battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / ipv4 / tcp_ipv4.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78
79#include <linux/inet.h>
80#include <linux/ipv6.h>
81#include <linux/stddef.h>
82#include <linux/proc_fs.h>
83#include <linux/seq_file.h>
84
85#include <linux/crypto.h>
86#include <linux/scatterlist.h>
87
88int sysctl_tcp_tw_reuse __read_mostly;
89int sysctl_tcp_low_latency __read_mostly;
90EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93#ifdef CONFIG_TCP_MD5SIG
94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96#endif
97
98struct inet_hashinfo tcp_hashinfo;
99EXPORT_SYMBOL(tcp_hashinfo);
100
101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102{
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107}
108
109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110{
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138}
139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141/* This will initiate an outgoing connection. */
142int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143{
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263}
264EXPORT_SYMBOL(tcp_v4_connect);
265
266/*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271void tcp_v4_mtu_reduced(struct sock *sk)
272{
273 struct inet_sock *inet = inet_sk(sk);
274 struct dst_entry *dst;
275 u32 mtu;
276
277 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
278 return;
279 mtu = tcp_sk(sk)->mtu_info;
280 dst = inet_csk_update_pmtu(sk, mtu);
281 if (!dst)
282 return;
283
284 /* Something is about to be wrong... Remember soft error
285 * for the case, if this connection will not able to recover.
286 */
287 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
288 sk->sk_err_soft = EMSGSIZE;
289
290 mtu = dst_mtu(dst);
291
292 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
293 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
294 tcp_sync_mss(sk, mtu);
295
296 /* Resend the TCP packet because it's
297 * clear that the old packet has been
298 * dropped. This is the new "fast" path mtu
299 * discovery.
300 */
301 tcp_simple_retransmit(sk);
302 } /* else let the usual retransmit timer handle it */
303}
304EXPORT_SYMBOL(tcp_v4_mtu_reduced);
305
306static void do_redirect(struct sk_buff *skb, struct sock *sk)
307{
308 struct dst_entry *dst = __sk_dst_check(sk, 0);
309
310 if (dst)
311 dst->ops->redirect(dst, sk, skb);
312}
313
314/*
315 * This routine is called by the ICMP module when it gets some
316 * sort of error condition. If err < 0 then the socket should
317 * be closed and the error returned to the user. If err > 0
318 * it's just the icmp type << 8 | icmp code. After adjustment
319 * header points to the first 8 bytes of the tcp header. We need
320 * to find the appropriate port.
321 *
322 * The locking strategy used here is very "optimistic". When
323 * someone else accesses the socket the ICMP is just dropped
324 * and for some paths there is no check at all.
325 * A more general error queue to queue errors for later handling
326 * is probably better.
327 *
328 */
329
330void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
331{
332 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
333 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
334 struct inet_connection_sock *icsk;
335 struct tcp_sock *tp;
336 struct inet_sock *inet;
337 const int type = icmp_hdr(icmp_skb)->type;
338 const int code = icmp_hdr(icmp_skb)->code;
339 struct sock *sk;
340 struct sk_buff *skb;
341 struct request_sock *req;
342 __u32 seq;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349 return;
350 }
351
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
354 if (!sk) {
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356 return;
357 }
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
360 return;
361 }
362
363 bh_lock_sock(sk);
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
366 * We do take care of PMTU discovery (RFC1191) special case :
367 * we can receive locally generated ICMP messages while socket is held.
368 */
369 if (sock_owned_by_user(sk)) {
370 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
371 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
372 }
373 if (sk->sk_state == TCP_CLOSE)
374 goto out;
375
376 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
377 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
378 goto out;
379 }
380
381 icsk = inet_csk(sk);
382 tp = tcp_sk(sk);
383 req = tp->fastopen_rsk;
384 seq = ntohl(th->seq);
385 if (sk->sk_state != TCP_LISTEN &&
386 !between(seq, tp->snd_una, tp->snd_nxt) &&
387 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
388 /* For a Fast Open socket, allow seq to be snt_isn. */
389 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
390 goto out;
391 }
392
393 switch (type) {
394 case ICMP_REDIRECT:
395 if (!sock_owned_by_user(sk))
396 do_redirect(icmp_skb, sk);
397 goto out;
398 case ICMP_SOURCE_QUENCH:
399 /* Just silently ignore these. */
400 goto out;
401 case ICMP_PARAMETERPROB:
402 err = EPROTO;
403 break;
404 case ICMP_DEST_UNREACH:
405 if (code > NR_ICMP_UNREACH)
406 goto out;
407
408 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
409 /* We are not interested in TCP_LISTEN and open_requests
410 * (SYN-ACKs send out by Linux are always <576bytes so
411 * they should go through unfragmented).
412 */
413 if (sk->sk_state == TCP_LISTEN)
414 goto out;
415
416 tp->mtu_info = info;
417 if (!sock_owned_by_user(sk)) {
418 tcp_v4_mtu_reduced(sk);
419 } else {
420 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
421 sock_hold(sk);
422 }
423 goto out;
424 }
425
426 err = icmp_err_convert[code].errno;
427 /* check if icmp_skb allows revert of backoff
428 * (see draft-zimmermann-tcp-lcd) */
429 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
430 break;
431 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
432 !icsk->icsk_backoff)
433 break;
434
435 /* XXX (TFO) - revisit the following logic for TFO */
436
437 if (sock_owned_by_user(sk))
438 break;
439
440 icsk->icsk_backoff--;
441 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
442 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
443 tcp_bound_rto(sk);
444
445 skb = tcp_write_queue_head(sk);
446 BUG_ON(!skb);
447
448 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
449 tcp_time_stamp - TCP_SKB_CB(skb)->when);
450
451 if (remaining) {
452 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
453 remaining, TCP_RTO_MAX);
454 } else {
455 /* RTO revert clocked out retransmission.
456 * Will retransmit now */
457 tcp_retransmit_timer(sk);
458 }
459
460 break;
461 case ICMP_TIME_EXCEEDED:
462 err = EHOSTUNREACH;
463 break;
464 default:
465 goto out;
466 }
467
468 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
469 * than following the TCP_SYN_RECV case and closing the socket,
470 * we ignore the ICMP error and keep trying like a fully established
471 * socket. Is this the right thing to do?
472 */
473 if (req && req->sk == NULL)
474 goto out;
475
476 switch (sk->sk_state) {
477 struct request_sock *req, **prev;
478 case TCP_LISTEN:
479 if (sock_owned_by_user(sk))
480 goto out;
481
482 req = inet_csk_search_req(sk, &prev, th->dest,
483 iph->daddr, iph->saddr);
484 if (!req)
485 goto out;
486
487 /* ICMPs are not backlogged, hence we cannot get
488 an established socket here.
489 */
490 WARN_ON(req->sk);
491
492 if (seq != tcp_rsk(req)->snt_isn) {
493 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
494 goto out;
495 }
496
497 /*
498 * Still in SYN_RECV, just remove it silently.
499 * There is no good way to pass the error to the newly
500 * created socket, and POSIX does not want network
501 * errors returned from accept().
502 */
503 inet_csk_reqsk_queue_drop(sk, req, prev);
504 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
505 goto out;
506
507 case TCP_SYN_SENT:
508 case TCP_SYN_RECV: /* Cannot happen.
509 It can f.e. if SYNs crossed,
510 or Fast Open.
511 */
512 if (!sock_owned_by_user(sk)) {
513 sk->sk_err = err;
514
515 sk->sk_error_report(sk);
516
517 tcp_done(sk);
518 } else {
519 sk->sk_err_soft = err;
520 }
521 goto out;
522 }
523
524 /* If we've already connected we will keep trying
525 * until we time out, or the user gives up.
526 *
527 * rfc1122 4.2.3.9 allows to consider as hard errors
528 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
529 * but it is obsoleted by pmtu discovery).
530 *
531 * Note, that in modern internet, where routing is unreliable
532 * and in each dark corner broken firewalls sit, sending random
533 * errors ordered by their masters even this two messages finally lose
534 * their original sense (even Linux sends invalid PORT_UNREACHs)
535 *
536 * Now we are in compliance with RFCs.
537 * --ANK (980905)
538 */
539
540 inet = inet_sk(sk);
541 if (!sock_owned_by_user(sk) && inet->recverr) {
542 sk->sk_err = err;
543 sk->sk_error_report(sk);
544 } else { /* Only an error on timeout */
545 sk->sk_err_soft = err;
546 }
547
548out:
549 bh_unlock_sock(sk);
550 sock_put(sk);
551}
552
553static void __tcp_v4_send_check(struct sk_buff *skb,
554 __be32 saddr, __be32 daddr)
555{
556 struct tcphdr *th = tcp_hdr(skb);
557
558 if (skb->ip_summed == CHECKSUM_PARTIAL) {
559 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
560 skb->csum_start = skb_transport_header(skb) - skb->head;
561 skb->csum_offset = offsetof(struct tcphdr, check);
562 } else {
563 th->check = tcp_v4_check(skb->len, saddr, daddr,
564 csum_partial(th,
565 th->doff << 2,
566 skb->csum));
567 }
568}
569
570/* This routine computes an IPv4 TCP checksum. */
571void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
572{
573 const struct inet_sock *inet = inet_sk(sk);
574
575 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
576}
577EXPORT_SYMBOL(tcp_v4_send_check);
578
579int tcp_v4_gso_send_check(struct sk_buff *skb)
580{
581 const struct iphdr *iph;
582 struct tcphdr *th;
583
584 if (!pskb_may_pull(skb, sizeof(*th)))
585 return -EINVAL;
586
587 iph = ip_hdr(skb);
588 th = tcp_hdr(skb);
589
590 th->check = 0;
591 skb->ip_summed = CHECKSUM_PARTIAL;
592 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
593 return 0;
594}
595
596/*
597 * This routine will send an RST to the other tcp.
598 *
599 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
600 * for reset.
601 * Answer: if a packet caused RST, it is not for a socket
602 * existing in our system, if it is matched to a socket,
603 * it is just duplicate segment or bug in other side's TCP.
604 * So that we build reply only basing on parameters
605 * arrived with segment.
606 * Exception: precedence violation. We do not implement it in any case.
607 */
608
609static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
610{
611 const struct tcphdr *th = tcp_hdr(skb);
612 struct {
613 struct tcphdr th;
614#ifdef CONFIG_TCP_MD5SIG
615 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
616#endif
617 } rep;
618 struct ip_reply_arg arg;
619#ifdef CONFIG_TCP_MD5SIG
620 struct tcp_md5sig_key *key;
621 const __u8 *hash_location = NULL;
622 unsigned char newhash[16];
623 int genhash;
624 struct sock *sk1 = NULL;
625#endif
626 struct net *net;
627
628 /* Never send a reset in response to a reset. */
629 if (th->rst)
630 return;
631
632 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
633 return;
634
635 /* Swap the send and the receive. */
636 memset(&rep, 0, sizeof(rep));
637 rep.th.dest = th->source;
638 rep.th.source = th->dest;
639 rep.th.doff = sizeof(struct tcphdr) / 4;
640 rep.th.rst = 1;
641
642 if (th->ack) {
643 rep.th.seq = th->ack_seq;
644 } else {
645 rep.th.ack = 1;
646 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
647 skb->len - (th->doff << 2));
648 }
649
650 memset(&arg, 0, sizeof(arg));
651 arg.iov[0].iov_base = (unsigned char *)&rep;
652 arg.iov[0].iov_len = sizeof(rep.th);
653
654 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
655#ifdef CONFIG_TCP_MD5SIG
656 hash_location = tcp_parse_md5sig_option(th);
657 if (!sk && hash_location) {
658 /*
659 * active side is lost. Try to find listening socket through
660 * source port, and then find md5 key through listening socket.
661 * we are not loose security here:
662 * Incoming packet is checked with md5 hash with finding key,
663 * no RST generated if md5 hash doesn't match.
664 */
665 sk1 = __inet_lookup_listener(net,
666 &tcp_hashinfo, ip_hdr(skb)->saddr,
667 th->source, ip_hdr(skb)->daddr,
668 ntohs(th->source), inet_iif(skb));
669 /* don't send rst if it can't find key */
670 if (!sk1)
671 return;
672 rcu_read_lock();
673 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
674 &ip_hdr(skb)->saddr, AF_INET);
675 if (!key)
676 goto release_sk1;
677
678 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
679 if (genhash || memcmp(hash_location, newhash, 16) != 0)
680 goto release_sk1;
681 } else {
682 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
683 &ip_hdr(skb)->saddr,
684 AF_INET) : NULL;
685 }
686
687 if (key) {
688 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
689 (TCPOPT_NOP << 16) |
690 (TCPOPT_MD5SIG << 8) |
691 TCPOLEN_MD5SIG);
692 /* Update length and the length the header thinks exists */
693 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
694 rep.th.doff = arg.iov[0].iov_len / 4;
695
696 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
697 key, ip_hdr(skb)->saddr,
698 ip_hdr(skb)->daddr, &rep.th);
699 }
700#endif
701 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
702 ip_hdr(skb)->saddr, /* XXX */
703 arg.iov[0].iov_len, IPPROTO_TCP, 0);
704 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
705 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
706 /* When socket is gone, all binding information is lost.
707 * routing might fail in this case. No choice here, if we choose to force
708 * input interface, we will misroute in case of asymmetric route.
709 */
710 if (sk)
711 arg.bound_dev_if = sk->sk_bound_dev_if;
712
713 arg.tos = ip_hdr(skb)->tos;
714 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
715 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
716 skb, ip_hdr(skb)->saddr,
717 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
718
719 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
720 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
721
722#ifdef CONFIG_TCP_MD5SIG
723release_sk1:
724 if (sk1) {
725 rcu_read_unlock();
726 sock_put(sk1);
727 }
728#endif
729}
730
731/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
732 outside socket context is ugly, certainly. What can I do?
733 */
734
735static void tcp_v4_send_ack(const struct sock *sk, struct sk_buff *skb,
736 u32 seq, u32 ack,
737 u32 win, u32 tsval, u32 tsecr, int oif,
738 struct tcp_md5sig_key *key,
739 int reply_flags, u8 tos)
740{
741 const struct tcphdr *th = tcp_hdr(skb);
742 struct {
743 struct tcphdr th;
744 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
745#ifdef CONFIG_TCP_MD5SIG
746 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
747#endif
748 ];
749 } rep;
750 struct ip_reply_arg arg;
751 struct net *net = sock_net(sk);
752
753 memset(&rep.th, 0, sizeof(struct tcphdr));
754 memset(&arg, 0, sizeof(arg));
755
756 arg.iov[0].iov_base = (unsigned char *)&rep;
757 arg.iov[0].iov_len = sizeof(rep.th);
758 if (tsecr) {
759 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
760 (TCPOPT_TIMESTAMP << 8) |
761 TCPOLEN_TIMESTAMP);
762 rep.opt[1] = htonl(tsval);
763 rep.opt[2] = htonl(tsecr);
764 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
765 }
766
767 /* Swap the send and the receive. */
768 rep.th.dest = th->source;
769 rep.th.source = th->dest;
770 rep.th.doff = arg.iov[0].iov_len / 4;
771 rep.th.seq = htonl(seq);
772 rep.th.ack_seq = htonl(ack);
773 rep.th.ack = 1;
774 rep.th.window = htons(win);
775
776#ifdef CONFIG_TCP_MD5SIG
777 if (key) {
778 int offset = (tsecr) ? 3 : 0;
779
780 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
781 (TCPOPT_NOP << 16) |
782 (TCPOPT_MD5SIG << 8) |
783 TCPOLEN_MD5SIG);
784 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
785 rep.th.doff = arg.iov[0].iov_len/4;
786
787 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
788 key, ip_hdr(skb)->saddr,
789 ip_hdr(skb)->daddr, &rep.th);
790 }
791#endif
792 arg.flags = reply_flags;
793 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
794 ip_hdr(skb)->saddr, /* XXX */
795 arg.iov[0].iov_len, IPPROTO_TCP, 0);
796 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
797 if (oif)
798 arg.bound_dev_if = oif;
799 arg.tos = tos;
800 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
801 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
802 skb, ip_hdr(skb)->saddr,
803 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
804
805 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
806}
807
808static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
809{
810 struct inet_timewait_sock *tw = inet_twsk(sk);
811 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
812
813 tcp_v4_send_ack(sk, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
814 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
815 tcp_time_stamp + tcptw->tw_ts_offset,
816 tcptw->tw_ts_recent,
817 tw->tw_bound_dev_if,
818 tcp_twsk_md5_key(tcptw),
819 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
820 tw->tw_tos
821 );
822
823 inet_twsk_put(tw);
824}
825
826static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
827 struct request_sock *req)
828{
829 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
830 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
831 */
832 tcp_v4_send_ack(sk, skb, (sk->sk_state == TCP_LISTEN) ?
833 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
834 tcp_rsk(req)->rcv_nxt,
835 req->rcv_wnd >> inet_rsk(req)->rcv_wscale,
836 tcp_time_stamp,
837 req->ts_recent,
838 0,
839 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
840 AF_INET),
841 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
842 ip_hdr(skb)->tos);
843}
844
845/*
846 * Send a SYN-ACK after having received a SYN.
847 * This still operates on a request_sock only, not on a big
848 * socket.
849 */
850static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
851 struct request_sock *req,
852 u16 queue_mapping,
853 bool nocache)
854{
855 const struct inet_request_sock *ireq = inet_rsk(req);
856 struct flowi4 fl4;
857 int err = -1;
858 struct sk_buff * skb;
859
860 /* First, grab a route. */
861 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
862 return -1;
863
864 skb = tcp_make_synack(sk, dst, req, NULL);
865
866 if (skb) {
867 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
868
869 skb_set_queue_mapping(skb, queue_mapping);
870 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
871 ireq->rmt_addr,
872 ireq->opt);
873 err = net_xmit_eval(err);
874 if (!tcp_rsk(req)->snt_synack && !err)
875 tcp_rsk(req)->snt_synack = tcp_time_stamp;
876 }
877
878 return err;
879}
880
881static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
882{
883 int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
884
885 if (!res)
886 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
887 return res;
888}
889
890/*
891 * IPv4 request_sock destructor.
892 */
893static void tcp_v4_reqsk_destructor(struct request_sock *req)
894{
895 kfree(inet_rsk(req)->opt);
896}
897
898/*
899 * Return true if a syncookie should be sent
900 */
901bool tcp_syn_flood_action(struct sock *sk,
902 const struct sk_buff *skb,
903 const char *proto)
904{
905 const char *msg = "Dropping request";
906 bool want_cookie = false;
907 struct listen_sock *lopt;
908
909
910
911#ifdef CONFIG_SYN_COOKIES
912 if (sysctl_tcp_syncookies) {
913 msg = "Sending cookies";
914 want_cookie = true;
915 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
916 } else
917#endif
918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
919
920 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
921 if (!lopt->synflood_warned) {
922 lopt->synflood_warned = 1;
923 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
924 proto, ntohs(tcp_hdr(skb)->dest), msg);
925 }
926 return want_cookie;
927}
928EXPORT_SYMBOL(tcp_syn_flood_action);
929
930/*
931 * Save and compile IPv4 options into the request_sock if needed.
932 */
933static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
934{
935 const struct ip_options *opt = &(IPCB(skb)->opt);
936 struct ip_options_rcu *dopt = NULL;
937
938 if (opt && opt->optlen) {
939 int opt_size = sizeof(*dopt) + opt->optlen;
940
941 dopt = kmalloc(opt_size, GFP_ATOMIC);
942 if (dopt) {
943 if (ip_options_echo(&dopt->opt, skb)) {
944 kfree(dopt);
945 dopt = NULL;
946 }
947 }
948 }
949 return dopt;
950}
951
952#ifdef CONFIG_TCP_MD5SIG
953/*
954 * RFC2385 MD5 checksumming requires a mapping of
955 * IP address->MD5 Key.
956 * We need to maintain these in the sk structure.
957 */
958
959/* Find the Key structure for an address. */
960struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
961 const union tcp_md5_addr *addr,
962 int family)
963{
964 struct tcp_sock *tp = tcp_sk(sk);
965 struct tcp_md5sig_key *key;
966 unsigned int size = sizeof(struct in_addr);
967 struct tcp_md5sig_info *md5sig;
968
969 /* caller either holds rcu_read_lock() or socket lock */
970 md5sig = rcu_dereference_check(tp->md5sig_info,
971 sock_owned_by_user(sk) ||
972 lockdep_is_held(&sk->sk_lock.slock));
973 if (!md5sig)
974 return NULL;
975#if IS_ENABLED(CONFIG_IPV6)
976 if (family == AF_INET6)
977 size = sizeof(struct in6_addr);
978#endif
979 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
980 if (key->family != family)
981 continue;
982 if (!memcmp(&key->addr, addr, size))
983 return key;
984 }
985 return NULL;
986}
987EXPORT_SYMBOL(tcp_md5_do_lookup);
988
989struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
990 struct sock *addr_sk)
991{
992 union tcp_md5_addr *addr;
993
994 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
995 return tcp_md5_do_lookup(sk, addr, AF_INET);
996}
997EXPORT_SYMBOL(tcp_v4_md5_lookup);
998
999static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
1000 struct request_sock *req)
1001{
1002 union tcp_md5_addr *addr;
1003
1004 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
1005 return tcp_md5_do_lookup(sk, addr, AF_INET);
1006}
1007
1008/* This can be called on a newly created socket, from other files */
1009int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1010 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1011{
1012 /* Add Key to the list */
1013 struct tcp_md5sig_key *key;
1014 struct tcp_sock *tp = tcp_sk(sk);
1015 struct tcp_md5sig_info *md5sig;
1016
1017 key = tcp_md5_do_lookup(sk, addr, family);
1018 if (key) {
1019 /* Pre-existing entry - just update that one. */
1020 memcpy(key->key, newkey, newkeylen);
1021 key->keylen = newkeylen;
1022 return 0;
1023 }
1024
1025 md5sig = rcu_dereference_protected(tp->md5sig_info,
1026 sock_owned_by_user(sk) ||
1027 lockdep_is_held(&sk->sk_lock.slock));
1028 if (!md5sig) {
1029 md5sig = kmalloc(sizeof(*md5sig), gfp);
1030 if (!md5sig)
1031 return -ENOMEM;
1032
1033 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1034 INIT_HLIST_HEAD(&md5sig->head);
1035 rcu_assign_pointer(tp->md5sig_info, md5sig);
1036 }
1037
1038 key = sock_kmalloc(sk, sizeof(*key), gfp);
1039 if (!key)
1040 return -ENOMEM;
1041 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1042 sock_kfree_s(sk, key, sizeof(*key));
1043 return -ENOMEM;
1044 }
1045
1046 memcpy(key->key, newkey, newkeylen);
1047 key->keylen = newkeylen;
1048 key->family = family;
1049 memcpy(&key->addr, addr,
1050 (family == AF_INET6) ? sizeof(struct in6_addr) :
1051 sizeof(struct in_addr));
1052 hlist_add_head_rcu(&key->node, &md5sig->head);
1053 return 0;
1054}
1055EXPORT_SYMBOL(tcp_md5_do_add);
1056
1057int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1058{
1059 struct tcp_sock *tp = tcp_sk(sk);
1060 struct tcp_md5sig_key *key;
1061 struct tcp_md5sig_info *md5sig;
1062
1063 key = tcp_md5_do_lookup(sk, addr, family);
1064 if (!key)
1065 return -ENOENT;
1066 hlist_del_rcu(&key->node);
1067 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1068 kfree_rcu(key, rcu);
1069 md5sig = rcu_dereference_protected(tp->md5sig_info,
1070 sock_owned_by_user(sk));
1071 if (hlist_empty(&md5sig->head))
1072 tcp_free_md5sig_pool();
1073 return 0;
1074}
1075EXPORT_SYMBOL(tcp_md5_do_del);
1076
1077static void tcp_clear_md5_list(struct sock *sk)
1078{
1079 struct tcp_sock *tp = tcp_sk(sk);
1080 struct tcp_md5sig_key *key;
1081 struct hlist_node *n;
1082 struct tcp_md5sig_info *md5sig;
1083
1084 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1085
1086 if (!hlist_empty(&md5sig->head))
1087 tcp_free_md5sig_pool();
1088 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1089 hlist_del_rcu(&key->node);
1090 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1091 kfree_rcu(key, rcu);
1092 }
1093}
1094
1095static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1096 int optlen)
1097{
1098 struct tcp_md5sig cmd;
1099 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1100
1101 if (optlen < sizeof(cmd))
1102 return -EINVAL;
1103
1104 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1105 return -EFAULT;
1106
1107 if (sin->sin_family != AF_INET)
1108 return -EINVAL;
1109
1110 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1111 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1112 AF_INET);
1113
1114 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1115 return -EINVAL;
1116
1117 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1118 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1119 GFP_KERNEL);
1120}
1121
1122static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1123 __be32 daddr, __be32 saddr, int nbytes)
1124{
1125 struct tcp4_pseudohdr *bp;
1126 struct scatterlist sg;
1127
1128 bp = &hp->md5_blk.ip4;
1129
1130 /*
1131 * 1. the TCP pseudo-header (in the order: source IP address,
1132 * destination IP address, zero-padded protocol number, and
1133 * segment length)
1134 */
1135 bp->saddr = saddr;
1136 bp->daddr = daddr;
1137 bp->pad = 0;
1138 bp->protocol = IPPROTO_TCP;
1139 bp->len = cpu_to_be16(nbytes);
1140
1141 sg_init_one(&sg, bp, sizeof(*bp));
1142 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1143}
1144
1145static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1146 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1147{
1148 struct tcp_md5sig_pool *hp;
1149 struct hash_desc *desc;
1150
1151 hp = tcp_get_md5sig_pool();
1152 if (!hp)
1153 goto clear_hash_noput;
1154 desc = &hp->md5_desc;
1155
1156 if (crypto_hash_init(desc))
1157 goto clear_hash;
1158 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1159 goto clear_hash;
1160 if (tcp_md5_hash_header(hp, th))
1161 goto clear_hash;
1162 if (tcp_md5_hash_key(hp, key))
1163 goto clear_hash;
1164 if (crypto_hash_final(desc, md5_hash))
1165 goto clear_hash;
1166
1167 tcp_put_md5sig_pool();
1168 return 0;
1169
1170clear_hash:
1171 tcp_put_md5sig_pool();
1172clear_hash_noput:
1173 memset(md5_hash, 0, 16);
1174 return 1;
1175}
1176
1177int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1178 const struct sock *sk, const struct request_sock *req,
1179 const struct sk_buff *skb)
1180{
1181 struct tcp_md5sig_pool *hp;
1182 struct hash_desc *desc;
1183 const struct tcphdr *th = tcp_hdr(skb);
1184 __be32 saddr, daddr;
1185
1186 if (sk) {
1187 saddr = inet_sk(sk)->inet_saddr;
1188 daddr = inet_sk(sk)->inet_daddr;
1189 } else if (req) {
1190 saddr = inet_rsk(req)->loc_addr;
1191 daddr = inet_rsk(req)->rmt_addr;
1192 } else {
1193 const struct iphdr *iph = ip_hdr(skb);
1194 saddr = iph->saddr;
1195 daddr = iph->daddr;
1196 }
1197
1198 hp = tcp_get_md5sig_pool();
1199 if (!hp)
1200 goto clear_hash_noput;
1201 desc = &hp->md5_desc;
1202
1203 if (crypto_hash_init(desc))
1204 goto clear_hash;
1205
1206 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1207 goto clear_hash;
1208 if (tcp_md5_hash_header(hp, th))
1209 goto clear_hash;
1210 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1211 goto clear_hash;
1212 if (tcp_md5_hash_key(hp, key))
1213 goto clear_hash;
1214 if (crypto_hash_final(desc, md5_hash))
1215 goto clear_hash;
1216
1217 tcp_put_md5sig_pool();
1218 return 0;
1219
1220clear_hash:
1221 tcp_put_md5sig_pool();
1222clear_hash_noput:
1223 memset(md5_hash, 0, 16);
1224 return 1;
1225}
1226EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1227
1228static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1229{
1230 /*
1231 * This gets called for each TCP segment that arrives
1232 * so we want to be efficient.
1233 * We have 3 drop cases:
1234 * o No MD5 hash and one expected.
1235 * o MD5 hash and we're not expecting one.
1236 * o MD5 hash and its wrong.
1237 */
1238 const __u8 *hash_location = NULL;
1239 struct tcp_md5sig_key *hash_expected;
1240 const struct iphdr *iph = ip_hdr(skb);
1241 const struct tcphdr *th = tcp_hdr(skb);
1242 int genhash;
1243 unsigned char newhash[16];
1244
1245 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1246 AF_INET);
1247 hash_location = tcp_parse_md5sig_option(th);
1248
1249 /* We've parsed the options - do we have a hash? */
1250 if (!hash_expected && !hash_location)
1251 return false;
1252
1253 if (hash_expected && !hash_location) {
1254 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1255 return true;
1256 }
1257
1258 if (!hash_expected && hash_location) {
1259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1260 return true;
1261 }
1262
1263 /* Okay, so this is hash_expected and hash_location -
1264 * so we need to calculate the checksum.
1265 */
1266 genhash = tcp_v4_md5_hash_skb(newhash,
1267 hash_expected,
1268 NULL, NULL, skb);
1269
1270 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1271 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1272 &iph->saddr, ntohs(th->source),
1273 &iph->daddr, ntohs(th->dest),
1274 genhash ? " tcp_v4_calc_md5_hash failed"
1275 : "");
1276 return true;
1277 }
1278 return false;
1279}
1280
1281#endif
1282
1283struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1284 .family = PF_INET,
1285 .obj_size = sizeof(struct tcp_request_sock),
1286 .rtx_syn_ack = tcp_v4_rtx_synack,
1287 .send_ack = tcp_v4_reqsk_send_ack,
1288 .destructor = tcp_v4_reqsk_destructor,
1289 .send_reset = tcp_v4_send_reset,
1290 .syn_ack_timeout = tcp_syn_ack_timeout,
1291};
1292
1293#ifdef CONFIG_TCP_MD5SIG
1294static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1295 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1296 .calc_md5_hash = tcp_v4_md5_hash_skb,
1297};
1298#endif
1299
1300static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1301 struct request_sock *req,
1302 struct tcp_fastopen_cookie *foc,
1303 struct tcp_fastopen_cookie *valid_foc)
1304{
1305 bool skip_cookie = false;
1306 struct fastopen_queue *fastopenq;
1307
1308 if (likely(!fastopen_cookie_present(foc))) {
1309 /* See include/net/tcp.h for the meaning of these knobs */
1310 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1311 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1312 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1313 skip_cookie = true; /* no cookie to validate */
1314 else
1315 return false;
1316 }
1317 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1318 /* A FO option is present; bump the counter. */
1319 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1320
1321 /* Make sure the listener has enabled fastopen, and we don't
1322 * exceed the max # of pending TFO requests allowed before trying
1323 * to validating the cookie in order to avoid burning CPU cycles
1324 * unnecessarily.
1325 *
1326 * XXX (TFO) - The implication of checking the max_qlen before
1327 * processing a cookie request is that clients can't differentiate
1328 * between qlen overflow causing Fast Open to be disabled
1329 * temporarily vs a server not supporting Fast Open at all.
1330 */
1331 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1332 fastopenq == NULL || fastopenq->max_qlen == 0)
1333 return false;
1334
1335 if (fastopenq->qlen >= fastopenq->max_qlen) {
1336 struct request_sock *req1;
1337 spin_lock(&fastopenq->lock);
1338 req1 = fastopenq->rskq_rst_head;
1339 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1340 spin_unlock(&fastopenq->lock);
1341 NET_INC_STATS_BH(sock_net(sk),
1342 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1343 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1344 foc->len = -1;
1345 return false;
1346 }
1347 fastopenq->rskq_rst_head = req1->dl_next;
1348 fastopenq->qlen--;
1349 spin_unlock(&fastopenq->lock);
1350 reqsk_free(req1);
1351 }
1352 if (skip_cookie) {
1353 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1354 return true;
1355 }
1356 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1357 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1358 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1359 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1360 memcmp(&foc->val[0], &valid_foc->val[0],
1361 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1362 return false;
1363 valid_foc->len = -1;
1364 }
1365 /* Acknowledge the data received from the peer. */
1366 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1367 return true;
1368 } else if (foc->len == 0) { /* Client requesting a cookie */
1369 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1370 NET_INC_STATS_BH(sock_net(sk),
1371 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1372 } else {
1373 /* Client sent a cookie with wrong size. Treat it
1374 * the same as invalid and return a valid one.
1375 */
1376 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1377 }
1378 return false;
1379}
1380
1381static int tcp_v4_conn_req_fastopen(struct sock *sk,
1382 struct sk_buff *skb,
1383 struct sk_buff *skb_synack,
1384 struct request_sock *req)
1385{
1386 struct tcp_sock *tp = tcp_sk(sk);
1387 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1388 const struct inet_request_sock *ireq = inet_rsk(req);
1389 struct sock *child;
1390 int err;
1391
1392 req->num_retrans = 0;
1393 req->num_timeout = 0;
1394 req->sk = NULL;
1395
1396 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1397 if (child == NULL) {
1398 NET_INC_STATS_BH(sock_net(sk),
1399 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1400 kfree_skb(skb_synack);
1401 return -1;
1402 }
1403 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1404 ireq->rmt_addr, ireq->opt);
1405 err = net_xmit_eval(err);
1406 if (!err)
1407 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1408 /* XXX (TFO) - is it ok to ignore error and continue? */
1409
1410 spin_lock(&queue->fastopenq->lock);
1411 queue->fastopenq->qlen++;
1412 spin_unlock(&queue->fastopenq->lock);
1413
1414 /* Initialize the child socket. Have to fix some values to take
1415 * into account the child is a Fast Open socket and is created
1416 * only out of the bits carried in the SYN packet.
1417 */
1418 tp = tcp_sk(child);
1419
1420 tp->fastopen_rsk = req;
1421 /* Do a hold on the listner sk so that if the listener is being
1422 * closed, the child that has been accepted can live on and still
1423 * access listen_lock.
1424 */
1425 sock_hold(sk);
1426 tcp_rsk(req)->listener = sk;
1427
1428 /* RFC1323: The window in SYN & SYN/ACK segments is never
1429 * scaled. So correct it appropriately.
1430 */
1431 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1432 tp->max_window = tp->snd_wnd;
1433
1434 /* Activate the retrans timer so that SYNACK can be retransmitted.
1435 * The request socket is not added to the SYN table of the parent
1436 * because it's been added to the accept queue directly.
1437 */
1438 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1439 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1440
1441 /* Add the child socket directly into the accept queue */
1442 inet_csk_reqsk_queue_add(sk, req, child);
1443
1444 /* Now finish processing the fastopen child socket. */
1445 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1446 tcp_init_congestion_control(child);
1447 tcp_mtup_init(child);
1448 tcp_init_buffer_space(child);
1449 tcp_init_metrics(child);
1450
1451 /* Queue the data carried in the SYN packet. We need to first
1452 * bump skb's refcnt because the caller will attempt to free it.
1453 *
1454 * XXX (TFO) - we honor a zero-payload TFO request for now.
1455 * (Any reason not to?)
1456 */
1457 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1458 /* Don't queue the skb if there is no payload in SYN.
1459 * XXX (TFO) - How about SYN+FIN?
1460 */
1461 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1462 } else {
1463 skb = skb_get(skb);
1464 skb_dst_drop(skb);
1465 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1466 skb_set_owner_r(skb, child);
1467 __skb_queue_tail(&child->sk_receive_queue, skb);
1468 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1469 tp->syn_data_acked = 1;
1470 tp->bytes_received = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1;
1471 }
1472 sk->sk_data_ready(sk);
1473 bh_unlock_sock(child);
1474 sock_put(child);
1475 WARN_ON(req->sk == NULL);
1476 return 0;
1477}
1478
1479int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1480{
1481 struct tcp_options_received tmp_opt;
1482 struct request_sock *req;
1483 struct inet_request_sock *ireq;
1484 struct tcp_sock *tp = tcp_sk(sk);
1485 struct dst_entry *dst = NULL;
1486 __be32 saddr = ip_hdr(skb)->saddr;
1487 __be32 daddr = ip_hdr(skb)->daddr;
1488 __u32 isn = TCP_SKB_CB(skb)->when;
1489 bool want_cookie = false;
1490 struct flowi4 fl4;
1491 struct tcp_fastopen_cookie foc = { .len = -1 };
1492 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1493 struct sk_buff *skb_synack;
1494 int do_fastopen;
1495
1496 /* Never answer to SYNs send to broadcast or multicast */
1497 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1498 goto drop;
1499
1500 /* TW buckets are converted to open requests without
1501 * limitations, they conserve resources and peer is
1502 * evidently real one.
1503 */
1504 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1505 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1506 if (!want_cookie)
1507 goto drop;
1508 }
1509
1510 /* Accept backlog is full. If we have already queued enough
1511 * of warm entries in syn queue, drop request. It is better than
1512 * clogging syn queue with openreqs with exponentially increasing
1513 * timeout.
1514 */
1515 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1516 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1517 goto drop;
1518 }
1519
1520 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1521 if (!req)
1522 goto drop;
1523
1524#ifdef CONFIG_TCP_MD5SIG
1525 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1526#endif
1527
1528 tcp_clear_options(&tmp_opt);
1529 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1530 tmp_opt.user_mss = tp->rx_opt.user_mss;
1531 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1532
1533 if (want_cookie && !tmp_opt.saw_tstamp)
1534 tcp_clear_options(&tmp_opt);
1535
1536 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1537 tcp_openreq_init(req, &tmp_opt, skb);
1538
1539 ireq = inet_rsk(req);
1540 ireq->loc_addr = daddr;
1541 ireq->rmt_addr = saddr;
1542 ireq->no_srccheck = inet_sk(sk)->transparent;
1543 ireq->opt = tcp_v4_save_options(skb);
1544 ireq->ir_mark = inet_request_mark(sk, skb);
1545
1546 if (security_inet_conn_request(sk, skb, req))
1547 goto drop_and_free;
1548
1549 if (!want_cookie || tmp_opt.tstamp_ok)
1550 TCP_ECN_create_request(req, skb, sock_net(sk));
1551
1552 if (want_cookie) {
1553 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1554 req->cookie_ts = tmp_opt.tstamp_ok;
1555 } else if (!isn) {
1556 /* VJ's idea. We save last timestamp seen
1557 * from the destination in peer table, when entering
1558 * state TIME-WAIT, and check against it before
1559 * accepting new connection request.
1560 *
1561 * If "isn" is not zero, this request hit alive
1562 * timewait bucket, so that all the necessary checks
1563 * are made in the function processing timewait state.
1564 */
1565 if (tmp_opt.saw_tstamp &&
1566 tcp_death_row.sysctl_tw_recycle &&
1567 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1568 fl4.daddr == saddr) {
1569 if (!tcp_peer_is_proven(req, dst, true)) {
1570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1571 goto drop_and_release;
1572 }
1573 }
1574 /* Kill the following clause, if you dislike this way. */
1575 else if (!sysctl_tcp_syncookies &&
1576 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1577 (sysctl_max_syn_backlog >> 2)) &&
1578 !tcp_peer_is_proven(req, dst, false)) {
1579 /* Without syncookies last quarter of
1580 * backlog is filled with destinations,
1581 * proven to be alive.
1582 * It means that we continue to communicate
1583 * to destinations, already remembered
1584 * to the moment of synflood.
1585 */
1586 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1587 &saddr, ntohs(tcp_hdr(skb)->source));
1588 goto drop_and_release;
1589 }
1590
1591 isn = tcp_v4_init_sequence(skb);
1592 }
1593 tcp_rsk(req)->snt_isn = isn;
1594
1595 if (dst == NULL) {
1596 dst = inet_csk_route_req(sk, &fl4, req);
1597 if (dst == NULL)
1598 goto drop_and_free;
1599 }
1600 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1601
1602 /* We don't call tcp_v4_send_synack() directly because we need
1603 * to make sure a child socket can be created successfully before
1604 * sending back synack!
1605 *
1606 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1607 * (or better yet, call tcp_send_synack() in the child context
1608 * directly, but will have to fix bunch of other code first)
1609 * after syn_recv_sock() except one will need to first fix the
1610 * latter to remove its dependency on the current implementation
1611 * of tcp_v4_send_synack()->tcp_select_initial_window().
1612 */
1613 skb_synack = tcp_make_synack(sk, dst, req,
1614 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1615
1616 if (skb_synack) {
1617 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1618 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1619 } else
1620 goto drop_and_free;
1621
1622 if (likely(!do_fastopen)) {
1623 int err;
1624 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1625 ireq->rmt_addr, ireq->opt);
1626 err = net_xmit_eval(err);
1627 if (err || want_cookie)
1628 goto drop_and_free;
1629
1630 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1631 tcp_rsk(req)->listener = NULL;
1632 /* Add the request_sock to the SYN table */
1633 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1634 if (fastopen_cookie_present(&foc) && foc.len != 0)
1635 NET_INC_STATS_BH(sock_net(sk),
1636 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1637 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1638 goto drop_and_free;
1639
1640 return 0;
1641
1642drop_and_release:
1643 dst_release(dst);
1644drop_and_free:
1645 reqsk_free(req);
1646drop:
1647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1648 return 0;
1649}
1650EXPORT_SYMBOL(tcp_v4_conn_request);
1651
1652
1653/*
1654 * The three way handshake has completed - we got a valid synack -
1655 * now create the new socket.
1656 */
1657struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1658 struct request_sock *req,
1659 struct dst_entry *dst)
1660{
1661 struct inet_request_sock *ireq;
1662 struct inet_sock *newinet;
1663 struct tcp_sock *newtp;
1664 struct sock *newsk;
1665#ifdef CONFIG_TCP_MD5SIG
1666 struct tcp_md5sig_key *key;
1667#endif
1668 struct ip_options_rcu *inet_opt;
1669
1670 if (sk_acceptq_is_full(sk))
1671 goto exit_overflow;
1672
1673 newsk = tcp_create_openreq_child(sk, req, skb);
1674 if (!newsk)
1675 goto exit_nonewsk;
1676
1677 newsk->sk_gso_type = SKB_GSO_TCPV4;
1678 inet_sk_rx_dst_set(newsk, skb);
1679
1680 newtp = tcp_sk(newsk);
1681 newinet = inet_sk(newsk);
1682 ireq = inet_rsk(req);
1683 newinet->inet_daddr = ireq->rmt_addr;
1684 newinet->inet_rcv_saddr = ireq->loc_addr;
1685 newinet->inet_saddr = ireq->loc_addr;
1686 inet_opt = ireq->opt;
1687 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1688 ireq->opt = NULL;
1689 newinet->mc_index = inet_iif(skb);
1690 newinet->mc_ttl = ip_hdr(skb)->ttl;
1691 newinet->rcv_tos = ip_hdr(skb)->tos;
1692 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1693 if (inet_opt)
1694 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1695 newinet->inet_id = newtp->write_seq ^ jiffies;
1696
1697 if (!dst) {
1698 dst = inet_csk_route_child_sock(sk, newsk, req);
1699 if (!dst)
1700 goto put_and_exit;
1701 } else {
1702 /* syncookie case : see end of cookie_v4_check() */
1703 }
1704 sk_setup_caps(newsk, dst);
1705
1706 tcp_mtup_init(newsk);
1707 tcp_sync_mss(newsk, dst_mtu(dst));
1708 newtp->advmss = dst_metric_advmss(dst);
1709 if (tcp_sk(sk)->rx_opt.user_mss &&
1710 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1711 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1712
1713 tcp_initialize_rcv_mss(newsk);
1714 tcp_synack_rtt_meas(newsk, req);
1715 newtp->total_retrans = req->num_retrans;
1716
1717#ifdef CONFIG_TCP_MD5SIG
1718 /* Copy over the MD5 key from the original socket */
1719 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1720 AF_INET);
1721 if (key != NULL) {
1722 /*
1723 * We're using one, so create a matching key
1724 * on the newsk structure. If we fail to get
1725 * memory, then we end up not copying the key
1726 * across. Shucks.
1727 */
1728 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1729 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1730 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1731 }
1732#endif
1733
1734 if (__inet_inherit_port(sk, newsk) < 0)
1735 goto put_and_exit;
1736 __inet_hash_nolisten(newsk, NULL);
1737
1738 return newsk;
1739
1740exit_overflow:
1741 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1742exit_nonewsk:
1743 dst_release(dst);
1744exit:
1745 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1746 return NULL;
1747put_and_exit:
1748 inet_csk_prepare_forced_close(newsk);
1749 tcp_done(newsk);
1750 goto exit;
1751}
1752EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1753
1754static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1755{
1756 struct tcphdr *th = tcp_hdr(skb);
1757 const struct iphdr *iph = ip_hdr(skb);
1758 struct sock *nsk;
1759 struct request_sock **prev;
1760 /* Find possible connection requests. */
1761 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1762 iph->saddr, iph->daddr);
1763 if (req)
1764 return tcp_check_req(sk, skb, req, prev, false);
1765
1766 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1767 th->source, iph->daddr, th->dest, inet_iif(skb));
1768
1769 if (nsk) {
1770 if (nsk->sk_state != TCP_TIME_WAIT) {
1771 bh_lock_sock(nsk);
1772 return nsk;
1773 }
1774 inet_twsk_put(inet_twsk(nsk));
1775 return NULL;
1776 }
1777
1778#ifdef CONFIG_SYN_COOKIES
1779 if (!th->syn)
1780 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1781#endif
1782 return sk;
1783}
1784
1785static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1786{
1787 const struct iphdr *iph = ip_hdr(skb);
1788
1789 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1790 if (!tcp_v4_check(skb->len, iph->saddr,
1791 iph->daddr, skb->csum)) {
1792 skb->ip_summed = CHECKSUM_UNNECESSARY;
1793 return 0;
1794 }
1795 }
1796
1797 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1798 skb->len, IPPROTO_TCP, 0);
1799
1800 if (skb->len <= 76) {
1801 return __skb_checksum_complete(skb);
1802 }
1803 return 0;
1804}
1805
1806
1807/* The socket must have it's spinlock held when we get
1808 * here.
1809 *
1810 * We have a potential double-lock case here, so even when
1811 * doing backlog processing we use the BH locking scheme.
1812 * This is because we cannot sleep with the original spinlock
1813 * held.
1814 */
1815int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1816{
1817 struct sock *rsk;
1818#ifdef CONFIG_TCP_MD5SIG
1819 /*
1820 * We really want to reject the packet as early as possible
1821 * if:
1822 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1823 * o There is an MD5 option and we're not expecting one
1824 */
1825 if (tcp_v4_inbound_md5_hash(sk, skb))
1826 goto discard;
1827#endif
1828
1829 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1830 struct dst_entry *dst = sk->sk_rx_dst;
1831
1832 sock_rps_save_rxhash(sk, skb);
1833 if (dst) {
1834 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1835 dst->ops->check(dst, 0) == NULL) {
1836 dst_release(dst);
1837 sk->sk_rx_dst = NULL;
1838 }
1839 }
1840 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1841 rsk = sk;
1842 goto reset;
1843 }
1844 return 0;
1845 }
1846
1847 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1848 goto csum_err;
1849
1850 if (sk->sk_state == TCP_LISTEN) {
1851 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1852 if (!nsk)
1853 goto discard;
1854
1855 if (nsk != sk) {
1856 sock_rps_save_rxhash(nsk, skb);
1857 if (tcp_child_process(sk, nsk, skb)) {
1858 rsk = nsk;
1859 goto reset;
1860 }
1861 return 0;
1862 }
1863 } else
1864 sock_rps_save_rxhash(sk, skb);
1865
1866 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1867 rsk = sk;
1868 goto reset;
1869 }
1870 return 0;
1871
1872reset:
1873 tcp_v4_send_reset(rsk, skb);
1874discard:
1875 kfree_skb(skb);
1876 /* Be careful here. If this function gets more complicated and
1877 * gcc suffers from register pressure on the x86, sk (in %ebx)
1878 * might be destroyed here. This current version compiles correctly,
1879 * but you have been warned.
1880 */
1881 return 0;
1882
1883csum_err:
1884 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1885 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1886 goto discard;
1887}
1888EXPORT_SYMBOL(tcp_v4_do_rcv);
1889
1890void tcp_v4_early_demux(struct sk_buff *skb)
1891{
1892 const struct iphdr *iph;
1893 const struct tcphdr *th;
1894 struct sock *sk;
1895
1896 if (skb->pkt_type != PACKET_HOST)
1897 return;
1898
1899 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1900 return;
1901
1902 iph = ip_hdr(skb);
1903 th = tcp_hdr(skb);
1904
1905 if (th->doff < sizeof(struct tcphdr) / 4)
1906 return;
1907
1908 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1909 iph->saddr, th->source,
1910 iph->daddr, ntohs(th->dest),
1911 skb->skb_iif);
1912 if (sk) {
1913 skb->sk = sk;
1914 skb->destructor = sock_edemux;
1915 if (sk->sk_state != TCP_TIME_WAIT) {
1916 struct dst_entry *dst = ACCESS_ONCE(sk->sk_rx_dst);
1917
1918 if (dst)
1919 dst = dst_check(dst, 0);
1920 if (dst &&
1921 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1922 skb_dst_set_noref(skb, dst);
1923 }
1924 }
1925}
1926
1927/* Packet is added to VJ-style prequeue for processing in process
1928 * context, if a reader task is waiting. Apparently, this exciting
1929 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1930 * failed somewhere. Latency? Burstiness? Well, at least now we will
1931 * see, why it failed. 8)8) --ANK
1932 *
1933 */
1934bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1935{
1936 struct tcp_sock *tp = tcp_sk(sk);
1937
1938 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1939 return false;
1940
1941 if (skb->len <= tcp_hdrlen(skb) &&
1942 skb_queue_len(&tp->ucopy.prequeue) == 0)
1943 return false;
1944
1945 skb_dst_force(skb);
1946 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1947 tp->ucopy.memory += skb->truesize;
1948 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1949 struct sk_buff *skb1;
1950
1951 BUG_ON(sock_owned_by_user(sk));
1952
1953 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1954 sk_backlog_rcv(sk, skb1);
1955 NET_INC_STATS_BH(sock_net(sk),
1956 LINUX_MIB_TCPPREQUEUEDROPPED);
1957 }
1958
1959 tp->ucopy.memory = 0;
1960 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1961 wake_up_interruptible_sync_poll(sk_sleep(sk),
1962 POLLIN | POLLRDNORM | POLLRDBAND);
1963 if (!inet_csk_ack_scheduled(sk))
1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1965 (3 * tcp_rto_min(sk)) / 4,
1966 TCP_RTO_MAX);
1967 }
1968 return true;
1969}
1970EXPORT_SYMBOL(tcp_prequeue);
1971
1972int tcp_filter(struct sock *sk, struct sk_buff *skb)
1973{
1974 struct tcphdr *th = (struct tcphdr *)skb->data;
1975 unsigned int eaten = skb->len;
1976 int err;
1977
1978 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1979 if (!err) {
1980 eaten -= skb->len;
1981 TCP_SKB_CB(skb)->end_seq -= eaten;
1982 }
1983 return err;
1984}
1985EXPORT_SYMBOL(tcp_filter);
1986
1987/*
1988 * From tcp_input.c
1989 */
1990
1991int tcp_v4_rcv(struct sk_buff *skb)
1992{
1993 const struct iphdr *iph;
1994 const struct tcphdr *th;
1995 struct sock *sk;
1996 int ret;
1997 struct net *net = dev_net(skb->dev);
1998
1999 if (skb->pkt_type != PACKET_HOST)
2000 goto discard_it;
2001
2002 /* Count it even if it's bad */
2003 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
2004
2005 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2006 goto discard_it;
2007
2008 th = tcp_hdr(skb);
2009
2010 if (th->doff < sizeof(struct tcphdr) / 4)
2011 goto bad_packet;
2012 if (!pskb_may_pull(skb, th->doff * 4))
2013 goto discard_it;
2014
2015 /* An explanation is required here, I think.
2016 * Packet length and doff are validated by header prediction,
2017 * provided case of th->doff==0 is eliminated.
2018 * So, we defer the checks. */
2019 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
2020 goto csum_error;
2021
2022 th = tcp_hdr(skb);
2023 iph = ip_hdr(skb);
2024 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2025 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2026 skb->len - th->doff * 4);
2027 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2028 TCP_SKB_CB(skb)->when = 0;
2029 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2030 TCP_SKB_CB(skb)->sacked = 0;
2031
2032 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2033 if (!sk)
2034 goto no_tcp_socket;
2035
2036process:
2037 if (sk->sk_state == TCP_TIME_WAIT)
2038 goto do_time_wait;
2039
2040 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2041 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2042 goto discard_and_relse;
2043 }
2044
2045 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2046 goto discard_and_relse;
2047 nf_reset(skb);
2048
2049 if (tcp_filter(sk, skb))
2050 goto discard_and_relse;
2051 th = (const struct tcphdr *)skb->data;
2052 iph = ip_hdr(skb);
2053
2054 skb->dev = NULL;
2055
2056 bh_lock_sock_nested(sk);
2057 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2058 ret = 0;
2059 if (!sock_owned_by_user(sk)) {
2060#ifdef CONFIG_NET_DMA
2061 struct tcp_sock *tp = tcp_sk(sk);
2062 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2063 tp->ucopy.dma_chan = net_dma_find_channel();
2064 if (tp->ucopy.dma_chan)
2065 ret = tcp_v4_do_rcv(sk, skb);
2066 else
2067#endif
2068 {
2069 if (!tcp_prequeue(sk, skb))
2070 ret = tcp_v4_do_rcv(sk, skb);
2071 }
2072 } else if (unlikely(sk_add_backlog(sk, skb,
2073 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2074 bh_unlock_sock(sk);
2075 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2076 goto discard_and_relse;
2077 }
2078 bh_unlock_sock(sk);
2079
2080 sock_put(sk);
2081
2082 return ret;
2083
2084no_tcp_socket:
2085 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2086 goto discard_it;
2087
2088 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2089csum_error:
2090 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2091bad_packet:
2092 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2093 } else {
2094 tcp_v4_send_reset(NULL, skb);
2095 }
2096
2097discard_it:
2098 /* Discard frame. */
2099 kfree_skb(skb);
2100 return 0;
2101
2102discard_and_relse:
2103 sock_put(sk);
2104 goto discard_it;
2105
2106do_time_wait:
2107 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2108 inet_twsk_put(inet_twsk(sk));
2109 goto discard_it;
2110 }
2111
2112 if (skb->len < (th->doff << 2)) {
2113 inet_twsk_put(inet_twsk(sk));
2114 goto bad_packet;
2115 }
2116 if (tcp_checksum_complete(skb)) {
2117 inet_twsk_put(inet_twsk(sk));
2118 goto csum_error;
2119 }
2120 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2121 case TCP_TW_SYN: {
2122 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2123 &tcp_hashinfo,
2124 iph->saddr, th->source,
2125 iph->daddr, th->dest,
2126 inet_iif(skb));
2127 if (sk2) {
2128 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2129 inet_twsk_put(inet_twsk(sk));
2130 sk = sk2;
2131 goto process;
2132 }
2133 /* Fall through to ACK */
2134 }
2135 case TCP_TW_ACK:
2136 tcp_v4_timewait_ack(sk, skb);
2137 break;
2138 case TCP_TW_RST:
2139 goto no_tcp_socket;
2140 case TCP_TW_SUCCESS:;
2141 }
2142 goto discard_it;
2143}
2144
2145static struct timewait_sock_ops tcp_timewait_sock_ops = {
2146 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2147 .twsk_unique = tcp_twsk_unique,
2148 .twsk_destructor= tcp_twsk_destructor,
2149};
2150
2151void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2152{
2153 struct dst_entry *dst = skb_dst(skb);
2154
2155 dst_hold(dst);
2156 sk->sk_rx_dst = dst;
2157 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2158}
2159EXPORT_SYMBOL(inet_sk_rx_dst_set);
2160
2161const struct inet_connection_sock_af_ops ipv4_specific = {
2162 .queue_xmit = ip_queue_xmit,
2163 .send_check = tcp_v4_send_check,
2164 .rebuild_header = inet_sk_rebuild_header,
2165 .sk_rx_dst_set = inet_sk_rx_dst_set,
2166 .conn_request = tcp_v4_conn_request,
2167 .syn_recv_sock = tcp_v4_syn_recv_sock,
2168 .net_header_len = sizeof(struct iphdr),
2169 .setsockopt = ip_setsockopt,
2170 .getsockopt = ip_getsockopt,
2171 .addr2sockaddr = inet_csk_addr2sockaddr,
2172 .sockaddr_len = sizeof(struct sockaddr_in),
2173 .bind_conflict = inet_csk_bind_conflict,
2174#ifdef CONFIG_COMPAT
2175 .compat_setsockopt = compat_ip_setsockopt,
2176 .compat_getsockopt = compat_ip_getsockopt,
2177#endif
2178 .mtu_reduced = tcp_v4_mtu_reduced,
2179};
2180EXPORT_SYMBOL(ipv4_specific);
2181
2182#ifdef CONFIG_TCP_MD5SIG
2183static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2184 .md5_lookup = tcp_v4_md5_lookup,
2185 .calc_md5_hash = tcp_v4_md5_hash_skb,
2186 .md5_parse = tcp_v4_parse_md5_keys,
2187};
2188#endif
2189
2190/* NOTE: A lot of things set to zero explicitly by call to
2191 * sk_alloc() so need not be done here.
2192 */
2193static int tcp_v4_init_sock(struct sock *sk)
2194{
2195 struct inet_connection_sock *icsk = inet_csk(sk);
2196
2197 tcp_init_sock(sk);
2198
2199 icsk->icsk_af_ops = &ipv4_specific;
2200
2201#ifdef CONFIG_TCP_MD5SIG
2202 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2203#endif
2204
2205 return 0;
2206}
2207
2208void tcp_v4_destroy_sock(struct sock *sk)
2209{
2210 struct tcp_sock *tp = tcp_sk(sk);
2211
2212 tcp_clear_xmit_timers(sk);
2213
2214 tcp_cleanup_congestion_control(sk);
2215
2216 /* Cleanup up the write buffer. */
2217 tcp_write_queue_purge(sk);
2218
2219 /* Cleans up our, hopefully empty, out_of_order_queue. */
2220 __skb_queue_purge(&tp->out_of_order_queue);
2221
2222#ifdef CONFIG_TCP_MD5SIG
2223 /* Clean up the MD5 key list, if any */
2224 if (tp->md5sig_info) {
2225 tcp_clear_md5_list(sk);
2226 kfree_rcu(tp->md5sig_info, rcu);
2227 tp->md5sig_info = NULL;
2228 }
2229#endif
2230
2231#ifdef CONFIG_NET_DMA
2232 /* Cleans up our sk_async_wait_queue */
2233 __skb_queue_purge(&sk->sk_async_wait_queue);
2234#endif
2235
2236 /* Clean prequeue, it must be empty really */
2237 __skb_queue_purge(&tp->ucopy.prequeue);
2238
2239 /* Clean up a referenced TCP bind bucket. */
2240 if (inet_csk(sk)->icsk_bind_hash)
2241 inet_put_port(sk);
2242
2243 BUG_ON(tp->fastopen_rsk != NULL);
2244
2245 /* If socket is aborted during connect operation */
2246 tcp_free_fastopen_req(tp);
2247
2248 sk_sockets_allocated_dec(sk);
2249 sock_release_memcg(sk);
2250}
2251EXPORT_SYMBOL(tcp_v4_destroy_sock);
2252
2253#ifdef CONFIG_PROC_FS
2254/* Proc filesystem TCP sock list dumping. */
2255
2256static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2257{
2258 return hlist_nulls_empty(head) ? NULL :
2259 list_entry(head->first, struct inet_timewait_sock, tw_node);
2260}
2261
2262static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2263{
2264 return !is_a_nulls(tw->tw_node.next) ?
2265 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2266}
2267
2268/*
2269 * Get next listener socket follow cur. If cur is NULL, get first socket
2270 * starting from bucket given in st->bucket; when st->bucket is zero the
2271 * very first socket in the hash table is returned.
2272 */
2273static void *listening_get_next(struct seq_file *seq, void *cur)
2274{
2275 struct inet_connection_sock *icsk;
2276 struct hlist_nulls_node *node;
2277 struct sock *sk = cur;
2278 struct inet_listen_hashbucket *ilb;
2279 struct tcp_iter_state *st = seq->private;
2280 struct net *net = seq_file_net(seq);
2281
2282 if (!sk) {
2283 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2284 spin_lock_bh(&ilb->lock);
2285 sk = sk_nulls_head(&ilb->head);
2286 st->offset = 0;
2287 goto get_sk;
2288 }
2289 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2290 ++st->num;
2291 ++st->offset;
2292
2293 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2294 struct request_sock *req = cur;
2295
2296 icsk = inet_csk(st->syn_wait_sk);
2297 req = req->dl_next;
2298 while (1) {
2299 while (req) {
2300 if (req->rsk_ops->family == st->family) {
2301 cur = req;
2302 goto out;
2303 }
2304 req = req->dl_next;
2305 }
2306 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2307 break;
2308get_req:
2309 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2310 }
2311 sk = sk_nulls_next(st->syn_wait_sk);
2312 st->state = TCP_SEQ_STATE_LISTENING;
2313 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2314 } else {
2315 icsk = inet_csk(sk);
2316 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2317 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2318 goto start_req;
2319 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2320 sk = sk_nulls_next(sk);
2321 }
2322get_sk:
2323 sk_nulls_for_each_from(sk, node) {
2324 if (!net_eq(sock_net(sk), net))
2325 continue;
2326 if (sk->sk_family == st->family) {
2327 cur = sk;
2328 goto out;
2329 }
2330 icsk = inet_csk(sk);
2331 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2332 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2333start_req:
2334 st->uid = sock_i_uid(sk);
2335 st->syn_wait_sk = sk;
2336 st->state = TCP_SEQ_STATE_OPENREQ;
2337 st->sbucket = 0;
2338 goto get_req;
2339 }
2340 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2341 }
2342 spin_unlock_bh(&ilb->lock);
2343 st->offset = 0;
2344 if (++st->bucket < INET_LHTABLE_SIZE) {
2345 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2346 spin_lock_bh(&ilb->lock);
2347 sk = sk_nulls_head(&ilb->head);
2348 goto get_sk;
2349 }
2350 cur = NULL;
2351out:
2352 return cur;
2353}
2354
2355static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2356{
2357 struct tcp_iter_state *st = seq->private;
2358 void *rc;
2359
2360 st->bucket = 0;
2361 st->offset = 0;
2362 rc = listening_get_next(seq, NULL);
2363
2364 while (rc && *pos) {
2365 rc = listening_get_next(seq, rc);
2366 --*pos;
2367 }
2368 return rc;
2369}
2370
2371static inline bool empty_bucket(struct tcp_iter_state *st)
2372{
2373 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2374 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2375}
2376
2377/*
2378 * Get first established socket starting from bucket given in st->bucket.
2379 * If st->bucket is zero, the very first socket in the hash is returned.
2380 */
2381static void *established_get_first(struct seq_file *seq)
2382{
2383 struct tcp_iter_state *st = seq->private;
2384 struct net *net = seq_file_net(seq);
2385 void *rc = NULL;
2386
2387 st->offset = 0;
2388 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2389 struct sock *sk;
2390 struct hlist_nulls_node *node;
2391 struct inet_timewait_sock *tw;
2392 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2393
2394 /* Lockless fast path for the common case of empty buckets */
2395 if (empty_bucket(st))
2396 continue;
2397
2398 spin_lock_bh(lock);
2399 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2400 if (sk->sk_family != st->family ||
2401 !net_eq(sock_net(sk), net)) {
2402 continue;
2403 }
2404 rc = sk;
2405 goto out;
2406 }
2407 st->state = TCP_SEQ_STATE_TIME_WAIT;
2408 inet_twsk_for_each(tw, node,
2409 &tcp_hashinfo.ehash[st->bucket].twchain) {
2410 if (tw->tw_family != st->family ||
2411 !net_eq(twsk_net(tw), net)) {
2412 continue;
2413 }
2414 rc = tw;
2415 goto out;
2416 }
2417 spin_unlock_bh(lock);
2418 st->state = TCP_SEQ_STATE_ESTABLISHED;
2419 }
2420out:
2421 return rc;
2422}
2423
2424static void *established_get_next(struct seq_file *seq, void *cur)
2425{
2426 struct sock *sk = cur;
2427 struct inet_timewait_sock *tw;
2428 struct hlist_nulls_node *node;
2429 struct tcp_iter_state *st = seq->private;
2430 struct net *net = seq_file_net(seq);
2431
2432 ++st->num;
2433 ++st->offset;
2434
2435 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2436 tw = cur;
2437 tw = tw_next(tw);
2438get_tw:
2439 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2440 tw = tw_next(tw);
2441 }
2442 if (tw) {
2443 cur = tw;
2444 goto out;
2445 }
2446 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2447 st->state = TCP_SEQ_STATE_ESTABLISHED;
2448
2449 /* Look for next non empty bucket */
2450 st->offset = 0;
2451 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2452 empty_bucket(st))
2453 ;
2454 if (st->bucket > tcp_hashinfo.ehash_mask)
2455 return NULL;
2456
2457 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2458 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2459 } else
2460 sk = sk_nulls_next(sk);
2461
2462 sk_nulls_for_each_from(sk, node) {
2463 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2464 goto found;
2465 }
2466
2467 st->state = TCP_SEQ_STATE_TIME_WAIT;
2468 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2469 goto get_tw;
2470found:
2471 cur = sk;
2472out:
2473 return cur;
2474}
2475
2476static void *established_get_idx(struct seq_file *seq, loff_t pos)
2477{
2478 struct tcp_iter_state *st = seq->private;
2479 void *rc;
2480
2481 st->bucket = 0;
2482 rc = established_get_first(seq);
2483
2484 while (rc && pos) {
2485 rc = established_get_next(seq, rc);
2486 --pos;
2487 }
2488 return rc;
2489}
2490
2491static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2492{
2493 void *rc;
2494 struct tcp_iter_state *st = seq->private;
2495
2496 st->state = TCP_SEQ_STATE_LISTENING;
2497 rc = listening_get_idx(seq, &pos);
2498
2499 if (!rc) {
2500 st->state = TCP_SEQ_STATE_ESTABLISHED;
2501 rc = established_get_idx(seq, pos);
2502 }
2503
2504 return rc;
2505}
2506
2507static void *tcp_seek_last_pos(struct seq_file *seq)
2508{
2509 struct tcp_iter_state *st = seq->private;
2510 int offset = st->offset;
2511 int orig_num = st->num;
2512 void *rc = NULL;
2513
2514 switch (st->state) {
2515 case TCP_SEQ_STATE_OPENREQ:
2516 case TCP_SEQ_STATE_LISTENING:
2517 if (st->bucket >= INET_LHTABLE_SIZE)
2518 break;
2519 st->state = TCP_SEQ_STATE_LISTENING;
2520 rc = listening_get_next(seq, NULL);
2521 while (offset-- && rc)
2522 rc = listening_get_next(seq, rc);
2523 if (rc)
2524 break;
2525 st->bucket = 0;
2526 /* Fallthrough */
2527 case TCP_SEQ_STATE_ESTABLISHED:
2528 case TCP_SEQ_STATE_TIME_WAIT:
2529 st->state = TCP_SEQ_STATE_ESTABLISHED;
2530 if (st->bucket > tcp_hashinfo.ehash_mask)
2531 break;
2532 rc = established_get_first(seq);
2533 while (offset-- && rc)
2534 rc = established_get_next(seq, rc);
2535 }
2536
2537 st->num = orig_num;
2538
2539 return rc;
2540}
2541
2542static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2543{
2544 struct tcp_iter_state *st = seq->private;
2545 void *rc;
2546
2547 if (*pos && *pos == st->last_pos) {
2548 rc = tcp_seek_last_pos(seq);
2549 if (rc)
2550 goto out;
2551 }
2552
2553 st->state = TCP_SEQ_STATE_LISTENING;
2554 st->num = 0;
2555 st->bucket = 0;
2556 st->offset = 0;
2557 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2558
2559out:
2560 st->last_pos = *pos;
2561 return rc;
2562}
2563
2564static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2565{
2566 struct tcp_iter_state *st = seq->private;
2567 void *rc = NULL;
2568
2569 if (v == SEQ_START_TOKEN) {
2570 rc = tcp_get_idx(seq, 0);
2571 goto out;
2572 }
2573
2574 switch (st->state) {
2575 case TCP_SEQ_STATE_OPENREQ:
2576 case TCP_SEQ_STATE_LISTENING:
2577 rc = listening_get_next(seq, v);
2578 if (!rc) {
2579 st->state = TCP_SEQ_STATE_ESTABLISHED;
2580 st->bucket = 0;
2581 st->offset = 0;
2582 rc = established_get_first(seq);
2583 }
2584 break;
2585 case TCP_SEQ_STATE_ESTABLISHED:
2586 case TCP_SEQ_STATE_TIME_WAIT:
2587 rc = established_get_next(seq, v);
2588 break;
2589 }
2590out:
2591 ++*pos;
2592 st->last_pos = *pos;
2593 return rc;
2594}
2595
2596static void tcp_seq_stop(struct seq_file *seq, void *v)
2597{
2598 struct tcp_iter_state *st = seq->private;
2599
2600 switch (st->state) {
2601 case TCP_SEQ_STATE_OPENREQ:
2602 if (v) {
2603 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2604 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2605 }
2606 case TCP_SEQ_STATE_LISTENING:
2607 if (v != SEQ_START_TOKEN)
2608 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2609 break;
2610 case TCP_SEQ_STATE_TIME_WAIT:
2611 case TCP_SEQ_STATE_ESTABLISHED:
2612 if (v)
2613 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2614 break;
2615 }
2616}
2617
2618int tcp_seq_open(struct inode *inode, struct file *file)
2619{
2620 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2621 struct tcp_iter_state *s;
2622 int err;
2623
2624 err = seq_open_net(inode, file, &afinfo->seq_ops,
2625 sizeof(struct tcp_iter_state));
2626 if (err < 0)
2627 return err;
2628
2629 s = ((struct seq_file *)file->private_data)->private;
2630 s->family = afinfo->family;
2631 s->last_pos = 0;
2632 return 0;
2633}
2634EXPORT_SYMBOL(tcp_seq_open);
2635
2636int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2637{
2638 int rc = 0;
2639 struct proc_dir_entry *p;
2640
2641 afinfo->seq_ops.start = tcp_seq_start;
2642 afinfo->seq_ops.next = tcp_seq_next;
2643 afinfo->seq_ops.stop = tcp_seq_stop;
2644
2645 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2646 afinfo->seq_fops, afinfo);
2647 if (!p)
2648 rc = -ENOMEM;
2649 return rc;
2650}
2651EXPORT_SYMBOL(tcp_proc_register);
2652
2653void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2654{
2655 remove_proc_entry(afinfo->name, net->proc_net);
2656}
2657EXPORT_SYMBOL(tcp_proc_unregister);
2658
2659static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2660 struct seq_file *f, int i, kuid_t uid, int *len)
2661{
2662 const struct inet_request_sock *ireq = inet_rsk(req);
2663 long delta = req->expires - jiffies;
2664
2665 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2666 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2667 i,
2668 ireq->loc_addr,
2669 ntohs(inet_sk(sk)->inet_sport),
2670 ireq->rmt_addr,
2671 ntohs(ireq->rmt_port),
2672 TCP_SYN_RECV,
2673 0, 0, /* could print option size, but that is af dependent. */
2674 1, /* timers active (only the expire timer) */
2675 jiffies_delta_to_clock_t(delta),
2676 req->num_timeout,
2677 from_kuid_munged(seq_user_ns(f), uid),
2678 0, /* non standard timer */
2679 0, /* open_requests have no inode */
2680 atomic_read(&sk->sk_refcnt),
2681 req,
2682 len);
2683}
2684
2685static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2686{
2687 int timer_active;
2688 unsigned long timer_expires;
2689 const struct tcp_sock *tp = tcp_sk(sk);
2690 const struct inet_connection_sock *icsk = inet_csk(sk);
2691 const struct inet_sock *inet = inet_sk(sk);
2692 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2693 __be32 dest = inet->inet_daddr;
2694 __be32 src = inet->inet_rcv_saddr;
2695 __u16 destp = ntohs(inet->inet_dport);
2696 __u16 srcp = ntohs(inet->inet_sport);
2697 int rx_queue;
2698
2699 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2700 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2701 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2702 timer_active = 1;
2703 timer_expires = icsk->icsk_timeout;
2704 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2705 timer_active = 4;
2706 timer_expires = icsk->icsk_timeout;
2707 } else if (timer_pending(&sk->sk_timer)) {
2708 timer_active = 2;
2709 timer_expires = sk->sk_timer.expires;
2710 } else {
2711 timer_active = 0;
2712 timer_expires = jiffies;
2713 }
2714
2715 if (sk->sk_state == TCP_LISTEN)
2716 rx_queue = sk->sk_ack_backlog;
2717 else
2718 /*
2719 * because we dont lock socket, we might find a transient negative value
2720 */
2721 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2722
2723 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2724 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2725 i, src, srcp, dest, destp, sk->sk_state,
2726 tp->write_seq - tp->snd_una,
2727 rx_queue,
2728 timer_active,
2729 jiffies_delta_to_clock_t(timer_expires - jiffies),
2730 icsk->icsk_retransmits,
2731 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2732 icsk->icsk_probes_out,
2733 sock_i_ino(sk),
2734 atomic_read(&sk->sk_refcnt), sk,
2735 jiffies_to_clock_t(icsk->icsk_rto),
2736 jiffies_to_clock_t(icsk->icsk_ack.ato),
2737 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2738 tp->snd_cwnd,
2739 sk->sk_state == TCP_LISTEN ?
2740 (fastopenq ? fastopenq->max_qlen : 0) :
2741 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2742 len);
2743}
2744
2745static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2746 struct seq_file *f, int i, int *len)
2747{
2748 __be32 dest, src;
2749 __u16 destp, srcp;
2750 long delta = tw->tw_ttd - jiffies;
2751
2752 dest = tw->tw_daddr;
2753 src = tw->tw_rcv_saddr;
2754 destp = ntohs(tw->tw_dport);
2755 srcp = ntohs(tw->tw_sport);
2756
2757 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2758 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2759 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2760 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2761 atomic_read(&tw->tw_refcnt), tw, len);
2762}
2763
2764#define TMPSZ 150
2765
2766static int tcp4_seq_show(struct seq_file *seq, void *v)
2767{
2768 struct tcp_iter_state *st;
2769 int len;
2770
2771 if (v == SEQ_START_TOKEN) {
2772 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2773 " sl local_address rem_address st tx_queue "
2774 "rx_queue tr tm->when retrnsmt uid timeout "
2775 "inode");
2776 goto out;
2777 }
2778 st = seq->private;
2779
2780 switch (st->state) {
2781 case TCP_SEQ_STATE_LISTENING:
2782 case TCP_SEQ_STATE_ESTABLISHED:
2783 get_tcp4_sock(v, seq, st->num, &len);
2784 break;
2785 case TCP_SEQ_STATE_OPENREQ:
2786 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2787 break;
2788 case TCP_SEQ_STATE_TIME_WAIT:
2789 get_timewait4_sock(v, seq, st->num, &len);
2790 break;
2791 }
2792 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2793out:
2794 return 0;
2795}
2796
2797static const struct file_operations tcp_afinfo_seq_fops = {
2798 .owner = THIS_MODULE,
2799 .open = tcp_seq_open,
2800 .read = seq_read,
2801 .llseek = seq_lseek,
2802 .release = seq_release_net
2803};
2804
2805static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2806 .name = "tcp",
2807 .family = AF_INET,
2808 .seq_fops = &tcp_afinfo_seq_fops,
2809 .seq_ops = {
2810 .show = tcp4_seq_show,
2811 },
2812};
2813
2814static int __net_init tcp4_proc_init_net(struct net *net)
2815{
2816 return tcp_proc_register(net, &tcp4_seq_afinfo);
2817}
2818
2819static void __net_exit tcp4_proc_exit_net(struct net *net)
2820{
2821 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2822}
2823
2824static struct pernet_operations tcp4_net_ops = {
2825 .init = tcp4_proc_init_net,
2826 .exit = tcp4_proc_exit_net,
2827};
2828
2829int __init tcp4_proc_init(void)
2830{
2831 return register_pernet_subsys(&tcp4_net_ops);
2832}
2833
2834void tcp4_proc_exit(void)
2835{
2836 unregister_pernet_subsys(&tcp4_net_ops);
2837}
2838#endif /* CONFIG_PROC_FS */
2839
2840struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2841{
2842 const struct iphdr *iph = skb_gro_network_header(skb);
2843 __wsum wsum;
2844 __sum16 sum;
2845
2846 switch (skb->ip_summed) {
2847 case CHECKSUM_COMPLETE:
2848 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2849 skb->csum)) {
2850 skb->ip_summed = CHECKSUM_UNNECESSARY;
2851 break;
2852 }
2853flush:
2854 NAPI_GRO_CB(skb)->flush = 1;
2855 return NULL;
2856
2857 case CHECKSUM_NONE:
2858 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2859 skb_gro_len(skb), IPPROTO_TCP, 0);
2860 sum = csum_fold(skb_checksum(skb,
2861 skb_gro_offset(skb),
2862 skb_gro_len(skb),
2863 wsum));
2864 if (sum)
2865 goto flush;
2866
2867 skb->ip_summed = CHECKSUM_UNNECESSARY;
2868 break;
2869 }
2870
2871 return tcp_gro_receive(head, skb);
2872}
2873
2874int tcp4_gro_complete(struct sk_buff *skb)
2875{
2876 const struct iphdr *iph = ip_hdr(skb);
2877 struct tcphdr *th = tcp_hdr(skb);
2878
2879 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2880 iph->saddr, iph->daddr, 0);
2881 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2882
2883 return tcp_gro_complete(skb);
2884}
2885
2886struct proto tcp_prot = {
2887 .name = "TCP",
2888 .owner = THIS_MODULE,
2889 .close = tcp_close,
2890 .connect = tcp_v4_connect,
2891 .disconnect = tcp_disconnect,
2892 .accept = inet_csk_accept,
2893 .ioctl = tcp_ioctl,
2894 .init = tcp_v4_init_sock,
2895 .destroy = tcp_v4_destroy_sock,
2896 .shutdown = tcp_shutdown,
2897 .setsockopt = tcp_setsockopt,
2898 .getsockopt = tcp_getsockopt,
2899 .recvmsg = tcp_recvmsg,
2900 .sendmsg = tcp_sendmsg,
2901 .sendpage = tcp_sendpage,
2902 .backlog_rcv = tcp_v4_do_rcv,
2903 .release_cb = tcp_release_cb,
2904 .hash = inet_hash,
2905 .unhash = inet_unhash,
2906 .get_port = inet_csk_get_port,
2907 .enter_memory_pressure = tcp_enter_memory_pressure,
2908 .sockets_allocated = &tcp_sockets_allocated,
2909 .orphan_count = &tcp_orphan_count,
2910 .memory_allocated = &tcp_memory_allocated,
2911 .memory_pressure = &tcp_memory_pressure,
2912 .sysctl_wmem = sysctl_tcp_wmem,
2913 .sysctl_rmem = sysctl_tcp_rmem,
2914 .max_header = MAX_TCP_HEADER,
2915 .obj_size = sizeof(struct tcp_sock),
2916 .slab_flags = SLAB_DESTROY_BY_RCU,
2917 .twsk_prot = &tcp_timewait_sock_ops,
2918 .rsk_prot = &tcp_request_sock_ops,
2919 .h.hashinfo = &tcp_hashinfo,
2920 .no_autobind = true,
2921#ifdef CONFIG_COMPAT
2922 .compat_setsockopt = compat_tcp_setsockopt,
2923 .compat_getsockopt = compat_tcp_getsockopt,
2924#endif
2925#ifdef CONFIG_MEMCG_KMEM
2926 .init_cgroup = tcp_init_cgroup,
2927 .destroy_cgroup = tcp_destroy_cgroup,
2928 .proto_cgroup = tcp_proto_cgroup,
2929#endif
2930 .diag_destroy = tcp_abort,
2931};
2932EXPORT_SYMBOL(tcp_prot);
2933
2934static void __net_exit tcp_sk_exit(struct net *net)
2935{
2936 int cpu;
2937
2938 for_each_possible_cpu(cpu)
2939 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2940 free_percpu(net->ipv4.tcp_sk);
2941}
2942
2943static int __net_init tcp_sk_init(struct net *net)
2944{
2945 int res, cpu;
2946
2947 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2948 if (!net->ipv4.tcp_sk)
2949 return -ENOMEM;
2950
2951 for_each_possible_cpu(cpu) {
2952 struct sock *sk;
2953
2954 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2955 IPPROTO_TCP, net);
2956 if (res)
2957 goto fail;
2958 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2959 }
2960 net->ipv4.sysctl_tcp_ecn = 2;
2961 return 0;
2962
2963fail:
2964 tcp_sk_exit(net);
2965
2966 return res;
2967}
2968
2969static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2970{
2971 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2972}
2973
2974static struct pernet_operations __net_initdata tcp_sk_ops = {
2975 .init = tcp_sk_init,
2976 .exit = tcp_sk_exit,
2977 .exit_batch = tcp_sk_exit_batch,
2978};
2979
2980void __init tcp_v4_init(void)
2981{
2982 inet_hashinfo_init(&tcp_hashinfo);
2983 if (register_pernet_subsys(&tcp_sk_ops))
2984 panic("Failed to create the TCP control socket.\n");
2985}