locks: pass the cmd value to fcntl_getlk/getlk64
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / socket.c
... / ...
CommitLineData
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/init.h>
76#include <linux/poll.h>
77#include <linux/cache.h>
78#include <linux/module.h>
79#include <linux/highmem.h>
80#include <linux/mount.h>
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/compat.h>
84#include <linux/kmod.h>
85#include <linux/audit.h>
86#include <linux/wireless.h>
87#include <linux/nsproxy.h>
88#include <linux/magic.h>
89#include <linux/slab.h>
90#include <linux/xattr.h>
91
92#include <asm/uaccess.h>
93#include <asm/unistd.h>
94
95#include <net/compat.h>
96#include <net/wext.h>
97#include <net/cls_cgroup.h>
98
99#include <net/sock.h>
100#include <linux/netfilter.h>
101
102#include <linux/if_tun.h>
103#include <linux/ipv6_route.h>
104#include <linux/route.h>
105#include <linux/sockios.h>
106#include <linux/atalk.h>
107
108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115static int sock_close(struct inode *inode, struct file *file);
116static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119#ifdef CONFIG_COMPAT
120static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122#endif
123static int sock_fasync(int fd, struct file *filp, int on);
124static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130/*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142#ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144#endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152};
153
154/*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158static DEFINE_SPINLOCK(net_family_lock);
159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161/*
162 * Statistics counters of the socket lists
163 */
164
165static DEFINE_PER_CPU(int, sockets_in_use);
166
167/*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173/**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185{
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193}
194
195/**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214{
215 int err;
216 int len;
217
218 BUG_ON(klen > sizeof(struct sockaddr_storage));
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0)
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237}
238
239static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241static struct inode *sock_alloc_inode(struct super_block *sb)
242{
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
253 }
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
257
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
263
264 return &ei->vfs_inode;
265}
266
267static void sock_destroy_inode(struct inode *inode)
268{
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
271
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
276}
277
278static void init_once(void *foo)
279{
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
281
282 inode_init_once(&ei->vfs_inode);
283}
284
285static int init_inodecache(void)
286{
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
289 0,
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
297}
298
299static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303};
304
305/*
306 * sockfs_dname() is called from d_path().
307 */
308static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309{
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
312}
313
314static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316};
317
318static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
320{
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
323}
324
325static struct vfsmount *sock_mnt __read_mostly;
326
327static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
331};
332
333/*
334 * Obtains the first available file descriptor and sets it up for use.
335 *
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
343 *
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
348 */
349
350struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351{
352 struct qstr name = { .name = "" };
353 struct path path;
354 struct file *file;
355
356 if (dname) {
357 name.name = dname;
358 name.len = strlen(name.name);
359 } else if (sock->sk) {
360 name.name = sock->sk->sk_prot_creator->name;
361 name.len = strlen(name.name);
362 }
363 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
364 if (unlikely(!path.dentry))
365 return ERR_PTR(-ENOMEM);
366 path.mnt = mntget(sock_mnt);
367
368 d_instantiate(path.dentry, SOCK_INODE(sock));
369 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370
371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 &socket_file_ops);
373 if (unlikely(IS_ERR(file))) {
374 /* drop dentry, keep inode */
375 ihold(path.dentry->d_inode);
376 path_put(&path);
377 return file;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->private_data = sock;
383 return file;
384}
385EXPORT_SYMBOL(sock_alloc_file);
386
387static int sock_map_fd(struct socket *sock, int flags)
388{
389 struct file *newfile;
390 int fd = get_unused_fd_flags(flags);
391 if (unlikely(fd < 0))
392 return fd;
393
394 newfile = sock_alloc_file(sock, flags, NULL);
395 if (likely(!IS_ERR(newfile))) {
396 fd_install(fd, newfile);
397 return fd;
398 }
399
400 put_unused_fd(fd);
401 return PTR_ERR(newfile);
402}
403
404struct socket *sock_from_file(struct file *file, int *err)
405{
406 if (file->f_op == &socket_file_ops)
407 return file->private_data; /* set in sock_map_fd */
408
409 *err = -ENOTSOCK;
410 return NULL;
411}
412EXPORT_SYMBOL(sock_from_file);
413
414/**
415 * sockfd_lookup - Go from a file number to its socket slot
416 * @fd: file handle
417 * @err: pointer to an error code return
418 *
419 * The file handle passed in is locked and the socket it is bound
420 * too is returned. If an error occurs the err pointer is overwritten
421 * with a negative errno code and NULL is returned. The function checks
422 * for both invalid handles and passing a handle which is not a socket.
423 *
424 * On a success the socket object pointer is returned.
425 */
426
427struct socket *sockfd_lookup(int fd, int *err)
428{
429 struct file *file;
430 struct socket *sock;
431
432 file = fget(fd);
433 if (!file) {
434 *err = -EBADF;
435 return NULL;
436 }
437
438 sock = sock_from_file(file, err);
439 if (!sock)
440 fput(file);
441 return sock;
442}
443EXPORT_SYMBOL(sockfd_lookup);
444
445static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446{
447 struct file *file;
448 struct socket *sock;
449
450 *err = -EBADF;
451 file = fget_light(fd, fput_needed);
452 if (file) {
453 sock = sock_from_file(file, err);
454 if (sock)
455 return sock;
456 fput_light(file, *fput_needed);
457 }
458 return NULL;
459}
460
461#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
462#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
463#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
464static ssize_t sockfs_getxattr(struct dentry *dentry,
465 const char *name, void *value, size_t size)
466{
467 const char *proto_name;
468 size_t proto_size;
469 int error;
470
471 error = -ENODATA;
472 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
473 proto_name = dentry->d_name.name;
474 proto_size = strlen(proto_name);
475
476 if (value) {
477 error = -ERANGE;
478 if (proto_size + 1 > size)
479 goto out;
480
481 strncpy(value, proto_name, proto_size + 1);
482 }
483 error = proto_size + 1;
484 }
485
486out:
487 return error;
488}
489
490static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
491 size_t size)
492{
493 ssize_t len;
494 ssize_t used = 0;
495
496 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
497 if (len < 0)
498 return len;
499 used += len;
500 if (buffer) {
501 if (size < used)
502 return -ERANGE;
503 buffer += len;
504 }
505
506 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
507 used += len;
508 if (buffer) {
509 if (size < used)
510 return -ERANGE;
511 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
512 buffer += len;
513 }
514
515 return used;
516}
517
518int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
519{
520 int err = simple_setattr(dentry, iattr);
521
522 if (!err) {
523 struct socket *sock = SOCKET_I(dentry->d_inode);
524
525 sock->sk->sk_uid = iattr->ia_uid;
526 }
527
528 return err;
529}
530
531static const struct inode_operations sockfs_inode_ops = {
532 .getxattr = sockfs_getxattr,
533 .listxattr = sockfs_listxattr,
534 .setattr = sockfs_setattr,
535};
536
537/**
538 * sock_alloc - allocate a socket
539 *
540 * Allocate a new inode and socket object. The two are bound together
541 * and initialised. The socket is then returned. If we are out of inodes
542 * NULL is returned.
543 */
544
545static struct socket *sock_alloc(void)
546{
547 struct inode *inode;
548 struct socket *sock;
549
550 inode = new_inode_pseudo(sock_mnt->mnt_sb);
551 if (!inode)
552 return NULL;
553
554 sock = SOCKET_I(inode);
555
556 kmemcheck_annotate_bitfield(sock, type);
557 inode->i_ino = get_next_ino();
558 inode->i_mode = S_IFSOCK | S_IRWXUGO;
559 inode->i_uid = current_fsuid();
560 inode->i_gid = current_fsgid();
561 inode->i_op = &sockfs_inode_ops;
562
563 this_cpu_add(sockets_in_use, 1);
564 return sock;
565}
566
567/*
568 * In theory you can't get an open on this inode, but /proc provides
569 * a back door. Remember to keep it shut otherwise you'll let the
570 * creepy crawlies in.
571 */
572
573static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
574{
575 return -ENXIO;
576}
577
578const struct file_operations bad_sock_fops = {
579 .owner = THIS_MODULE,
580 .open = sock_no_open,
581 .llseek = noop_llseek,
582};
583
584/**
585 * sock_release - close a socket
586 * @sock: socket to close
587 *
588 * The socket is released from the protocol stack if it has a release
589 * callback, and the inode is then released if the socket is bound to
590 * an inode not a file.
591 */
592
593void sock_release(struct socket *sock)
594{
595 if (sock->ops) {
596 struct module *owner = sock->ops->owner;
597
598 sock->ops->release(sock);
599 sock->ops = NULL;
600 module_put(owner);
601 }
602
603 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
604 printk(KERN_ERR "sock_release: fasync list not empty!\n");
605
606 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
607 return;
608
609 this_cpu_sub(sockets_in_use, 1);
610 if (!sock->file) {
611 iput(SOCK_INODE(sock));
612 return;
613 }
614 sock->file = NULL;
615}
616EXPORT_SYMBOL(sock_release);
617
618void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
619{
620 *tx_flags = 0;
621 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
622 *tx_flags |= SKBTX_HW_TSTAMP;
623 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
624 *tx_flags |= SKBTX_SW_TSTAMP;
625 if (sock_flag(sk, SOCK_WIFI_STATUS))
626 *tx_flags |= SKBTX_WIFI_STATUS;
627}
628EXPORT_SYMBOL(sock_tx_timestamp);
629
630static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
631 struct msghdr *msg, size_t size)
632{
633 struct sock_iocb *si = kiocb_to_siocb(iocb);
634
635 si->sock = sock;
636 si->scm = NULL;
637 si->msg = msg;
638 si->size = size;
639
640 return sock->ops->sendmsg(iocb, sock, msg, size);
641}
642
643static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
644 struct msghdr *msg, size_t size)
645{
646 int err = security_socket_sendmsg(sock, msg, size);
647
648 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
649}
650
651int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
652{
653 struct kiocb iocb;
654 struct sock_iocb siocb;
655 int ret;
656
657 init_sync_kiocb(&iocb, NULL);
658 iocb.private = &siocb;
659 ret = __sock_sendmsg(&iocb, sock, msg, size);
660 if (-EIOCBQUEUED == ret)
661 ret = wait_on_sync_kiocb(&iocb);
662 return ret;
663}
664EXPORT_SYMBOL(sock_sendmsg);
665
666static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
667{
668 struct kiocb iocb;
669 struct sock_iocb siocb;
670 int ret;
671
672 init_sync_kiocb(&iocb, NULL);
673 iocb.private = &siocb;
674 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
675 if (-EIOCBQUEUED == ret)
676 ret = wait_on_sync_kiocb(&iocb);
677 return ret;
678}
679
680int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
681 struct kvec *vec, size_t num, size_t size)
682{
683 mm_segment_t oldfs = get_fs();
684 int result;
685
686 set_fs(KERNEL_DS);
687 /*
688 * the following is safe, since for compiler definitions of kvec and
689 * iovec are identical, yielding the same in-core layout and alignment
690 */
691 msg->msg_iov = (struct iovec *)vec;
692 msg->msg_iovlen = num;
693 result = sock_sendmsg(sock, msg, size);
694 set_fs(oldfs);
695 return result;
696}
697EXPORT_SYMBOL(kernel_sendmsg);
698
699/*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704{
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct timespec ts[3];
707 int empty = 1;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 __net_timestamp(skb);
715
716 if (need_software_tstamp) {
717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 struct timeval tv;
719 skb_get_timestamp(skb, &tv);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 sizeof(tv), &tv);
722 } else {
723 skb_get_timestampns(skb, &ts[0]);
724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
725 sizeof(ts[0]), &ts[0]);
726 }
727 }
728
729
730 memset(ts, 0, sizeof(ts));
731 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
732 ktime_to_timespec_cond(skb->tstamp, ts + 0))
733 empty = 0;
734 if (shhwtstamps) {
735 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
736 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
737 empty = 0;
738 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
740 empty = 0;
741 }
742 if (!empty)
743 put_cmsg(msg, SOL_SOCKET,
744 SCM_TIMESTAMPING, sizeof(ts), &ts);
745}
746EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
747
748void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
749 struct sk_buff *skb)
750{
751 int ack;
752
753 if (!sock_flag(sk, SOCK_WIFI_STATUS))
754 return;
755 if (!skb->wifi_acked_valid)
756 return;
757
758 ack = skb->wifi_acked;
759
760 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
761}
762EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
763
764static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
765 struct sk_buff *skb)
766{
767 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
768 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
769 sizeof(__u32), &skb->dropcount);
770}
771
772void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
773 struct sk_buff *skb)
774{
775 sock_recv_timestamp(msg, sk, skb);
776 sock_recv_drops(msg, sk, skb);
777}
778EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
779
780static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
781 struct msghdr *msg, size_t size, int flags)
782{
783 struct sock_iocb *si = kiocb_to_siocb(iocb);
784
785 si->sock = sock;
786 si->scm = NULL;
787 si->msg = msg;
788 si->size = size;
789 si->flags = flags;
790
791 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
792}
793
794static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
795 struct msghdr *msg, size_t size, int flags)
796{
797 int err = security_socket_recvmsg(sock, msg, size, flags);
798
799 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
800}
801
802int sock_recvmsg(struct socket *sock, struct msghdr *msg,
803 size_t size, int flags)
804{
805 struct kiocb iocb;
806 struct sock_iocb siocb;
807 int ret;
808
809 init_sync_kiocb(&iocb, NULL);
810 iocb.private = &siocb;
811 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
812 if (-EIOCBQUEUED == ret)
813 ret = wait_on_sync_kiocb(&iocb);
814 return ret;
815}
816EXPORT_SYMBOL(sock_recvmsg);
817
818static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
819 size_t size, int flags)
820{
821 struct kiocb iocb;
822 struct sock_iocb siocb;
823 int ret;
824
825 init_sync_kiocb(&iocb, NULL);
826 iocb.private = &siocb;
827 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
828 if (-EIOCBQUEUED == ret)
829 ret = wait_on_sync_kiocb(&iocb);
830 return ret;
831}
832
833/**
834 * kernel_recvmsg - Receive a message from a socket (kernel space)
835 * @sock: The socket to receive the message from
836 * @msg: Received message
837 * @vec: Input s/g array for message data
838 * @num: Size of input s/g array
839 * @size: Number of bytes to read
840 * @flags: Message flags (MSG_DONTWAIT, etc...)
841 *
842 * On return the msg structure contains the scatter/gather array passed in the
843 * vec argument. The array is modified so that it consists of the unfilled
844 * portion of the original array.
845 *
846 * The returned value is the total number of bytes received, or an error.
847 */
848int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
849 struct kvec *vec, size_t num, size_t size, int flags)
850{
851 mm_segment_t oldfs = get_fs();
852 int result;
853
854 set_fs(KERNEL_DS);
855 /*
856 * the following is safe, since for compiler definitions of kvec and
857 * iovec are identical, yielding the same in-core layout and alignment
858 */
859 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
860 result = sock_recvmsg(sock, msg, size, flags);
861 set_fs(oldfs);
862 return result;
863}
864EXPORT_SYMBOL(kernel_recvmsg);
865
866static void sock_aio_dtor(struct kiocb *iocb)
867{
868 kfree(iocb->private);
869}
870
871static ssize_t sock_sendpage(struct file *file, struct page *page,
872 int offset, size_t size, loff_t *ppos, int more)
873{
874 struct socket *sock;
875 int flags;
876
877 sock = file->private_data;
878
879 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
880 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
881 flags |= more;
882
883 return kernel_sendpage(sock, page, offset, size, flags);
884}
885
886static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
887 struct pipe_inode_info *pipe, size_t len,
888 unsigned int flags)
889{
890 struct socket *sock = file->private_data;
891
892 if (unlikely(!sock->ops->splice_read))
893 return -EINVAL;
894
895 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
896}
897
898static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
899 struct sock_iocb *siocb)
900{
901 if (!is_sync_kiocb(iocb)) {
902 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
903 if (!siocb)
904 return NULL;
905 iocb->ki_dtor = sock_aio_dtor;
906 }
907
908 siocb->kiocb = iocb;
909 iocb->private = siocb;
910 return siocb;
911}
912
913static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
914 struct file *file, const struct iovec *iov,
915 unsigned long nr_segs)
916{
917 struct socket *sock = file->private_data;
918 size_t size = 0;
919 int i;
920
921 for (i = 0; i < nr_segs; i++)
922 size += iov[i].iov_len;
923
924 msg->msg_name = NULL;
925 msg->msg_namelen = 0;
926 msg->msg_control = NULL;
927 msg->msg_controllen = 0;
928 msg->msg_iov = (struct iovec *)iov;
929 msg->msg_iovlen = nr_segs;
930 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931
932 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
933}
934
935static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
936 unsigned long nr_segs, loff_t pos)
937{
938 struct sock_iocb siocb, *x;
939
940 if (pos != 0)
941 return -ESPIPE;
942
943 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
944 return 0;
945
946
947 x = alloc_sock_iocb(iocb, &siocb);
948 if (!x)
949 return -ENOMEM;
950 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
951}
952
953static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
954 struct file *file, const struct iovec *iov,
955 unsigned long nr_segs)
956{
957 struct socket *sock = file->private_data;
958 size_t size = 0;
959 int i;
960
961 for (i = 0; i < nr_segs; i++)
962 size += iov[i].iov_len;
963
964 msg->msg_name = NULL;
965 msg->msg_namelen = 0;
966 msg->msg_control = NULL;
967 msg->msg_controllen = 0;
968 msg->msg_iov = (struct iovec *)iov;
969 msg->msg_iovlen = nr_segs;
970 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
971 if (sock->type == SOCK_SEQPACKET)
972 msg->msg_flags |= MSG_EOR;
973
974 return __sock_sendmsg(iocb, sock, msg, size);
975}
976
977static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
978 unsigned long nr_segs, loff_t pos)
979{
980 struct sock_iocb siocb, *x;
981
982 if (pos != 0)
983 return -ESPIPE;
984
985 x = alloc_sock_iocb(iocb, &siocb);
986 if (!x)
987 return -ENOMEM;
988
989 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
990}
991
992/*
993 * Atomic setting of ioctl hooks to avoid race
994 * with module unload.
995 */
996
997static DEFINE_MUTEX(br_ioctl_mutex);
998static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
999
1000void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1001{
1002 mutex_lock(&br_ioctl_mutex);
1003 br_ioctl_hook = hook;
1004 mutex_unlock(&br_ioctl_mutex);
1005}
1006EXPORT_SYMBOL(brioctl_set);
1007
1008static DEFINE_MUTEX(vlan_ioctl_mutex);
1009static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1010
1011void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1012{
1013 mutex_lock(&vlan_ioctl_mutex);
1014 vlan_ioctl_hook = hook;
1015 mutex_unlock(&vlan_ioctl_mutex);
1016}
1017EXPORT_SYMBOL(vlan_ioctl_set);
1018
1019static DEFINE_MUTEX(dlci_ioctl_mutex);
1020static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1021
1022void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1023{
1024 mutex_lock(&dlci_ioctl_mutex);
1025 dlci_ioctl_hook = hook;
1026 mutex_unlock(&dlci_ioctl_mutex);
1027}
1028EXPORT_SYMBOL(dlci_ioctl_set);
1029
1030static long sock_do_ioctl(struct net *net, struct socket *sock,
1031 unsigned int cmd, unsigned long arg)
1032{
1033 int err;
1034 void __user *argp = (void __user *)arg;
1035
1036 err = sock->ops->ioctl(sock, cmd, arg);
1037
1038 /*
1039 * If this ioctl is unknown try to hand it down
1040 * to the NIC driver.
1041 */
1042 if (err == -ENOIOCTLCMD)
1043 err = dev_ioctl(net, cmd, argp);
1044
1045 return err;
1046}
1047
1048/*
1049 * With an ioctl, arg may well be a user mode pointer, but we don't know
1050 * what to do with it - that's up to the protocol still.
1051 */
1052
1053static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1054{
1055 struct socket *sock;
1056 struct sock *sk;
1057 void __user *argp = (void __user *)arg;
1058 int pid, err;
1059 struct net *net;
1060
1061 sock = file->private_data;
1062 sk = sock->sk;
1063 net = sock_net(sk);
1064 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1065 err = dev_ioctl(net, cmd, argp);
1066 } else
1067#ifdef CONFIG_WEXT_CORE
1068 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1069 err = dev_ioctl(net, cmd, argp);
1070 } else
1071#endif
1072 switch (cmd) {
1073 case FIOSETOWN:
1074 case SIOCSPGRP:
1075 err = -EFAULT;
1076 if (get_user(pid, (int __user *)argp))
1077 break;
1078 err = f_setown(sock->file, pid, 1);
1079 break;
1080 case FIOGETOWN:
1081 case SIOCGPGRP:
1082 err = put_user(f_getown(sock->file),
1083 (int __user *)argp);
1084 break;
1085 case SIOCGIFBR:
1086 case SIOCSIFBR:
1087 case SIOCBRADDBR:
1088 case SIOCBRDELBR:
1089 err = -ENOPKG;
1090 if (!br_ioctl_hook)
1091 request_module("bridge");
1092
1093 mutex_lock(&br_ioctl_mutex);
1094 if (br_ioctl_hook)
1095 err = br_ioctl_hook(net, cmd, argp);
1096 mutex_unlock(&br_ioctl_mutex);
1097 break;
1098 case SIOCGIFVLAN:
1099 case SIOCSIFVLAN:
1100 err = -ENOPKG;
1101 if (!vlan_ioctl_hook)
1102 request_module("8021q");
1103
1104 mutex_lock(&vlan_ioctl_mutex);
1105 if (vlan_ioctl_hook)
1106 err = vlan_ioctl_hook(net, argp);
1107 mutex_unlock(&vlan_ioctl_mutex);
1108 break;
1109 case SIOCADDDLCI:
1110 case SIOCDELDLCI:
1111 err = -ENOPKG;
1112 if (!dlci_ioctl_hook)
1113 request_module("dlci");
1114
1115 mutex_lock(&dlci_ioctl_mutex);
1116 if (dlci_ioctl_hook)
1117 err = dlci_ioctl_hook(cmd, argp);
1118 mutex_unlock(&dlci_ioctl_mutex);
1119 break;
1120 default:
1121 err = sock_do_ioctl(net, sock, cmd, arg);
1122 break;
1123 }
1124 return err;
1125}
1126
1127int sock_create_lite(int family, int type, int protocol, struct socket **res)
1128{
1129 int err;
1130 struct socket *sock = NULL;
1131
1132 err = security_socket_create(family, type, protocol, 1);
1133 if (err)
1134 goto out;
1135
1136 sock = sock_alloc();
1137 if (!sock) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
1141
1142 sock->type = type;
1143 err = security_socket_post_create(sock, family, type, protocol, 1);
1144 if (err)
1145 goto out_release;
1146
1147out:
1148 *res = sock;
1149 return err;
1150out_release:
1151 sock_release(sock);
1152 sock = NULL;
1153 goto out;
1154}
1155EXPORT_SYMBOL(sock_create_lite);
1156
1157/* No kernel lock held - perfect */
1158static unsigned int sock_poll(struct file *file, poll_table *wait)
1159{
1160 struct socket *sock;
1161
1162 /*
1163 * We can't return errors to poll, so it's either yes or no.
1164 */
1165 sock = file->private_data;
1166 return sock->ops->poll(file, sock, wait);
1167}
1168
1169static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1170{
1171 struct socket *sock = file->private_data;
1172
1173 return sock->ops->mmap(file, sock, vma);
1174}
1175
1176static int sock_close(struct inode *inode, struct file *filp)
1177{
1178 sock_release(SOCKET_I(inode));
1179 return 0;
1180}
1181
1182/*
1183 * Update the socket async list
1184 *
1185 * Fasync_list locking strategy.
1186 *
1187 * 1. fasync_list is modified only under process context socket lock
1188 * i.e. under semaphore.
1189 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1190 * or under socket lock
1191 */
1192
1193static int sock_fasync(int fd, struct file *filp, int on)
1194{
1195 struct socket *sock = filp->private_data;
1196 struct sock *sk = sock->sk;
1197 struct socket_wq *wq;
1198
1199 if (sk == NULL)
1200 return -EINVAL;
1201
1202 lock_sock(sk);
1203 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1204 fasync_helper(fd, filp, on, &wq->fasync_list);
1205
1206 if (!wq->fasync_list)
1207 sock_reset_flag(sk, SOCK_FASYNC);
1208 else
1209 sock_set_flag(sk, SOCK_FASYNC);
1210
1211 release_sock(sk);
1212 return 0;
1213}
1214
1215/* This function may be called only under socket lock or callback_lock or rcu_lock */
1216
1217int sock_wake_async(struct socket *sock, int how, int band)
1218{
1219 struct socket_wq *wq;
1220
1221 if (!sock)
1222 return -1;
1223 rcu_read_lock();
1224 wq = rcu_dereference(sock->wq);
1225 if (!wq || !wq->fasync_list) {
1226 rcu_read_unlock();
1227 return -1;
1228 }
1229 switch (how) {
1230 case SOCK_WAKE_WAITD:
1231 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1232 break;
1233 goto call_kill;
1234 case SOCK_WAKE_SPACE:
1235 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1236 break;
1237 /* fall through */
1238 case SOCK_WAKE_IO:
1239call_kill:
1240 kill_fasync(&wq->fasync_list, SIGIO, band);
1241 break;
1242 case SOCK_WAKE_URG:
1243 kill_fasync(&wq->fasync_list, SIGURG, band);
1244 }
1245 rcu_read_unlock();
1246 return 0;
1247}
1248EXPORT_SYMBOL(sock_wake_async);
1249
1250int __sock_create(struct net *net, int family, int type, int protocol,
1251 struct socket **res, int kern)
1252{
1253 int err;
1254 struct socket *sock;
1255 const struct net_proto_family *pf;
1256
1257 /*
1258 * Check protocol is in range
1259 */
1260 if (family < 0 || family >= NPROTO)
1261 return -EAFNOSUPPORT;
1262 if (type < 0 || type >= SOCK_MAX)
1263 return -EINVAL;
1264
1265 /* Compatibility.
1266
1267 This uglymoron is moved from INET layer to here to avoid
1268 deadlock in module load.
1269 */
1270 if (family == PF_INET && type == SOCK_PACKET) {
1271 static int warned;
1272 if (!warned) {
1273 warned = 1;
1274 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1275 current->comm);
1276 }
1277 family = PF_PACKET;
1278 }
1279
1280 err = security_socket_create(family, type, protocol, kern);
1281 if (err)
1282 return err;
1283
1284 /*
1285 * Allocate the socket and allow the family to set things up. if
1286 * the protocol is 0, the family is instructed to select an appropriate
1287 * default.
1288 */
1289 sock = sock_alloc();
1290 if (!sock) {
1291 net_warn_ratelimited("socket: no more sockets\n");
1292 return -ENFILE; /* Not exactly a match, but its the
1293 closest posix thing */
1294 }
1295
1296 sock->type = type;
1297
1298#ifdef CONFIG_MODULES
1299 /* Attempt to load a protocol module if the find failed.
1300 *
1301 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1302 * requested real, full-featured networking support upon configuration.
1303 * Otherwise module support will break!
1304 */
1305 if (rcu_access_pointer(net_families[family]) == NULL)
1306 request_module("net-pf-%d", family);
1307#endif
1308
1309 rcu_read_lock();
1310 pf = rcu_dereference(net_families[family]);
1311 err = -EAFNOSUPPORT;
1312 if (!pf)
1313 goto out_release;
1314
1315 /*
1316 * We will call the ->create function, that possibly is in a loadable
1317 * module, so we have to bump that loadable module refcnt first.
1318 */
1319 if (!try_module_get(pf->owner))
1320 goto out_release;
1321
1322 /* Now protected by module ref count */
1323 rcu_read_unlock();
1324
1325 err = pf->create(net, sock, protocol, kern);
1326 if (err < 0)
1327 goto out_module_put;
1328
1329 /*
1330 * Now to bump the refcnt of the [loadable] module that owns this
1331 * socket at sock_release time we decrement its refcnt.
1332 */
1333 if (!try_module_get(sock->ops->owner))
1334 goto out_module_busy;
1335
1336 /*
1337 * Now that we're done with the ->create function, the [loadable]
1338 * module can have its refcnt decremented
1339 */
1340 module_put(pf->owner);
1341 err = security_socket_post_create(sock, family, type, protocol, kern);
1342 if (err)
1343 goto out_sock_release;
1344 *res = sock;
1345
1346 return 0;
1347
1348out_module_busy:
1349 err = -EAFNOSUPPORT;
1350out_module_put:
1351 sock->ops = NULL;
1352 module_put(pf->owner);
1353out_sock_release:
1354 sock_release(sock);
1355 return err;
1356
1357out_release:
1358 rcu_read_unlock();
1359 goto out_sock_release;
1360}
1361EXPORT_SYMBOL(__sock_create);
1362
1363int sock_create(int family, int type, int protocol, struct socket **res)
1364{
1365 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1366}
1367EXPORT_SYMBOL(sock_create);
1368
1369int sock_create_kern(int family, int type, int protocol, struct socket **res)
1370{
1371 return __sock_create(&init_net, family, type, protocol, res, 1);
1372}
1373EXPORT_SYMBOL(sock_create_kern);
1374
1375SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1376{
1377 int retval;
1378 struct socket *sock;
1379 int flags;
1380
1381 /* Check the SOCK_* constants for consistency. */
1382 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1383 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1384 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1385 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1386
1387 flags = type & ~SOCK_TYPE_MASK;
1388 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1389 return -EINVAL;
1390 type &= SOCK_TYPE_MASK;
1391
1392 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1393 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1394
1395 retval = sock_create(family, type, protocol, &sock);
1396 if (retval < 0)
1397 goto out;
1398
1399 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1400 if (retval < 0)
1401 goto out_release;
1402
1403out:
1404 /* It may be already another descriptor 8) Not kernel problem. */
1405 return retval;
1406
1407out_release:
1408 sock_release(sock);
1409 return retval;
1410}
1411
1412/*
1413 * Create a pair of connected sockets.
1414 */
1415
1416SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1417 int __user *, usockvec)
1418{
1419 struct socket *sock1, *sock2;
1420 int fd1, fd2, err;
1421 struct file *newfile1, *newfile2;
1422 int flags;
1423
1424 flags = type & ~SOCK_TYPE_MASK;
1425 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1426 return -EINVAL;
1427 type &= SOCK_TYPE_MASK;
1428
1429 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431
1432 /*
1433 * Obtain the first socket and check if the underlying protocol
1434 * supports the socketpair call.
1435 */
1436
1437 err = sock_create(family, type, protocol, &sock1);
1438 if (err < 0)
1439 goto out;
1440
1441 err = sock_create(family, type, protocol, &sock2);
1442 if (err < 0)
1443 goto out_release_1;
1444
1445 err = sock1->ops->socketpair(sock1, sock2);
1446 if (err < 0)
1447 goto out_release_both;
1448
1449 fd1 = get_unused_fd_flags(flags);
1450 if (unlikely(fd1 < 0)) {
1451 err = fd1;
1452 goto out_release_both;
1453 }
1454 fd2 = get_unused_fd_flags(flags);
1455 if (unlikely(fd2 < 0)) {
1456 err = fd2;
1457 put_unused_fd(fd1);
1458 goto out_release_both;
1459 }
1460
1461 newfile1 = sock_alloc_file(sock1, flags, NULL);
1462 if (unlikely(IS_ERR(newfile1))) {
1463 err = PTR_ERR(newfile1);
1464 put_unused_fd(fd1);
1465 put_unused_fd(fd2);
1466 goto out_release_both;
1467 }
1468
1469 newfile2 = sock_alloc_file(sock2, flags, NULL);
1470 if (IS_ERR(newfile2)) {
1471 err = PTR_ERR(newfile2);
1472 fput(newfile1);
1473 put_unused_fd(fd1);
1474 put_unused_fd(fd2);
1475 sock_release(sock2);
1476 goto out;
1477 }
1478
1479 audit_fd_pair(fd1, fd2);
1480 fd_install(fd1, newfile1);
1481 fd_install(fd2, newfile2);
1482 /* fd1 and fd2 may be already another descriptors.
1483 * Not kernel problem.
1484 */
1485
1486 err = put_user(fd1, &usockvec[0]);
1487 if (!err)
1488 err = put_user(fd2, &usockvec[1]);
1489 if (!err)
1490 return 0;
1491
1492 sys_close(fd2);
1493 sys_close(fd1);
1494 return err;
1495
1496out_release_both:
1497 sock_release(sock2);
1498out_release_1:
1499 sock_release(sock1);
1500out:
1501 return err;
1502}
1503
1504/*
1505 * Bind a name to a socket. Nothing much to do here since it's
1506 * the protocol's responsibility to handle the local address.
1507 *
1508 * We move the socket address to kernel space before we call
1509 * the protocol layer (having also checked the address is ok).
1510 */
1511
1512SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1513{
1514 struct socket *sock;
1515 struct sockaddr_storage address;
1516 int err, fput_needed;
1517
1518 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519 if (sock) {
1520 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1521 if (err >= 0) {
1522 err = security_socket_bind(sock,
1523 (struct sockaddr *)&address,
1524 addrlen);
1525 if (!err)
1526 err = sock->ops->bind(sock,
1527 (struct sockaddr *)
1528 &address, addrlen);
1529 }
1530 fput_light(sock->file, fput_needed);
1531 }
1532 return err;
1533}
1534
1535/*
1536 * Perform a listen. Basically, we allow the protocol to do anything
1537 * necessary for a listen, and if that works, we mark the socket as
1538 * ready for listening.
1539 */
1540
1541SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1542{
1543 struct socket *sock;
1544 int err, fput_needed;
1545 int somaxconn;
1546
1547 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1548 if (sock) {
1549 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1550 if ((unsigned int)backlog > somaxconn)
1551 backlog = somaxconn;
1552
1553 err = security_socket_listen(sock, backlog);
1554 if (!err)
1555 err = sock->ops->listen(sock, backlog);
1556
1557 fput_light(sock->file, fput_needed);
1558 }
1559 return err;
1560}
1561
1562/*
1563 * For accept, we attempt to create a new socket, set up the link
1564 * with the client, wake up the client, then return the new
1565 * connected fd. We collect the address of the connector in kernel
1566 * space and move it to user at the very end. This is unclean because
1567 * we open the socket then return an error.
1568 *
1569 * 1003.1g adds the ability to recvmsg() to query connection pending
1570 * status to recvmsg. We need to add that support in a way thats
1571 * clean when we restucture accept also.
1572 */
1573
1574SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1575 int __user *, upeer_addrlen, int, flags)
1576{
1577 struct socket *sock, *newsock;
1578 struct file *newfile;
1579 int err, len, newfd, fput_needed;
1580 struct sockaddr_storage address;
1581
1582 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1583 return -EINVAL;
1584
1585 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1586 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1587
1588 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 if (!sock)
1590 goto out;
1591
1592 err = -ENFILE;
1593 newsock = sock_alloc();
1594 if (!newsock)
1595 goto out_put;
1596
1597 newsock->type = sock->type;
1598 newsock->ops = sock->ops;
1599
1600 /*
1601 * We don't need try_module_get here, as the listening socket (sock)
1602 * has the protocol module (sock->ops->owner) held.
1603 */
1604 __module_get(newsock->ops->owner);
1605
1606 newfd = get_unused_fd_flags(flags);
1607 if (unlikely(newfd < 0)) {
1608 err = newfd;
1609 sock_release(newsock);
1610 goto out_put;
1611 }
1612 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1613 if (unlikely(IS_ERR(newfile))) {
1614 err = PTR_ERR(newfile);
1615 put_unused_fd(newfd);
1616 sock_release(newsock);
1617 goto out_put;
1618 }
1619
1620 err = security_socket_accept(sock, newsock);
1621 if (err)
1622 goto out_fd;
1623
1624 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1625 if (err < 0)
1626 goto out_fd;
1627
1628 if (upeer_sockaddr) {
1629 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1630 &len, 2) < 0) {
1631 err = -ECONNABORTED;
1632 goto out_fd;
1633 }
1634 err = move_addr_to_user(&address,
1635 len, upeer_sockaddr, upeer_addrlen);
1636 if (err < 0)
1637 goto out_fd;
1638 }
1639
1640 /* File flags are not inherited via accept() unlike another OSes. */
1641
1642 fd_install(newfd, newfile);
1643 err = newfd;
1644
1645out_put:
1646 fput_light(sock->file, fput_needed);
1647out:
1648 return err;
1649out_fd:
1650 fput(newfile);
1651 put_unused_fd(newfd);
1652 goto out_put;
1653}
1654
1655SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1656 int __user *, upeer_addrlen)
1657{
1658 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1659}
1660
1661/*
1662 * Attempt to connect to a socket with the server address. The address
1663 * is in user space so we verify it is OK and move it to kernel space.
1664 *
1665 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1666 * break bindings
1667 *
1668 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1669 * other SEQPACKET protocols that take time to connect() as it doesn't
1670 * include the -EINPROGRESS status for such sockets.
1671 */
1672
1673SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674 int, addrlen)
1675{
1676 struct socket *sock;
1677 struct sockaddr_storage address;
1678 int err, fput_needed;
1679
1680 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1681 if (!sock)
1682 goto out;
1683 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1684 if (err < 0)
1685 goto out_put;
1686
1687 err =
1688 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1689 if (err)
1690 goto out_put;
1691
1692 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1693 sock->file->f_flags);
1694out_put:
1695 fput_light(sock->file, fput_needed);
1696out:
1697 return err;
1698}
1699
1700/*
1701 * Get the local address ('name') of a socket object. Move the obtained
1702 * name to user space.
1703 */
1704
1705SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1706 int __user *, usockaddr_len)
1707{
1708 struct socket *sock;
1709 struct sockaddr_storage address;
1710 int len, err, fput_needed;
1711
1712 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 if (!sock)
1714 goto out;
1715
1716 err = security_socket_getsockname(sock);
1717 if (err)
1718 goto out_put;
1719
1720 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1721 if (err)
1722 goto out_put;
1723 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1724
1725out_put:
1726 fput_light(sock->file, fput_needed);
1727out:
1728 return err;
1729}
1730
1731/*
1732 * Get the remote address ('name') of a socket object. Move the obtained
1733 * name to user space.
1734 */
1735
1736SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1737 int __user *, usockaddr_len)
1738{
1739 struct socket *sock;
1740 struct sockaddr_storage address;
1741 int len, err, fput_needed;
1742
1743 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1744 if (sock != NULL) {
1745 err = security_socket_getpeername(sock);
1746 if (err) {
1747 fput_light(sock->file, fput_needed);
1748 return err;
1749 }
1750
1751 err =
1752 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1753 1);
1754 if (!err)
1755 err = move_addr_to_user(&address, len, usockaddr,
1756 usockaddr_len);
1757 fput_light(sock->file, fput_needed);
1758 }
1759 return err;
1760}
1761
1762/*
1763 * Send a datagram to a given address. We move the address into kernel
1764 * space and check the user space data area is readable before invoking
1765 * the protocol.
1766 */
1767
1768SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1769 unsigned int, flags, struct sockaddr __user *, addr,
1770 int, addr_len)
1771{
1772 struct socket *sock;
1773 struct sockaddr_storage address;
1774 int err;
1775 struct msghdr msg;
1776 struct iovec iov;
1777 int fput_needed;
1778
1779 if (len > INT_MAX)
1780 len = INT_MAX;
1781 if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1782 return -EFAULT;
1783 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 if (!sock)
1785 goto out;
1786
1787 iov.iov_base = buff;
1788 iov.iov_len = len;
1789 msg.msg_name = NULL;
1790 msg.msg_iov = &iov;
1791 msg.msg_iovlen = 1;
1792 msg.msg_control = NULL;
1793 msg.msg_controllen = 0;
1794 msg.msg_namelen = 0;
1795 if (addr) {
1796 err = move_addr_to_kernel(addr, addr_len, &address);
1797 if (err < 0)
1798 goto out_put;
1799 msg.msg_name = (struct sockaddr *)&address;
1800 msg.msg_namelen = addr_len;
1801 }
1802 if (sock->file->f_flags & O_NONBLOCK)
1803 flags |= MSG_DONTWAIT;
1804 msg.msg_flags = flags;
1805 err = sock_sendmsg(sock, &msg, len);
1806
1807out_put:
1808 fput_light(sock->file, fput_needed);
1809out:
1810 return err;
1811}
1812
1813/*
1814 * Send a datagram down a socket.
1815 */
1816
1817SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818 unsigned int, flags)
1819{
1820 return sys_sendto(fd, buff, len, flags, NULL, 0);
1821}
1822
1823/*
1824 * Receive a frame from the socket and optionally record the address of the
1825 * sender. We verify the buffers are writable and if needed move the
1826 * sender address from kernel to user space.
1827 */
1828
1829SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1830 unsigned int, flags, struct sockaddr __user *, addr,
1831 int __user *, addr_len)
1832{
1833 struct socket *sock;
1834 struct iovec iov;
1835 struct msghdr msg;
1836 struct sockaddr_storage address;
1837 int err, err2;
1838 int fput_needed;
1839
1840 if (size > INT_MAX)
1841 size = INT_MAX;
1842 if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1843 return -EFAULT;
1844 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1845 if (!sock)
1846 goto out;
1847
1848 msg.msg_control = NULL;
1849 msg.msg_controllen = 0;
1850 msg.msg_iovlen = 1;
1851 msg.msg_iov = &iov;
1852 iov.iov_len = size;
1853 iov.iov_base = ubuf;
1854 /* Save some cycles and don't copy the address if not needed */
1855 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1856 /* We assume all kernel code knows the size of sockaddr_storage */
1857 msg.msg_namelen = 0;
1858 if (sock->file->f_flags & O_NONBLOCK)
1859 flags |= MSG_DONTWAIT;
1860 err = sock_recvmsg(sock, &msg, size, flags);
1861
1862 if (err >= 0 && addr != NULL) {
1863 err2 = move_addr_to_user(&address,
1864 msg.msg_namelen, addr, addr_len);
1865 if (err2 < 0)
1866 err = err2;
1867 }
1868
1869 fput_light(sock->file, fput_needed);
1870out:
1871 return err;
1872}
1873
1874/*
1875 * Receive a datagram from a socket.
1876 */
1877
1878asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1879 unsigned int flags)
1880{
1881 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1882}
1883
1884/*
1885 * Set a socket option. Because we don't know the option lengths we have
1886 * to pass the user mode parameter for the protocols to sort out.
1887 */
1888
1889SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1890 char __user *, optval, int, optlen)
1891{
1892 int err, fput_needed;
1893 struct socket *sock;
1894
1895 if (optlen < 0)
1896 return -EINVAL;
1897
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (sock != NULL) {
1900 err = security_socket_setsockopt(sock, level, optname);
1901 if (err)
1902 goto out_put;
1903
1904 if (level == SOL_SOCKET)
1905 err =
1906 sock_setsockopt(sock, level, optname, optval,
1907 optlen);
1908 else
1909 err =
1910 sock->ops->setsockopt(sock, level, optname, optval,
1911 optlen);
1912out_put:
1913 fput_light(sock->file, fput_needed);
1914 }
1915 return err;
1916}
1917
1918/*
1919 * Get a socket option. Because we don't know the option lengths we have
1920 * to pass a user mode parameter for the protocols to sort out.
1921 */
1922
1923SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1924 char __user *, optval, int __user *, optlen)
1925{
1926 int err, fput_needed;
1927 struct socket *sock;
1928
1929 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1930 if (sock != NULL) {
1931 err = security_socket_getsockopt(sock, level, optname);
1932 if (err)
1933 goto out_put;
1934
1935 if (level == SOL_SOCKET)
1936 err =
1937 sock_getsockopt(sock, level, optname, optval,
1938 optlen);
1939 else
1940 err =
1941 sock->ops->getsockopt(sock, level, optname, optval,
1942 optlen);
1943out_put:
1944 fput_light(sock->file, fput_needed);
1945 }
1946 return err;
1947}
1948
1949/*
1950 * Shutdown a socket.
1951 */
1952
1953SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1954{
1955 int err, fput_needed;
1956 struct socket *sock;
1957
1958 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1959 if (sock != NULL) {
1960 err = security_socket_shutdown(sock, how);
1961 if (!err)
1962 err = sock->ops->shutdown(sock, how);
1963 fput_light(sock->file, fput_needed);
1964 }
1965 return err;
1966}
1967
1968/* A couple of helpful macros for getting the address of the 32/64 bit
1969 * fields which are the same type (int / unsigned) on our platforms.
1970 */
1971#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1972#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1973#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1974
1975struct used_address {
1976 struct sockaddr_storage name;
1977 unsigned int name_len;
1978};
1979
1980static int copy_msghdr_from_user(struct msghdr *kmsg,
1981 struct msghdr __user *umsg)
1982{
1983 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1984 return -EFAULT;
1985
1986 if (kmsg->msg_namelen < 0)
1987 return -EINVAL;
1988
1989 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1990 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1991 return 0;
1992}
1993
1994static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1995 struct msghdr *msg_sys, unsigned int flags,
1996 struct used_address *used_address)
1997{
1998 struct compat_msghdr __user *msg_compat =
1999 (struct compat_msghdr __user *)msg;
2000 struct sockaddr_storage address;
2001 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2002 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2003 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2004 /* 20 is size of ipv6_pktinfo */
2005 unsigned char *ctl_buf = ctl;
2006 int err, ctl_len, total_len;
2007
2008 err = -EFAULT;
2009 if (MSG_CMSG_COMPAT & flags)
2010 err = get_compat_msghdr(msg_sys, msg_compat);
2011 else
2012 err = copy_msghdr_from_user(msg_sys, msg);
2013 if (err)
2014 return err;
2015
2016 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2017 err = -EMSGSIZE;
2018 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2019 goto out;
2020 err = -ENOMEM;
2021 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2022 GFP_KERNEL);
2023 if (!iov)
2024 goto out;
2025 }
2026
2027 /* This will also move the address data into kernel space */
2028 if (MSG_CMSG_COMPAT & flags) {
2029 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2030 } else
2031 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2032 if (err < 0)
2033 goto out_freeiov;
2034 total_len = err;
2035
2036 err = -ENOBUFS;
2037
2038 if (msg_sys->msg_controllen > INT_MAX)
2039 goto out_freeiov;
2040 ctl_len = msg_sys->msg_controllen;
2041 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2042 err =
2043 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2044 sizeof(ctl));
2045 if (err)
2046 goto out_freeiov;
2047 ctl_buf = msg_sys->msg_control;
2048 ctl_len = msg_sys->msg_controllen;
2049 } else if (ctl_len) {
2050 if (ctl_len > sizeof(ctl)) {
2051 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2052 if (ctl_buf == NULL)
2053 goto out_freeiov;
2054 }
2055 err = -EFAULT;
2056 /*
2057 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2058 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2059 * checking falls down on this.
2060 */
2061 if (copy_from_user(ctl_buf,
2062 (void __user __force *)msg_sys->msg_control,
2063 ctl_len))
2064 goto out_freectl;
2065 msg_sys->msg_control = ctl_buf;
2066 }
2067 msg_sys->msg_flags = flags;
2068
2069 if (sock->file->f_flags & O_NONBLOCK)
2070 msg_sys->msg_flags |= MSG_DONTWAIT;
2071 /*
2072 * If this is sendmmsg() and current destination address is same as
2073 * previously succeeded address, omit asking LSM's decision.
2074 * used_address->name_len is initialized to UINT_MAX so that the first
2075 * destination address never matches.
2076 */
2077 if (used_address && msg_sys->msg_name &&
2078 used_address->name_len == msg_sys->msg_namelen &&
2079 !memcmp(&used_address->name, msg_sys->msg_name,
2080 used_address->name_len)) {
2081 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2082 goto out_freectl;
2083 }
2084 err = sock_sendmsg(sock, msg_sys, total_len);
2085 /*
2086 * If this is sendmmsg() and sending to current destination address was
2087 * successful, remember it.
2088 */
2089 if (used_address && err >= 0) {
2090 used_address->name_len = msg_sys->msg_namelen;
2091 if (msg_sys->msg_name)
2092 memcpy(&used_address->name, msg_sys->msg_name,
2093 used_address->name_len);
2094 }
2095
2096out_freectl:
2097 if (ctl_buf != ctl)
2098 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2099out_freeiov:
2100 if (iov != iovstack)
2101 kfree(iov);
2102out:
2103 return err;
2104}
2105
2106/*
2107 * BSD sendmsg interface
2108 */
2109
2110long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2111{
2112 int fput_needed, err;
2113 struct msghdr msg_sys;
2114 struct socket *sock;
2115
2116 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 if (!sock)
2118 goto out;
2119
2120 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2121
2122 fput_light(sock->file, fput_needed);
2123out:
2124 return err;
2125}
2126
2127SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2128{
2129 if (flags & MSG_CMSG_COMPAT)
2130 return -EINVAL;
2131 return __sys_sendmsg(fd, msg, flags);
2132}
2133
2134/*
2135 * Linux sendmmsg interface
2136 */
2137
2138int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2139 unsigned int flags)
2140{
2141 int fput_needed, err, datagrams;
2142 struct socket *sock;
2143 struct mmsghdr __user *entry;
2144 struct compat_mmsghdr __user *compat_entry;
2145 struct msghdr msg_sys;
2146 struct used_address used_address;
2147
2148 if (vlen > UIO_MAXIOV)
2149 vlen = UIO_MAXIOV;
2150
2151 datagrams = 0;
2152
2153 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2154 if (!sock)
2155 return err;
2156
2157 used_address.name_len = UINT_MAX;
2158 entry = mmsg;
2159 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2160 err = 0;
2161
2162 while (datagrams < vlen) {
2163 if (MSG_CMSG_COMPAT & flags) {
2164 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2165 &msg_sys, flags, &used_address);
2166 if (err < 0)
2167 break;
2168 err = __put_user(err, &compat_entry->msg_len);
2169 ++compat_entry;
2170 } else {
2171 err = ___sys_sendmsg(sock,
2172 (struct msghdr __user *)entry,
2173 &msg_sys, flags, &used_address);
2174 if (err < 0)
2175 break;
2176 err = put_user(err, &entry->msg_len);
2177 ++entry;
2178 }
2179
2180 if (err)
2181 break;
2182 ++datagrams;
2183 }
2184
2185 fput_light(sock->file, fput_needed);
2186
2187 /* We only return an error if no datagrams were able to be sent */
2188 if (datagrams != 0)
2189 return datagrams;
2190
2191 return err;
2192}
2193
2194SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2195 unsigned int, vlen, unsigned int, flags)
2196{
2197 if (flags & MSG_CMSG_COMPAT)
2198 return -EINVAL;
2199 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2200}
2201
2202static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2203 struct msghdr *msg_sys, unsigned int flags, int nosec)
2204{
2205 struct compat_msghdr __user *msg_compat =
2206 (struct compat_msghdr __user *)msg;
2207 struct iovec iovstack[UIO_FASTIOV];
2208 struct iovec *iov = iovstack;
2209 unsigned long cmsg_ptr;
2210 int err, total_len, len;
2211
2212 /* kernel mode address */
2213 struct sockaddr_storage addr;
2214
2215 /* user mode address pointers */
2216 struct sockaddr __user *uaddr;
2217 int __user *uaddr_len;
2218
2219 if (MSG_CMSG_COMPAT & flags)
2220 err = get_compat_msghdr(msg_sys, msg_compat);
2221 else
2222 err = copy_msghdr_from_user(msg_sys, msg);
2223 if (err)
2224 return err;
2225
2226 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2227 err = -EMSGSIZE;
2228 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2229 goto out;
2230 err = -ENOMEM;
2231 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2232 GFP_KERNEL);
2233 if (!iov)
2234 goto out;
2235 }
2236
2237 /* Save the user-mode address (verify_iovec will change the
2238 * kernel msghdr to use the kernel address space)
2239 */
2240 uaddr = (__force void __user *)msg_sys->msg_name;
2241 uaddr_len = COMPAT_NAMELEN(msg);
2242 if (MSG_CMSG_COMPAT & flags)
2243 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2244 else
2245 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2246 if (err < 0)
2247 goto out_freeiov;
2248 total_len = err;
2249
2250 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2251 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2252
2253 /* We assume all kernel code knows the size of sockaddr_storage */
2254 msg_sys->msg_namelen = 0;
2255
2256 if (sock->file->f_flags & O_NONBLOCK)
2257 flags |= MSG_DONTWAIT;
2258 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2259 total_len, flags);
2260 if (err < 0)
2261 goto out_freeiov;
2262 len = err;
2263
2264 if (uaddr != NULL) {
2265 err = move_addr_to_user(&addr,
2266 msg_sys->msg_namelen, uaddr,
2267 uaddr_len);
2268 if (err < 0)
2269 goto out_freeiov;
2270 }
2271 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2272 COMPAT_FLAGS(msg));
2273 if (err)
2274 goto out_freeiov;
2275 if (MSG_CMSG_COMPAT & flags)
2276 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2277 &msg_compat->msg_controllen);
2278 else
2279 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2280 &msg->msg_controllen);
2281 if (err)
2282 goto out_freeiov;
2283 err = len;
2284
2285out_freeiov:
2286 if (iov != iovstack)
2287 kfree(iov);
2288out:
2289 return err;
2290}
2291
2292/*
2293 * BSD recvmsg interface
2294 */
2295
2296long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2297{
2298 int fput_needed, err;
2299 struct msghdr msg_sys;
2300 struct socket *sock;
2301
2302 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2303 if (!sock)
2304 goto out;
2305
2306 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2307
2308 fput_light(sock->file, fput_needed);
2309out:
2310 return err;
2311}
2312
2313SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2314 unsigned int, flags)
2315{
2316 if (flags & MSG_CMSG_COMPAT)
2317 return -EINVAL;
2318 return __sys_recvmsg(fd, msg, flags);
2319}
2320
2321/*
2322 * Linux recvmmsg interface
2323 */
2324
2325int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2326 unsigned int flags, struct timespec *timeout)
2327{
2328 int fput_needed, err, datagrams;
2329 struct socket *sock;
2330 struct mmsghdr __user *entry;
2331 struct compat_mmsghdr __user *compat_entry;
2332 struct msghdr msg_sys;
2333 struct timespec end_time;
2334
2335 if (timeout &&
2336 poll_select_set_timeout(&end_time, timeout->tv_sec,
2337 timeout->tv_nsec))
2338 return -EINVAL;
2339
2340 datagrams = 0;
2341
2342 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2343 if (!sock)
2344 return err;
2345
2346 err = sock_error(sock->sk);
2347 if (err) {
2348 datagrams = err;
2349 goto out_put;
2350 }
2351
2352 entry = mmsg;
2353 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2354
2355 while (datagrams < vlen) {
2356 /*
2357 * No need to ask LSM for more than the first datagram.
2358 */
2359 if (MSG_CMSG_COMPAT & flags) {
2360 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2361 &msg_sys, flags & ~MSG_WAITFORONE,
2362 datagrams);
2363 if (err < 0)
2364 break;
2365 err = __put_user(err, &compat_entry->msg_len);
2366 ++compat_entry;
2367 } else {
2368 err = ___sys_recvmsg(sock,
2369 (struct msghdr __user *)entry,
2370 &msg_sys, flags & ~MSG_WAITFORONE,
2371 datagrams);
2372 if (err < 0)
2373 break;
2374 err = put_user(err, &entry->msg_len);
2375 ++entry;
2376 }
2377
2378 if (err)
2379 break;
2380 ++datagrams;
2381
2382 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2383 if (flags & MSG_WAITFORONE)
2384 flags |= MSG_DONTWAIT;
2385
2386 if (timeout) {
2387 ktime_get_ts(timeout);
2388 *timeout = timespec_sub(end_time, *timeout);
2389 if (timeout->tv_sec < 0) {
2390 timeout->tv_sec = timeout->tv_nsec = 0;
2391 break;
2392 }
2393
2394 /* Timeout, return less than vlen datagrams */
2395 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2396 break;
2397 }
2398
2399 /* Out of band data, return right away */
2400 if (msg_sys.msg_flags & MSG_OOB)
2401 break;
2402 }
2403
2404 if (err == 0)
2405 goto out_put;
2406
2407 if (datagrams == 0) {
2408 datagrams = err;
2409 goto out_put;
2410 }
2411
2412 /*
2413 * We may return less entries than requested (vlen) if the
2414 * sock is non block and there aren't enough datagrams...
2415 */
2416 if (err != -EAGAIN) {
2417 /*
2418 * ... or if recvmsg returns an error after we
2419 * received some datagrams, where we record the
2420 * error to return on the next call or if the
2421 * app asks about it using getsockopt(SO_ERROR).
2422 */
2423 sock->sk->sk_err = -err;
2424 }
2425out_put:
2426 fput_light(sock->file, fput_needed);
2427
2428 return datagrams;
2429}
2430
2431SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2432 unsigned int, vlen, unsigned int, flags,
2433 struct timespec __user *, timeout)
2434{
2435 int datagrams;
2436 struct timespec timeout_sys;
2437
2438 if (flags & MSG_CMSG_COMPAT)
2439 return -EINVAL;
2440
2441 if (!timeout)
2442 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2443
2444 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2445 return -EFAULT;
2446
2447 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2448
2449 if (datagrams > 0 &&
2450 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2451 datagrams = -EFAULT;
2452
2453 return datagrams;
2454}
2455
2456#ifdef __ARCH_WANT_SYS_SOCKETCALL
2457/* Argument list sizes for sys_socketcall */
2458#define AL(x) ((x) * sizeof(unsigned long))
2459static const unsigned char nargs[21] = {
2460 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2461 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2462 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2463 AL(4), AL(5), AL(4)
2464};
2465
2466#undef AL
2467
2468/*
2469 * System call vectors.
2470 *
2471 * Argument checking cleaned up. Saved 20% in size.
2472 * This function doesn't need to set the kernel lock because
2473 * it is set by the callees.
2474 */
2475
2476SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2477{
2478 unsigned long a[AUDITSC_ARGS];
2479 unsigned long a0, a1;
2480 int err;
2481 unsigned int len;
2482
2483 if (call < 1 || call > SYS_SENDMMSG)
2484 return -EINVAL;
2485
2486 len = nargs[call];
2487 if (len > sizeof(a))
2488 return -EINVAL;
2489
2490 /* copy_from_user should be SMP safe. */
2491 if (copy_from_user(a, args, len))
2492 return -EFAULT;
2493
2494 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2495 if (err)
2496 return err;
2497
2498 a0 = a[0];
2499 a1 = a[1];
2500
2501 switch (call) {
2502 case SYS_SOCKET:
2503 err = sys_socket(a0, a1, a[2]);
2504 break;
2505 case SYS_BIND:
2506 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2507 break;
2508 case SYS_CONNECT:
2509 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2510 break;
2511 case SYS_LISTEN:
2512 err = sys_listen(a0, a1);
2513 break;
2514 case SYS_ACCEPT:
2515 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2516 (int __user *)a[2], 0);
2517 break;
2518 case SYS_GETSOCKNAME:
2519 err =
2520 sys_getsockname(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2]);
2522 break;
2523 case SYS_GETPEERNAME:
2524 err =
2525 sys_getpeername(a0, (struct sockaddr __user *)a1,
2526 (int __user *)a[2]);
2527 break;
2528 case SYS_SOCKETPAIR:
2529 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2530 break;
2531 case SYS_SEND:
2532 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2533 break;
2534 case SYS_SENDTO:
2535 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2536 (struct sockaddr __user *)a[4], a[5]);
2537 break;
2538 case SYS_RECV:
2539 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2540 break;
2541 case SYS_RECVFROM:
2542 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2543 (struct sockaddr __user *)a[4],
2544 (int __user *)a[5]);
2545 break;
2546 case SYS_SHUTDOWN:
2547 err = sys_shutdown(a0, a1);
2548 break;
2549 case SYS_SETSOCKOPT:
2550 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2551 break;
2552 case SYS_GETSOCKOPT:
2553 err =
2554 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2555 (int __user *)a[4]);
2556 break;
2557 case SYS_SENDMSG:
2558 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2559 break;
2560 case SYS_SENDMMSG:
2561 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2562 break;
2563 case SYS_RECVMSG:
2564 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2565 break;
2566 case SYS_RECVMMSG:
2567 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2568 (struct timespec __user *)a[4]);
2569 break;
2570 case SYS_ACCEPT4:
2571 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2572 (int __user *)a[2], a[3]);
2573 break;
2574 default:
2575 err = -EINVAL;
2576 break;
2577 }
2578 return err;
2579}
2580
2581#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2582
2583/**
2584 * sock_register - add a socket protocol handler
2585 * @ops: description of protocol
2586 *
2587 * This function is called by a protocol handler that wants to
2588 * advertise its address family, and have it linked into the
2589 * socket interface. The value ops->family coresponds to the
2590 * socket system call protocol family.
2591 */
2592int sock_register(const struct net_proto_family *ops)
2593{
2594 int err;
2595
2596 if (ops->family >= NPROTO) {
2597 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2598 NPROTO);
2599 return -ENOBUFS;
2600 }
2601
2602 spin_lock(&net_family_lock);
2603 if (rcu_dereference_protected(net_families[ops->family],
2604 lockdep_is_held(&net_family_lock)))
2605 err = -EEXIST;
2606 else {
2607 rcu_assign_pointer(net_families[ops->family], ops);
2608 err = 0;
2609 }
2610 spin_unlock(&net_family_lock);
2611
2612 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2613 return err;
2614}
2615EXPORT_SYMBOL(sock_register);
2616
2617/**
2618 * sock_unregister - remove a protocol handler
2619 * @family: protocol family to remove
2620 *
2621 * This function is called by a protocol handler that wants to
2622 * remove its address family, and have it unlinked from the
2623 * new socket creation.
2624 *
2625 * If protocol handler is a module, then it can use module reference
2626 * counts to protect against new references. If protocol handler is not
2627 * a module then it needs to provide its own protection in
2628 * the ops->create routine.
2629 */
2630void sock_unregister(int family)
2631{
2632 BUG_ON(family < 0 || family >= NPROTO);
2633
2634 spin_lock(&net_family_lock);
2635 RCU_INIT_POINTER(net_families[family], NULL);
2636 spin_unlock(&net_family_lock);
2637
2638 synchronize_rcu();
2639
2640 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2641}
2642EXPORT_SYMBOL(sock_unregister);
2643
2644static int __init sock_init(void)
2645{
2646 int err;
2647 /*
2648 * Initialize the network sysctl infrastructure.
2649 */
2650 err = net_sysctl_init();
2651 if (err)
2652 goto out;
2653
2654 /*
2655 * Initialize skbuff SLAB cache
2656 */
2657 skb_init();
2658
2659 /*
2660 * Initialize the protocols module.
2661 */
2662
2663 init_inodecache();
2664
2665 err = register_filesystem(&sock_fs_type);
2666 if (err)
2667 goto out_fs;
2668 sock_mnt = kern_mount(&sock_fs_type);
2669 if (IS_ERR(sock_mnt)) {
2670 err = PTR_ERR(sock_mnt);
2671 goto out_mount;
2672 }
2673
2674 /* The real protocol initialization is performed in later initcalls.
2675 */
2676
2677#ifdef CONFIG_NETFILTER
2678 netfilter_init();
2679#endif
2680
2681#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2682 skb_timestamping_init();
2683#endif
2684
2685out:
2686 return err;
2687
2688out_mount:
2689 unregister_filesystem(&sock_fs_type);
2690out_fs:
2691 goto out;
2692}
2693
2694core_initcall(sock_init); /* early initcall */
2695
2696#ifdef CONFIG_PROC_FS
2697void socket_seq_show(struct seq_file *seq)
2698{
2699 int cpu;
2700 int counter = 0;
2701
2702 for_each_possible_cpu(cpu)
2703 counter += per_cpu(sockets_in_use, cpu);
2704
2705 /* It can be negative, by the way. 8) */
2706 if (counter < 0)
2707 counter = 0;
2708
2709 seq_printf(seq, "sockets: used %d\n", counter);
2710}
2711#endif /* CONFIG_PROC_FS */
2712
2713#ifdef CONFIG_COMPAT
2714static int do_siocgstamp(struct net *net, struct socket *sock,
2715 unsigned int cmd, void __user *up)
2716{
2717 mm_segment_t old_fs = get_fs();
2718 struct timeval ktv;
2719 int err;
2720
2721 set_fs(KERNEL_DS);
2722 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2723 set_fs(old_fs);
2724 if (!err)
2725 err = compat_put_timeval(&ktv, up);
2726
2727 return err;
2728}
2729
2730static int do_siocgstampns(struct net *net, struct socket *sock,
2731 unsigned int cmd, void __user *up)
2732{
2733 mm_segment_t old_fs = get_fs();
2734 struct timespec kts;
2735 int err;
2736
2737 set_fs(KERNEL_DS);
2738 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2739 set_fs(old_fs);
2740 if (!err)
2741 err = compat_put_timespec(&kts, up);
2742
2743 return err;
2744}
2745
2746static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2747{
2748 struct ifreq __user *uifr;
2749 int err;
2750
2751 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2752 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2753 return -EFAULT;
2754
2755 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2756 if (err)
2757 return err;
2758
2759 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2760 return -EFAULT;
2761
2762 return 0;
2763}
2764
2765static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2766{
2767 struct compat_ifconf ifc32;
2768 struct ifconf ifc;
2769 struct ifconf __user *uifc;
2770 struct compat_ifreq __user *ifr32;
2771 struct ifreq __user *ifr;
2772 unsigned int i, j;
2773 int err;
2774
2775 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2776 return -EFAULT;
2777
2778 memset(&ifc, 0, sizeof(ifc));
2779 if (ifc32.ifcbuf == 0) {
2780 ifc32.ifc_len = 0;
2781 ifc.ifc_len = 0;
2782 ifc.ifc_req = NULL;
2783 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2784 } else {
2785 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2786 sizeof(struct ifreq);
2787 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2788 ifc.ifc_len = len;
2789 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2790 ifr32 = compat_ptr(ifc32.ifcbuf);
2791 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2792 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2793 return -EFAULT;
2794 ifr++;
2795 ifr32++;
2796 }
2797 }
2798 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2799 return -EFAULT;
2800
2801 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2802 if (err)
2803 return err;
2804
2805 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2806 return -EFAULT;
2807
2808 ifr = ifc.ifc_req;
2809 ifr32 = compat_ptr(ifc32.ifcbuf);
2810 for (i = 0, j = 0;
2811 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2812 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2813 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2814 return -EFAULT;
2815 ifr32++;
2816 ifr++;
2817 }
2818
2819 if (ifc32.ifcbuf == 0) {
2820 /* Translate from 64-bit structure multiple to
2821 * a 32-bit one.
2822 */
2823 i = ifc.ifc_len;
2824 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2825 ifc32.ifc_len = i;
2826 } else {
2827 ifc32.ifc_len = i;
2828 }
2829 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2830 return -EFAULT;
2831
2832 return 0;
2833}
2834
2835static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2836{
2837 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2838 bool convert_in = false, convert_out = false;
2839 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2840 struct ethtool_rxnfc __user *rxnfc;
2841 struct ifreq __user *ifr;
2842 u32 rule_cnt = 0, actual_rule_cnt;
2843 u32 ethcmd;
2844 u32 data;
2845 int ret;
2846
2847 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2848 return -EFAULT;
2849
2850 compat_rxnfc = compat_ptr(data);
2851
2852 if (get_user(ethcmd, &compat_rxnfc->cmd))
2853 return -EFAULT;
2854
2855 /* Most ethtool structures are defined without padding.
2856 * Unfortunately struct ethtool_rxnfc is an exception.
2857 */
2858 switch (ethcmd) {
2859 default:
2860 break;
2861 case ETHTOOL_GRXCLSRLALL:
2862 /* Buffer size is variable */
2863 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2864 return -EFAULT;
2865 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2866 return -ENOMEM;
2867 buf_size += rule_cnt * sizeof(u32);
2868 /* fall through */
2869 case ETHTOOL_GRXRINGS:
2870 case ETHTOOL_GRXCLSRLCNT:
2871 case ETHTOOL_GRXCLSRULE:
2872 case ETHTOOL_SRXCLSRLINS:
2873 convert_out = true;
2874 /* fall through */
2875 case ETHTOOL_SRXCLSRLDEL:
2876 buf_size += sizeof(struct ethtool_rxnfc);
2877 convert_in = true;
2878 break;
2879 }
2880
2881 ifr = compat_alloc_user_space(buf_size);
2882 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2883
2884 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2885 return -EFAULT;
2886
2887 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2888 &ifr->ifr_ifru.ifru_data))
2889 return -EFAULT;
2890
2891 if (convert_in) {
2892 /* We expect there to be holes between fs.m_ext and
2893 * fs.ring_cookie and at the end of fs, but nowhere else.
2894 */
2895 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2896 sizeof(compat_rxnfc->fs.m_ext) !=
2897 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2898 sizeof(rxnfc->fs.m_ext));
2899 BUILD_BUG_ON(
2900 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2901 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2902 offsetof(struct ethtool_rxnfc, fs.location) -
2903 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2904
2905 if (copy_in_user(rxnfc, compat_rxnfc,
2906 (void __user *)(&rxnfc->fs.m_ext + 1) -
2907 (void __user *)rxnfc) ||
2908 copy_in_user(&rxnfc->fs.ring_cookie,
2909 &compat_rxnfc->fs.ring_cookie,
2910 (void __user *)(&rxnfc->fs.location + 1) -
2911 (void __user *)&rxnfc->fs.ring_cookie) ||
2912 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2913 sizeof(rxnfc->rule_cnt)))
2914 return -EFAULT;
2915 }
2916
2917 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2918 if (ret)
2919 return ret;
2920
2921 if (convert_out) {
2922 if (copy_in_user(compat_rxnfc, rxnfc,
2923 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2924 (const void __user *)rxnfc) ||
2925 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2926 &rxnfc->fs.ring_cookie,
2927 (const void __user *)(&rxnfc->fs.location + 1) -
2928 (const void __user *)&rxnfc->fs.ring_cookie) ||
2929 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2930 sizeof(rxnfc->rule_cnt)))
2931 return -EFAULT;
2932
2933 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2934 /* As an optimisation, we only copy the actual
2935 * number of rules that the underlying
2936 * function returned. Since Mallory might
2937 * change the rule count in user memory, we
2938 * check that it is less than the rule count
2939 * originally given (as the user buffer size),
2940 * which has been range-checked.
2941 */
2942 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2943 return -EFAULT;
2944 if (actual_rule_cnt < rule_cnt)
2945 rule_cnt = actual_rule_cnt;
2946 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2947 &rxnfc->rule_locs[0],
2948 rule_cnt * sizeof(u32)))
2949 return -EFAULT;
2950 }
2951 }
2952
2953 return 0;
2954}
2955
2956static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2957{
2958 void __user *uptr;
2959 compat_uptr_t uptr32;
2960 struct ifreq __user *uifr;
2961
2962 uifr = compat_alloc_user_space(sizeof(*uifr));
2963 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2964 return -EFAULT;
2965
2966 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2967 return -EFAULT;
2968
2969 uptr = compat_ptr(uptr32);
2970
2971 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2972 return -EFAULT;
2973
2974 return dev_ioctl(net, SIOCWANDEV, uifr);
2975}
2976
2977static int bond_ioctl(struct net *net, unsigned int cmd,
2978 struct compat_ifreq __user *ifr32)
2979{
2980 struct ifreq kifr;
2981 struct ifreq __user *uifr;
2982 mm_segment_t old_fs;
2983 int err;
2984 u32 data;
2985 void __user *datap;
2986
2987 switch (cmd) {
2988 case SIOCBONDENSLAVE:
2989 case SIOCBONDRELEASE:
2990 case SIOCBONDSETHWADDR:
2991 case SIOCBONDCHANGEACTIVE:
2992 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2993 return -EFAULT;
2994
2995 old_fs = get_fs();
2996 set_fs(KERNEL_DS);
2997 err = dev_ioctl(net, cmd,
2998 (struct ifreq __user __force *) &kifr);
2999 set_fs(old_fs);
3000
3001 return err;
3002 case SIOCBONDSLAVEINFOQUERY:
3003 case SIOCBONDINFOQUERY:
3004 uifr = compat_alloc_user_space(sizeof(*uifr));
3005 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3006 return -EFAULT;
3007
3008 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3009 return -EFAULT;
3010
3011 datap = compat_ptr(data);
3012 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
3013 return -EFAULT;
3014
3015 return dev_ioctl(net, cmd, uifr);
3016 default:
3017 return -ENOIOCTLCMD;
3018 }
3019}
3020
3021static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3022 struct compat_ifreq __user *u_ifreq32)
3023{
3024 struct ifreq __user *u_ifreq64;
3025 char tmp_buf[IFNAMSIZ];
3026 void __user *data64;
3027 u32 data32;
3028
3029 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3030 IFNAMSIZ))
3031 return -EFAULT;
3032 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3033 return -EFAULT;
3034 data64 = compat_ptr(data32);
3035
3036 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3037
3038 /* Don't check these user accesses, just let that get trapped
3039 * in the ioctl handler instead.
3040 */
3041 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3042 IFNAMSIZ))
3043 return -EFAULT;
3044 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3045 return -EFAULT;
3046
3047 return dev_ioctl(net, cmd, u_ifreq64);
3048}
3049
3050static int dev_ifsioc(struct net *net, struct socket *sock,
3051 unsigned int cmd, struct compat_ifreq __user *uifr32)
3052{
3053 struct ifreq __user *uifr;
3054 int err;
3055
3056 uifr = compat_alloc_user_space(sizeof(*uifr));
3057 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3058 return -EFAULT;
3059
3060 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3061
3062 if (!err) {
3063 switch (cmd) {
3064 case SIOCGIFFLAGS:
3065 case SIOCGIFMETRIC:
3066 case SIOCGIFMTU:
3067 case SIOCGIFMEM:
3068 case SIOCGIFHWADDR:
3069 case SIOCGIFINDEX:
3070 case SIOCGIFADDR:
3071 case SIOCGIFBRDADDR:
3072 case SIOCGIFDSTADDR:
3073 case SIOCGIFNETMASK:
3074 case SIOCGIFPFLAGS:
3075 case SIOCGIFTXQLEN:
3076 case SIOCGMIIPHY:
3077 case SIOCGMIIREG:
3078 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3079 err = -EFAULT;
3080 break;
3081 }
3082 }
3083 return err;
3084}
3085
3086static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3087 struct compat_ifreq __user *uifr32)
3088{
3089 struct ifreq ifr;
3090 struct compat_ifmap __user *uifmap32;
3091 mm_segment_t old_fs;
3092 int err;
3093
3094 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3095 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3096 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3097 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3098 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3099 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3100 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3101 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3102 if (err)
3103 return -EFAULT;
3104
3105 old_fs = get_fs();
3106 set_fs(KERNEL_DS);
3107 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3108 set_fs(old_fs);
3109
3110 if (cmd == SIOCGIFMAP && !err) {
3111 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3112 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3113 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3114 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3115 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3116 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3117 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3118 if (err)
3119 err = -EFAULT;
3120 }
3121 return err;
3122}
3123
3124static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3125{
3126 void __user *uptr;
3127 compat_uptr_t uptr32;
3128 struct ifreq __user *uifr;
3129
3130 uifr = compat_alloc_user_space(sizeof(*uifr));
3131 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3132 return -EFAULT;
3133
3134 if (get_user(uptr32, &uifr32->ifr_data))
3135 return -EFAULT;
3136
3137 uptr = compat_ptr(uptr32);
3138
3139 if (put_user(uptr, &uifr->ifr_data))
3140 return -EFAULT;
3141
3142 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3143}
3144
3145struct rtentry32 {
3146 u32 rt_pad1;
3147 struct sockaddr rt_dst; /* target address */
3148 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3149 struct sockaddr rt_genmask; /* target network mask (IP) */
3150 unsigned short rt_flags;
3151 short rt_pad2;
3152 u32 rt_pad3;
3153 unsigned char rt_tos;
3154 unsigned char rt_class;
3155 short rt_pad4;
3156 short rt_metric; /* +1 for binary compatibility! */
3157 /* char * */ u32 rt_dev; /* forcing the device at add */
3158 u32 rt_mtu; /* per route MTU/Window */
3159 u32 rt_window; /* Window clamping */
3160 unsigned short rt_irtt; /* Initial RTT */
3161};
3162
3163struct in6_rtmsg32 {
3164 struct in6_addr rtmsg_dst;
3165 struct in6_addr rtmsg_src;
3166 struct in6_addr rtmsg_gateway;
3167 u32 rtmsg_type;
3168 u16 rtmsg_dst_len;
3169 u16 rtmsg_src_len;
3170 u32 rtmsg_metric;
3171 u32 rtmsg_info;
3172 u32 rtmsg_flags;
3173 s32 rtmsg_ifindex;
3174};
3175
3176static int routing_ioctl(struct net *net, struct socket *sock,
3177 unsigned int cmd, void __user *argp)
3178{
3179 int ret;
3180 void *r = NULL;
3181 struct in6_rtmsg r6;
3182 struct rtentry r4;
3183 char devname[16];
3184 u32 rtdev;
3185 mm_segment_t old_fs = get_fs();
3186
3187 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3188 struct in6_rtmsg32 __user *ur6 = argp;
3189 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3190 3 * sizeof(struct in6_addr));
3191 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3192 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3193 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3194 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3195 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3196 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3197 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3198
3199 r = (void *) &r6;
3200 } else { /* ipv4 */
3201 struct rtentry32 __user *ur4 = argp;
3202 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3203 3 * sizeof(struct sockaddr));
3204 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3205 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3206 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3207 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3208 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3209 ret |= __get_user(rtdev, &(ur4->rt_dev));
3210 if (rtdev) {
3211 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3212 r4.rt_dev = (char __user __force *)devname;
3213 devname[15] = 0;
3214 } else
3215 r4.rt_dev = NULL;
3216
3217 r = (void *) &r4;
3218 }
3219
3220 if (ret) {
3221 ret = -EFAULT;
3222 goto out;
3223 }
3224
3225 set_fs(KERNEL_DS);
3226 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3227 set_fs(old_fs);
3228
3229out:
3230 return ret;
3231}
3232
3233/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3234 * for some operations; this forces use of the newer bridge-utils that
3235 * use compatible ioctls
3236 */
3237static int old_bridge_ioctl(compat_ulong_t __user *argp)
3238{
3239 compat_ulong_t tmp;
3240
3241 if (get_user(tmp, argp))
3242 return -EFAULT;
3243 if (tmp == BRCTL_GET_VERSION)
3244 return BRCTL_VERSION + 1;
3245 return -EINVAL;
3246}
3247
3248static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3249 unsigned int cmd, unsigned long arg)
3250{
3251 void __user *argp = compat_ptr(arg);
3252 struct sock *sk = sock->sk;
3253 struct net *net = sock_net(sk);
3254
3255 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3256 return siocdevprivate_ioctl(net, cmd, argp);
3257
3258 switch (cmd) {
3259 case SIOCSIFBR:
3260 case SIOCGIFBR:
3261 return old_bridge_ioctl(argp);
3262 case SIOCGIFNAME:
3263 return dev_ifname32(net, argp);
3264 case SIOCGIFCONF:
3265 return dev_ifconf(net, argp);
3266 case SIOCETHTOOL:
3267 return ethtool_ioctl(net, argp);
3268 case SIOCWANDEV:
3269 return compat_siocwandev(net, argp);
3270 case SIOCGIFMAP:
3271 case SIOCSIFMAP:
3272 return compat_sioc_ifmap(net, cmd, argp);
3273 case SIOCBONDENSLAVE:
3274 case SIOCBONDRELEASE:
3275 case SIOCBONDSETHWADDR:
3276 case SIOCBONDSLAVEINFOQUERY:
3277 case SIOCBONDINFOQUERY:
3278 case SIOCBONDCHANGEACTIVE:
3279 return bond_ioctl(net, cmd, argp);
3280 case SIOCADDRT:
3281 case SIOCDELRT:
3282 return routing_ioctl(net, sock, cmd, argp);
3283 case SIOCGSTAMP:
3284 return do_siocgstamp(net, sock, cmd, argp);
3285 case SIOCGSTAMPNS:
3286 return do_siocgstampns(net, sock, cmd, argp);
3287 case SIOCSHWTSTAMP:
3288 return compat_siocshwtstamp(net, argp);
3289
3290 case FIOSETOWN:
3291 case SIOCSPGRP:
3292 case FIOGETOWN:
3293 case SIOCGPGRP:
3294 case SIOCBRADDBR:
3295 case SIOCBRDELBR:
3296 case SIOCGIFVLAN:
3297 case SIOCSIFVLAN:
3298 case SIOCADDDLCI:
3299 case SIOCDELDLCI:
3300 case SIOCKILLADDR:
3301 return sock_ioctl(file, cmd, arg);
3302
3303 case SIOCGIFFLAGS:
3304 case SIOCSIFFLAGS:
3305 case SIOCGIFMETRIC:
3306 case SIOCSIFMETRIC:
3307 case SIOCGIFMTU:
3308 case SIOCSIFMTU:
3309 case SIOCGIFMEM:
3310 case SIOCSIFMEM:
3311 case SIOCGIFHWADDR:
3312 case SIOCSIFHWADDR:
3313 case SIOCADDMULTI:
3314 case SIOCDELMULTI:
3315 case SIOCGIFINDEX:
3316 case SIOCGIFADDR:
3317 case SIOCSIFADDR:
3318 case SIOCSIFHWBROADCAST:
3319 case SIOCDIFADDR:
3320 case SIOCGIFBRDADDR:
3321 case SIOCSIFBRDADDR:
3322 case SIOCGIFDSTADDR:
3323 case SIOCSIFDSTADDR:
3324 case SIOCGIFNETMASK:
3325 case SIOCSIFNETMASK:
3326 case SIOCSIFPFLAGS:
3327 case SIOCGIFPFLAGS:
3328 case SIOCGIFTXQLEN:
3329 case SIOCSIFTXQLEN:
3330 case SIOCBRADDIF:
3331 case SIOCBRDELIF:
3332 case SIOCSIFNAME:
3333 case SIOCGMIIPHY:
3334 case SIOCGMIIREG:
3335 case SIOCSMIIREG:
3336 return dev_ifsioc(net, sock, cmd, argp);
3337
3338 case SIOCSARP:
3339 case SIOCGARP:
3340 case SIOCDARP:
3341 case SIOCATMARK:
3342 return sock_do_ioctl(net, sock, cmd, arg);
3343 }
3344
3345 return -ENOIOCTLCMD;
3346}
3347
3348static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3349 unsigned long arg)
3350{
3351 struct socket *sock = file->private_data;
3352 int ret = -ENOIOCTLCMD;
3353 struct sock *sk;
3354 struct net *net;
3355
3356 sk = sock->sk;
3357 net = sock_net(sk);
3358
3359 if (sock->ops->compat_ioctl)
3360 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3361
3362 if (ret == -ENOIOCTLCMD &&
3363 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3364 ret = compat_wext_handle_ioctl(net, cmd, arg);
3365
3366 if (ret == -ENOIOCTLCMD)
3367 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3368
3369 return ret;
3370}
3371#endif
3372
3373int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3374{
3375 return sock->ops->bind(sock, addr, addrlen);
3376}
3377EXPORT_SYMBOL(kernel_bind);
3378
3379int kernel_listen(struct socket *sock, int backlog)
3380{
3381 return sock->ops->listen(sock, backlog);
3382}
3383EXPORT_SYMBOL(kernel_listen);
3384
3385int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3386{
3387 struct sock *sk = sock->sk;
3388 int err;
3389
3390 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3391 newsock);
3392 if (err < 0)
3393 goto done;
3394
3395 err = sock->ops->accept(sock, *newsock, flags);
3396 if (err < 0) {
3397 sock_release(*newsock);
3398 *newsock = NULL;
3399 goto done;
3400 }
3401
3402 (*newsock)->ops = sock->ops;
3403 __module_get((*newsock)->ops->owner);
3404
3405done:
3406 return err;
3407}
3408EXPORT_SYMBOL(kernel_accept);
3409
3410int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3411 int flags)
3412{
3413 return sock->ops->connect(sock, addr, addrlen, flags);
3414}
3415EXPORT_SYMBOL(kernel_connect);
3416
3417int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3418 int *addrlen)
3419{
3420 return sock->ops->getname(sock, addr, addrlen, 0);
3421}
3422EXPORT_SYMBOL(kernel_getsockname);
3423
3424int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3425 int *addrlen)
3426{
3427 return sock->ops->getname(sock, addr, addrlen, 1);
3428}
3429EXPORT_SYMBOL(kernel_getpeername);
3430
3431int kernel_getsockopt(struct socket *sock, int level, int optname,
3432 char *optval, int *optlen)
3433{
3434 mm_segment_t oldfs = get_fs();
3435 char __user *uoptval;
3436 int __user *uoptlen;
3437 int err;
3438
3439 uoptval = (char __user __force *) optval;
3440 uoptlen = (int __user __force *) optlen;
3441
3442 set_fs(KERNEL_DS);
3443 if (level == SOL_SOCKET)
3444 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3445 else
3446 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3447 uoptlen);
3448 set_fs(oldfs);
3449 return err;
3450}
3451EXPORT_SYMBOL(kernel_getsockopt);
3452
3453int kernel_setsockopt(struct socket *sock, int level, int optname,
3454 char *optval, unsigned int optlen)
3455{
3456 mm_segment_t oldfs = get_fs();
3457 char __user *uoptval;
3458 int err;
3459
3460 uoptval = (char __user __force *) optval;
3461
3462 set_fs(KERNEL_DS);
3463 if (level == SOL_SOCKET)
3464 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3465 else
3466 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3467 optlen);
3468 set_fs(oldfs);
3469 return err;
3470}
3471EXPORT_SYMBOL(kernel_setsockopt);
3472
3473int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3474 size_t size, int flags)
3475{
3476 if (sock->ops->sendpage)
3477 return sock->ops->sendpage(sock, page, offset, size, flags);
3478
3479 return sock_no_sendpage(sock, page, offset, size, flags);
3480}
3481EXPORT_SYMBOL(kernel_sendpage);
3482
3483int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3484{
3485 mm_segment_t oldfs = get_fs();
3486 int err;
3487
3488 set_fs(KERNEL_DS);
3489 err = sock->ops->ioctl(sock, cmd, arg);
3490 set_fs(oldfs);
3491
3492 return err;
3493}
3494EXPORT_SYMBOL(kernel_sock_ioctl);
3495
3496int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3497{
3498 return sock->ops->shutdown(sock, how);
3499}
3500EXPORT_SYMBOL(kernel_sock_shutdown);