remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sunrpc / sched.c
... / ...
CommitLineData
1/*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12#include <linux/module.h>
13
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mempool.h>
18#include <linux/smp.h>
19#include <linux/spinlock.h>
20#include <linux/mutex.h>
21#include <linux/freezer.h>
22
23#include <linux/sunrpc/clnt.h>
24
25#include "sunrpc.h"
26
27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28#define RPCDBG_FACILITY RPCDBG_SCHED
29#endif
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/sunrpc.h>
33
34/*
35 * RPC slabs and memory pools
36 */
37#define RPC_BUFFER_MAXSIZE (2048)
38#define RPC_BUFFER_POOLSIZE (8)
39#define RPC_TASK_POOLSIZE (8)
40static struct kmem_cache *rpc_task_slabp __read_mostly;
41static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42static mempool_t *rpc_task_mempool __read_mostly;
43static mempool_t *rpc_buffer_mempool __read_mostly;
44
45static void rpc_async_schedule(struct work_struct *);
46static void rpc_release_task(struct rpc_task *task);
47static void __rpc_queue_timer_fn(unsigned long ptr);
48
49/*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52static struct rpc_wait_queue delay_queue;
53
54/*
55 * rpciod-related stuff
56 */
57struct workqueue_struct *rpciod_workqueue __read_mostly;
58struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60/*
61 * Disable the timer for a given RPC task. Should be called with
62 * queue->lock and bh_disabled in order to avoid races within
63 * rpc_run_timer().
64 */
65static void
66__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67{
68 if (task->tk_timeout == 0)
69 return;
70 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 task->tk_timeout = 0;
72 list_del(&task->u.tk_wait.timer_list);
73 if (list_empty(&queue->timer_list.list))
74 del_timer(&queue->timer_list.timer);
75}
76
77static void
78rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79{
80 queue->timer_list.expires = expires;
81 mod_timer(&queue->timer_list.timer, expires);
82}
83
84/*
85 * Set up a timer for the current task.
86 */
87static void
88__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89{
90 if (!task->tk_timeout)
91 return;
92
93 dprintk("RPC: %5u setting alarm for %u ms\n",
94 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96 task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100}
101
102static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
103{
104 struct list_head *q = &queue->tasks[queue->priority];
105 struct rpc_task *task;
106
107 if (!list_empty(q)) {
108 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
109 if (task->tk_owner == queue->owner)
110 list_move_tail(&task->u.tk_wait.list, q);
111 }
112}
113
114static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115{
116 if (queue->priority != priority) {
117 /* Fairness: rotate the list when changing priority */
118 rpc_rotate_queue_owner(queue);
119 queue->priority = priority;
120 }
121}
122
123static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
124{
125 queue->owner = pid;
126 queue->nr = RPC_BATCH_COUNT;
127}
128
129static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
130{
131 rpc_set_waitqueue_priority(queue, queue->maxpriority);
132 rpc_set_waitqueue_owner(queue, 0);
133}
134
135/*
136 * Add new request to a priority queue.
137 */
138static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
139 struct rpc_task *task,
140 unsigned char queue_priority)
141{
142 struct list_head *q;
143 struct rpc_task *t;
144
145 INIT_LIST_HEAD(&task->u.tk_wait.links);
146 if (unlikely(queue_priority > queue->maxpriority))
147 queue_priority = queue->maxpriority;
148 if (queue_priority > queue->priority)
149 rpc_set_waitqueue_priority(queue, queue_priority);
150 q = &queue->tasks[queue_priority];
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_owner == task->tk_owner) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 return;
155 }
156 }
157 list_add_tail(&task->u.tk_wait.list, q);
158}
159
160/*
161 * Add new request to wait queue.
162 *
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167 */
168static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
169 struct rpc_task *task,
170 unsigned char queue_priority)
171{
172 WARN_ON_ONCE(RPC_IS_QUEUED(task));
173 if (RPC_IS_QUEUED(task))
174 return;
175
176 if (RPC_IS_PRIORITY(queue))
177 __rpc_add_wait_queue_priority(queue, task, queue_priority);
178 else if (RPC_IS_SWAPPER(task))
179 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
180 else
181 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
182 task->tk_waitqueue = queue;
183 queue->qlen++;
184 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
185 smp_wmb();
186 rpc_set_queued(task);
187
188 dprintk("RPC: %5u added to queue %p \"%s\"\n",
189 task->tk_pid, queue, rpc_qname(queue));
190}
191
192/*
193 * Remove request from a priority queue.
194 */
195static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196{
197 struct rpc_task *t;
198
199 if (!list_empty(&task->u.tk_wait.links)) {
200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 }
204}
205
206/*
207 * Remove request from queue.
208 * Note: must be called with spin lock held.
209 */
210static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
211{
212 __rpc_disable_timer(queue, task);
213 if (RPC_IS_PRIORITY(queue))
214 __rpc_remove_wait_queue_priority(task);
215 list_del(&task->u.tk_wait.list);
216 queue->qlen--;
217 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218 task->tk_pid, queue, rpc_qname(queue));
219}
220
221static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
222{
223 int i;
224
225 spin_lock_init(&queue->lock);
226 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
227 INIT_LIST_HEAD(&queue->tasks[i]);
228 queue->maxpriority = nr_queues - 1;
229 rpc_reset_waitqueue_priority(queue);
230 queue->qlen = 0;
231 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
232 INIT_LIST_HEAD(&queue->timer_list.list);
233 rpc_assign_waitqueue_name(queue, qname);
234}
235
236void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
237{
238 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
239}
240EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
241
242void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
243{
244 __rpc_init_priority_wait_queue(queue, qname, 1);
245}
246EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
247
248void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
249{
250 del_timer_sync(&queue->timer_list.timer);
251}
252EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
253
254static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
255{
256 freezable_schedule_unsafe();
257 if (signal_pending_state(mode, current))
258 return -ERESTARTSYS;
259 return 0;
260}
261
262#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263static void rpc_task_set_debuginfo(struct rpc_task *task)
264{
265 static atomic_t rpc_pid;
266
267 task->tk_pid = atomic_inc_return(&rpc_pid);
268}
269#else
270static inline void rpc_task_set_debuginfo(struct rpc_task *task)
271{
272}
273#endif
274
275static void rpc_set_active(struct rpc_task *task)
276{
277 rpc_task_set_debuginfo(task);
278 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279 trace_rpc_task_begin(task->tk_client, task, NULL);
280}
281
282/*
283 * Mark an RPC call as having completed by clearing the 'active' bit
284 * and then waking up all tasks that were sleeping.
285 */
286static int rpc_complete_task(struct rpc_task *task)
287{
288 void *m = &task->tk_runstate;
289 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291 unsigned long flags;
292 int ret;
293
294 trace_rpc_task_complete(task->tk_client, task, NULL);
295
296 spin_lock_irqsave(&wq->lock, flags);
297 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298 ret = atomic_dec_and_test(&task->tk_count);
299 if (waitqueue_active(wq))
300 __wake_up_locked_key(wq, TASK_NORMAL, &k);
301 spin_unlock_irqrestore(&wq->lock, flags);
302 return ret;
303}
304
305/*
306 * Allow callers to wait for completion of an RPC call
307 *
308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309 * to enforce taking of the wq->lock and hence avoid races with
310 * rpc_complete_task().
311 */
312int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
313{
314 if (action == NULL)
315 action = rpc_wait_bit_killable;
316 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317 action, TASK_KILLABLE);
318}
319EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320
321/*
322 * Make an RPC task runnable.
323 *
324 * Note: If the task is ASYNC, and is being made runnable after sitting on an
325 * rpc_wait_queue, this must be called with the queue spinlock held to protect
326 * the wait queue operation.
327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330 * the RPC_TASK_RUNNING flag.
331 */
332static void rpc_make_runnable(struct workqueue_struct *wq,
333 struct rpc_task *task)
334{
335 bool need_wakeup = !rpc_test_and_set_running(task);
336
337 rpc_clear_queued(task);
338 if (!need_wakeup)
339 return;
340 if (RPC_IS_ASYNC(task)) {
341 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
342 queue_work(wq, &task->u.tk_work);
343 } else
344 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
345}
346
347/*
348 * Prepare for sleeping on a wait queue.
349 * By always appending tasks to the list we ensure FIFO behavior.
350 * NB: An RPC task will only receive interrupt-driven events as long
351 * as it's on a wait queue.
352 */
353static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
354 struct rpc_task *task,
355 rpc_action action,
356 unsigned char queue_priority)
357{
358 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
359 task->tk_pid, rpc_qname(q), jiffies);
360
361 trace_rpc_task_sleep(task->tk_client, task, q);
362
363 __rpc_add_wait_queue(q, task, queue_priority);
364
365 WARN_ON_ONCE(task->tk_callback != NULL);
366 task->tk_callback = action;
367 __rpc_add_timer(q, task);
368}
369
370void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
371 rpc_action action)
372{
373 /* We shouldn't ever put an inactive task to sleep */
374 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
375 if (!RPC_IS_ACTIVATED(task)) {
376 task->tk_status = -EIO;
377 rpc_put_task_async(task);
378 return;
379 }
380
381 /*
382 * Protect the queue operations.
383 */
384 spin_lock_bh(&q->lock);
385 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
386 spin_unlock_bh(&q->lock);
387}
388EXPORT_SYMBOL_GPL(rpc_sleep_on);
389
390void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
391 rpc_action action, int priority)
392{
393 /* We shouldn't ever put an inactive task to sleep */
394 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
395 if (!RPC_IS_ACTIVATED(task)) {
396 task->tk_status = -EIO;
397 rpc_put_task_async(task);
398 return;
399 }
400
401 /*
402 * Protect the queue operations.
403 */
404 spin_lock_bh(&q->lock);
405 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
406 spin_unlock_bh(&q->lock);
407}
408EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
409
410/**
411 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
412 * @wq: workqueue on which to run task
413 * @queue: wait queue
414 * @task: task to be woken up
415 *
416 * Caller must hold queue->lock, and have cleared the task queued flag.
417 */
418static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
419 struct rpc_wait_queue *queue,
420 struct rpc_task *task)
421{
422 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
423 task->tk_pid, jiffies);
424
425 /* Has the task been executed yet? If not, we cannot wake it up! */
426 if (!RPC_IS_ACTIVATED(task)) {
427 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
428 return;
429 }
430
431 trace_rpc_task_wakeup(task->tk_client, task, queue);
432
433 __rpc_remove_wait_queue(queue, task);
434
435 rpc_make_runnable(wq, task);
436
437 dprintk("RPC: __rpc_wake_up_task done\n");
438}
439
440/*
441 * Wake up a queued task while the queue lock is being held
442 */
443static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
444 struct rpc_wait_queue *queue, struct rpc_task *task)
445{
446 if (RPC_IS_QUEUED(task)) {
447 smp_rmb();
448 if (task->tk_waitqueue == queue)
449 __rpc_do_wake_up_task_on_wq(wq, queue, task);
450 }
451}
452
453/*
454 * Wake up a queued task while the queue lock is being held
455 */
456static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
457{
458 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
459}
460
461/*
462 * Wake up a task on a specific queue
463 */
464void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
465{
466 spin_lock_bh(&queue->lock);
467 rpc_wake_up_task_queue_locked(queue, task);
468 spin_unlock_bh(&queue->lock);
469}
470EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
471
472/*
473 * Wake up the next task on a priority queue.
474 */
475static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
476{
477 struct list_head *q;
478 struct rpc_task *task;
479
480 /*
481 * Service a batch of tasks from a single owner.
482 */
483 q = &queue->tasks[queue->priority];
484 if (!list_empty(q)) {
485 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
486 if (queue->owner == task->tk_owner) {
487 if (--queue->nr)
488 goto out;
489 list_move_tail(&task->u.tk_wait.list, q);
490 }
491 /*
492 * Check if we need to switch queues.
493 */
494 goto new_owner;
495 }
496
497 /*
498 * Service the next queue.
499 */
500 do {
501 if (q == &queue->tasks[0])
502 q = &queue->tasks[queue->maxpriority];
503 else
504 q = q - 1;
505 if (!list_empty(q)) {
506 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
507 goto new_queue;
508 }
509 } while (q != &queue->tasks[queue->priority]);
510
511 rpc_reset_waitqueue_priority(queue);
512 return NULL;
513
514new_queue:
515 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
516new_owner:
517 rpc_set_waitqueue_owner(queue, task->tk_owner);
518out:
519 return task;
520}
521
522static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
523{
524 if (RPC_IS_PRIORITY(queue))
525 return __rpc_find_next_queued_priority(queue);
526 if (!list_empty(&queue->tasks[0]))
527 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
528 return NULL;
529}
530
531/*
532 * Wake up the first task on the wait queue.
533 */
534struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
535 struct rpc_wait_queue *queue,
536 bool (*func)(struct rpc_task *, void *), void *data)
537{
538 struct rpc_task *task = NULL;
539
540 dprintk("RPC: wake_up_first(%p \"%s\")\n",
541 queue, rpc_qname(queue));
542 spin_lock_bh(&queue->lock);
543 task = __rpc_find_next_queued(queue);
544 if (task != NULL) {
545 if (func(task, data))
546 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
547 else
548 task = NULL;
549 }
550 spin_unlock_bh(&queue->lock);
551
552 return task;
553}
554
555/*
556 * Wake up the first task on the wait queue.
557 */
558struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
559 bool (*func)(struct rpc_task *, void *), void *data)
560{
561 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
562}
563EXPORT_SYMBOL_GPL(rpc_wake_up_first);
564
565static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
566{
567 return true;
568}
569
570/*
571 * Wake up the next task on the wait queue.
572*/
573struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
574{
575 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
576}
577EXPORT_SYMBOL_GPL(rpc_wake_up_next);
578
579/**
580 * rpc_wake_up - wake up all rpc_tasks
581 * @queue: rpc_wait_queue on which the tasks are sleeping
582 *
583 * Grabs queue->lock
584 */
585void rpc_wake_up(struct rpc_wait_queue *queue)
586{
587 struct list_head *head;
588
589 spin_lock_bh(&queue->lock);
590 head = &queue->tasks[queue->maxpriority];
591 for (;;) {
592 while (!list_empty(head)) {
593 struct rpc_task *task;
594 task = list_first_entry(head,
595 struct rpc_task,
596 u.tk_wait.list);
597 rpc_wake_up_task_queue_locked(queue, task);
598 }
599 if (head == &queue->tasks[0])
600 break;
601 head--;
602 }
603 spin_unlock_bh(&queue->lock);
604}
605EXPORT_SYMBOL_GPL(rpc_wake_up);
606
607/**
608 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
609 * @queue: rpc_wait_queue on which the tasks are sleeping
610 * @status: status value to set
611 *
612 * Grabs queue->lock
613 */
614void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
615{
616 struct list_head *head;
617
618 spin_lock_bh(&queue->lock);
619 head = &queue->tasks[queue->maxpriority];
620 for (;;) {
621 while (!list_empty(head)) {
622 struct rpc_task *task;
623 task = list_first_entry(head,
624 struct rpc_task,
625 u.tk_wait.list);
626 task->tk_status = status;
627 rpc_wake_up_task_queue_locked(queue, task);
628 }
629 if (head == &queue->tasks[0])
630 break;
631 head--;
632 }
633 spin_unlock_bh(&queue->lock);
634}
635EXPORT_SYMBOL_GPL(rpc_wake_up_status);
636
637static void __rpc_queue_timer_fn(unsigned long ptr)
638{
639 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
640 struct rpc_task *task, *n;
641 unsigned long expires, now, timeo;
642
643 spin_lock(&queue->lock);
644 expires = now = jiffies;
645 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
646 timeo = task->u.tk_wait.expires;
647 if (time_after_eq(now, timeo)) {
648 dprintk("RPC: %5u timeout\n", task->tk_pid);
649 task->tk_status = -ETIMEDOUT;
650 rpc_wake_up_task_queue_locked(queue, task);
651 continue;
652 }
653 if (expires == now || time_after(expires, timeo))
654 expires = timeo;
655 }
656 if (!list_empty(&queue->timer_list.list))
657 rpc_set_queue_timer(queue, expires);
658 spin_unlock(&queue->lock);
659}
660
661static void __rpc_atrun(struct rpc_task *task)
662{
663 if (task->tk_status == -ETIMEDOUT)
664 task->tk_status = 0;
665}
666
667/*
668 * Run a task at a later time
669 */
670void rpc_delay(struct rpc_task *task, unsigned long delay)
671{
672 task->tk_timeout = delay;
673 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
674}
675EXPORT_SYMBOL_GPL(rpc_delay);
676
677/*
678 * Helper to call task->tk_ops->rpc_call_prepare
679 */
680void rpc_prepare_task(struct rpc_task *task)
681{
682 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
683}
684
685static void
686rpc_init_task_statistics(struct rpc_task *task)
687{
688 /* Initialize retry counters */
689 task->tk_garb_retry = 2;
690 task->tk_cred_retry = 2;
691 task->tk_rebind_retry = 2;
692
693 /* starting timestamp */
694 task->tk_start = ktime_get();
695}
696
697static void
698rpc_reset_task_statistics(struct rpc_task *task)
699{
700 task->tk_timeouts = 0;
701 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
702
703 rpc_init_task_statistics(task);
704}
705
706/*
707 * Helper that calls task->tk_ops->rpc_call_done if it exists
708 */
709void rpc_exit_task(struct rpc_task *task)
710{
711 task->tk_action = NULL;
712 if (task->tk_ops->rpc_call_done != NULL) {
713 task->tk_ops->rpc_call_done(task, task->tk_calldata);
714 if (task->tk_action != NULL) {
715 WARN_ON(RPC_ASSASSINATED(task));
716 /* Always release the RPC slot and buffer memory */
717 xprt_release(task);
718 rpc_reset_task_statistics(task);
719 }
720 }
721}
722
723void rpc_exit(struct rpc_task *task, int status)
724{
725 task->tk_status = status;
726 task->tk_action = rpc_exit_task;
727 if (RPC_IS_QUEUED(task))
728 rpc_wake_up_queued_task(task->tk_waitqueue, task);
729}
730EXPORT_SYMBOL_GPL(rpc_exit);
731
732void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
733{
734 if (ops->rpc_release != NULL)
735 ops->rpc_release(calldata);
736}
737
738/*
739 * This is the RPC `scheduler' (or rather, the finite state machine).
740 */
741static void __rpc_execute(struct rpc_task *task)
742{
743 struct rpc_wait_queue *queue;
744 int task_is_async = RPC_IS_ASYNC(task);
745 int status = 0;
746
747 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
748 task->tk_pid, task->tk_flags);
749
750 WARN_ON_ONCE(RPC_IS_QUEUED(task));
751 if (RPC_IS_QUEUED(task))
752 return;
753
754 for (;;) {
755 void (*do_action)(struct rpc_task *);
756
757 /*
758 * Execute any pending callback first.
759 */
760 do_action = task->tk_callback;
761 task->tk_callback = NULL;
762 if (do_action == NULL) {
763 /*
764 * Perform the next FSM step.
765 * tk_action may be NULL if the task has been killed.
766 * In particular, note that rpc_killall_tasks may
767 * do this at any time, so beware when dereferencing.
768 */
769 do_action = task->tk_action;
770 if (do_action == NULL)
771 break;
772 }
773 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
774 do_action(task);
775
776 /*
777 * Lockless check for whether task is sleeping or not.
778 */
779 if (!RPC_IS_QUEUED(task))
780 continue;
781 /*
782 * The queue->lock protects against races with
783 * rpc_make_runnable().
784 *
785 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
786 * rpc_task, rpc_make_runnable() can assign it to a
787 * different workqueue. We therefore cannot assume that the
788 * rpc_task pointer may still be dereferenced.
789 */
790 queue = task->tk_waitqueue;
791 spin_lock_bh(&queue->lock);
792 if (!RPC_IS_QUEUED(task)) {
793 spin_unlock_bh(&queue->lock);
794 continue;
795 }
796 rpc_clear_running(task);
797 spin_unlock_bh(&queue->lock);
798 if (task_is_async)
799 return;
800
801 /* sync task: sleep here */
802 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
803 status = out_of_line_wait_on_bit(&task->tk_runstate,
804 RPC_TASK_QUEUED, rpc_wait_bit_killable,
805 TASK_KILLABLE);
806 if (status == -ERESTARTSYS) {
807 /*
808 * When a sync task receives a signal, it exits with
809 * -ERESTARTSYS. In order to catch any callbacks that
810 * clean up after sleeping on some queue, we don't
811 * break the loop here, but go around once more.
812 */
813 dprintk("RPC: %5u got signal\n", task->tk_pid);
814 task->tk_flags |= RPC_TASK_KILLED;
815 rpc_exit(task, -ERESTARTSYS);
816 }
817 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
818 }
819
820 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
821 task->tk_status);
822 /* Release all resources associated with the task */
823 rpc_release_task(task);
824}
825
826/*
827 * User-visible entry point to the scheduler.
828 *
829 * This may be called recursively if e.g. an async NFS task updates
830 * the attributes and finds that dirty pages must be flushed.
831 * NOTE: Upon exit of this function the task is guaranteed to be
832 * released. In particular note that tk_release() will have
833 * been called, so your task memory may have been freed.
834 */
835void rpc_execute(struct rpc_task *task)
836{
837 bool is_async = RPC_IS_ASYNC(task);
838
839 rpc_set_active(task);
840 rpc_make_runnable(rpciod_workqueue, task);
841 if (!is_async)
842 __rpc_execute(task);
843}
844
845static void rpc_async_schedule(struct work_struct *work)
846{
847 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
848}
849
850/**
851 * rpc_malloc - allocate RPC buffer resources
852 * @task: RPC task
853 *
854 * A single memory region is allocated, which is split between the
855 * RPC call and RPC reply that this task is being used for. When
856 * this RPC is retired, the memory is released by calling rpc_free.
857 *
858 * To prevent rpciod from hanging, this allocator never sleeps,
859 * returning -ENOMEM and suppressing warning if the request cannot
860 * be serviced immediately. The caller can arrange to sleep in a
861 * way that is safe for rpciod.
862 *
863 * Most requests are 'small' (under 2KiB) and can be serviced from a
864 * mempool, ensuring that NFS reads and writes can always proceed,
865 * and that there is good locality of reference for these buffers.
866 *
867 * In order to avoid memory starvation triggering more writebacks of
868 * NFS requests, we avoid using GFP_KERNEL.
869 */
870int rpc_malloc(struct rpc_task *task)
871{
872 struct rpc_rqst *rqst = task->tk_rqstp;
873 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
874 struct rpc_buffer *buf;
875 gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
876
877 if (RPC_IS_SWAPPER(task))
878 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
879
880 size += sizeof(struct rpc_buffer);
881 if (size <= RPC_BUFFER_MAXSIZE)
882 buf = mempool_alloc(rpc_buffer_mempool, gfp);
883 else
884 buf = kmalloc(size, gfp);
885
886 if (!buf)
887 return -ENOMEM;
888
889 buf->len = size;
890 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
891 task->tk_pid, size, buf);
892 rqst->rq_buffer = buf->data;
893 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
894 return 0;
895}
896EXPORT_SYMBOL_GPL(rpc_malloc);
897
898/**
899 * rpc_free - free RPC buffer resources allocated via rpc_malloc
900 * @task: RPC task
901 *
902 */
903void rpc_free(struct rpc_task *task)
904{
905 void *buffer = task->tk_rqstp->rq_buffer;
906 size_t size;
907 struct rpc_buffer *buf;
908
909 buf = container_of(buffer, struct rpc_buffer, data);
910 size = buf->len;
911
912 dprintk("RPC: freeing buffer of size %zu at %p\n",
913 size, buf);
914
915 if (size <= RPC_BUFFER_MAXSIZE)
916 mempool_free(buf, rpc_buffer_mempool);
917 else
918 kfree(buf);
919}
920EXPORT_SYMBOL_GPL(rpc_free);
921
922/*
923 * Creation and deletion of RPC task structures
924 */
925static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
926{
927 memset(task, 0, sizeof(*task));
928 atomic_set(&task->tk_count, 1);
929 task->tk_flags = task_setup_data->flags;
930 task->tk_ops = task_setup_data->callback_ops;
931 task->tk_calldata = task_setup_data->callback_data;
932 INIT_LIST_HEAD(&task->tk_task);
933
934 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
935 task->tk_owner = current->tgid;
936
937 /* Initialize workqueue for async tasks */
938 task->tk_workqueue = task_setup_data->workqueue;
939
940 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
941
942 if (task->tk_ops->rpc_call_prepare != NULL)
943 task->tk_action = rpc_prepare_task;
944
945 rpc_init_task_statistics(task);
946
947 dprintk("RPC: new task initialized, procpid %u\n",
948 task_pid_nr(current));
949}
950
951static struct rpc_task *
952rpc_alloc_task(void)
953{
954 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
955}
956
957/*
958 * Create a new task for the specified client.
959 */
960struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
961{
962 struct rpc_task *task = setup_data->task;
963 unsigned short flags = 0;
964
965 if (task == NULL) {
966 task = rpc_alloc_task();
967 flags = RPC_TASK_DYNAMIC;
968 }
969
970 rpc_init_task(task, setup_data);
971 task->tk_flags |= flags;
972 dprintk("RPC: allocated task %p\n", task);
973 return task;
974}
975
976/*
977 * rpc_free_task - release rpc task and perform cleanups
978 *
979 * Note that we free up the rpc_task _after_ rpc_release_calldata()
980 * in order to work around a workqueue dependency issue.
981 *
982 * Tejun Heo states:
983 * "Workqueue currently considers two work items to be the same if they're
984 * on the same address and won't execute them concurrently - ie. it
985 * makes a work item which is queued again while being executed wait
986 * for the previous execution to complete.
987 *
988 * If a work function frees the work item, and then waits for an event
989 * which should be performed by another work item and *that* work item
990 * recycles the freed work item, it can create a false dependency loop.
991 * There really is no reliable way to detect this short of verifying
992 * every memory free."
993 *
994 */
995static void rpc_free_task(struct rpc_task *task)
996{
997 unsigned short tk_flags = task->tk_flags;
998
999 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1000
1001 if (tk_flags & RPC_TASK_DYNAMIC) {
1002 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1003 mempool_free(task, rpc_task_mempool);
1004 }
1005}
1006
1007static void rpc_async_release(struct work_struct *work)
1008{
1009 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1010}
1011
1012static void rpc_release_resources_task(struct rpc_task *task)
1013{
1014 xprt_release(task);
1015 if (task->tk_msg.rpc_cred) {
1016 put_rpccred(task->tk_msg.rpc_cred);
1017 task->tk_msg.rpc_cred = NULL;
1018 }
1019 rpc_task_release_client(task);
1020}
1021
1022static void rpc_final_put_task(struct rpc_task *task,
1023 struct workqueue_struct *q)
1024{
1025 if (q != NULL) {
1026 INIT_WORK(&task->u.tk_work, rpc_async_release);
1027 queue_work(q, &task->u.tk_work);
1028 } else
1029 rpc_free_task(task);
1030}
1031
1032static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1033{
1034 if (atomic_dec_and_test(&task->tk_count)) {
1035 rpc_release_resources_task(task);
1036 rpc_final_put_task(task, q);
1037 }
1038}
1039
1040void rpc_put_task(struct rpc_task *task)
1041{
1042 rpc_do_put_task(task, NULL);
1043}
1044EXPORT_SYMBOL_GPL(rpc_put_task);
1045
1046void rpc_put_task_async(struct rpc_task *task)
1047{
1048 rpc_do_put_task(task, task->tk_workqueue);
1049}
1050EXPORT_SYMBOL_GPL(rpc_put_task_async);
1051
1052static void rpc_release_task(struct rpc_task *task)
1053{
1054 dprintk("RPC: %5u release task\n", task->tk_pid);
1055
1056 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1057
1058 rpc_release_resources_task(task);
1059
1060 /*
1061 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1062 * so it should be safe to use task->tk_count as a test for whether
1063 * or not any other processes still hold references to our rpc_task.
1064 */
1065 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1066 /* Wake up anyone who may be waiting for task completion */
1067 if (!rpc_complete_task(task))
1068 return;
1069 } else {
1070 if (!atomic_dec_and_test(&task->tk_count))
1071 return;
1072 }
1073 rpc_final_put_task(task, task->tk_workqueue);
1074}
1075
1076int rpciod_up(void)
1077{
1078 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1079}
1080
1081void rpciod_down(void)
1082{
1083 module_put(THIS_MODULE);
1084}
1085
1086/*
1087 * Start up the rpciod workqueue.
1088 */
1089static int rpciod_start(void)
1090{
1091 struct workqueue_struct *wq;
1092
1093 /*
1094 * Create the rpciod thread and wait for it to start.
1095 */
1096 dprintk("RPC: creating workqueue rpciod\n");
1097 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1098 if (!wq)
1099 goto out_failed;
1100 rpciod_workqueue = wq;
1101 /* Note: highpri because network receive is latency sensitive */
1102 wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1103 if (!wq)
1104 goto free_rpciod;
1105 xprtiod_workqueue = wq;
1106 return 1;
1107free_rpciod:
1108 wq = rpciod_workqueue;
1109 rpciod_workqueue = NULL;
1110 destroy_workqueue(wq);
1111out_failed:
1112 return 0;
1113}
1114
1115static void rpciod_stop(void)
1116{
1117 struct workqueue_struct *wq = NULL;
1118
1119 if (rpciod_workqueue == NULL)
1120 return;
1121 dprintk("RPC: destroying workqueue rpciod\n");
1122
1123 wq = rpciod_workqueue;
1124 rpciod_workqueue = NULL;
1125 destroy_workqueue(wq);
1126 wq = xprtiod_workqueue;
1127 xprtiod_workqueue = NULL;
1128 destroy_workqueue(wq);
1129}
1130
1131void
1132rpc_destroy_mempool(void)
1133{
1134 rpciod_stop();
1135 mempool_destroy(rpc_buffer_mempool);
1136 mempool_destroy(rpc_task_mempool);
1137 kmem_cache_destroy(rpc_task_slabp);
1138 kmem_cache_destroy(rpc_buffer_slabp);
1139 rpc_destroy_wait_queue(&delay_queue);
1140}
1141
1142int
1143rpc_init_mempool(void)
1144{
1145 /*
1146 * The following is not strictly a mempool initialisation,
1147 * but there is no harm in doing it here
1148 */
1149 rpc_init_wait_queue(&delay_queue, "delayq");
1150 if (!rpciod_start())
1151 goto err_nomem;
1152
1153 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1154 sizeof(struct rpc_task),
1155 0, SLAB_HWCACHE_ALIGN,
1156 NULL);
1157 if (!rpc_task_slabp)
1158 goto err_nomem;
1159 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1160 RPC_BUFFER_MAXSIZE,
1161 0, SLAB_HWCACHE_ALIGN,
1162 NULL);
1163 if (!rpc_buffer_slabp)
1164 goto err_nomem;
1165 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1166 rpc_task_slabp);
1167 if (!rpc_task_mempool)
1168 goto err_nomem;
1169 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1170 rpc_buffer_slabp);
1171 if (!rpc_buffer_mempool)
1172 goto err_nomem;
1173 return 0;
1174err_nomem:
1175 rpc_destroy_mempool();
1176 return -ENOMEM;
1177}