fix section mismatch warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / security.c
... / ...
CommitLineData
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/integrity.h>
20#include <linux/ima.h>
21#include <linux/evm.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <net/flow.h>
28
29#define MAX_LSM_EVM_XATTR 2
30
31/* Boot-time LSM user choice */
32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33 CONFIG_DEFAULT_SECURITY;
34
35static struct security_operations *security_ops;
36static struct security_operations default_security_ops = {
37 .name = "default",
38};
39
40static inline int __init verify(struct security_operations *ops)
41{
42 /* verify the security_operations structure exists */
43 if (!ops)
44 return -EINVAL;
45 security_fixup_ops(ops);
46 return 0;
47}
48
49static void __init do_security_initcalls(void)
50{
51 initcall_t *call;
52 call = __security_initcall_start;
53 while (call < __security_initcall_end) {
54 (*call) ();
55 call++;
56 }
57}
58
59/**
60 * security_init - initializes the security framework
61 *
62 * This should be called early in the kernel initialization sequence.
63 */
64int __init security_init(void)
65{
66 printk(KERN_INFO "Security Framework initialized\n");
67
68 security_fixup_ops(&default_security_ops);
69 security_ops = &default_security_ops;
70 do_security_initcalls();
71
72 return 0;
73}
74
75void reset_security_ops(void)
76{
77 security_ops = &default_security_ops;
78}
79
80/* Save user chosen LSM */
81static int __init choose_lsm(char *str)
82{
83 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84 return 1;
85}
86__setup("security=", choose_lsm);
87
88/**
89 * security_module_enable - Load given security module on boot ?
90 * @ops: a pointer to the struct security_operations that is to be checked.
91 *
92 * Each LSM must pass this method before registering its own operations
93 * to avoid security registration races. This method may also be used
94 * to check if your LSM is currently loaded during kernel initialization.
95 *
96 * Return true if:
97 * -The passed LSM is the one chosen by user at boot time,
98 * -or the passed LSM is configured as the default and the user did not
99 * choose an alternate LSM at boot time.
100 * Otherwise, return false.
101 */
102int __init security_module_enable(struct security_operations *ops)
103{
104 return !strcmp(ops->name, chosen_lsm);
105}
106
107/**
108 * register_security - registers a security framework with the kernel
109 * @ops: a pointer to the struct security_options that is to be registered
110 *
111 * This function allows a security module to register itself with the
112 * kernel security subsystem. Some rudimentary checking is done on the @ops
113 * value passed to this function. You'll need to check first if your LSM
114 * is allowed to register its @ops by calling security_module_enable(@ops).
115 *
116 * If there is already a security module registered with the kernel,
117 * an error will be returned. Otherwise %0 is returned on success.
118 */
119int __init register_security(struct security_operations *ops)
120{
121 if (verify(ops)) {
122 printk(KERN_DEBUG "%s could not verify "
123 "security_operations structure.\n", __func__);
124 return -EINVAL;
125 }
126
127 if (security_ops != &default_security_ops)
128 return -EAGAIN;
129
130 security_ops = ops;
131
132 return 0;
133}
134
135/* Security operations */
136
137int security_binder_set_context_mgr(struct task_struct *mgr)
138{
139 return security_ops->binder_set_context_mgr(mgr);
140}
141
142int security_binder_transaction(struct task_struct *from, struct task_struct *to)
143{
144 return security_ops->binder_transaction(from, to);
145}
146
147int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
148{
149 return security_ops->binder_transfer_binder(from, to);
150}
151
152int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
153{
154 return security_ops->binder_transfer_file(from, to, file);
155}
156
157int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
158{
159#ifdef CONFIG_SECURITY_YAMA_STACKED
160 int rc;
161 rc = yama_ptrace_access_check(child, mode);
162 if (rc)
163 return rc;
164#endif
165 return security_ops->ptrace_access_check(child, mode);
166}
167
168int security_ptrace_traceme(struct task_struct *parent)
169{
170#ifdef CONFIG_SECURITY_YAMA_STACKED
171 int rc;
172 rc = yama_ptrace_traceme(parent);
173 if (rc)
174 return rc;
175#endif
176 return security_ops->ptrace_traceme(parent);
177}
178
179int security_capget(struct task_struct *target,
180 kernel_cap_t *effective,
181 kernel_cap_t *inheritable,
182 kernel_cap_t *permitted)
183{
184 return security_ops->capget(target, effective, inheritable, permitted);
185}
186
187int security_capset(struct cred *new, const struct cred *old,
188 const kernel_cap_t *effective,
189 const kernel_cap_t *inheritable,
190 const kernel_cap_t *permitted)
191{
192 return security_ops->capset(new, old,
193 effective, inheritable, permitted);
194}
195
196int security_capable(const struct cred *cred, struct user_namespace *ns,
197 int cap)
198{
199 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
200}
201
202int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
203 int cap)
204{
205 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
206}
207
208int security_quotactl(int cmds, int type, int id, struct super_block *sb)
209{
210 return security_ops->quotactl(cmds, type, id, sb);
211}
212
213int security_quota_on(struct dentry *dentry)
214{
215 return security_ops->quota_on(dentry);
216}
217
218int security_syslog(int type)
219{
220 return security_ops->syslog(type);
221}
222
223int security_settime(const struct timespec *ts, const struct timezone *tz)
224{
225 return security_ops->settime(ts, tz);
226}
227
228int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
229{
230 return security_ops->vm_enough_memory(mm, pages);
231}
232
233int security_bprm_set_creds(struct linux_binprm *bprm)
234{
235 return security_ops->bprm_set_creds(bprm);
236}
237
238int security_bprm_check(struct linux_binprm *bprm)
239{
240 int ret;
241
242 ret = security_ops->bprm_check_security(bprm);
243 if (ret)
244 return ret;
245 return ima_bprm_check(bprm);
246}
247
248void security_bprm_committing_creds(struct linux_binprm *bprm)
249{
250 security_ops->bprm_committing_creds(bprm);
251}
252
253void security_bprm_committed_creds(struct linux_binprm *bprm)
254{
255 security_ops->bprm_committed_creds(bprm);
256}
257
258int security_bprm_secureexec(struct linux_binprm *bprm)
259{
260 return security_ops->bprm_secureexec(bprm);
261}
262
263int security_sb_alloc(struct super_block *sb)
264{
265 return security_ops->sb_alloc_security(sb);
266}
267
268void security_sb_free(struct super_block *sb)
269{
270 security_ops->sb_free_security(sb);
271}
272
273int security_sb_copy_data(char *orig, char *copy)
274{
275 return security_ops->sb_copy_data(orig, copy);
276}
277EXPORT_SYMBOL(security_sb_copy_data);
278
279int security_sb_remount(struct super_block *sb, void *data)
280{
281 return security_ops->sb_remount(sb, data);
282}
283
284int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
285{
286 return security_ops->sb_kern_mount(sb, flags, data);
287}
288
289int security_sb_show_options(struct seq_file *m, struct super_block *sb)
290{
291 return security_ops->sb_show_options(m, sb);
292}
293
294int security_sb_statfs(struct dentry *dentry)
295{
296 return security_ops->sb_statfs(dentry);
297}
298
299int security_sb_mount(const char *dev_name, struct path *path,
300 const char *type, unsigned long flags, void *data)
301{
302 return security_ops->sb_mount(dev_name, path, type, flags, data);
303}
304
305int security_sb_umount(struct vfsmount *mnt, int flags)
306{
307 return security_ops->sb_umount(mnt, flags);
308}
309
310int security_sb_pivotroot(struct path *old_path, struct path *new_path)
311{
312 return security_ops->sb_pivotroot(old_path, new_path);
313}
314
315int security_sb_set_mnt_opts(struct super_block *sb,
316 struct security_mnt_opts *opts)
317{
318 return security_ops->sb_set_mnt_opts(sb, opts);
319}
320EXPORT_SYMBOL(security_sb_set_mnt_opts);
321
322int security_sb_clone_mnt_opts(const struct super_block *oldsb,
323 struct super_block *newsb)
324{
325 return security_ops->sb_clone_mnt_opts(oldsb, newsb);
326}
327EXPORT_SYMBOL(security_sb_clone_mnt_opts);
328
329int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
330{
331 return security_ops->sb_parse_opts_str(options, opts);
332}
333EXPORT_SYMBOL(security_sb_parse_opts_str);
334
335int security_inode_alloc(struct inode *inode)
336{
337 inode->i_security = NULL;
338 return security_ops->inode_alloc_security(inode);
339}
340
341void security_inode_free(struct inode *inode)
342{
343 integrity_inode_free(inode);
344 security_ops->inode_free_security(inode);
345}
346
347int security_inode_init_security(struct inode *inode, struct inode *dir,
348 const struct qstr *qstr,
349 const initxattrs initxattrs, void *fs_data)
350{
351 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
352 struct xattr *lsm_xattr, *evm_xattr, *xattr;
353 int ret;
354
355 if (unlikely(IS_PRIVATE(inode)))
356 return 0;
357
358 memset(new_xattrs, 0, sizeof new_xattrs);
359 if (!initxattrs)
360 return security_ops->inode_init_security(inode, dir, qstr,
361 NULL, NULL, NULL);
362 lsm_xattr = new_xattrs;
363 ret = security_ops->inode_init_security(inode, dir, qstr,
364 &lsm_xattr->name,
365 &lsm_xattr->value,
366 &lsm_xattr->value_len);
367 if (ret)
368 goto out;
369
370 evm_xattr = lsm_xattr + 1;
371 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
372 if (ret)
373 goto out;
374 ret = initxattrs(inode, new_xattrs, fs_data);
375out:
376 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
377 kfree(xattr->name);
378 kfree(xattr->value);
379 }
380 return (ret == -EOPNOTSUPP) ? 0 : ret;
381}
382EXPORT_SYMBOL(security_inode_init_security);
383
384int security_old_inode_init_security(struct inode *inode, struct inode *dir,
385 const struct qstr *qstr, char **name,
386 void **value, size_t *len)
387{
388 if (unlikely(IS_PRIVATE(inode)))
389 return -EOPNOTSUPP;
390 return security_ops->inode_init_security(inode, dir, qstr, name, value,
391 len);
392}
393EXPORT_SYMBOL(security_old_inode_init_security);
394
395#ifdef CONFIG_SECURITY_PATH
396int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
397 unsigned int dev)
398{
399 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400 return 0;
401 return security_ops->path_mknod(dir, dentry, mode, dev);
402}
403EXPORT_SYMBOL(security_path_mknod);
404
405int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
406{
407 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
408 return 0;
409 return security_ops->path_mkdir(dir, dentry, mode);
410}
411EXPORT_SYMBOL(security_path_mkdir);
412
413int security_path_rmdir(struct path *dir, struct dentry *dentry)
414{
415 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416 return 0;
417 return security_ops->path_rmdir(dir, dentry);
418}
419
420int security_path_unlink(struct path *dir, struct dentry *dentry)
421{
422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423 return 0;
424 return security_ops->path_unlink(dir, dentry);
425}
426EXPORT_SYMBOL(security_path_unlink);
427
428int security_path_symlink(struct path *dir, struct dentry *dentry,
429 const char *old_name)
430{
431 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
432 return 0;
433 return security_ops->path_symlink(dir, dentry, old_name);
434}
435
436int security_path_link(struct dentry *old_dentry, struct path *new_dir,
437 struct dentry *new_dentry)
438{
439 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
440 return 0;
441 return security_ops->path_link(old_dentry, new_dir, new_dentry);
442}
443
444int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
445 struct path *new_dir, struct dentry *new_dentry)
446{
447 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
448 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
449 return 0;
450 return security_ops->path_rename(old_dir, old_dentry, new_dir,
451 new_dentry);
452}
453EXPORT_SYMBOL(security_path_rename);
454
455int security_path_truncate(struct path *path)
456{
457 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458 return 0;
459 return security_ops->path_truncate(path);
460}
461
462int security_path_chmod(struct path *path, umode_t mode)
463{
464 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465 return 0;
466 return security_ops->path_chmod(path, mode);
467}
468
469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
470{
471 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
472 return 0;
473 return security_ops->path_chown(path, uid, gid);
474}
475
476int security_path_chroot(struct path *path)
477{
478 return security_ops->path_chroot(path);
479}
480#endif
481
482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
483{
484 if (unlikely(IS_PRIVATE(dir)))
485 return 0;
486 return security_ops->inode_create(dir, dentry, mode);
487}
488EXPORT_SYMBOL_GPL(security_inode_create);
489
490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
491 struct dentry *new_dentry)
492{
493 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
494 return 0;
495 return security_ops->inode_link(old_dentry, dir, new_dentry);
496}
497
498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
499{
500 if (unlikely(IS_PRIVATE(dentry->d_inode)))
501 return 0;
502 return security_ops->inode_unlink(dir, dentry);
503}
504
505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
506 const char *old_name)
507{
508 if (unlikely(IS_PRIVATE(dir)))
509 return 0;
510 return security_ops->inode_symlink(dir, dentry, old_name);
511}
512
513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
514{
515 if (unlikely(IS_PRIVATE(dir)))
516 return 0;
517 return security_ops->inode_mkdir(dir, dentry, mode);
518}
519EXPORT_SYMBOL_GPL(security_inode_mkdir);
520
521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
522{
523 if (unlikely(IS_PRIVATE(dentry->d_inode)))
524 return 0;
525 return security_ops->inode_rmdir(dir, dentry);
526}
527
528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
529{
530 if (unlikely(IS_PRIVATE(dir)))
531 return 0;
532 return security_ops->inode_mknod(dir, dentry, mode, dev);
533}
534
535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
536 struct inode *new_dir, struct dentry *new_dentry)
537{
538 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
539 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
540 return 0;
541 return security_ops->inode_rename(old_dir, old_dentry,
542 new_dir, new_dentry);
543}
544
545int security_inode_readlink(struct dentry *dentry)
546{
547 if (unlikely(IS_PRIVATE(dentry->d_inode)))
548 return 0;
549 return security_ops->inode_readlink(dentry);
550}
551
552int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
553{
554 if (unlikely(IS_PRIVATE(dentry->d_inode)))
555 return 0;
556 return security_ops->inode_follow_link(dentry, nd);
557}
558
559int security_inode_permission(struct inode *inode, int mask)
560{
561 if (unlikely(IS_PRIVATE(inode)))
562 return 0;
563 return security_ops->inode_permission(inode, mask);
564}
565
566int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
567{
568 int ret;
569
570 if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 return 0;
572 ret = security_ops->inode_setattr(dentry, attr);
573 if (ret)
574 return ret;
575 return evm_inode_setattr(dentry, attr);
576}
577EXPORT_SYMBOL_GPL(security_inode_setattr);
578
579int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
580{
581 if (unlikely(IS_PRIVATE(dentry->d_inode)))
582 return 0;
583 return security_ops->inode_getattr(mnt, dentry);
584}
585
586int security_inode_setxattr(struct dentry *dentry, const char *name,
587 const void *value, size_t size, int flags)
588{
589 int ret;
590
591 if (unlikely(IS_PRIVATE(dentry->d_inode)))
592 return 0;
593 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
594 if (ret)
595 return ret;
596 ret = ima_inode_setxattr(dentry, name, value, size);
597 if (ret)
598 return ret;
599 return evm_inode_setxattr(dentry, name, value, size);
600}
601
602void security_inode_post_setxattr(struct dentry *dentry, const char *name,
603 const void *value, size_t size, int flags)
604{
605 if (unlikely(IS_PRIVATE(dentry->d_inode)))
606 return;
607 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
608 evm_inode_post_setxattr(dentry, name, value, size);
609}
610
611int security_inode_getxattr(struct dentry *dentry, const char *name)
612{
613 if (unlikely(IS_PRIVATE(dentry->d_inode)))
614 return 0;
615 return security_ops->inode_getxattr(dentry, name);
616}
617
618int security_inode_listxattr(struct dentry *dentry)
619{
620 if (unlikely(IS_PRIVATE(dentry->d_inode)))
621 return 0;
622 return security_ops->inode_listxattr(dentry);
623}
624
625int security_inode_removexattr(struct dentry *dentry, const char *name)
626{
627 int ret;
628
629 if (unlikely(IS_PRIVATE(dentry->d_inode)))
630 return 0;
631 ret = security_ops->inode_removexattr(dentry, name);
632 if (ret)
633 return ret;
634 ret = ima_inode_removexattr(dentry, name);
635 if (ret)
636 return ret;
637 return evm_inode_removexattr(dentry, name);
638}
639
640int security_inode_need_killpriv(struct dentry *dentry)
641{
642 return security_ops->inode_need_killpriv(dentry);
643}
644
645int security_inode_killpriv(struct dentry *dentry)
646{
647 return security_ops->inode_killpriv(dentry);
648}
649
650int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
651{
652 if (unlikely(IS_PRIVATE(inode)))
653 return -EOPNOTSUPP;
654 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
655}
656
657int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
658{
659 if (unlikely(IS_PRIVATE(inode)))
660 return -EOPNOTSUPP;
661 return security_ops->inode_setsecurity(inode, name, value, size, flags);
662}
663
664int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
665{
666 if (unlikely(IS_PRIVATE(inode)))
667 return 0;
668 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
669}
670
671void security_inode_getsecid(const struct inode *inode, u32 *secid)
672{
673 security_ops->inode_getsecid(inode, secid);
674}
675
676int security_file_permission(struct file *file, int mask)
677{
678 int ret;
679
680 ret = security_ops->file_permission(file, mask);
681 if (ret)
682 return ret;
683
684 return fsnotify_perm(file, mask);
685}
686
687int security_file_alloc(struct file *file)
688{
689 return security_ops->file_alloc_security(file);
690}
691
692void security_file_free(struct file *file)
693{
694 security_ops->file_free_security(file);
695}
696
697int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
698{
699 return security_ops->file_ioctl(file, cmd, arg);
700}
701
702static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
703{
704 /*
705 * Does we have PROT_READ and does the application expect
706 * it to imply PROT_EXEC? If not, nothing to talk about...
707 */
708 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
709 return prot;
710 if (!(current->personality & READ_IMPLIES_EXEC))
711 return prot;
712 /*
713 * if that's an anonymous mapping, let it.
714 */
715 if (!file)
716 return prot | PROT_EXEC;
717 /*
718 * ditto if it's not on noexec mount, except that on !MMU we need
719 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
720 */
721 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
722#ifndef CONFIG_MMU
723 unsigned long caps = 0;
724 struct address_space *mapping = file->f_mapping;
725 if (mapping && mapping->backing_dev_info)
726 caps = mapping->backing_dev_info->capabilities;
727 if (!(caps & BDI_CAP_EXEC_MAP))
728 return prot;
729#endif
730 return prot | PROT_EXEC;
731 }
732 /* anything on noexec mount won't get PROT_EXEC */
733 return prot;
734}
735
736int security_mmap_file(struct file *file, unsigned long prot,
737 unsigned long flags)
738{
739 int ret;
740 ret = security_ops->mmap_file(file, prot,
741 mmap_prot(file, prot), flags);
742 if (ret)
743 return ret;
744 return ima_file_mmap(file, prot);
745}
746
747int security_mmap_addr(unsigned long addr)
748{
749 return security_ops->mmap_addr(addr);
750}
751
752int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
753 unsigned long prot)
754{
755 return security_ops->file_mprotect(vma, reqprot, prot);
756}
757
758int security_file_lock(struct file *file, unsigned int cmd)
759{
760 return security_ops->file_lock(file, cmd);
761}
762
763int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
764{
765 return security_ops->file_fcntl(file, cmd, arg);
766}
767
768int security_file_set_fowner(struct file *file)
769{
770 return security_ops->file_set_fowner(file);
771}
772
773int security_file_send_sigiotask(struct task_struct *tsk,
774 struct fown_struct *fown, int sig)
775{
776 return security_ops->file_send_sigiotask(tsk, fown, sig);
777}
778
779int security_file_receive(struct file *file)
780{
781 return security_ops->file_receive(file);
782}
783
784int security_file_open(struct file *file, const struct cred *cred)
785{
786 int ret;
787
788 ret = security_ops->file_open(file, cred);
789 if (ret)
790 return ret;
791
792 return fsnotify_perm(file, MAY_OPEN);
793}
794
795int security_task_create(unsigned long clone_flags)
796{
797 return security_ops->task_create(clone_flags);
798}
799
800void security_task_free(struct task_struct *task)
801{
802#ifdef CONFIG_SECURITY_YAMA_STACKED
803 yama_task_free(task);
804#endif
805 security_ops->task_free(task);
806}
807
808int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
809{
810 return security_ops->cred_alloc_blank(cred, gfp);
811}
812
813void security_cred_free(struct cred *cred)
814{
815 security_ops->cred_free(cred);
816}
817
818int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
819{
820 return security_ops->cred_prepare(new, old, gfp);
821}
822
823void security_transfer_creds(struct cred *new, const struct cred *old)
824{
825 security_ops->cred_transfer(new, old);
826}
827
828int security_kernel_act_as(struct cred *new, u32 secid)
829{
830 return security_ops->kernel_act_as(new, secid);
831}
832
833int security_kernel_create_files_as(struct cred *new, struct inode *inode)
834{
835 return security_ops->kernel_create_files_as(new, inode);
836}
837
838int security_kernel_module_request(char *kmod_name)
839{
840 return security_ops->kernel_module_request(kmod_name);
841}
842
843int security_kernel_module_from_file(struct file *file)
844{
845 int ret;
846
847 ret = security_ops->kernel_module_from_file(file);
848 if (ret)
849 return ret;
850 return ima_module_check(file);
851}
852
853int security_task_fix_setuid(struct cred *new, const struct cred *old,
854 int flags)
855{
856 return security_ops->task_fix_setuid(new, old, flags);
857}
858
859int security_task_setpgid(struct task_struct *p, pid_t pgid)
860{
861 return security_ops->task_setpgid(p, pgid);
862}
863
864int security_task_getpgid(struct task_struct *p)
865{
866 return security_ops->task_getpgid(p);
867}
868
869int security_task_getsid(struct task_struct *p)
870{
871 return security_ops->task_getsid(p);
872}
873
874void security_task_getsecid(struct task_struct *p, u32 *secid)
875{
876 security_ops->task_getsecid(p, secid);
877}
878EXPORT_SYMBOL(security_task_getsecid);
879
880int security_task_setnice(struct task_struct *p, int nice)
881{
882 return security_ops->task_setnice(p, nice);
883}
884
885int security_task_setioprio(struct task_struct *p, int ioprio)
886{
887 return security_ops->task_setioprio(p, ioprio);
888}
889
890int security_task_getioprio(struct task_struct *p)
891{
892 return security_ops->task_getioprio(p);
893}
894
895int security_task_setrlimit(struct task_struct *p, unsigned int resource,
896 struct rlimit *new_rlim)
897{
898 return security_ops->task_setrlimit(p, resource, new_rlim);
899}
900
901int security_task_setscheduler(struct task_struct *p)
902{
903 return security_ops->task_setscheduler(p);
904}
905
906int security_task_getscheduler(struct task_struct *p)
907{
908 return security_ops->task_getscheduler(p);
909}
910
911int security_task_movememory(struct task_struct *p)
912{
913 return security_ops->task_movememory(p);
914}
915
916int security_task_kill(struct task_struct *p, struct siginfo *info,
917 int sig, u32 secid)
918{
919 return security_ops->task_kill(p, info, sig, secid);
920}
921
922int security_task_wait(struct task_struct *p)
923{
924 return security_ops->task_wait(p);
925}
926
927int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
928 unsigned long arg4, unsigned long arg5)
929{
930#ifdef CONFIG_SECURITY_YAMA_STACKED
931 int rc;
932 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
933 if (rc != -ENOSYS)
934 return rc;
935#endif
936 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
937}
938
939void security_task_to_inode(struct task_struct *p, struct inode *inode)
940{
941 security_ops->task_to_inode(p, inode);
942}
943
944int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
945{
946 return security_ops->ipc_permission(ipcp, flag);
947}
948
949void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
950{
951 security_ops->ipc_getsecid(ipcp, secid);
952}
953
954int security_msg_msg_alloc(struct msg_msg *msg)
955{
956 return security_ops->msg_msg_alloc_security(msg);
957}
958
959void security_msg_msg_free(struct msg_msg *msg)
960{
961 security_ops->msg_msg_free_security(msg);
962}
963
964int security_msg_queue_alloc(struct msg_queue *msq)
965{
966 return security_ops->msg_queue_alloc_security(msq);
967}
968
969void security_msg_queue_free(struct msg_queue *msq)
970{
971 security_ops->msg_queue_free_security(msq);
972}
973
974int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
975{
976 return security_ops->msg_queue_associate(msq, msqflg);
977}
978
979int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
980{
981 return security_ops->msg_queue_msgctl(msq, cmd);
982}
983
984int security_msg_queue_msgsnd(struct msg_queue *msq,
985 struct msg_msg *msg, int msqflg)
986{
987 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
988}
989
990int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
991 struct task_struct *target, long type, int mode)
992{
993 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
994}
995
996int security_shm_alloc(struct shmid_kernel *shp)
997{
998 return security_ops->shm_alloc_security(shp);
999}
1000
1001void security_shm_free(struct shmid_kernel *shp)
1002{
1003 security_ops->shm_free_security(shp);
1004}
1005
1006int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1007{
1008 return security_ops->shm_associate(shp, shmflg);
1009}
1010
1011int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1012{
1013 return security_ops->shm_shmctl(shp, cmd);
1014}
1015
1016int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1017{
1018 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1019}
1020
1021int security_sem_alloc(struct sem_array *sma)
1022{
1023 return security_ops->sem_alloc_security(sma);
1024}
1025
1026void security_sem_free(struct sem_array *sma)
1027{
1028 security_ops->sem_free_security(sma);
1029}
1030
1031int security_sem_associate(struct sem_array *sma, int semflg)
1032{
1033 return security_ops->sem_associate(sma, semflg);
1034}
1035
1036int security_sem_semctl(struct sem_array *sma, int cmd)
1037{
1038 return security_ops->sem_semctl(sma, cmd);
1039}
1040
1041int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1042 unsigned nsops, int alter)
1043{
1044 return security_ops->sem_semop(sma, sops, nsops, alter);
1045}
1046
1047void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1048{
1049 if (unlikely(inode && IS_PRIVATE(inode)))
1050 return;
1051 security_ops->d_instantiate(dentry, inode);
1052}
1053EXPORT_SYMBOL(security_d_instantiate);
1054
1055int security_getprocattr(struct task_struct *p, char *name, char **value)
1056{
1057 return security_ops->getprocattr(p, name, value);
1058}
1059
1060int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1061{
1062 return security_ops->setprocattr(p, name, value, size);
1063}
1064
1065int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1066{
1067 return security_ops->netlink_send(sk, skb);
1068}
1069
1070int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1071{
1072 return security_ops->secid_to_secctx(secid, secdata, seclen);
1073}
1074EXPORT_SYMBOL(security_secid_to_secctx);
1075
1076int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1077{
1078 return security_ops->secctx_to_secid(secdata, seclen, secid);
1079}
1080EXPORT_SYMBOL(security_secctx_to_secid);
1081
1082void security_release_secctx(char *secdata, u32 seclen)
1083{
1084 security_ops->release_secctx(secdata, seclen);
1085}
1086EXPORT_SYMBOL(security_release_secctx);
1087
1088int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1089{
1090 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1091}
1092EXPORT_SYMBOL(security_inode_notifysecctx);
1093
1094int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1095{
1096 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1097}
1098EXPORT_SYMBOL(security_inode_setsecctx);
1099
1100int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1101{
1102 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1103}
1104EXPORT_SYMBOL(security_inode_getsecctx);
1105
1106#ifdef CONFIG_SECURITY_NETWORK
1107
1108int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1109{
1110 return security_ops->unix_stream_connect(sock, other, newsk);
1111}
1112EXPORT_SYMBOL(security_unix_stream_connect);
1113
1114int security_unix_may_send(struct socket *sock, struct socket *other)
1115{
1116 return security_ops->unix_may_send(sock, other);
1117}
1118EXPORT_SYMBOL(security_unix_may_send);
1119
1120int security_socket_create(int family, int type, int protocol, int kern)
1121{
1122 return security_ops->socket_create(family, type, protocol, kern);
1123}
1124
1125int security_socket_post_create(struct socket *sock, int family,
1126 int type, int protocol, int kern)
1127{
1128 return security_ops->socket_post_create(sock, family, type,
1129 protocol, kern);
1130}
1131
1132int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1133{
1134 return security_ops->socket_bind(sock, address, addrlen);
1135}
1136
1137int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1138{
1139 return security_ops->socket_connect(sock, address, addrlen);
1140}
1141
1142int security_socket_listen(struct socket *sock, int backlog)
1143{
1144 return security_ops->socket_listen(sock, backlog);
1145}
1146
1147int security_socket_accept(struct socket *sock, struct socket *newsock)
1148{
1149 return security_ops->socket_accept(sock, newsock);
1150}
1151
1152int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1153{
1154 return security_ops->socket_sendmsg(sock, msg, size);
1155}
1156
1157int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1158 int size, int flags)
1159{
1160 return security_ops->socket_recvmsg(sock, msg, size, flags);
1161}
1162
1163int security_socket_getsockname(struct socket *sock)
1164{
1165 return security_ops->socket_getsockname(sock);
1166}
1167
1168int security_socket_getpeername(struct socket *sock)
1169{
1170 return security_ops->socket_getpeername(sock);
1171}
1172
1173int security_socket_getsockopt(struct socket *sock, int level, int optname)
1174{
1175 return security_ops->socket_getsockopt(sock, level, optname);
1176}
1177
1178int security_socket_setsockopt(struct socket *sock, int level, int optname)
1179{
1180 return security_ops->socket_setsockopt(sock, level, optname);
1181}
1182
1183int security_socket_shutdown(struct socket *sock, int how)
1184{
1185 return security_ops->socket_shutdown(sock, how);
1186}
1187
1188int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1189{
1190 return security_ops->socket_sock_rcv_skb(sk, skb);
1191}
1192EXPORT_SYMBOL(security_sock_rcv_skb);
1193
1194int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1195 int __user *optlen, unsigned len)
1196{
1197 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1198}
1199
1200int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1201{
1202 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1203}
1204EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1205
1206int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1207{
1208 return security_ops->sk_alloc_security(sk, family, priority);
1209}
1210
1211void security_sk_free(struct sock *sk)
1212{
1213 security_ops->sk_free_security(sk);
1214}
1215
1216void security_sk_clone(const struct sock *sk, struct sock *newsk)
1217{
1218 security_ops->sk_clone_security(sk, newsk);
1219}
1220EXPORT_SYMBOL(security_sk_clone);
1221
1222void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1223{
1224 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1225}
1226EXPORT_SYMBOL(security_sk_classify_flow);
1227
1228void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1229{
1230 security_ops->req_classify_flow(req, fl);
1231}
1232EXPORT_SYMBOL(security_req_classify_flow);
1233
1234void security_sock_graft(struct sock *sk, struct socket *parent)
1235{
1236 security_ops->sock_graft(sk, parent);
1237}
1238EXPORT_SYMBOL(security_sock_graft);
1239
1240int security_inet_conn_request(struct sock *sk,
1241 struct sk_buff *skb, struct request_sock *req)
1242{
1243 return security_ops->inet_conn_request(sk, skb, req);
1244}
1245EXPORT_SYMBOL(security_inet_conn_request);
1246
1247void security_inet_csk_clone(struct sock *newsk,
1248 const struct request_sock *req)
1249{
1250 security_ops->inet_csk_clone(newsk, req);
1251}
1252
1253void security_inet_conn_established(struct sock *sk,
1254 struct sk_buff *skb)
1255{
1256 security_ops->inet_conn_established(sk, skb);
1257}
1258
1259int security_secmark_relabel_packet(u32 secid)
1260{
1261 return security_ops->secmark_relabel_packet(secid);
1262}
1263EXPORT_SYMBOL(security_secmark_relabel_packet);
1264
1265void security_secmark_refcount_inc(void)
1266{
1267 security_ops->secmark_refcount_inc();
1268}
1269EXPORT_SYMBOL(security_secmark_refcount_inc);
1270
1271void security_secmark_refcount_dec(void)
1272{
1273 security_ops->secmark_refcount_dec();
1274}
1275EXPORT_SYMBOL(security_secmark_refcount_dec);
1276
1277int security_tun_dev_alloc_security(void **security)
1278{
1279 return security_ops->tun_dev_alloc_security(security);
1280}
1281EXPORT_SYMBOL(security_tun_dev_alloc_security);
1282
1283void security_tun_dev_free_security(void *security)
1284{
1285 security_ops->tun_dev_free_security(security);
1286}
1287EXPORT_SYMBOL(security_tun_dev_free_security);
1288
1289int security_tun_dev_create(void)
1290{
1291 return security_ops->tun_dev_create();
1292}
1293EXPORT_SYMBOL(security_tun_dev_create);
1294
1295int security_tun_dev_attach_queue(void *security)
1296{
1297 return security_ops->tun_dev_attach_queue(security);
1298}
1299EXPORT_SYMBOL(security_tun_dev_attach_queue);
1300
1301int security_tun_dev_attach(struct sock *sk, void *security)
1302{
1303 return security_ops->tun_dev_attach(sk, security);
1304}
1305EXPORT_SYMBOL(security_tun_dev_attach);
1306
1307int security_tun_dev_open(void *security)
1308{
1309 return security_ops->tun_dev_open(security);
1310}
1311EXPORT_SYMBOL(security_tun_dev_open);
1312
1313void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1314{
1315 security_ops->skb_owned_by(skb, sk);
1316}
1317
1318#endif /* CONFIG_SECURITY_NETWORK */
1319
1320#ifdef CONFIG_SECURITY_NETWORK_XFRM
1321
1322int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1323{
1324 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1325}
1326EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327
1328int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329 struct xfrm_sec_ctx **new_ctxp)
1330{
1331 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332}
1333
1334void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335{
1336 security_ops->xfrm_policy_free_security(ctx);
1337}
1338EXPORT_SYMBOL(security_xfrm_policy_free);
1339
1340int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341{
1342 return security_ops->xfrm_policy_delete_security(ctx);
1343}
1344
1345int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1346{
1347 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1348}
1349EXPORT_SYMBOL(security_xfrm_state_alloc);
1350
1351int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1352 struct xfrm_sec_ctx *polsec, u32 secid)
1353{
1354 if (!polsec)
1355 return 0;
1356 /*
1357 * We want the context to be taken from secid which is usually
1358 * from the sock.
1359 */
1360 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1361}
1362
1363int security_xfrm_state_delete(struct xfrm_state *x)
1364{
1365 return security_ops->xfrm_state_delete_security(x);
1366}
1367EXPORT_SYMBOL(security_xfrm_state_delete);
1368
1369void security_xfrm_state_free(struct xfrm_state *x)
1370{
1371 security_ops->xfrm_state_free_security(x);
1372}
1373
1374int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1375{
1376 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1377}
1378
1379int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1380 struct xfrm_policy *xp,
1381 const struct flowi *fl)
1382{
1383 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1384}
1385
1386int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1387{
1388 return security_ops->xfrm_decode_session(skb, secid, 1);
1389}
1390
1391void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1392{
1393 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1394
1395 BUG_ON(rc);
1396}
1397EXPORT_SYMBOL(security_skb_classify_flow);
1398
1399#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1400
1401#ifdef CONFIG_KEYS
1402
1403int security_key_alloc(struct key *key, const struct cred *cred,
1404 unsigned long flags)
1405{
1406 return security_ops->key_alloc(key, cred, flags);
1407}
1408
1409void security_key_free(struct key *key)
1410{
1411 security_ops->key_free(key);
1412}
1413
1414int security_key_permission(key_ref_t key_ref,
1415 const struct cred *cred, key_perm_t perm)
1416{
1417 return security_ops->key_permission(key_ref, cred, perm);
1418}
1419
1420int security_key_getsecurity(struct key *key, char **_buffer)
1421{
1422 return security_ops->key_getsecurity(key, _buffer);
1423}
1424
1425#endif /* CONFIG_KEYS */
1426
1427#ifdef CONFIG_AUDIT
1428
1429int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1430{
1431 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1432}
1433
1434int security_audit_rule_known(struct audit_krule *krule)
1435{
1436 return security_ops->audit_rule_known(krule);
1437}
1438
1439void security_audit_rule_free(void *lsmrule)
1440{
1441 security_ops->audit_rule_free(lsmrule);
1442}
1443
1444int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1445 struct audit_context *actx)
1446{
1447 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1448}
1449
1450#endif /* CONFIG_AUDIT */