tell the Guest about the new input. */
1787 add_used_and_trigger(dev->vq, head, totlen);
1788
1789 /* Everything went OK! */
1790 return true;
1791 }
1792
1793 /* And this creates a "hardware" random number device for the Guest. */
1794 static void setup_rng(void)
1795 {
1796 struct device *dev;
1797 int fd;
1798
1799 fd = open_or_die("/dev/random", O_RDONLY);
1800
1801 /* The device responds to return from I/O thread. */
1802 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1803
1804 /* The device has one virtqueue, where the Guest places inbufs. */
1805 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1806
1807 verbose("device %u: rng\n", devices.device_num++);
1808 }
1809 /* That's the end of device setup. */
1810
1811 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1812 static void __attribute__((noreturn)) restart_guest(void)
1813 {
1814 unsigned int i;
1815
1816 /* Since we don't track all open fds, we simply close everything beyond
1817 * stderr. */
1818 for (i = 3; i < FD_SETSIZE; i++)
1819 close(i);
1820
1821 /* The exec automatically gets rid of the I/O and Waker threads. */
1822 execv(main_args[0], main_args);
1823 err(1, "Could not exec %s", main_args[0]);
1824 }
1825
1826 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1827 * its input and output, and finally, lays it to rest. */
1828 static void __attribute__((noreturn)) run_guest(void)
1829 {
1830 for (;;) {
1831 unsigned long args[] = { LHREQ_BREAK, 0 };
1832 unsigned long notify_addr;
1833 int readval;
1834
1835 /* We read from the /dev/lguest device to run the Guest. */
1836 readval = pread(lguest_fd, &notify_addr,
1837 sizeof(notify_addr), cpu_id);
1838
1839 /* One unsigned long means the Guest did HCALL_NOTIFY */
1840 if (readval == sizeof(notify_addr)) {
1841 verbose("Notify on address %#lx\n", notify_addr);
1842 handle_output(notify_addr);
1843 continue;
1844 /* ENOENT means the Guest died. Reading tells us why. */
1845 } else if (errno == ENOENT) {
1846 char reason[1024] = { 0 };
1847 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1848 errx(1, "%s", reason);
1849 /* ERESTART means that we need to reboot the guest */
1850 } else if (errno == ERESTART) {
1851 restart_guest();
1852 /* EAGAIN means a signal (timeout).
1853 * Anything else means a bug or incompatible change. */
1854 } else if (errno != EAGAIN)
1855 err(1, "Running guest failed");
1856
1857 /* Only service input on thread for CPU 0. */
1858 if (cpu_id != 0)
1859 continue;
1860
1861 /* Service input, then unset the BREAK to release the Waker. */
1862 handle_input();
1863 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1864 err(1, "Resetting break");
1865 }
1866 }
1867 /*L:240
1868 * This is the end of the Launcher. The good news: we are over halfway
1869 * through! The bad news: the most fiendish part of the code still lies ahead
1870 * of us.
1871 *
1872 * Are you ready? Take a deep breath and join me in the core of the Host, in
1873 * "make Host".
1874 :*/
1875
1876 static struct option opts[] = {
1877 { "verbose", 0, NULL, 'v' },
1878 { "tunnet", 1, NULL, 't' },
1879 { "block", 1, NULL, 'b' },
1880 { "rng", 0, NULL, 'r' },
1881 { "initrd", 1, NULL, 'i' },
1882 { NULL },
1883 };
1884 static void usage(void)
1885 {
1886 errx(1, "Usage: lguest [--verbose] "
1887 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1888 "|--block=<filename>|--initrd=<filename>]...\n"
1889 "<mem-in-mb> vmlinux [args...]");
1890 }
1891
1892 /*L:105 The main routine is where the real work begins: */
1893 int main(int argc, char *argv[])
1894 {
1895 /* Memory, top-level pagetable, code startpoint and size of the
1896 * (optional) initrd. */
1897 unsigned long mem = 0, start, initrd_size = 0;
1898 /* Two temporaries. */
1899 int i, c;
1900 /* The boot information for the Guest. */
1901 struct boot_params *boot;
1902 /* If they specify an initrd file to load. */
1903 const char *initrd_name = NULL;
1904
1905 /* Save the args: we "reboot" by execing ourselves again. */
1906 main_args = argv;
1907 /* We don't "wait" for the children, so prevent them from becoming
1908 * zombies. */
1909 signal(SIGCHLD, SIG_IGN);
1910
1911 /* First we initialize the device list. Since console and network
1912 * device receive input from a file descriptor, we keep an fdset
1913 * (infds) and the maximum fd number (max_infd) with the head of the
1914 * list. We also keep a pointer to the last device. Finally, we keep
1915 * the next interrupt number to use for devices (1: remember that 0 is
1916 * used by the timer). */
1917 FD_ZERO(&devices.infds);
1918 devices.max_infd = -1;
1919 devices.lastdev = NULL;
1920 devices.next_irq = 1;
1921
1922 cpu_id = 0;
1923 /* We need to know how much memory so we can set up the device
1924 * descriptor and memory pages for the devices as we parse the command
1925 * line. So we quickly look through the arguments to find the amount
1926 * of memory now. */
1927 for (i = 1; i < argc; i++) {
1928 if (argv[i][0] != '-') {
1929 mem = atoi(argv[i]) * 1024 * 1024;
1930 /* We start by mapping anonymous pages over all of
1931 * guest-physical memory range. This fills it with 0,
1932 * and ensures that the Guest won't be killed when it
1933 * tries to access it. */
1934 guest_base = map_zeroed_pages(mem / getpagesize()
1935 + DEVICE_PAGES);
1936 guest_limit = mem;
1937 guest_max = mem + DEVICE_PAGES*getpagesize();
1938 devices.descpage = get_pages(1);
1939 break;
1940 }
1941 }
1942
1943 /* The options are fairly straight-forward */
1944 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1945 switch (c) {
1946 case 'v':
1947 verbose = true;
1948 break;
1949 case 't':
1950 setup_tun_net(optarg);
1951 break;
1952 case 'b':
1953 setup_block_file(optarg);
1954 break;
1955 case 'r':
1956 setup_rng();
1957 break;
1958 case 'i':
1959 initrd_name = optarg;
1960 break;
1961 default:
1962 warnx("Unknown argument %s", argv[optind]);
1963 usage();
1964 }
1965 }
1966 /* After the other arguments we expect memory and kernel image name,
1967 * followed by command line arguments for the kernel. */
1968 if (optind + 2 > argc)
1969 usage();
1970
1971 verbose("Guest base is at %p\n", guest_base);
1972
1973 /* We always have a console device */
1974 setup_console();
1975
1976 /* We can timeout waiting for Guest network transmit. */
1977 setup_timeout();
1978
1979 /* Now we load the kernel */
1980 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1981
1982 /* Boot information is stashed at physical address 0 */
1983 boot = from_guest_phys(0);
1984
1985 /* Map the initrd image if requested (at top of physical memory) */
1986 if (initrd_name) {
1987 initrd_size = load_initrd(initrd_name, mem);
1988 /* These are the location in the Linux boot header where the
1989 * start and size of the initrd are expected to be found. */
1990 boot->hdr.ramdisk_image = mem - initrd_size;
1991 boot->hdr.ramdisk_size = initrd_size;
1992 /* The bootloader type 0xFF means "unknown"; that's OK. */
1993 boot->hdr.type_of_loader = 0xFF;
1994 }
1995
1996 /* The Linux boot header contains an "E820" memory map: ours is a
1997 * simple, single region. */
1998 boot->e820_entries = 1;
1999 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2000 /* The boot header contains a command line pointer: we put the command
2001 * line after the boot header. */
2002 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2003 /* We use a simple helper to copy the arguments separated by spaces. */
2004 concat((char *)(boot + 1), argv+optind+2);
2005
2006 /* Boot protocol version: 2.07 supports the fields for lguest. */
2007 boot->hdr.version = 0x207;
2008
2009 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2010 boot->hdr.hardware_subarch = 1;
2011
2012 /* Tell the entry path not to try to reload segment registers. */
2013 boot->hdr.loadflags |= KEEP_SEGMENTS;
2014
2015 /* We tell the kernel to initialize the Guest: this returns the open
2016 * /dev/lguest file descriptor. */
2017 tell_kernel(start);
2018
2019 /* We clone off a thread, which wakes the Launcher whenever one of the
2020 * input file descriptors needs attention. We call this the Waker, and
2021 * we'll cover it in a moment. */
2022 setup_waker();
2023
2024 /* Finally, run the Guest. This doesn't return. */
2025 run_guest();
2026 }
2027 /*:*/
2028
2029 /*M:999
2030 * Mastery is done: you now know everything I do.
2031 *
2032 * But surely you have seen code, features and bugs in your wanderings which
2033 * you now yearn to attack? That is the real game, and I look forward to you
2034 * patching and forking lguest into the Your-Name-Here-visor.
2035 *
2036 * Farewell, and good coding!
2037 * Rusty Russell.
2038 */