net: cleanup unsigned to unsigned int
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 2;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94int sysctl_tcp_frto __read_mostly = 2;
95int sysctl_tcp_frto_response __read_mostly;
96int sysctl_tcp_nometrics_save __read_mostly;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
102
103#define FLAG_DATA 0x01 /* Incoming frame contained data. */
104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108#define FLAG_DATA_SACKED 0x20 /* New SACK. */
109#define FLAG_ECE 0x40 /* ECE in this ACK */
110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126/* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
129static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130{
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 unsigned int len;
134
135 icsk->icsk_ack.last_seg_size = 0;
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
164 if (len == lss) {
165 icsk->icsk_ack.rcv_mss = len;
166 return;
167 }
168 }
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 }
173}
174
175static void tcp_incr_quickack(struct sock *sk)
176{
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180 if (quickacks == 0)
181 quickacks = 2;
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184}
185
186static void tcp_enter_quickack_mode(struct sock *sk)
187{
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
192}
193
194/* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
198static inline int tcp_in_quickack_mode(const struct sock *sk)
199{
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202}
203
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
206 if (tp->ecn_flags & TCP_ECN_OK)
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211{
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222{
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 case INET_ECN_NOT_ECT:
228 /* Funny extension: if ECT is not set on a segment,
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
233 tcp_enter_quickack_mode((struct sock *)tp);
234 break;
235 case INET_ECN_CE:
236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 /* fallinto */
238 default:
239 tp->ecn_flags |= TCP_ECN_SEEN;
240 }
241}
242
243static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244{
245 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246 tp->ecn_flags &= ~TCP_ECN_OK;
247}
248
249static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250{
251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252 tp->ecn_flags &= ~TCP_ECN_OK;
253}
254
255static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256{
257 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258 return 1;
259 return 0;
260}
261
262/* Buffer size and advertised window tuning.
263 *
264 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 */
266
267static void tcp_fixup_sndbuf(struct sock *sk)
268{
269 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271 sndmem *= TCP_INIT_CWND;
272 if (sk->sk_sndbuf < sndmem)
273 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274}
275
276/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 *
278 * All tcp_full_space() is split to two parts: "network" buffer, allocated
279 * forward and advertised in receiver window (tp->rcv_wnd) and
280 * "application buffer", required to isolate scheduling/application
281 * latencies from network.
282 * window_clamp is maximal advertised window. It can be less than
283 * tcp_full_space(), in this case tcp_full_space() - window_clamp
284 * is reserved for "application" buffer. The less window_clamp is
285 * the smoother our behaviour from viewpoint of network, but the lower
286 * throughput and the higher sensitivity of the connection to losses. 8)
287 *
288 * rcv_ssthresh is more strict window_clamp used at "slow start"
289 * phase to predict further behaviour of this connection.
290 * It is used for two goals:
291 * - to enforce header prediction at sender, even when application
292 * requires some significant "application buffer". It is check #1.
293 * - to prevent pruning of receive queue because of misprediction
294 * of receiver window. Check #2.
295 *
296 * The scheme does not work when sender sends good segments opening
297 * window and then starts to feed us spaghetti. But it should work
298 * in common situations. Otherwise, we have to rely on queue collapsing.
299 */
300
301/* Slow part of check#2. */
302static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303{
304 struct tcp_sock *tp = tcp_sk(sk);
305 /* Optimize this! */
306 int truesize = tcp_win_from_space(skb->truesize) >> 1;
307 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309 while (tp->rcv_ssthresh <= window) {
310 if (truesize <= skb->len)
311 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313 truesize >>= 1;
314 window >>= 1;
315 }
316 return 0;
317}
318
319static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320{
321 struct tcp_sock *tp = tcp_sk(sk);
322
323 /* Check #1 */
324 if (tp->rcv_ssthresh < tp->window_clamp &&
325 (int)tp->rcv_ssthresh < tcp_space(sk) &&
326 !sk_under_memory_pressure(sk)) {
327 int incr;
328
329 /* Check #2. Increase window, if skb with such overhead
330 * will fit to rcvbuf in future.
331 */
332 if (tcp_win_from_space(skb->truesize) <= skb->len)
333 incr = 2 * tp->advmss;
334 else
335 incr = __tcp_grow_window(sk, skb);
336
337 if (incr) {
338 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
339 tp->window_clamp);
340 inet_csk(sk)->icsk_ack.quick |= 1;
341 }
342 }
343}
344
345/* 3. Tuning rcvbuf, when connection enters established state. */
346
347static void tcp_fixup_rcvbuf(struct sock *sk)
348{
349 u32 mss = tcp_sk(sk)->advmss;
350 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
351 int rcvmem;
352
353 /* Limit to 10 segments if mss <= 1460,
354 * or 14600/mss segments, with a minimum of two segments.
355 */
356 if (mss > 1460)
357 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358
359 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360 while (tcp_win_from_space(rcvmem) < mss)
361 rcvmem += 128;
362
363 rcvmem *= icwnd;
364
365 if (sk->sk_rcvbuf < rcvmem)
366 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367}
368
369/* 4. Try to fixup all. It is made immediately after connection enters
370 * established state.
371 */
372static void tcp_init_buffer_space(struct sock *sk)
373{
374 struct tcp_sock *tp = tcp_sk(sk);
375 int maxwin;
376
377 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378 tcp_fixup_rcvbuf(sk);
379 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380 tcp_fixup_sndbuf(sk);
381
382 tp->rcvq_space.space = tp->rcv_wnd;
383
384 maxwin = tcp_full_space(sk);
385
386 if (tp->window_clamp >= maxwin) {
387 tp->window_clamp = maxwin;
388
389 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390 tp->window_clamp = max(maxwin -
391 (maxwin >> sysctl_tcp_app_win),
392 4 * tp->advmss);
393 }
394
395 /* Force reservation of one segment. */
396 if (sysctl_tcp_app_win &&
397 tp->window_clamp > 2 * tp->advmss &&
398 tp->window_clamp + tp->advmss > maxwin)
399 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400
401 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402 tp->snd_cwnd_stamp = tcp_time_stamp;
403}
404
405/* 5. Recalculate window clamp after socket hit its memory bounds. */
406static void tcp_clamp_window(struct sock *sk)
407{
408 struct tcp_sock *tp = tcp_sk(sk);
409 struct inet_connection_sock *icsk = inet_csk(sk);
410
411 icsk->icsk_ack.quick = 0;
412
413 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415 !sk_under_memory_pressure(sk) &&
416 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
417 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
418 sysctl_tcp_rmem[2]);
419 }
420 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422}
423
424/* Initialize RCV_MSS value.
425 * RCV_MSS is an our guess about MSS used by the peer.
426 * We haven't any direct information about the MSS.
427 * It's better to underestimate the RCV_MSS rather than overestimate.
428 * Overestimations make us ACKing less frequently than needed.
429 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430 */
431void tcp_initialize_rcv_mss(struct sock *sk)
432{
433 const struct tcp_sock *tp = tcp_sk(sk);
434 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435
436 hint = min(hint, tp->rcv_wnd / 2);
437 hint = min(hint, TCP_MSS_DEFAULT);
438 hint = max(hint, TCP_MIN_MSS);
439
440 inet_csk(sk)->icsk_ack.rcv_mss = hint;
441}
442EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443
444/* Receiver "autotuning" code.
445 *
446 * The algorithm for RTT estimation w/o timestamps is based on
447 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448 * <http://public.lanl.gov/radiant/pubs.html#DRS>
449 *
450 * More detail on this code can be found at
451 * <http://staff.psc.edu/jheffner/>,
452 * though this reference is out of date. A new paper
453 * is pending.
454 */
455static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456{
457 u32 new_sample = tp->rcv_rtt_est.rtt;
458 long m = sample;
459
460 if (m == 0)
461 m = 1;
462
463 if (new_sample != 0) {
464 /* If we sample in larger samples in the non-timestamp
465 * case, we could grossly overestimate the RTT especially
466 * with chatty applications or bulk transfer apps which
467 * are stalled on filesystem I/O.
468 *
469 * Also, since we are only going for a minimum in the
470 * non-timestamp case, we do not smooth things out
471 * else with timestamps disabled convergence takes too
472 * long.
473 */
474 if (!win_dep) {
475 m -= (new_sample >> 3);
476 new_sample += m;
477 } else {
478 m <<= 3;
479 if (m < new_sample)
480 new_sample = m;
481 }
482 } else {
483 /* No previous measure. */
484 new_sample = m << 3;
485 }
486
487 if (tp->rcv_rtt_est.rtt != new_sample)
488 tp->rcv_rtt_est.rtt = new_sample;
489}
490
491static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
492{
493 if (tp->rcv_rtt_est.time == 0)
494 goto new_measure;
495 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
496 return;
497 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
498
499new_measure:
500 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
501 tp->rcv_rtt_est.time = tcp_time_stamp;
502}
503
504static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
505 const struct sk_buff *skb)
506{
507 struct tcp_sock *tp = tcp_sk(sk);
508 if (tp->rx_opt.rcv_tsecr &&
509 (TCP_SKB_CB(skb)->end_seq -
510 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
511 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
512}
513
514/*
515 * This function should be called every time data is copied to user space.
516 * It calculates the appropriate TCP receive buffer space.
517 */
518void tcp_rcv_space_adjust(struct sock *sk)
519{
520 struct tcp_sock *tp = tcp_sk(sk);
521 int time;
522 int space;
523
524 if (tp->rcvq_space.time == 0)
525 goto new_measure;
526
527 time = tcp_time_stamp - tp->rcvq_space.time;
528 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
529 return;
530
531 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
532
533 space = max(tp->rcvq_space.space, space);
534
535 if (tp->rcvq_space.space != space) {
536 int rcvmem;
537
538 tp->rcvq_space.space = space;
539
540 if (sysctl_tcp_moderate_rcvbuf &&
541 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
542 int new_clamp = space;
543
544 /* Receive space grows, normalize in order to
545 * take into account packet headers and sk_buff
546 * structure overhead.
547 */
548 space /= tp->advmss;
549 if (!space)
550 space = 1;
551 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
552 while (tcp_win_from_space(rcvmem) < tp->advmss)
553 rcvmem += 128;
554 space *= rcvmem;
555 space = min(space, sysctl_tcp_rmem[2]);
556 if (space > sk->sk_rcvbuf) {
557 sk->sk_rcvbuf = space;
558
559 /* Make the window clamp follow along. */
560 tp->window_clamp = new_clamp;
561 }
562 }
563 }
564
565new_measure:
566 tp->rcvq_space.seq = tp->copied_seq;
567 tp->rcvq_space.time = tcp_time_stamp;
568}
569
570/* There is something which you must keep in mind when you analyze the
571 * behavior of the tp->ato delayed ack timeout interval. When a
572 * connection starts up, we want to ack as quickly as possible. The
573 * problem is that "good" TCP's do slow start at the beginning of data
574 * transmission. The means that until we send the first few ACK's the
575 * sender will sit on his end and only queue most of his data, because
576 * he can only send snd_cwnd unacked packets at any given time. For
577 * each ACK we send, he increments snd_cwnd and transmits more of his
578 * queue. -DaveM
579 */
580static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
581{
582 struct tcp_sock *tp = tcp_sk(sk);
583 struct inet_connection_sock *icsk = inet_csk(sk);
584 u32 now;
585
586 inet_csk_schedule_ack(sk);
587
588 tcp_measure_rcv_mss(sk, skb);
589
590 tcp_rcv_rtt_measure(tp);
591
592 now = tcp_time_stamp;
593
594 if (!icsk->icsk_ack.ato) {
595 /* The _first_ data packet received, initialize
596 * delayed ACK engine.
597 */
598 tcp_incr_quickack(sk);
599 icsk->icsk_ack.ato = TCP_ATO_MIN;
600 } else {
601 int m = now - icsk->icsk_ack.lrcvtime;
602
603 if (m <= TCP_ATO_MIN / 2) {
604 /* The fastest case is the first. */
605 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
606 } else if (m < icsk->icsk_ack.ato) {
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
608 if (icsk->icsk_ack.ato > icsk->icsk_rto)
609 icsk->icsk_ack.ato = icsk->icsk_rto;
610 } else if (m > icsk->icsk_rto) {
611 /* Too long gap. Apparently sender failed to
612 * restart window, so that we send ACKs quickly.
613 */
614 tcp_incr_quickack(sk);
615 sk_mem_reclaim(sk);
616 }
617 }
618 icsk->icsk_ack.lrcvtime = now;
619
620 TCP_ECN_check_ce(tp, skb);
621
622 if (skb->len >= 128)
623 tcp_grow_window(sk, skb);
624}
625
626/* Called to compute a smoothed rtt estimate. The data fed to this
627 * routine either comes from timestamps, or from segments that were
628 * known _not_ to have been retransmitted [see Karn/Partridge
629 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
630 * piece by Van Jacobson.
631 * NOTE: the next three routines used to be one big routine.
632 * To save cycles in the RFC 1323 implementation it was better to break
633 * it up into three procedures. -- erics
634 */
635static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
636{
637 struct tcp_sock *tp = tcp_sk(sk);
638 long m = mrtt; /* RTT */
639
640 /* The following amusing code comes from Jacobson's
641 * article in SIGCOMM '88. Note that rtt and mdev
642 * are scaled versions of rtt and mean deviation.
643 * This is designed to be as fast as possible
644 * m stands for "measurement".
645 *
646 * On a 1990 paper the rto value is changed to:
647 * RTO = rtt + 4 * mdev
648 *
649 * Funny. This algorithm seems to be very broken.
650 * These formulae increase RTO, when it should be decreased, increase
651 * too slowly, when it should be increased quickly, decrease too quickly
652 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
653 * does not matter how to _calculate_ it. Seems, it was trap
654 * that VJ failed to avoid. 8)
655 */
656 if (m == 0)
657 m = 1;
658 if (tp->srtt != 0) {
659 m -= (tp->srtt >> 3); /* m is now error in rtt est */
660 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
661 if (m < 0) {
662 m = -m; /* m is now abs(error) */
663 m -= (tp->mdev >> 2); /* similar update on mdev */
664 /* This is similar to one of Eifel findings.
665 * Eifel blocks mdev updates when rtt decreases.
666 * This solution is a bit different: we use finer gain
667 * for mdev in this case (alpha*beta).
668 * Like Eifel it also prevents growth of rto,
669 * but also it limits too fast rto decreases,
670 * happening in pure Eifel.
671 */
672 if (m > 0)
673 m >>= 3;
674 } else {
675 m -= (tp->mdev >> 2); /* similar update on mdev */
676 }
677 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
678 if (tp->mdev > tp->mdev_max) {
679 tp->mdev_max = tp->mdev;
680 if (tp->mdev_max > tp->rttvar)
681 tp->rttvar = tp->mdev_max;
682 }
683 if (after(tp->snd_una, tp->rtt_seq)) {
684 if (tp->mdev_max < tp->rttvar)
685 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
686 tp->rtt_seq = tp->snd_nxt;
687 tp->mdev_max = tcp_rto_min(sk);
688 }
689 } else {
690 /* no previous measure. */
691 tp->srtt = m << 3; /* take the measured time to be rtt */
692 tp->mdev = m << 1; /* make sure rto = 3*rtt */
693 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
694 tp->rtt_seq = tp->snd_nxt;
695 }
696}
697
698/* Calculate rto without backoff. This is the second half of Van Jacobson's
699 * routine referred to above.
700 */
701static inline void tcp_set_rto(struct sock *sk)
702{
703 const struct tcp_sock *tp = tcp_sk(sk);
704 /* Old crap is replaced with new one. 8)
705 *
706 * More seriously:
707 * 1. If rtt variance happened to be less 50msec, it is hallucination.
708 * It cannot be less due to utterly erratic ACK generation made
709 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
710 * to do with delayed acks, because at cwnd>2 true delack timeout
711 * is invisible. Actually, Linux-2.4 also generates erratic
712 * ACKs in some circumstances.
713 */
714 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
715
716 /* 2. Fixups made earlier cannot be right.
717 * If we do not estimate RTO correctly without them,
718 * all the algo is pure shit and should be replaced
719 * with correct one. It is exactly, which we pretend to do.
720 */
721
722 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
723 * guarantees that rto is higher.
724 */
725 tcp_bound_rto(sk);
726}
727
728/* Save metrics learned by this TCP session.
729 This function is called only, when TCP finishes successfully
730 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
731 */
732void tcp_update_metrics(struct sock *sk)
733{
734 struct tcp_sock *tp = tcp_sk(sk);
735 struct dst_entry *dst = __sk_dst_get(sk);
736
737 if (sysctl_tcp_nometrics_save)
738 return;
739
740 dst_confirm(dst);
741
742 if (dst && (dst->flags & DST_HOST)) {
743 const struct inet_connection_sock *icsk = inet_csk(sk);
744 int m;
745 unsigned long rtt;
746
747 if (icsk->icsk_backoff || !tp->srtt) {
748 /* This session failed to estimate rtt. Why?
749 * Probably, no packets returned in time.
750 * Reset our results.
751 */
752 if (!(dst_metric_locked(dst, RTAX_RTT)))
753 dst_metric_set(dst, RTAX_RTT, 0);
754 return;
755 }
756
757 rtt = dst_metric_rtt(dst, RTAX_RTT);
758 m = rtt - tp->srtt;
759
760 /* If newly calculated rtt larger than stored one,
761 * store new one. Otherwise, use EWMA. Remember,
762 * rtt overestimation is always better than underestimation.
763 */
764 if (!(dst_metric_locked(dst, RTAX_RTT))) {
765 if (m <= 0)
766 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
767 else
768 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
769 }
770
771 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
772 unsigned long var;
773 if (m < 0)
774 m = -m;
775
776 /* Scale deviation to rttvar fixed point */
777 m >>= 1;
778 if (m < tp->mdev)
779 m = tp->mdev;
780
781 var = dst_metric_rtt(dst, RTAX_RTTVAR);
782 if (m >= var)
783 var = m;
784 else
785 var -= (var - m) >> 2;
786
787 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
788 }
789
790 if (tcp_in_initial_slowstart(tp)) {
791 /* Slow start still did not finish. */
792 if (dst_metric(dst, RTAX_SSTHRESH) &&
793 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
794 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
795 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
796 if (!dst_metric_locked(dst, RTAX_CWND) &&
797 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
798 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
799 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
800 icsk->icsk_ca_state == TCP_CA_Open) {
801 /* Cong. avoidance phase, cwnd is reliable. */
802 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
803 dst_metric_set(dst, RTAX_SSTHRESH,
804 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
805 if (!dst_metric_locked(dst, RTAX_CWND))
806 dst_metric_set(dst, RTAX_CWND,
807 (dst_metric(dst, RTAX_CWND) +
808 tp->snd_cwnd) >> 1);
809 } else {
810 /* Else slow start did not finish, cwnd is non-sense,
811 ssthresh may be also invalid.
812 */
813 if (!dst_metric_locked(dst, RTAX_CWND))
814 dst_metric_set(dst, RTAX_CWND,
815 (dst_metric(dst, RTAX_CWND) +
816 tp->snd_ssthresh) >> 1);
817 if (dst_metric(dst, RTAX_SSTHRESH) &&
818 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
819 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
820 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
821 }
822
823 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
824 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
825 tp->reordering != sysctl_tcp_reordering)
826 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
827 }
828 }
829}
830
831__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
832{
833 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
834
835 if (!cwnd)
836 cwnd = TCP_INIT_CWND;
837 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
838}
839
840/* Set slow start threshold and cwnd not falling to slow start */
841void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
842{
843 struct tcp_sock *tp = tcp_sk(sk);
844 const struct inet_connection_sock *icsk = inet_csk(sk);
845
846 tp->prior_ssthresh = 0;
847 tp->bytes_acked = 0;
848 if (icsk->icsk_ca_state < TCP_CA_CWR) {
849 tp->undo_marker = 0;
850 if (set_ssthresh)
851 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
852 tp->snd_cwnd = min(tp->snd_cwnd,
853 tcp_packets_in_flight(tp) + 1U);
854 tp->snd_cwnd_cnt = 0;
855 tp->high_seq = tp->snd_nxt;
856 tp->snd_cwnd_stamp = tcp_time_stamp;
857 TCP_ECN_queue_cwr(tp);
858
859 tcp_set_ca_state(sk, TCP_CA_CWR);
860 }
861}
862
863/*
864 * Packet counting of FACK is based on in-order assumptions, therefore TCP
865 * disables it when reordering is detected
866 */
867static void tcp_disable_fack(struct tcp_sock *tp)
868{
869 /* RFC3517 uses different metric in lost marker => reset on change */
870 if (tcp_is_fack(tp))
871 tp->lost_skb_hint = NULL;
872 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
873}
874
875/* Take a notice that peer is sending D-SACKs */
876static void tcp_dsack_seen(struct tcp_sock *tp)
877{
878 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
879}
880
881/* Initialize metrics on socket. */
882
883static void tcp_init_metrics(struct sock *sk)
884{
885 struct tcp_sock *tp = tcp_sk(sk);
886 struct dst_entry *dst = __sk_dst_get(sk);
887
888 if (dst == NULL)
889 goto reset;
890
891 dst_confirm(dst);
892
893 if (dst_metric_locked(dst, RTAX_CWND))
894 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
895 if (dst_metric(dst, RTAX_SSTHRESH)) {
896 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
897 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
898 tp->snd_ssthresh = tp->snd_cwnd_clamp;
899 } else {
900 /* ssthresh may have been reduced unnecessarily during.
901 * 3WHS. Restore it back to its initial default.
902 */
903 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
904 }
905 if (dst_metric(dst, RTAX_REORDERING) &&
906 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
907 tcp_disable_fack(tp);
908 tp->reordering = dst_metric(dst, RTAX_REORDERING);
909 }
910
911 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
912 goto reset;
913
914 /* Initial rtt is determined from SYN,SYN-ACK.
915 * The segment is small and rtt may appear much
916 * less than real one. Use per-dst memory
917 * to make it more realistic.
918 *
919 * A bit of theory. RTT is time passed after "normal" sized packet
920 * is sent until it is ACKed. In normal circumstances sending small
921 * packets force peer to delay ACKs and calculation is correct too.
922 * The algorithm is adaptive and, provided we follow specs, it
923 * NEVER underestimate RTT. BUT! If peer tries to make some clever
924 * tricks sort of "quick acks" for time long enough to decrease RTT
925 * to low value, and then abruptly stops to do it and starts to delay
926 * ACKs, wait for troubles.
927 */
928 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
929 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
930 tp->rtt_seq = tp->snd_nxt;
931 }
932 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
933 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
934 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
935 }
936 tcp_set_rto(sk);
937reset:
938 if (tp->srtt == 0) {
939 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
940 * 3WHS. This is most likely due to retransmission,
941 * including spurious one. Reset the RTO back to 3secs
942 * from the more aggressive 1sec to avoid more spurious
943 * retransmission.
944 */
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
947 }
948 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
949 * retransmitted. In light of RFC6298 more aggressive 1sec
950 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
951 * retransmission has occurred.
952 */
953 if (tp->total_retrans > 1)
954 tp->snd_cwnd = 1;
955 else
956 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
957 tp->snd_cwnd_stamp = tcp_time_stamp;
958}
959
960static void tcp_update_reordering(struct sock *sk, const int metric,
961 const int ts)
962{
963 struct tcp_sock *tp = tcp_sk(sk);
964 if (metric > tp->reordering) {
965 int mib_idx;
966
967 tp->reordering = min(TCP_MAX_REORDERING, metric);
968
969 /* This exciting event is worth to be remembered. 8) */
970 if (ts)
971 mib_idx = LINUX_MIB_TCPTSREORDER;
972 else if (tcp_is_reno(tp))
973 mib_idx = LINUX_MIB_TCPRENOREORDER;
974 else if (tcp_is_fack(tp))
975 mib_idx = LINUX_MIB_TCPFACKREORDER;
976 else
977 mib_idx = LINUX_MIB_TCPSACKREORDER;
978
979 NET_INC_STATS_BH(sock_net(sk), mib_idx);
980#if FASTRETRANS_DEBUG > 1
981 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
982 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
983 tp->reordering,
984 tp->fackets_out,
985 tp->sacked_out,
986 tp->undo_marker ? tp->undo_retrans : 0);
987#endif
988 tcp_disable_fack(tp);
989 }
990}
991
992/* This must be called before lost_out is incremented */
993static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
994{
995 if ((tp->retransmit_skb_hint == NULL) ||
996 before(TCP_SKB_CB(skb)->seq,
997 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
998 tp->retransmit_skb_hint = skb;
999
1000 if (!tp->lost_out ||
1001 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1002 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1003}
1004
1005static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1006{
1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008 tcp_verify_retransmit_hint(tp, skb);
1009
1010 tp->lost_out += tcp_skb_pcount(skb);
1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012 }
1013}
1014
1015static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1016 struct sk_buff *skb)
1017{
1018 tcp_verify_retransmit_hint(tp, skb);
1019
1020 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1021 tp->lost_out += tcp_skb_pcount(skb);
1022 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1023 }
1024}
1025
1026/* This procedure tags the retransmission queue when SACKs arrive.
1027 *
1028 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1029 * Packets in queue with these bits set are counted in variables
1030 * sacked_out, retrans_out and lost_out, correspondingly.
1031 *
1032 * Valid combinations are:
1033 * Tag InFlight Description
1034 * 0 1 - orig segment is in flight.
1035 * S 0 - nothing flies, orig reached receiver.
1036 * L 0 - nothing flies, orig lost by net.
1037 * R 2 - both orig and retransmit are in flight.
1038 * L|R 1 - orig is lost, retransmit is in flight.
1039 * S|R 1 - orig reached receiver, retrans is still in flight.
1040 * (L|S|R is logically valid, it could occur when L|R is sacked,
1041 * but it is equivalent to plain S and code short-curcuits it to S.
1042 * L|S is logically invalid, it would mean -1 packet in flight 8))
1043 *
1044 * These 6 states form finite state machine, controlled by the following events:
1045 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1046 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1047 * 3. Loss detection event of two flavors:
1048 * A. Scoreboard estimator decided the packet is lost.
1049 * A'. Reno "three dupacks" marks head of queue lost.
1050 * A''. Its FACK modification, head until snd.fack is lost.
1051 * B. SACK arrives sacking SND.NXT at the moment, when the
1052 * segment was retransmitted.
1053 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1054 *
1055 * It is pleasant to note, that state diagram turns out to be commutative,
1056 * so that we are allowed not to be bothered by order of our actions,
1057 * when multiple events arrive simultaneously. (see the function below).
1058 *
1059 * Reordering detection.
1060 * --------------------
1061 * Reordering metric is maximal distance, which a packet can be displaced
1062 * in packet stream. With SACKs we can estimate it:
1063 *
1064 * 1. SACK fills old hole and the corresponding segment was not
1065 * ever retransmitted -> reordering. Alas, we cannot use it
1066 * when segment was retransmitted.
1067 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1068 * for retransmitted and already SACKed segment -> reordering..
1069 * Both of these heuristics are not used in Loss state, when we cannot
1070 * account for retransmits accurately.
1071 *
1072 * SACK block validation.
1073 * ----------------------
1074 *
1075 * SACK block range validation checks that the received SACK block fits to
1076 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1077 * Note that SND.UNA is not included to the range though being valid because
1078 * it means that the receiver is rather inconsistent with itself reporting
1079 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1080 * perfectly valid, however, in light of RFC2018 which explicitly states
1081 * that "SACK block MUST reflect the newest segment. Even if the newest
1082 * segment is going to be discarded ...", not that it looks very clever
1083 * in case of head skb. Due to potentional receiver driven attacks, we
1084 * choose to avoid immediate execution of a walk in write queue due to
1085 * reneging and defer head skb's loss recovery to standard loss recovery
1086 * procedure that will eventually trigger (nothing forbids us doing this).
1087 *
1088 * Implements also blockage to start_seq wrap-around. Problem lies in the
1089 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1090 * there's no guarantee that it will be before snd_nxt (n). The problem
1091 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1092 * wrap (s_w):
1093 *
1094 * <- outs wnd -> <- wrapzone ->
1095 * u e n u_w e_w s n_w
1096 * | | | | | | |
1097 * |<------------+------+----- TCP seqno space --------------+---------->|
1098 * ...-- <2^31 ->| |<--------...
1099 * ...---- >2^31 ------>| |<--------...
1100 *
1101 * Current code wouldn't be vulnerable but it's better still to discard such
1102 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1103 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1104 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1105 * equal to the ideal case (infinite seqno space without wrap caused issues).
1106 *
1107 * With D-SACK the lower bound is extended to cover sequence space below
1108 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1109 * again, D-SACK block must not to go across snd_una (for the same reason as
1110 * for the normal SACK blocks, explained above). But there all simplicity
1111 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1112 * fully below undo_marker they do not affect behavior in anyway and can
1113 * therefore be safely ignored. In rare cases (which are more or less
1114 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1115 * fragmentation and packet reordering past skb's retransmission. To consider
1116 * them correctly, the acceptable range must be extended even more though
1117 * the exact amount is rather hard to quantify. However, tp->max_window can
1118 * be used as an exaggerated estimate.
1119 */
1120static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1121 u32 start_seq, u32 end_seq)
1122{
1123 /* Too far in future, or reversed (interpretation is ambiguous) */
1124 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1125 return 0;
1126
1127 /* Nasty start_seq wrap-around check (see comments above) */
1128 if (!before(start_seq, tp->snd_nxt))
1129 return 0;
1130
1131 /* In outstanding window? ...This is valid exit for D-SACKs too.
1132 * start_seq == snd_una is non-sensical (see comments above)
1133 */
1134 if (after(start_seq, tp->snd_una))
1135 return 1;
1136
1137 if (!is_dsack || !tp->undo_marker)
1138 return 0;
1139
1140 /* ...Then it's D-SACK, and must reside below snd_una completely */
1141 if (after(end_seq, tp->snd_una))
1142 return 0;
1143
1144 if (!before(start_seq, tp->undo_marker))
1145 return 1;
1146
1147 /* Too old */
1148 if (!after(end_seq, tp->undo_marker))
1149 return 0;
1150
1151 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1152 * start_seq < undo_marker and end_seq >= undo_marker.
1153 */
1154 return !before(start_seq, end_seq - tp->max_window);
1155}
1156
1157/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1158 * Event "B". Later note: FACK people cheated me again 8), we have to account
1159 * for reordering! Ugly, but should help.
1160 *
1161 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1162 * less than what is now known to be received by the other end (derived from
1163 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1164 * retransmitted skbs to avoid some costly processing per ACKs.
1165 */
1166static void tcp_mark_lost_retrans(struct sock *sk)
1167{
1168 const struct inet_connection_sock *icsk = inet_csk(sk);
1169 struct tcp_sock *tp = tcp_sk(sk);
1170 struct sk_buff *skb;
1171 int cnt = 0;
1172 u32 new_low_seq = tp->snd_nxt;
1173 u32 received_upto = tcp_highest_sack_seq(tp);
1174
1175 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1176 !after(received_upto, tp->lost_retrans_low) ||
1177 icsk->icsk_ca_state != TCP_CA_Recovery)
1178 return;
1179
1180 tcp_for_write_queue(skb, sk) {
1181 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1182
1183 if (skb == tcp_send_head(sk))
1184 break;
1185 if (cnt == tp->retrans_out)
1186 break;
1187 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1188 continue;
1189
1190 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1191 continue;
1192
1193 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1194 * constraint here (see above) but figuring out that at
1195 * least tp->reordering SACK blocks reside between ack_seq
1196 * and received_upto is not easy task to do cheaply with
1197 * the available datastructures.
1198 *
1199 * Whether FACK should check here for tp->reordering segs
1200 * in-between one could argue for either way (it would be
1201 * rather simple to implement as we could count fack_count
1202 * during the walk and do tp->fackets_out - fack_count).
1203 */
1204 if (after(received_upto, ack_seq)) {
1205 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1206 tp->retrans_out -= tcp_skb_pcount(skb);
1207
1208 tcp_skb_mark_lost_uncond_verify(tp, skb);
1209 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1210 } else {
1211 if (before(ack_seq, new_low_seq))
1212 new_low_seq = ack_seq;
1213 cnt += tcp_skb_pcount(skb);
1214 }
1215 }
1216
1217 if (tp->retrans_out)
1218 tp->lost_retrans_low = new_low_seq;
1219}
1220
1221static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1222 struct tcp_sack_block_wire *sp, int num_sacks,
1223 u32 prior_snd_una)
1224{
1225 struct tcp_sock *tp = tcp_sk(sk);
1226 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1227 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1228 int dup_sack = 0;
1229
1230 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1231 dup_sack = 1;
1232 tcp_dsack_seen(tp);
1233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1234 } else if (num_sacks > 1) {
1235 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1236 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1237
1238 if (!after(end_seq_0, end_seq_1) &&
1239 !before(start_seq_0, start_seq_1)) {
1240 dup_sack = 1;
1241 tcp_dsack_seen(tp);
1242 NET_INC_STATS_BH(sock_net(sk),
1243 LINUX_MIB_TCPDSACKOFORECV);
1244 }
1245 }
1246
1247 /* D-SACK for already forgotten data... Do dumb counting. */
1248 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1249 !after(end_seq_0, prior_snd_una) &&
1250 after(end_seq_0, tp->undo_marker))
1251 tp->undo_retrans--;
1252
1253 return dup_sack;
1254}
1255
1256struct tcp_sacktag_state {
1257 int reord;
1258 int fack_count;
1259 int flag;
1260};
1261
1262/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1263 * the incoming SACK may not exactly match but we can find smaller MSS
1264 * aligned portion of it that matches. Therefore we might need to fragment
1265 * which may fail and creates some hassle (caller must handle error case
1266 * returns).
1267 *
1268 * FIXME: this could be merged to shift decision code
1269 */
1270static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1271 u32 start_seq, u32 end_seq)
1272{
1273 int in_sack, err;
1274 unsigned int pkt_len;
1275 unsigned int mss;
1276
1277 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1278 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1279
1280 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1281 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1282 mss = tcp_skb_mss(skb);
1283 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1284
1285 if (!in_sack) {
1286 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1287 if (pkt_len < mss)
1288 pkt_len = mss;
1289 } else {
1290 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1291 if (pkt_len < mss)
1292 return -EINVAL;
1293 }
1294
1295 /* Round if necessary so that SACKs cover only full MSSes
1296 * and/or the remaining small portion (if present)
1297 */
1298 if (pkt_len > mss) {
1299 unsigned int new_len = (pkt_len / mss) * mss;
1300 if (!in_sack && new_len < pkt_len) {
1301 new_len += mss;
1302 if (new_len > skb->len)
1303 return 0;
1304 }
1305 pkt_len = new_len;
1306 }
1307 err = tcp_fragment(sk, skb, pkt_len, mss);
1308 if (err < 0)
1309 return err;
1310 }
1311
1312 return in_sack;
1313}
1314
1315/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1316static u8 tcp_sacktag_one(struct sock *sk,
1317 struct tcp_sacktag_state *state, u8 sacked,
1318 u32 start_seq, u32 end_seq,
1319 int dup_sack, int pcount)
1320{
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 int fack_count = state->fack_count;
1323
1324 /* Account D-SACK for retransmitted packet. */
1325 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1326 if (tp->undo_marker && tp->undo_retrans &&
1327 after(end_seq, tp->undo_marker))
1328 tp->undo_retrans--;
1329 if (sacked & TCPCB_SACKED_ACKED)
1330 state->reord = min(fack_count, state->reord);
1331 }
1332
1333 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1334 if (!after(end_seq, tp->snd_una))
1335 return sacked;
1336
1337 if (!(sacked & TCPCB_SACKED_ACKED)) {
1338 if (sacked & TCPCB_SACKED_RETRANS) {
1339 /* If the segment is not tagged as lost,
1340 * we do not clear RETRANS, believing
1341 * that retransmission is still in flight.
1342 */
1343 if (sacked & TCPCB_LOST) {
1344 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1345 tp->lost_out -= pcount;
1346 tp->retrans_out -= pcount;
1347 }
1348 } else {
1349 if (!(sacked & TCPCB_RETRANS)) {
1350 /* New sack for not retransmitted frame,
1351 * which was in hole. It is reordering.
1352 */
1353 if (before(start_seq,
1354 tcp_highest_sack_seq(tp)))
1355 state->reord = min(fack_count,
1356 state->reord);
1357
1358 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1359 if (!after(end_seq, tp->frto_highmark))
1360 state->flag |= FLAG_ONLY_ORIG_SACKED;
1361 }
1362
1363 if (sacked & TCPCB_LOST) {
1364 sacked &= ~TCPCB_LOST;
1365 tp->lost_out -= pcount;
1366 }
1367 }
1368
1369 sacked |= TCPCB_SACKED_ACKED;
1370 state->flag |= FLAG_DATA_SACKED;
1371 tp->sacked_out += pcount;
1372
1373 fack_count += pcount;
1374
1375 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1376 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1377 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1378 tp->lost_cnt_hint += pcount;
1379
1380 if (fack_count > tp->fackets_out)
1381 tp->fackets_out = fack_count;
1382 }
1383
1384 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1385 * frames and clear it. undo_retrans is decreased above, L|R frames
1386 * are accounted above as well.
1387 */
1388 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1389 sacked &= ~TCPCB_SACKED_RETRANS;
1390 tp->retrans_out -= pcount;
1391 }
1392
1393 return sacked;
1394}
1395
1396/* Shift newly-SACKed bytes from this skb to the immediately previous
1397 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1398 */
1399static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1400 struct tcp_sacktag_state *state,
1401 unsigned int pcount, int shifted, int mss,
1402 int dup_sack)
1403{
1404 struct tcp_sock *tp = tcp_sk(sk);
1405 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1406 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1407 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1408
1409 BUG_ON(!pcount);
1410
1411 /* Adjust counters and hints for the newly sacked sequence
1412 * range but discard the return value since prev is already
1413 * marked. We must tag the range first because the seq
1414 * advancement below implicitly advances
1415 * tcp_highest_sack_seq() when skb is highest_sack.
1416 */
1417 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1418 start_seq, end_seq, dup_sack, pcount);
1419
1420 if (skb == tp->lost_skb_hint)
1421 tp->lost_cnt_hint += pcount;
1422
1423 TCP_SKB_CB(prev)->end_seq += shifted;
1424 TCP_SKB_CB(skb)->seq += shifted;
1425
1426 skb_shinfo(prev)->gso_segs += pcount;
1427 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1428 skb_shinfo(skb)->gso_segs -= pcount;
1429
1430 /* When we're adding to gso_segs == 1, gso_size will be zero,
1431 * in theory this shouldn't be necessary but as long as DSACK
1432 * code can come after this skb later on it's better to keep
1433 * setting gso_size to something.
1434 */
1435 if (!skb_shinfo(prev)->gso_size) {
1436 skb_shinfo(prev)->gso_size = mss;
1437 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1438 }
1439
1440 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1441 if (skb_shinfo(skb)->gso_segs <= 1) {
1442 skb_shinfo(skb)->gso_size = 0;
1443 skb_shinfo(skb)->gso_type = 0;
1444 }
1445
1446 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1447 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1448
1449 if (skb->len > 0) {
1450 BUG_ON(!tcp_skb_pcount(skb));
1451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1452 return 0;
1453 }
1454
1455 /* Whole SKB was eaten :-) */
1456
1457 if (skb == tp->retransmit_skb_hint)
1458 tp->retransmit_skb_hint = prev;
1459 if (skb == tp->scoreboard_skb_hint)
1460 tp->scoreboard_skb_hint = prev;
1461 if (skb == tp->lost_skb_hint) {
1462 tp->lost_skb_hint = prev;
1463 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1464 }
1465
1466 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1467 if (skb == tcp_highest_sack(sk))
1468 tcp_advance_highest_sack(sk, skb);
1469
1470 tcp_unlink_write_queue(skb, sk);
1471 sk_wmem_free_skb(sk, skb);
1472
1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1474
1475 return 1;
1476}
1477
1478/* I wish gso_size would have a bit more sane initialization than
1479 * something-or-zero which complicates things
1480 */
1481static int tcp_skb_seglen(const struct sk_buff *skb)
1482{
1483 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1484}
1485
1486/* Shifting pages past head area doesn't work */
1487static int skb_can_shift(const struct sk_buff *skb)
1488{
1489 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1490}
1491
1492/* Try collapsing SACK blocks spanning across multiple skbs to a single
1493 * skb.
1494 */
1495static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1496 struct tcp_sacktag_state *state,
1497 u32 start_seq, u32 end_seq,
1498 int dup_sack)
1499{
1500 struct tcp_sock *tp = tcp_sk(sk);
1501 struct sk_buff *prev;
1502 int mss;
1503 int pcount = 0;
1504 int len;
1505 int in_sack;
1506
1507 if (!sk_can_gso(sk))
1508 goto fallback;
1509
1510 /* Normally R but no L won't result in plain S */
1511 if (!dup_sack &&
1512 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1513 goto fallback;
1514 if (!skb_can_shift(skb))
1515 goto fallback;
1516 /* This frame is about to be dropped (was ACKed). */
1517 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1518 goto fallback;
1519
1520 /* Can only happen with delayed DSACK + discard craziness */
1521 if (unlikely(skb == tcp_write_queue_head(sk)))
1522 goto fallback;
1523 prev = tcp_write_queue_prev(sk, skb);
1524
1525 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1526 goto fallback;
1527
1528 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1529 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1530
1531 if (in_sack) {
1532 len = skb->len;
1533 pcount = tcp_skb_pcount(skb);
1534 mss = tcp_skb_seglen(skb);
1535
1536 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1537 * drop this restriction as unnecessary
1538 */
1539 if (mss != tcp_skb_seglen(prev))
1540 goto fallback;
1541 } else {
1542 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1543 goto noop;
1544 /* CHECKME: This is non-MSS split case only?, this will
1545 * cause skipped skbs due to advancing loop btw, original
1546 * has that feature too
1547 */
1548 if (tcp_skb_pcount(skb) <= 1)
1549 goto noop;
1550
1551 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1552 if (!in_sack) {
1553 /* TODO: head merge to next could be attempted here
1554 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1555 * though it might not be worth of the additional hassle
1556 *
1557 * ...we can probably just fallback to what was done
1558 * previously. We could try merging non-SACKed ones
1559 * as well but it probably isn't going to buy off
1560 * because later SACKs might again split them, and
1561 * it would make skb timestamp tracking considerably
1562 * harder problem.
1563 */
1564 goto fallback;
1565 }
1566
1567 len = end_seq - TCP_SKB_CB(skb)->seq;
1568 BUG_ON(len < 0);
1569 BUG_ON(len > skb->len);
1570
1571 /* MSS boundaries should be honoured or else pcount will
1572 * severely break even though it makes things bit trickier.
1573 * Optimize common case to avoid most of the divides
1574 */
1575 mss = tcp_skb_mss(skb);
1576
1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1578 * drop this restriction as unnecessary
1579 */
1580 if (mss != tcp_skb_seglen(prev))
1581 goto fallback;
1582
1583 if (len == mss) {
1584 pcount = 1;
1585 } else if (len < mss) {
1586 goto noop;
1587 } else {
1588 pcount = len / mss;
1589 len = pcount * mss;
1590 }
1591 }
1592
1593 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1594 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1595 goto fallback;
1596
1597 if (!skb_shift(prev, skb, len))
1598 goto fallback;
1599 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1600 goto out;
1601
1602 /* Hole filled allows collapsing with the next as well, this is very
1603 * useful when hole on every nth skb pattern happens
1604 */
1605 if (prev == tcp_write_queue_tail(sk))
1606 goto out;
1607 skb = tcp_write_queue_next(sk, prev);
1608
1609 if (!skb_can_shift(skb) ||
1610 (skb == tcp_send_head(sk)) ||
1611 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1612 (mss != tcp_skb_seglen(skb)))
1613 goto out;
1614
1615 len = skb->len;
1616 if (skb_shift(prev, skb, len)) {
1617 pcount += tcp_skb_pcount(skb);
1618 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1619 }
1620
1621out:
1622 state->fack_count += pcount;
1623 return prev;
1624
1625noop:
1626 return skb;
1627
1628fallback:
1629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1630 return NULL;
1631}
1632
1633static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1634 struct tcp_sack_block *next_dup,
1635 struct tcp_sacktag_state *state,
1636 u32 start_seq, u32 end_seq,
1637 int dup_sack_in)
1638{
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 struct sk_buff *tmp;
1641
1642 tcp_for_write_queue_from(skb, sk) {
1643 int in_sack = 0;
1644 int dup_sack = dup_sack_in;
1645
1646 if (skb == tcp_send_head(sk))
1647 break;
1648
1649 /* queue is in-order => we can short-circuit the walk early */
1650 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1651 break;
1652
1653 if ((next_dup != NULL) &&
1654 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1655 in_sack = tcp_match_skb_to_sack(sk, skb,
1656 next_dup->start_seq,
1657 next_dup->end_seq);
1658 if (in_sack > 0)
1659 dup_sack = 1;
1660 }
1661
1662 /* skb reference here is a bit tricky to get right, since
1663 * shifting can eat and free both this skb and the next,
1664 * so not even _safe variant of the loop is enough.
1665 */
1666 if (in_sack <= 0) {
1667 tmp = tcp_shift_skb_data(sk, skb, state,
1668 start_seq, end_seq, dup_sack);
1669 if (tmp != NULL) {
1670 if (tmp != skb) {
1671 skb = tmp;
1672 continue;
1673 }
1674
1675 in_sack = 0;
1676 } else {
1677 in_sack = tcp_match_skb_to_sack(sk, skb,
1678 start_seq,
1679 end_seq);
1680 }
1681 }
1682
1683 if (unlikely(in_sack < 0))
1684 break;
1685
1686 if (in_sack) {
1687 TCP_SKB_CB(skb)->sacked =
1688 tcp_sacktag_one(sk,
1689 state,
1690 TCP_SKB_CB(skb)->sacked,
1691 TCP_SKB_CB(skb)->seq,
1692 TCP_SKB_CB(skb)->end_seq,
1693 dup_sack,
1694 tcp_skb_pcount(skb));
1695
1696 if (!before(TCP_SKB_CB(skb)->seq,
1697 tcp_highest_sack_seq(tp)))
1698 tcp_advance_highest_sack(sk, skb);
1699 }
1700
1701 state->fack_count += tcp_skb_pcount(skb);
1702 }
1703 return skb;
1704}
1705
1706/* Avoid all extra work that is being done by sacktag while walking in
1707 * a normal way
1708 */
1709static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1710 struct tcp_sacktag_state *state,
1711 u32 skip_to_seq)
1712{
1713 tcp_for_write_queue_from(skb, sk) {
1714 if (skb == tcp_send_head(sk))
1715 break;
1716
1717 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1718 break;
1719
1720 state->fack_count += tcp_skb_pcount(skb);
1721 }
1722 return skb;
1723}
1724
1725static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1726 struct sock *sk,
1727 struct tcp_sack_block *next_dup,
1728 struct tcp_sacktag_state *state,
1729 u32 skip_to_seq)
1730{
1731 if (next_dup == NULL)
1732 return skb;
1733
1734 if (before(next_dup->start_seq, skip_to_seq)) {
1735 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1736 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1737 next_dup->start_seq, next_dup->end_seq,
1738 1);
1739 }
1740
1741 return skb;
1742}
1743
1744static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1745{
1746 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1747}
1748
1749static int
1750tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1751 u32 prior_snd_una)
1752{
1753 const struct inet_connection_sock *icsk = inet_csk(sk);
1754 struct tcp_sock *tp = tcp_sk(sk);
1755 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1756 TCP_SKB_CB(ack_skb)->sacked);
1757 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1758 struct tcp_sack_block sp[TCP_NUM_SACKS];
1759 struct tcp_sack_block *cache;
1760 struct tcp_sacktag_state state;
1761 struct sk_buff *skb;
1762 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1763 int used_sacks;
1764 int found_dup_sack = 0;
1765 int i, j;
1766 int first_sack_index;
1767
1768 state.flag = 0;
1769 state.reord = tp->packets_out;
1770
1771 if (!tp->sacked_out) {
1772 if (WARN_ON(tp->fackets_out))
1773 tp->fackets_out = 0;
1774 tcp_highest_sack_reset(sk);
1775 }
1776
1777 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1778 num_sacks, prior_snd_una);
1779 if (found_dup_sack)
1780 state.flag |= FLAG_DSACKING_ACK;
1781
1782 /* Eliminate too old ACKs, but take into
1783 * account more or less fresh ones, they can
1784 * contain valid SACK info.
1785 */
1786 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1787 return 0;
1788
1789 if (!tp->packets_out)
1790 goto out;
1791
1792 used_sacks = 0;
1793 first_sack_index = 0;
1794 for (i = 0; i < num_sacks; i++) {
1795 int dup_sack = !i && found_dup_sack;
1796
1797 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1798 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1799
1800 if (!tcp_is_sackblock_valid(tp, dup_sack,
1801 sp[used_sacks].start_seq,
1802 sp[used_sacks].end_seq)) {
1803 int mib_idx;
1804
1805 if (dup_sack) {
1806 if (!tp->undo_marker)
1807 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1808 else
1809 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1810 } else {
1811 /* Don't count olds caused by ACK reordering */
1812 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1813 !after(sp[used_sacks].end_seq, tp->snd_una))
1814 continue;
1815 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1816 }
1817
1818 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1819 if (i == 0)
1820 first_sack_index = -1;
1821 continue;
1822 }
1823
1824 /* Ignore very old stuff early */
1825 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1826 continue;
1827
1828 used_sacks++;
1829 }
1830
1831 /* order SACK blocks to allow in order walk of the retrans queue */
1832 for (i = used_sacks - 1; i > 0; i--) {
1833 for (j = 0; j < i; j++) {
1834 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1835 swap(sp[j], sp[j + 1]);
1836
1837 /* Track where the first SACK block goes to */
1838 if (j == first_sack_index)
1839 first_sack_index = j + 1;
1840 }
1841 }
1842 }
1843
1844 skb = tcp_write_queue_head(sk);
1845 state.fack_count = 0;
1846 i = 0;
1847
1848 if (!tp->sacked_out) {
1849 /* It's already past, so skip checking against it */
1850 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1851 } else {
1852 cache = tp->recv_sack_cache;
1853 /* Skip empty blocks in at head of the cache */
1854 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1855 !cache->end_seq)
1856 cache++;
1857 }
1858
1859 while (i < used_sacks) {
1860 u32 start_seq = sp[i].start_seq;
1861 u32 end_seq = sp[i].end_seq;
1862 int dup_sack = (found_dup_sack && (i == first_sack_index));
1863 struct tcp_sack_block *next_dup = NULL;
1864
1865 if (found_dup_sack && ((i + 1) == first_sack_index))
1866 next_dup = &sp[i + 1];
1867
1868 /* Skip too early cached blocks */
1869 while (tcp_sack_cache_ok(tp, cache) &&
1870 !before(start_seq, cache->end_seq))
1871 cache++;
1872
1873 /* Can skip some work by looking recv_sack_cache? */
1874 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1875 after(end_seq, cache->start_seq)) {
1876
1877 /* Head todo? */
1878 if (before(start_seq, cache->start_seq)) {
1879 skb = tcp_sacktag_skip(skb, sk, &state,
1880 start_seq);
1881 skb = tcp_sacktag_walk(skb, sk, next_dup,
1882 &state,
1883 start_seq,
1884 cache->start_seq,
1885 dup_sack);
1886 }
1887
1888 /* Rest of the block already fully processed? */
1889 if (!after(end_seq, cache->end_seq))
1890 goto advance_sp;
1891
1892 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1893 &state,
1894 cache->end_seq);
1895
1896 /* ...tail remains todo... */
1897 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1898 /* ...but better entrypoint exists! */
1899 skb = tcp_highest_sack(sk);
1900 if (skb == NULL)
1901 break;
1902 state.fack_count = tp->fackets_out;
1903 cache++;
1904 goto walk;
1905 }
1906
1907 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1908 /* Check overlap against next cached too (past this one already) */
1909 cache++;
1910 continue;
1911 }
1912
1913 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1914 skb = tcp_highest_sack(sk);
1915 if (skb == NULL)
1916 break;
1917 state.fack_count = tp->fackets_out;
1918 }
1919 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1920
1921walk:
1922 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1923 start_seq, end_seq, dup_sack);
1924
1925advance_sp:
1926 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1927 * due to in-order walk
1928 */
1929 if (after(end_seq, tp->frto_highmark))
1930 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1931
1932 i++;
1933 }
1934
1935 /* Clear the head of the cache sack blocks so we can skip it next time */
1936 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1937 tp->recv_sack_cache[i].start_seq = 0;
1938 tp->recv_sack_cache[i].end_seq = 0;
1939 }
1940 for (j = 0; j < used_sacks; j++)
1941 tp->recv_sack_cache[i++] = sp[j];
1942
1943 tcp_mark_lost_retrans(sk);
1944
1945 tcp_verify_left_out(tp);
1946
1947 if ((state.reord < tp->fackets_out) &&
1948 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1949 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1950 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1951
1952out:
1953
1954#if FASTRETRANS_DEBUG > 0
1955 WARN_ON((int)tp->sacked_out < 0);
1956 WARN_ON((int)tp->lost_out < 0);
1957 WARN_ON((int)tp->retrans_out < 0);
1958 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1959#endif
1960 return state.flag;
1961}
1962
1963/* Limits sacked_out so that sum with lost_out isn't ever larger than
1964 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1965 */
1966static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1967{
1968 u32 holes;
1969
1970 holes = max(tp->lost_out, 1U);
1971 holes = min(holes, tp->packets_out);
1972
1973 if ((tp->sacked_out + holes) > tp->packets_out) {
1974 tp->sacked_out = tp->packets_out - holes;
1975 return 1;
1976 }
1977 return 0;
1978}
1979
1980/* If we receive more dupacks than we expected counting segments
1981 * in assumption of absent reordering, interpret this as reordering.
1982 * The only another reason could be bug in receiver TCP.
1983 */
1984static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1985{
1986 struct tcp_sock *tp = tcp_sk(sk);
1987 if (tcp_limit_reno_sacked(tp))
1988 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1989}
1990
1991/* Emulate SACKs for SACKless connection: account for a new dupack. */
1992
1993static void tcp_add_reno_sack(struct sock *sk)
1994{
1995 struct tcp_sock *tp = tcp_sk(sk);
1996 tp->sacked_out++;
1997 tcp_check_reno_reordering(sk, 0);
1998 tcp_verify_left_out(tp);
1999}
2000
2001/* Account for ACK, ACKing some data in Reno Recovery phase. */
2002
2003static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2004{
2005 struct tcp_sock *tp = tcp_sk(sk);
2006
2007 if (acked > 0) {
2008 /* One ACK acked hole. The rest eat duplicate ACKs. */
2009 if (acked - 1 >= tp->sacked_out)
2010 tp->sacked_out = 0;
2011 else
2012 tp->sacked_out -= acked - 1;
2013 }
2014 tcp_check_reno_reordering(sk, acked);
2015 tcp_verify_left_out(tp);
2016}
2017
2018static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2019{
2020 tp->sacked_out = 0;
2021}
2022
2023static int tcp_is_sackfrto(const struct tcp_sock *tp)
2024{
2025 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2026}
2027
2028/* F-RTO can only be used if TCP has never retransmitted anything other than
2029 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2030 */
2031int tcp_use_frto(struct sock *sk)
2032{
2033 const struct tcp_sock *tp = tcp_sk(sk);
2034 const struct inet_connection_sock *icsk = inet_csk(sk);
2035 struct sk_buff *skb;
2036
2037 if (!sysctl_tcp_frto)
2038 return 0;
2039
2040 /* MTU probe and F-RTO won't really play nicely along currently */
2041 if (icsk->icsk_mtup.probe_size)
2042 return 0;
2043
2044 if (tcp_is_sackfrto(tp))
2045 return 1;
2046
2047 /* Avoid expensive walking of rexmit queue if possible */
2048 if (tp->retrans_out > 1)
2049 return 0;
2050
2051 skb = tcp_write_queue_head(sk);
2052 if (tcp_skb_is_last(sk, skb))
2053 return 1;
2054 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2055 tcp_for_write_queue_from(skb, sk) {
2056 if (skb == tcp_send_head(sk))
2057 break;
2058 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2059 return 0;
2060 /* Short-circuit when first non-SACKed skb has been checked */
2061 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2062 break;
2063 }
2064 return 1;
2065}
2066
2067/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2068 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2069 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2070 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2071 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2072 * bits are handled if the Loss state is really to be entered (in
2073 * tcp_enter_frto_loss).
2074 *
2075 * Do like tcp_enter_loss() would; when RTO expires the second time it
2076 * does:
2077 * "Reduce ssthresh if it has not yet been made inside this window."
2078 */
2079void tcp_enter_frto(struct sock *sk)
2080{
2081 const struct inet_connection_sock *icsk = inet_csk(sk);
2082 struct tcp_sock *tp = tcp_sk(sk);
2083 struct sk_buff *skb;
2084
2085 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2086 tp->snd_una == tp->high_seq ||
2087 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2088 !icsk->icsk_retransmits)) {
2089 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2090 /* Our state is too optimistic in ssthresh() call because cwnd
2091 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2092 * recovery has not yet completed. Pattern would be this: RTO,
2093 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2094 * up here twice).
2095 * RFC4138 should be more specific on what to do, even though
2096 * RTO is quite unlikely to occur after the first Cumulative ACK
2097 * due to back-off and complexity of triggering events ...
2098 */
2099 if (tp->frto_counter) {
2100 u32 stored_cwnd;
2101 stored_cwnd = tp->snd_cwnd;
2102 tp->snd_cwnd = 2;
2103 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2104 tp->snd_cwnd = stored_cwnd;
2105 } else {
2106 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2107 }
2108 /* ... in theory, cong.control module could do "any tricks" in
2109 * ssthresh(), which means that ca_state, lost bits and lost_out
2110 * counter would have to be faked before the call occurs. We
2111 * consider that too expensive, unlikely and hacky, so modules
2112 * using these in ssthresh() must deal these incompatibility
2113 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2114 */
2115 tcp_ca_event(sk, CA_EVENT_FRTO);
2116 }
2117
2118 tp->undo_marker = tp->snd_una;
2119 tp->undo_retrans = 0;
2120
2121 skb = tcp_write_queue_head(sk);
2122 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2123 tp->undo_marker = 0;
2124 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2126 tp->retrans_out -= tcp_skb_pcount(skb);
2127 }
2128 tcp_verify_left_out(tp);
2129
2130 /* Too bad if TCP was application limited */
2131 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2132
2133 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2134 * The last condition is necessary at least in tp->frto_counter case.
2135 */
2136 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2137 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2138 after(tp->high_seq, tp->snd_una)) {
2139 tp->frto_highmark = tp->high_seq;
2140 } else {
2141 tp->frto_highmark = tp->snd_nxt;
2142 }
2143 tcp_set_ca_state(sk, TCP_CA_Disorder);
2144 tp->high_seq = tp->snd_nxt;
2145 tp->frto_counter = 1;
2146}
2147
2148/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2149 * which indicates that we should follow the traditional RTO recovery,
2150 * i.e. mark everything lost and do go-back-N retransmission.
2151 */
2152static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2153{
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 struct sk_buff *skb;
2156
2157 tp->lost_out = 0;
2158 tp->retrans_out = 0;
2159 if (tcp_is_reno(tp))
2160 tcp_reset_reno_sack(tp);
2161
2162 tcp_for_write_queue(skb, sk) {
2163 if (skb == tcp_send_head(sk))
2164 break;
2165
2166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2167 /*
2168 * Count the retransmission made on RTO correctly (only when
2169 * waiting for the first ACK and did not get it)...
2170 */
2171 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2172 /* For some reason this R-bit might get cleared? */
2173 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2174 tp->retrans_out += tcp_skb_pcount(skb);
2175 /* ...enter this if branch just for the first segment */
2176 flag |= FLAG_DATA_ACKED;
2177 } else {
2178 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2179 tp->undo_marker = 0;
2180 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2181 }
2182
2183 /* Marking forward transmissions that were made after RTO lost
2184 * can cause unnecessary retransmissions in some scenarios,
2185 * SACK blocks will mitigate that in some but not in all cases.
2186 * We used to not mark them but it was causing break-ups with
2187 * receivers that do only in-order receival.
2188 *
2189 * TODO: we could detect presence of such receiver and select
2190 * different behavior per flow.
2191 */
2192 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2193 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2194 tp->lost_out += tcp_skb_pcount(skb);
2195 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2196 }
2197 }
2198 tcp_verify_left_out(tp);
2199
2200 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2201 tp->snd_cwnd_cnt = 0;
2202 tp->snd_cwnd_stamp = tcp_time_stamp;
2203 tp->frto_counter = 0;
2204 tp->bytes_acked = 0;
2205
2206 tp->reordering = min_t(unsigned int, tp->reordering,
2207 sysctl_tcp_reordering);
2208 tcp_set_ca_state(sk, TCP_CA_Loss);
2209 tp->high_seq = tp->snd_nxt;
2210 TCP_ECN_queue_cwr(tp);
2211
2212 tcp_clear_all_retrans_hints(tp);
2213}
2214
2215static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2216{
2217 tp->retrans_out = 0;
2218 tp->lost_out = 0;
2219
2220 tp->undo_marker = 0;
2221 tp->undo_retrans = 0;
2222}
2223
2224void tcp_clear_retrans(struct tcp_sock *tp)
2225{
2226 tcp_clear_retrans_partial(tp);
2227
2228 tp->fackets_out = 0;
2229 tp->sacked_out = 0;
2230}
2231
2232/* Enter Loss state. If "how" is not zero, forget all SACK information
2233 * and reset tags completely, otherwise preserve SACKs. If receiver
2234 * dropped its ofo queue, we will know this due to reneging detection.
2235 */
2236void tcp_enter_loss(struct sock *sk, int how)
2237{
2238 const struct inet_connection_sock *icsk = inet_csk(sk);
2239 struct tcp_sock *tp = tcp_sk(sk);
2240 struct sk_buff *skb;
2241
2242 /* Reduce ssthresh if it has not yet been made inside this window. */
2243 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2244 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2245 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2246 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2247 tcp_ca_event(sk, CA_EVENT_LOSS);
2248 }
2249 tp->snd_cwnd = 1;
2250 tp->snd_cwnd_cnt = 0;
2251 tp->snd_cwnd_stamp = tcp_time_stamp;
2252
2253 tp->bytes_acked = 0;
2254 tcp_clear_retrans_partial(tp);
2255
2256 if (tcp_is_reno(tp))
2257 tcp_reset_reno_sack(tp);
2258
2259 if (!how) {
2260 /* Push undo marker, if it was plain RTO and nothing
2261 * was retransmitted. */
2262 tp->undo_marker = tp->snd_una;
2263 } else {
2264 tp->sacked_out = 0;
2265 tp->fackets_out = 0;
2266 }
2267 tcp_clear_all_retrans_hints(tp);
2268
2269 tcp_for_write_queue(skb, sk) {
2270 if (skb == tcp_send_head(sk))
2271 break;
2272
2273 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2274 tp->undo_marker = 0;
2275 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2277 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2278 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2279 tp->lost_out += tcp_skb_pcount(skb);
2280 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2281 }
2282 }
2283 tcp_verify_left_out(tp);
2284
2285 tp->reordering = min_t(unsigned int, tp->reordering,
2286 sysctl_tcp_reordering);
2287 tcp_set_ca_state(sk, TCP_CA_Loss);
2288 tp->high_seq = tp->snd_nxt;
2289 TCP_ECN_queue_cwr(tp);
2290 /* Abort F-RTO algorithm if one is in progress */
2291 tp->frto_counter = 0;
2292}
2293
2294/* If ACK arrived pointing to a remembered SACK, it means that our
2295 * remembered SACKs do not reflect real state of receiver i.e.
2296 * receiver _host_ is heavily congested (or buggy).
2297 *
2298 * Do processing similar to RTO timeout.
2299 */
2300static int tcp_check_sack_reneging(struct sock *sk, int flag)
2301{
2302 if (flag & FLAG_SACK_RENEGING) {
2303 struct inet_connection_sock *icsk = inet_csk(sk);
2304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2305
2306 tcp_enter_loss(sk, 1);
2307 icsk->icsk_retransmits++;
2308 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2309 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2310 icsk->icsk_rto, TCP_RTO_MAX);
2311 return 1;
2312 }
2313 return 0;
2314}
2315
2316static inline int tcp_fackets_out(const struct tcp_sock *tp)
2317{
2318 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2319}
2320
2321/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2322 * counter when SACK is enabled (without SACK, sacked_out is used for
2323 * that purpose).
2324 *
2325 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2326 * segments up to the highest received SACK block so far and holes in
2327 * between them.
2328 *
2329 * With reordering, holes may still be in flight, so RFC3517 recovery
2330 * uses pure sacked_out (total number of SACKed segments) even though
2331 * it violates the RFC that uses duplicate ACKs, often these are equal
2332 * but when e.g. out-of-window ACKs or packet duplication occurs,
2333 * they differ. Since neither occurs due to loss, TCP should really
2334 * ignore them.
2335 */
2336static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2337{
2338 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2339}
2340
2341static inline int tcp_skb_timedout(const struct sock *sk,
2342 const struct sk_buff *skb)
2343{
2344 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2345}
2346
2347static inline int tcp_head_timedout(const struct sock *sk)
2348{
2349 const struct tcp_sock *tp = tcp_sk(sk);
2350
2351 return tp->packets_out &&
2352 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2353}
2354
2355/* Linux NewReno/SACK/FACK/ECN state machine.
2356 * --------------------------------------
2357 *
2358 * "Open" Normal state, no dubious events, fast path.
2359 * "Disorder" In all the respects it is "Open",
2360 * but requires a bit more attention. It is entered when
2361 * we see some SACKs or dupacks. It is split of "Open"
2362 * mainly to move some processing from fast path to slow one.
2363 * "CWR" CWND was reduced due to some Congestion Notification event.
2364 * It can be ECN, ICMP source quench, local device congestion.
2365 * "Recovery" CWND was reduced, we are fast-retransmitting.
2366 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2367 *
2368 * tcp_fastretrans_alert() is entered:
2369 * - each incoming ACK, if state is not "Open"
2370 * - when arrived ACK is unusual, namely:
2371 * * SACK
2372 * * Duplicate ACK.
2373 * * ECN ECE.
2374 *
2375 * Counting packets in flight is pretty simple.
2376 *
2377 * in_flight = packets_out - left_out + retrans_out
2378 *
2379 * packets_out is SND.NXT-SND.UNA counted in packets.
2380 *
2381 * retrans_out is number of retransmitted segments.
2382 *
2383 * left_out is number of segments left network, but not ACKed yet.
2384 *
2385 * left_out = sacked_out + lost_out
2386 *
2387 * sacked_out: Packets, which arrived to receiver out of order
2388 * and hence not ACKed. With SACKs this number is simply
2389 * amount of SACKed data. Even without SACKs
2390 * it is easy to give pretty reliable estimate of this number,
2391 * counting duplicate ACKs.
2392 *
2393 * lost_out: Packets lost by network. TCP has no explicit
2394 * "loss notification" feedback from network (for now).
2395 * It means that this number can be only _guessed_.
2396 * Actually, it is the heuristics to predict lossage that
2397 * distinguishes different algorithms.
2398 *
2399 * F.e. after RTO, when all the queue is considered as lost,
2400 * lost_out = packets_out and in_flight = retrans_out.
2401 *
2402 * Essentially, we have now two algorithms counting
2403 * lost packets.
2404 *
2405 * FACK: It is the simplest heuristics. As soon as we decided
2406 * that something is lost, we decide that _all_ not SACKed
2407 * packets until the most forward SACK are lost. I.e.
2408 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2409 * It is absolutely correct estimate, if network does not reorder
2410 * packets. And it loses any connection to reality when reordering
2411 * takes place. We use FACK by default until reordering
2412 * is suspected on the path to this destination.
2413 *
2414 * NewReno: when Recovery is entered, we assume that one segment
2415 * is lost (classic Reno). While we are in Recovery and
2416 * a partial ACK arrives, we assume that one more packet
2417 * is lost (NewReno). This heuristics are the same in NewReno
2418 * and SACK.
2419 *
2420 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2421 * deflation etc. CWND is real congestion window, never inflated, changes
2422 * only according to classic VJ rules.
2423 *
2424 * Really tricky (and requiring careful tuning) part of algorithm
2425 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2426 * The first determines the moment _when_ we should reduce CWND and,
2427 * hence, slow down forward transmission. In fact, it determines the moment
2428 * when we decide that hole is caused by loss, rather than by a reorder.
2429 *
2430 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2431 * holes, caused by lost packets.
2432 *
2433 * And the most logically complicated part of algorithm is undo
2434 * heuristics. We detect false retransmits due to both too early
2435 * fast retransmit (reordering) and underestimated RTO, analyzing
2436 * timestamps and D-SACKs. When we detect that some segments were
2437 * retransmitted by mistake and CWND reduction was wrong, we undo
2438 * window reduction and abort recovery phase. This logic is hidden
2439 * inside several functions named tcp_try_undo_<something>.
2440 */
2441
2442/* This function decides, when we should leave Disordered state
2443 * and enter Recovery phase, reducing congestion window.
2444 *
2445 * Main question: may we further continue forward transmission
2446 * with the same cwnd?
2447 */
2448static int tcp_time_to_recover(struct sock *sk)
2449{
2450 struct tcp_sock *tp = tcp_sk(sk);
2451 __u32 packets_out;
2452
2453 /* Do not perform any recovery during F-RTO algorithm */
2454 if (tp->frto_counter)
2455 return 0;
2456
2457 /* Trick#1: The loss is proven. */
2458 if (tp->lost_out)
2459 return 1;
2460
2461 /* Not-A-Trick#2 : Classic rule... */
2462 if (tcp_dupack_heuristics(tp) > tp->reordering)
2463 return 1;
2464
2465 /* Trick#3 : when we use RFC2988 timer restart, fast
2466 * retransmit can be triggered by timeout of queue head.
2467 */
2468 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2469 return 1;
2470
2471 /* Trick#4: It is still not OK... But will it be useful to delay
2472 * recovery more?
2473 */
2474 packets_out = tp->packets_out;
2475 if (packets_out <= tp->reordering &&
2476 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2477 !tcp_may_send_now(sk)) {
2478 /* We have nothing to send. This connection is limited
2479 * either by receiver window or by application.
2480 */
2481 return 1;
2482 }
2483
2484 /* If a thin stream is detected, retransmit after first
2485 * received dupack. Employ only if SACK is supported in order
2486 * to avoid possible corner-case series of spurious retransmissions
2487 * Use only if there are no unsent data.
2488 */
2489 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2490 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2491 tcp_is_sack(tp) && !tcp_send_head(sk))
2492 return 1;
2493
2494 return 0;
2495}
2496
2497/* New heuristics: it is possible only after we switched to restart timer
2498 * each time when something is ACKed. Hence, we can detect timed out packets
2499 * during fast retransmit without falling to slow start.
2500 *
2501 * Usefulness of this as is very questionable, since we should know which of
2502 * the segments is the next to timeout which is relatively expensive to find
2503 * in general case unless we add some data structure just for that. The
2504 * current approach certainly won't find the right one too often and when it
2505 * finally does find _something_ it usually marks large part of the window
2506 * right away (because a retransmission with a larger timestamp blocks the
2507 * loop from advancing). -ij
2508 */
2509static void tcp_timeout_skbs(struct sock *sk)
2510{
2511 struct tcp_sock *tp = tcp_sk(sk);
2512 struct sk_buff *skb;
2513
2514 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2515 return;
2516
2517 skb = tp->scoreboard_skb_hint;
2518 if (tp->scoreboard_skb_hint == NULL)
2519 skb = tcp_write_queue_head(sk);
2520
2521 tcp_for_write_queue_from(skb, sk) {
2522 if (skb == tcp_send_head(sk))
2523 break;
2524 if (!tcp_skb_timedout(sk, skb))
2525 break;
2526
2527 tcp_skb_mark_lost(tp, skb);
2528 }
2529
2530 tp->scoreboard_skb_hint = skb;
2531
2532 tcp_verify_left_out(tp);
2533}
2534
2535/* Detect loss in event "A" above by marking head of queue up as lost.
2536 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2537 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2538 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2539 * the maximum SACKed segments to pass before reaching this limit.
2540 */
2541static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2542{
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 struct sk_buff *skb;
2545 int cnt, oldcnt;
2546 int err;
2547 unsigned int mss;
2548 /* Use SACK to deduce losses of new sequences sent during recovery */
2549 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2550
2551 WARN_ON(packets > tp->packets_out);
2552 if (tp->lost_skb_hint) {
2553 skb = tp->lost_skb_hint;
2554 cnt = tp->lost_cnt_hint;
2555 /* Head already handled? */
2556 if (mark_head && skb != tcp_write_queue_head(sk))
2557 return;
2558 } else {
2559 skb = tcp_write_queue_head(sk);
2560 cnt = 0;
2561 }
2562
2563 tcp_for_write_queue_from(skb, sk) {
2564 if (skb == tcp_send_head(sk))
2565 break;
2566 /* TODO: do this better */
2567 /* this is not the most efficient way to do this... */
2568 tp->lost_skb_hint = skb;
2569 tp->lost_cnt_hint = cnt;
2570
2571 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2572 break;
2573
2574 oldcnt = cnt;
2575 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2576 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2577 cnt += tcp_skb_pcount(skb);
2578
2579 if (cnt > packets) {
2580 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2581 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2582 (oldcnt >= packets))
2583 break;
2584
2585 mss = skb_shinfo(skb)->gso_size;
2586 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2587 if (err < 0)
2588 break;
2589 cnt = packets;
2590 }
2591
2592 tcp_skb_mark_lost(tp, skb);
2593
2594 if (mark_head)
2595 break;
2596 }
2597 tcp_verify_left_out(tp);
2598}
2599
2600/* Account newly detected lost packet(s) */
2601
2602static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2603{
2604 struct tcp_sock *tp = tcp_sk(sk);
2605
2606 if (tcp_is_reno(tp)) {
2607 tcp_mark_head_lost(sk, 1, 1);
2608 } else if (tcp_is_fack(tp)) {
2609 int lost = tp->fackets_out - tp->reordering;
2610 if (lost <= 0)
2611 lost = 1;
2612 tcp_mark_head_lost(sk, lost, 0);
2613 } else {
2614 int sacked_upto = tp->sacked_out - tp->reordering;
2615 if (sacked_upto >= 0)
2616 tcp_mark_head_lost(sk, sacked_upto, 0);
2617 else if (fast_rexmit)
2618 tcp_mark_head_lost(sk, 1, 1);
2619 }
2620
2621 tcp_timeout_skbs(sk);
2622}
2623
2624/* CWND moderation, preventing bursts due to too big ACKs
2625 * in dubious situations.
2626 */
2627static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2628{
2629 tp->snd_cwnd = min(tp->snd_cwnd,
2630 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2631 tp->snd_cwnd_stamp = tcp_time_stamp;
2632}
2633
2634/* Lower bound on congestion window is slow start threshold
2635 * unless congestion avoidance choice decides to overide it.
2636 */
2637static inline u32 tcp_cwnd_min(const struct sock *sk)
2638{
2639 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2640
2641 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2642}
2643
2644/* Decrease cwnd each second ack. */
2645static void tcp_cwnd_down(struct sock *sk, int flag)
2646{
2647 struct tcp_sock *tp = tcp_sk(sk);
2648 int decr = tp->snd_cwnd_cnt + 1;
2649
2650 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2651 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2652 tp->snd_cwnd_cnt = decr & 1;
2653 decr >>= 1;
2654
2655 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2656 tp->snd_cwnd -= decr;
2657
2658 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2659 tp->snd_cwnd_stamp = tcp_time_stamp;
2660 }
2661}
2662
2663/* Nothing was retransmitted or returned timestamp is less
2664 * than timestamp of the first retransmission.
2665 */
2666static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2667{
2668 return !tp->retrans_stamp ||
2669 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2670 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2671}
2672
2673/* Undo procedures. */
2674
2675#if FASTRETRANS_DEBUG > 1
2676static void DBGUNDO(struct sock *sk, const char *msg)
2677{
2678 struct tcp_sock *tp = tcp_sk(sk);
2679 struct inet_sock *inet = inet_sk(sk);
2680
2681 if (sk->sk_family == AF_INET) {
2682 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2683 msg,
2684 &inet->inet_daddr, ntohs(inet->inet_dport),
2685 tp->snd_cwnd, tcp_left_out(tp),
2686 tp->snd_ssthresh, tp->prior_ssthresh,
2687 tp->packets_out);
2688 }
2689#if IS_ENABLED(CONFIG_IPV6)
2690 else if (sk->sk_family == AF_INET6) {
2691 struct ipv6_pinfo *np = inet6_sk(sk);
2692 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2693 msg,
2694 &np->daddr, ntohs(inet->inet_dport),
2695 tp->snd_cwnd, tcp_left_out(tp),
2696 tp->snd_ssthresh, tp->prior_ssthresh,
2697 tp->packets_out);
2698 }
2699#endif
2700}
2701#else
2702#define DBGUNDO(x...) do { } while (0)
2703#endif
2704
2705static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2706{
2707 struct tcp_sock *tp = tcp_sk(sk);
2708
2709 if (tp->prior_ssthresh) {
2710 const struct inet_connection_sock *icsk = inet_csk(sk);
2711
2712 if (icsk->icsk_ca_ops->undo_cwnd)
2713 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2714 else
2715 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2716
2717 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2718 tp->snd_ssthresh = tp->prior_ssthresh;
2719 TCP_ECN_withdraw_cwr(tp);
2720 }
2721 } else {
2722 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2723 }
2724 tp->snd_cwnd_stamp = tcp_time_stamp;
2725}
2726
2727static inline int tcp_may_undo(const struct tcp_sock *tp)
2728{
2729 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2730}
2731
2732/* People celebrate: "We love our President!" */
2733static int tcp_try_undo_recovery(struct sock *sk)
2734{
2735 struct tcp_sock *tp = tcp_sk(sk);
2736
2737 if (tcp_may_undo(tp)) {
2738 int mib_idx;
2739
2740 /* Happy end! We did not retransmit anything
2741 * or our original transmission succeeded.
2742 */
2743 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2744 tcp_undo_cwr(sk, true);
2745 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2746 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2747 else
2748 mib_idx = LINUX_MIB_TCPFULLUNDO;
2749
2750 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2751 tp->undo_marker = 0;
2752 }
2753 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2754 /* Hold old state until something *above* high_seq
2755 * is ACKed. For Reno it is MUST to prevent false
2756 * fast retransmits (RFC2582). SACK TCP is safe. */
2757 tcp_moderate_cwnd(tp);
2758 return 1;
2759 }
2760 tcp_set_ca_state(sk, TCP_CA_Open);
2761 return 0;
2762}
2763
2764/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2765static void tcp_try_undo_dsack(struct sock *sk)
2766{
2767 struct tcp_sock *tp = tcp_sk(sk);
2768
2769 if (tp->undo_marker && !tp->undo_retrans) {
2770 DBGUNDO(sk, "D-SACK");
2771 tcp_undo_cwr(sk, true);
2772 tp->undo_marker = 0;
2773 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2774 }
2775}
2776
2777/* We can clear retrans_stamp when there are no retransmissions in the
2778 * window. It would seem that it is trivially available for us in
2779 * tp->retrans_out, however, that kind of assumptions doesn't consider
2780 * what will happen if errors occur when sending retransmission for the
2781 * second time. ...It could the that such segment has only
2782 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2783 * the head skb is enough except for some reneging corner cases that
2784 * are not worth the effort.
2785 *
2786 * Main reason for all this complexity is the fact that connection dying
2787 * time now depends on the validity of the retrans_stamp, in particular,
2788 * that successive retransmissions of a segment must not advance
2789 * retrans_stamp under any conditions.
2790 */
2791static int tcp_any_retrans_done(const struct sock *sk)
2792{
2793 const struct tcp_sock *tp = tcp_sk(sk);
2794 struct sk_buff *skb;
2795
2796 if (tp->retrans_out)
2797 return 1;
2798
2799 skb = tcp_write_queue_head(sk);
2800 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2801 return 1;
2802
2803 return 0;
2804}
2805
2806/* Undo during fast recovery after partial ACK. */
2807
2808static int tcp_try_undo_partial(struct sock *sk, int acked)
2809{
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 /* Partial ACK arrived. Force Hoe's retransmit. */
2812 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2813
2814 if (tcp_may_undo(tp)) {
2815 /* Plain luck! Hole if filled with delayed
2816 * packet, rather than with a retransmit.
2817 */
2818 if (!tcp_any_retrans_done(sk))
2819 tp->retrans_stamp = 0;
2820
2821 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2822
2823 DBGUNDO(sk, "Hoe");
2824 tcp_undo_cwr(sk, false);
2825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2826
2827 /* So... Do not make Hoe's retransmit yet.
2828 * If the first packet was delayed, the rest
2829 * ones are most probably delayed as well.
2830 */
2831 failed = 0;
2832 }
2833 return failed;
2834}
2835
2836/* Undo during loss recovery after partial ACK. */
2837static int tcp_try_undo_loss(struct sock *sk)
2838{
2839 struct tcp_sock *tp = tcp_sk(sk);
2840
2841 if (tcp_may_undo(tp)) {
2842 struct sk_buff *skb;
2843 tcp_for_write_queue(skb, sk) {
2844 if (skb == tcp_send_head(sk))
2845 break;
2846 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2847 }
2848
2849 tcp_clear_all_retrans_hints(tp);
2850
2851 DBGUNDO(sk, "partial loss");
2852 tp->lost_out = 0;
2853 tcp_undo_cwr(sk, true);
2854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2855 inet_csk(sk)->icsk_retransmits = 0;
2856 tp->undo_marker = 0;
2857 if (tcp_is_sack(tp))
2858 tcp_set_ca_state(sk, TCP_CA_Open);
2859 return 1;
2860 }
2861 return 0;
2862}
2863
2864static inline void tcp_complete_cwr(struct sock *sk)
2865{
2866 struct tcp_sock *tp = tcp_sk(sk);
2867
2868 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2869 if (tp->undo_marker) {
2870 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2871 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2872 else /* PRR */
2873 tp->snd_cwnd = tp->snd_ssthresh;
2874 tp->snd_cwnd_stamp = tcp_time_stamp;
2875 }
2876 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2877}
2878
2879static void tcp_try_keep_open(struct sock *sk)
2880{
2881 struct tcp_sock *tp = tcp_sk(sk);
2882 int state = TCP_CA_Open;
2883
2884 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2885 state = TCP_CA_Disorder;
2886
2887 if (inet_csk(sk)->icsk_ca_state != state) {
2888 tcp_set_ca_state(sk, state);
2889 tp->high_seq = tp->snd_nxt;
2890 }
2891}
2892
2893static void tcp_try_to_open(struct sock *sk, int flag)
2894{
2895 struct tcp_sock *tp = tcp_sk(sk);
2896
2897 tcp_verify_left_out(tp);
2898
2899 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2900 tp->retrans_stamp = 0;
2901
2902 if (flag & FLAG_ECE)
2903 tcp_enter_cwr(sk, 1);
2904
2905 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2906 tcp_try_keep_open(sk);
2907 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2908 tcp_moderate_cwnd(tp);
2909 } else {
2910 tcp_cwnd_down(sk, flag);
2911 }
2912}
2913
2914static void tcp_mtup_probe_failed(struct sock *sk)
2915{
2916 struct inet_connection_sock *icsk = inet_csk(sk);
2917
2918 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2919 icsk->icsk_mtup.probe_size = 0;
2920}
2921
2922static void tcp_mtup_probe_success(struct sock *sk)
2923{
2924 struct tcp_sock *tp = tcp_sk(sk);
2925 struct inet_connection_sock *icsk = inet_csk(sk);
2926
2927 /* FIXME: breaks with very large cwnd */
2928 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2929 tp->snd_cwnd = tp->snd_cwnd *
2930 tcp_mss_to_mtu(sk, tp->mss_cache) /
2931 icsk->icsk_mtup.probe_size;
2932 tp->snd_cwnd_cnt = 0;
2933 tp->snd_cwnd_stamp = tcp_time_stamp;
2934 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935
2936 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2937 icsk->icsk_mtup.probe_size = 0;
2938 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2939}
2940
2941/* Do a simple retransmit without using the backoff mechanisms in
2942 * tcp_timer. This is used for path mtu discovery.
2943 * The socket is already locked here.
2944 */
2945void tcp_simple_retransmit(struct sock *sk)
2946{
2947 const struct inet_connection_sock *icsk = inet_csk(sk);
2948 struct tcp_sock *tp = tcp_sk(sk);
2949 struct sk_buff *skb;
2950 unsigned int mss = tcp_current_mss(sk);
2951 u32 prior_lost = tp->lost_out;
2952
2953 tcp_for_write_queue(skb, sk) {
2954 if (skb == tcp_send_head(sk))
2955 break;
2956 if (tcp_skb_seglen(skb) > mss &&
2957 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2958 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2959 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2960 tp->retrans_out -= tcp_skb_pcount(skb);
2961 }
2962 tcp_skb_mark_lost_uncond_verify(tp, skb);
2963 }
2964 }
2965
2966 tcp_clear_retrans_hints_partial(tp);
2967
2968 if (prior_lost == tp->lost_out)
2969 return;
2970
2971 if (tcp_is_reno(tp))
2972 tcp_limit_reno_sacked(tp);
2973
2974 tcp_verify_left_out(tp);
2975
2976 /* Don't muck with the congestion window here.
2977 * Reason is that we do not increase amount of _data_
2978 * in network, but units changed and effective
2979 * cwnd/ssthresh really reduced now.
2980 */
2981 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2982 tp->high_seq = tp->snd_nxt;
2983 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2984 tp->prior_ssthresh = 0;
2985 tp->undo_marker = 0;
2986 tcp_set_ca_state(sk, TCP_CA_Loss);
2987 }
2988 tcp_xmit_retransmit_queue(sk);
2989}
2990EXPORT_SYMBOL(tcp_simple_retransmit);
2991
2992/* This function implements the PRR algorithm, specifcally the PRR-SSRB
2993 * (proportional rate reduction with slow start reduction bound) as described in
2994 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2995 * It computes the number of packets to send (sndcnt) based on packets newly
2996 * delivered:
2997 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2998 * cwnd reductions across a full RTT.
2999 * 2) If packets in flight is lower than ssthresh (such as due to excess
3000 * losses and/or application stalls), do not perform any further cwnd
3001 * reductions, but instead slow start up to ssthresh.
3002 */
3003static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3004 int fast_rexmit, int flag)
3005{
3006 struct tcp_sock *tp = tcp_sk(sk);
3007 int sndcnt = 0;
3008 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3009
3010 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3011 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3012 tp->prior_cwnd - 1;
3013 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3014 } else {
3015 sndcnt = min_t(int, delta,
3016 max_t(int, tp->prr_delivered - tp->prr_out,
3017 newly_acked_sacked) + 1);
3018 }
3019
3020 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3021 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3022}
3023
3024/* Process an event, which can update packets-in-flight not trivially.
3025 * Main goal of this function is to calculate new estimate for left_out,
3026 * taking into account both packets sitting in receiver's buffer and
3027 * packets lost by network.
3028 *
3029 * Besides that it does CWND reduction, when packet loss is detected
3030 * and changes state of machine.
3031 *
3032 * It does _not_ decide what to send, it is made in function
3033 * tcp_xmit_retransmit_queue().
3034 */
3035static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3036 int newly_acked_sacked, bool is_dupack,
3037 int flag)
3038{
3039 struct inet_connection_sock *icsk = inet_csk(sk);
3040 struct tcp_sock *tp = tcp_sk(sk);
3041 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3042 (tcp_fackets_out(tp) > tp->reordering));
3043 int fast_rexmit = 0, mib_idx;
3044
3045 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3046 tp->sacked_out = 0;
3047 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3048 tp->fackets_out = 0;
3049
3050 /* Now state machine starts.
3051 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052 if (flag & FLAG_ECE)
3053 tp->prior_ssthresh = 0;
3054
3055 /* B. In all the states check for reneging SACKs. */
3056 if (tcp_check_sack_reneging(sk, flag))
3057 return;
3058
3059 /* C. Check consistency of the current state. */
3060 tcp_verify_left_out(tp);
3061
3062 /* D. Check state exit conditions. State can be terminated
3063 * when high_seq is ACKed. */
3064 if (icsk->icsk_ca_state == TCP_CA_Open) {
3065 WARN_ON(tp->retrans_out != 0);
3066 tp->retrans_stamp = 0;
3067 } else if (!before(tp->snd_una, tp->high_seq)) {
3068 switch (icsk->icsk_ca_state) {
3069 case TCP_CA_Loss:
3070 icsk->icsk_retransmits = 0;
3071 if (tcp_try_undo_recovery(sk))
3072 return;
3073 break;
3074
3075 case TCP_CA_CWR:
3076 /* CWR is to be held something *above* high_seq
3077 * is ACKed for CWR bit to reach receiver. */
3078 if (tp->snd_una != tp->high_seq) {
3079 tcp_complete_cwr(sk);
3080 tcp_set_ca_state(sk, TCP_CA_Open);
3081 }
3082 break;
3083
3084 case TCP_CA_Recovery:
3085 if (tcp_is_reno(tp))
3086 tcp_reset_reno_sack(tp);
3087 if (tcp_try_undo_recovery(sk))
3088 return;
3089 tcp_complete_cwr(sk);
3090 break;
3091 }
3092 }
3093
3094 /* E. Process state. */
3095 switch (icsk->icsk_ca_state) {
3096 case TCP_CA_Recovery:
3097 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3098 if (tcp_is_reno(tp) && is_dupack)
3099 tcp_add_reno_sack(sk);
3100 } else
3101 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3102 break;
3103 case TCP_CA_Loss:
3104 if (flag & FLAG_DATA_ACKED)
3105 icsk->icsk_retransmits = 0;
3106 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3107 tcp_reset_reno_sack(tp);
3108 if (!tcp_try_undo_loss(sk)) {
3109 tcp_moderate_cwnd(tp);
3110 tcp_xmit_retransmit_queue(sk);
3111 return;
3112 }
3113 if (icsk->icsk_ca_state != TCP_CA_Open)
3114 return;
3115 /* Loss is undone; fall through to processing in Open state. */
3116 default:
3117 if (tcp_is_reno(tp)) {
3118 if (flag & FLAG_SND_UNA_ADVANCED)
3119 tcp_reset_reno_sack(tp);
3120 if (is_dupack)
3121 tcp_add_reno_sack(sk);
3122 }
3123
3124 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3125 tcp_try_undo_dsack(sk);
3126
3127 if (!tcp_time_to_recover(sk)) {
3128 tcp_try_to_open(sk, flag);
3129 return;
3130 }
3131
3132 /* MTU probe failure: don't reduce cwnd */
3133 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3134 icsk->icsk_mtup.probe_size &&
3135 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3136 tcp_mtup_probe_failed(sk);
3137 /* Restores the reduction we did in tcp_mtup_probe() */
3138 tp->snd_cwnd++;
3139 tcp_simple_retransmit(sk);
3140 return;
3141 }
3142
3143 /* Otherwise enter Recovery state */
3144
3145 if (tcp_is_reno(tp))
3146 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3147 else
3148 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3149
3150 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3151
3152 tp->high_seq = tp->snd_nxt;
3153 tp->prior_ssthresh = 0;
3154 tp->undo_marker = tp->snd_una;
3155 tp->undo_retrans = tp->retrans_out;
3156
3157 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3158 if (!(flag & FLAG_ECE))
3159 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3160 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3161 TCP_ECN_queue_cwr(tp);
3162 }
3163
3164 tp->bytes_acked = 0;
3165 tp->snd_cwnd_cnt = 0;
3166 tp->prior_cwnd = tp->snd_cwnd;
3167 tp->prr_delivered = 0;
3168 tp->prr_out = 0;
3169 tcp_set_ca_state(sk, TCP_CA_Recovery);
3170 fast_rexmit = 1;
3171 }
3172
3173 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3174 tcp_update_scoreboard(sk, fast_rexmit);
3175 tp->prr_delivered += newly_acked_sacked;
3176 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3177 tcp_xmit_retransmit_queue(sk);
3178}
3179
3180void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3181{
3182 tcp_rtt_estimator(sk, seq_rtt);
3183 tcp_set_rto(sk);
3184 inet_csk(sk)->icsk_backoff = 0;
3185}
3186EXPORT_SYMBOL(tcp_valid_rtt_meas);
3187
3188/* Read draft-ietf-tcplw-high-performance before mucking
3189 * with this code. (Supersedes RFC1323)
3190 */
3191static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3192{
3193 /* RTTM Rule: A TSecr value received in a segment is used to
3194 * update the averaged RTT measurement only if the segment
3195 * acknowledges some new data, i.e., only if it advances the
3196 * left edge of the send window.
3197 *
3198 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3199 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3200 *
3201 * Changed: reset backoff as soon as we see the first valid sample.
3202 * If we do not, we get strongly overestimated rto. With timestamps
3203 * samples are accepted even from very old segments: f.e., when rtt=1
3204 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3205 * answer arrives rto becomes 120 seconds! If at least one of segments
3206 * in window is lost... Voila. --ANK (010210)
3207 */
3208 struct tcp_sock *tp = tcp_sk(sk);
3209
3210 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3211}
3212
3213static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3214{
3215 /* We don't have a timestamp. Can only use
3216 * packets that are not retransmitted to determine
3217 * rtt estimates. Also, we must not reset the
3218 * backoff for rto until we get a non-retransmitted
3219 * packet. This allows us to deal with a situation
3220 * where the network delay has increased suddenly.
3221 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3222 */
3223
3224 if (flag & FLAG_RETRANS_DATA_ACKED)
3225 return;
3226
3227 tcp_valid_rtt_meas(sk, seq_rtt);
3228}
3229
3230static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3231 const s32 seq_rtt)
3232{
3233 const struct tcp_sock *tp = tcp_sk(sk);
3234 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3235 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3236 tcp_ack_saw_tstamp(sk, flag);
3237 else if (seq_rtt >= 0)
3238 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3239}
3240
3241static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3242{
3243 const struct inet_connection_sock *icsk = inet_csk(sk);
3244 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3245 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3246}
3247
3248/* Restart timer after forward progress on connection.
3249 * RFC2988 recommends to restart timer to now+rto.
3250 */
3251static void tcp_rearm_rto(struct sock *sk)
3252{
3253 const struct tcp_sock *tp = tcp_sk(sk);
3254
3255 if (!tp->packets_out) {
3256 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3257 } else {
3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3259 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3260 }
3261}
3262
3263/* If we get here, the whole TSO packet has not been acked. */
3264static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3265{
3266 struct tcp_sock *tp = tcp_sk(sk);
3267 u32 packets_acked;
3268
3269 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3270
3271 packets_acked = tcp_skb_pcount(skb);
3272 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3273 return 0;
3274 packets_acked -= tcp_skb_pcount(skb);
3275
3276 if (packets_acked) {
3277 BUG_ON(tcp_skb_pcount(skb) == 0);
3278 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3279 }
3280
3281 return packets_acked;
3282}
3283
3284/* Remove acknowledged frames from the retransmission queue. If our packet
3285 * is before the ack sequence we can discard it as it's confirmed to have
3286 * arrived at the other end.
3287 */
3288static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3289 u32 prior_snd_una)
3290{
3291 struct tcp_sock *tp = tcp_sk(sk);
3292 const struct inet_connection_sock *icsk = inet_csk(sk);
3293 struct sk_buff *skb;
3294 u32 now = tcp_time_stamp;
3295 int fully_acked = 1;
3296 int flag = 0;
3297 u32 pkts_acked = 0;
3298 u32 reord = tp->packets_out;
3299 u32 prior_sacked = tp->sacked_out;
3300 s32 seq_rtt = -1;
3301 s32 ca_seq_rtt = -1;
3302 ktime_t last_ackt = net_invalid_timestamp();
3303
3304 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3305 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3306 u32 acked_pcount;
3307 u8 sacked = scb->sacked;
3308
3309 /* Determine how many packets and what bytes were acked, tso and else */
3310 if (after(scb->end_seq, tp->snd_una)) {
3311 if (tcp_skb_pcount(skb) == 1 ||
3312 !after(tp->snd_una, scb->seq))
3313 break;
3314
3315 acked_pcount = tcp_tso_acked(sk, skb);
3316 if (!acked_pcount)
3317 break;
3318
3319 fully_acked = 0;
3320 } else {
3321 acked_pcount = tcp_skb_pcount(skb);
3322 }
3323
3324 if (sacked & TCPCB_RETRANS) {
3325 if (sacked & TCPCB_SACKED_RETRANS)
3326 tp->retrans_out -= acked_pcount;
3327 flag |= FLAG_RETRANS_DATA_ACKED;
3328 ca_seq_rtt = -1;
3329 seq_rtt = -1;
3330 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3331 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3332 } else {
3333 ca_seq_rtt = now - scb->when;
3334 last_ackt = skb->tstamp;
3335 if (seq_rtt < 0) {
3336 seq_rtt = ca_seq_rtt;
3337 }
3338 if (!(sacked & TCPCB_SACKED_ACKED))
3339 reord = min(pkts_acked, reord);
3340 }
3341
3342 if (sacked & TCPCB_SACKED_ACKED)
3343 tp->sacked_out -= acked_pcount;
3344 if (sacked & TCPCB_LOST)
3345 tp->lost_out -= acked_pcount;
3346
3347 tp->packets_out -= acked_pcount;
3348 pkts_acked += acked_pcount;
3349
3350 /* Initial outgoing SYN's get put onto the write_queue
3351 * just like anything else we transmit. It is not
3352 * true data, and if we misinform our callers that
3353 * this ACK acks real data, we will erroneously exit
3354 * connection startup slow start one packet too
3355 * quickly. This is severely frowned upon behavior.
3356 */
3357 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3358 flag |= FLAG_DATA_ACKED;
3359 } else {
3360 flag |= FLAG_SYN_ACKED;
3361 tp->retrans_stamp = 0;
3362 }
3363
3364 if (!fully_acked)
3365 break;
3366
3367 tcp_unlink_write_queue(skb, sk);
3368 sk_wmem_free_skb(sk, skb);
3369 tp->scoreboard_skb_hint = NULL;
3370 if (skb == tp->retransmit_skb_hint)
3371 tp->retransmit_skb_hint = NULL;
3372 if (skb == tp->lost_skb_hint)
3373 tp->lost_skb_hint = NULL;
3374 }
3375
3376 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3377 tp->snd_up = tp->snd_una;
3378
3379 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3380 flag |= FLAG_SACK_RENEGING;
3381
3382 if (flag & FLAG_ACKED) {
3383 const struct tcp_congestion_ops *ca_ops
3384 = inet_csk(sk)->icsk_ca_ops;
3385
3386 if (unlikely(icsk->icsk_mtup.probe_size &&
3387 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3388 tcp_mtup_probe_success(sk);
3389 }
3390
3391 tcp_ack_update_rtt(sk, flag, seq_rtt);
3392 tcp_rearm_rto(sk);
3393
3394 if (tcp_is_reno(tp)) {
3395 tcp_remove_reno_sacks(sk, pkts_acked);
3396 } else {
3397 int delta;
3398
3399 /* Non-retransmitted hole got filled? That's reordering */
3400 if (reord < prior_fackets)
3401 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3402
3403 delta = tcp_is_fack(tp) ? pkts_acked :
3404 prior_sacked - tp->sacked_out;
3405 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3406 }
3407
3408 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3409
3410 if (ca_ops->pkts_acked) {
3411 s32 rtt_us = -1;
3412
3413 /* Is the ACK triggering packet unambiguous? */
3414 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3415 /* High resolution needed and available? */
3416 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3417 !ktime_equal(last_ackt,
3418 net_invalid_timestamp()))
3419 rtt_us = ktime_us_delta(ktime_get_real(),
3420 last_ackt);
3421 else if (ca_seq_rtt >= 0)
3422 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3423 }
3424
3425 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3426 }
3427 }
3428
3429#if FASTRETRANS_DEBUG > 0
3430 WARN_ON((int)tp->sacked_out < 0);
3431 WARN_ON((int)tp->lost_out < 0);
3432 WARN_ON((int)tp->retrans_out < 0);
3433 if (!tp->packets_out && tcp_is_sack(tp)) {
3434 icsk = inet_csk(sk);
3435 if (tp->lost_out) {
3436 printk(KERN_DEBUG "Leak l=%u %d\n",
3437 tp->lost_out, icsk->icsk_ca_state);
3438 tp->lost_out = 0;
3439 }
3440 if (tp->sacked_out) {
3441 printk(KERN_DEBUG "Leak s=%u %d\n",
3442 tp->sacked_out, icsk->icsk_ca_state);
3443 tp->sacked_out = 0;
3444 }
3445 if (tp->retrans_out) {
3446 printk(KERN_DEBUG "Leak r=%u %d\n",
3447 tp->retrans_out, icsk->icsk_ca_state);
3448 tp->retrans_out = 0;
3449 }
3450 }
3451#endif
3452 return flag;
3453}
3454
3455static void tcp_ack_probe(struct sock *sk)
3456{
3457 const struct tcp_sock *tp = tcp_sk(sk);
3458 struct inet_connection_sock *icsk = inet_csk(sk);
3459
3460 /* Was it a usable window open? */
3461
3462 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3463 icsk->icsk_backoff = 0;
3464 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3465 /* Socket must be waked up by subsequent tcp_data_snd_check().
3466 * This function is not for random using!
3467 */
3468 } else {
3469 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3470 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3471 TCP_RTO_MAX);
3472 }
3473}
3474
3475static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3476{
3477 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3478 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3479}
3480
3481static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3482{
3483 const struct tcp_sock *tp = tcp_sk(sk);
3484 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3485 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3486}
3487
3488/* Check that window update is acceptable.
3489 * The function assumes that snd_una<=ack<=snd_next.
3490 */
3491static inline int tcp_may_update_window(const struct tcp_sock *tp,
3492 const u32 ack, const u32 ack_seq,
3493 const u32 nwin)
3494{
3495 return after(ack, tp->snd_una) ||
3496 after(ack_seq, tp->snd_wl1) ||
3497 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3498}
3499
3500/* Update our send window.
3501 *
3502 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3503 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3504 */
3505static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3506 u32 ack_seq)
3507{
3508 struct tcp_sock *tp = tcp_sk(sk);
3509 int flag = 0;
3510 u32 nwin = ntohs(tcp_hdr(skb)->window);
3511
3512 if (likely(!tcp_hdr(skb)->syn))
3513 nwin <<= tp->rx_opt.snd_wscale;
3514
3515 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3516 flag |= FLAG_WIN_UPDATE;
3517 tcp_update_wl(tp, ack_seq);
3518
3519 if (tp->snd_wnd != nwin) {
3520 tp->snd_wnd = nwin;
3521
3522 /* Note, it is the only place, where
3523 * fast path is recovered for sending TCP.
3524 */
3525 tp->pred_flags = 0;
3526 tcp_fast_path_check(sk);
3527
3528 if (nwin > tp->max_window) {
3529 tp->max_window = nwin;
3530 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3531 }
3532 }
3533 }
3534
3535 tp->snd_una = ack;
3536
3537 return flag;
3538}
3539
3540/* A very conservative spurious RTO response algorithm: reduce cwnd and
3541 * continue in congestion avoidance.
3542 */
3543static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3544{
3545 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3546 tp->snd_cwnd_cnt = 0;
3547 tp->bytes_acked = 0;
3548 TCP_ECN_queue_cwr(tp);
3549 tcp_moderate_cwnd(tp);
3550}
3551
3552/* A conservative spurious RTO response algorithm: reduce cwnd using
3553 * rate halving and continue in congestion avoidance.
3554 */
3555static void tcp_ratehalving_spur_to_response(struct sock *sk)
3556{
3557 tcp_enter_cwr(sk, 0);
3558}
3559
3560static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3561{
3562 if (flag & FLAG_ECE)
3563 tcp_ratehalving_spur_to_response(sk);
3564 else
3565 tcp_undo_cwr(sk, true);
3566}
3567
3568/* F-RTO spurious RTO detection algorithm (RFC4138)
3569 *
3570 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3571 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3572 * window (but not to or beyond highest sequence sent before RTO):
3573 * On First ACK, send two new segments out.
3574 * On Second ACK, RTO was likely spurious. Do spurious response (response
3575 * algorithm is not part of the F-RTO detection algorithm
3576 * given in RFC4138 but can be selected separately).
3577 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3578 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3579 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3580 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3581 *
3582 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3583 * original window even after we transmit two new data segments.
3584 *
3585 * SACK version:
3586 * on first step, wait until first cumulative ACK arrives, then move to
3587 * the second step. In second step, the next ACK decides.
3588 *
3589 * F-RTO is implemented (mainly) in four functions:
3590 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3591 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3592 * called when tcp_use_frto() showed green light
3593 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3594 * - tcp_enter_frto_loss() is called if there is not enough evidence
3595 * to prove that the RTO is indeed spurious. It transfers the control
3596 * from F-RTO to the conventional RTO recovery
3597 */
3598static int tcp_process_frto(struct sock *sk, int flag)
3599{
3600 struct tcp_sock *tp = tcp_sk(sk);
3601
3602 tcp_verify_left_out(tp);
3603
3604 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3605 if (flag & FLAG_DATA_ACKED)
3606 inet_csk(sk)->icsk_retransmits = 0;
3607
3608 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3609 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3610 tp->undo_marker = 0;
3611
3612 if (!before(tp->snd_una, tp->frto_highmark)) {
3613 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3614 return 1;
3615 }
3616
3617 if (!tcp_is_sackfrto(tp)) {
3618 /* RFC4138 shortcoming in step 2; should also have case c):
3619 * ACK isn't duplicate nor advances window, e.g., opposite dir
3620 * data, winupdate
3621 */
3622 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3623 return 1;
3624
3625 if (!(flag & FLAG_DATA_ACKED)) {
3626 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3627 flag);
3628 return 1;
3629 }
3630 } else {
3631 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3632 /* Prevent sending of new data. */
3633 tp->snd_cwnd = min(tp->snd_cwnd,
3634 tcp_packets_in_flight(tp));
3635 return 1;
3636 }
3637
3638 if ((tp->frto_counter >= 2) &&
3639 (!(flag & FLAG_FORWARD_PROGRESS) ||
3640 ((flag & FLAG_DATA_SACKED) &&
3641 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3642 /* RFC4138 shortcoming (see comment above) */
3643 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3644 (flag & FLAG_NOT_DUP))
3645 return 1;
3646
3647 tcp_enter_frto_loss(sk, 3, flag);
3648 return 1;
3649 }
3650 }
3651
3652 if (tp->frto_counter == 1) {
3653 /* tcp_may_send_now needs to see updated state */
3654 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3655 tp->frto_counter = 2;
3656
3657 if (!tcp_may_send_now(sk))
3658 tcp_enter_frto_loss(sk, 2, flag);
3659
3660 return 1;
3661 } else {
3662 switch (sysctl_tcp_frto_response) {
3663 case 2:
3664 tcp_undo_spur_to_response(sk, flag);
3665 break;
3666 case 1:
3667 tcp_conservative_spur_to_response(tp);
3668 break;
3669 default:
3670 tcp_ratehalving_spur_to_response(sk);
3671 break;
3672 }
3673 tp->frto_counter = 0;
3674 tp->undo_marker = 0;
3675 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3676 }
3677 return 0;
3678}
3679
3680/* This routine deals with incoming acks, but not outgoing ones. */
3681static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3682{
3683 struct inet_connection_sock *icsk = inet_csk(sk);
3684 struct tcp_sock *tp = tcp_sk(sk);
3685 u32 prior_snd_una = tp->snd_una;
3686 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3687 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3688 bool is_dupack = false;
3689 u32 prior_in_flight;
3690 u32 prior_fackets;
3691 int prior_packets;
3692 int prior_sacked = tp->sacked_out;
3693 int pkts_acked = 0;
3694 int newly_acked_sacked = 0;
3695 int frto_cwnd = 0;
3696
3697 /* If the ack is older than previous acks
3698 * then we can probably ignore it.
3699 */
3700 if (before(ack, prior_snd_una))
3701 goto old_ack;
3702
3703 /* If the ack includes data we haven't sent yet, discard
3704 * this segment (RFC793 Section 3.9).
3705 */
3706 if (after(ack, tp->snd_nxt))
3707 goto invalid_ack;
3708
3709 if (after(ack, prior_snd_una))
3710 flag |= FLAG_SND_UNA_ADVANCED;
3711
3712 if (sysctl_tcp_abc) {
3713 if (icsk->icsk_ca_state < TCP_CA_CWR)
3714 tp->bytes_acked += ack - prior_snd_una;
3715 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3716 /* we assume just one segment left network */
3717 tp->bytes_acked += min(ack - prior_snd_una,
3718 tp->mss_cache);
3719 }
3720
3721 prior_fackets = tp->fackets_out;
3722 prior_in_flight = tcp_packets_in_flight(tp);
3723
3724 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3725 /* Window is constant, pure forward advance.
3726 * No more checks are required.
3727 * Note, we use the fact that SND.UNA>=SND.WL2.
3728 */
3729 tcp_update_wl(tp, ack_seq);
3730 tp->snd_una = ack;
3731 flag |= FLAG_WIN_UPDATE;
3732
3733 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3734
3735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3736 } else {
3737 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3738 flag |= FLAG_DATA;
3739 else
3740 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3741
3742 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3743
3744 if (TCP_SKB_CB(skb)->sacked)
3745 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3746
3747 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3748 flag |= FLAG_ECE;
3749
3750 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3751 }
3752
3753 /* We passed data and got it acked, remove any soft error
3754 * log. Something worked...
3755 */
3756 sk->sk_err_soft = 0;
3757 icsk->icsk_probes_out = 0;
3758 tp->rcv_tstamp = tcp_time_stamp;
3759 prior_packets = tp->packets_out;
3760 if (!prior_packets)
3761 goto no_queue;
3762
3763 /* See if we can take anything off of the retransmit queue. */
3764 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3765
3766 pkts_acked = prior_packets - tp->packets_out;
3767 newly_acked_sacked = (prior_packets - prior_sacked) -
3768 (tp->packets_out - tp->sacked_out);
3769
3770 if (tp->frto_counter)
3771 frto_cwnd = tcp_process_frto(sk, flag);
3772 /* Guarantee sacktag reordering detection against wrap-arounds */
3773 if (before(tp->frto_highmark, tp->snd_una))
3774 tp->frto_highmark = 0;
3775
3776 if (tcp_ack_is_dubious(sk, flag)) {
3777 /* Advance CWND, if state allows this. */
3778 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3779 tcp_may_raise_cwnd(sk, flag))
3780 tcp_cong_avoid(sk, ack, prior_in_flight);
3781 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3782 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3783 is_dupack, flag);
3784 } else {
3785 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3786 tcp_cong_avoid(sk, ack, prior_in_flight);
3787 }
3788
3789 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3790 dst_confirm(__sk_dst_get(sk));
3791
3792 return 1;
3793
3794no_queue:
3795 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3796 if (flag & FLAG_DSACKING_ACK)
3797 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3798 is_dupack, flag);
3799 /* If this ack opens up a zero window, clear backoff. It was
3800 * being used to time the probes, and is probably far higher than
3801 * it needs to be for normal retransmission.
3802 */
3803 if (tcp_send_head(sk))
3804 tcp_ack_probe(sk);
3805 return 1;
3806
3807invalid_ack:
3808 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3809 return -1;
3810
3811old_ack:
3812 /* If data was SACKed, tag it and see if we should send more data.
3813 * If data was DSACKed, see if we can undo a cwnd reduction.
3814 */
3815 if (TCP_SKB_CB(skb)->sacked) {
3816 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3817 newly_acked_sacked = tp->sacked_out - prior_sacked;
3818 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3819 is_dupack, flag);
3820 }
3821
3822 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3823 return 0;
3824}
3825
3826/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3827 * But, this can also be called on packets in the established flow when
3828 * the fast version below fails.
3829 */
3830void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3831 const u8 **hvpp, int estab)
3832{
3833 const unsigned char *ptr;
3834 const struct tcphdr *th = tcp_hdr(skb);
3835 int length = (th->doff * 4) - sizeof(struct tcphdr);
3836
3837 ptr = (const unsigned char *)(th + 1);
3838 opt_rx->saw_tstamp = 0;
3839
3840 while (length > 0) {
3841 int opcode = *ptr++;
3842 int opsize;
3843
3844 switch (opcode) {
3845 case TCPOPT_EOL:
3846 return;
3847 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3848 length--;
3849 continue;
3850 default:
3851 opsize = *ptr++;
3852 if (opsize < 2) /* "silly options" */
3853 return;
3854 if (opsize > length)
3855 return; /* don't parse partial options */
3856 switch (opcode) {
3857 case TCPOPT_MSS:
3858 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3859 u16 in_mss = get_unaligned_be16(ptr);
3860 if (in_mss) {
3861 if (opt_rx->user_mss &&
3862 opt_rx->user_mss < in_mss)
3863 in_mss = opt_rx->user_mss;
3864 opt_rx->mss_clamp = in_mss;
3865 }
3866 }
3867 break;
3868 case TCPOPT_WINDOW:
3869 if (opsize == TCPOLEN_WINDOW && th->syn &&
3870 !estab && sysctl_tcp_window_scaling) {
3871 __u8 snd_wscale = *(__u8 *)ptr;
3872 opt_rx->wscale_ok = 1;
3873 if (snd_wscale > 14) {
3874 if (net_ratelimit())
3875 pr_info("%s: Illegal window scaling value %d >14 received\n",
3876 __func__,
3877 snd_wscale);
3878 snd_wscale = 14;
3879 }
3880 opt_rx->snd_wscale = snd_wscale;
3881 }
3882 break;
3883 case TCPOPT_TIMESTAMP:
3884 if ((opsize == TCPOLEN_TIMESTAMP) &&
3885 ((estab && opt_rx->tstamp_ok) ||
3886 (!estab && sysctl_tcp_timestamps))) {
3887 opt_rx->saw_tstamp = 1;
3888 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3889 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3890 }
3891 break;
3892 case TCPOPT_SACK_PERM:
3893 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3894 !estab && sysctl_tcp_sack) {
3895 opt_rx->sack_ok = TCP_SACK_SEEN;
3896 tcp_sack_reset(opt_rx);
3897 }
3898 break;
3899
3900 case TCPOPT_SACK:
3901 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3902 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3903 opt_rx->sack_ok) {
3904 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3905 }
3906 break;
3907#ifdef CONFIG_TCP_MD5SIG
3908 case TCPOPT_MD5SIG:
3909 /*
3910 * The MD5 Hash has already been
3911 * checked (see tcp_v{4,6}_do_rcv()).
3912 */
3913 break;
3914#endif
3915 case TCPOPT_COOKIE:
3916 /* This option is variable length.
3917 */
3918 switch (opsize) {
3919 case TCPOLEN_COOKIE_BASE:
3920 /* not yet implemented */
3921 break;
3922 case TCPOLEN_COOKIE_PAIR:
3923 /* not yet implemented */
3924 break;
3925 case TCPOLEN_COOKIE_MIN+0:
3926 case TCPOLEN_COOKIE_MIN+2:
3927 case TCPOLEN_COOKIE_MIN+4:
3928 case TCPOLEN_COOKIE_MIN+6:
3929 case TCPOLEN_COOKIE_MAX:
3930 /* 16-bit multiple */
3931 opt_rx->cookie_plus = opsize;
3932 *hvpp = ptr;
3933 break;
3934 default:
3935 /* ignore option */
3936 break;
3937 }
3938 break;
3939 }
3940
3941 ptr += opsize-2;
3942 length -= opsize;
3943 }
3944 }
3945}
3946EXPORT_SYMBOL(tcp_parse_options);
3947
3948static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3949{
3950 const __be32 *ptr = (const __be32 *)(th + 1);
3951
3952 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3953 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3954 tp->rx_opt.saw_tstamp = 1;
3955 ++ptr;
3956 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3957 ++ptr;
3958 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3959 return 1;
3960 }
3961 return 0;
3962}
3963
3964/* Fast parse options. This hopes to only see timestamps.
3965 * If it is wrong it falls back on tcp_parse_options().
3966 */
3967static int tcp_fast_parse_options(const struct sk_buff *skb,
3968 const struct tcphdr *th,
3969 struct tcp_sock *tp, const u8 **hvpp)
3970{
3971 /* In the spirit of fast parsing, compare doff directly to constant
3972 * values. Because equality is used, short doff can be ignored here.
3973 */
3974 if (th->doff == (sizeof(*th) / 4)) {
3975 tp->rx_opt.saw_tstamp = 0;
3976 return 0;
3977 } else if (tp->rx_opt.tstamp_ok &&
3978 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3979 if (tcp_parse_aligned_timestamp(tp, th))
3980 return 1;
3981 }
3982 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3983 return 1;
3984}
3985
3986#ifdef CONFIG_TCP_MD5SIG
3987/*
3988 * Parse MD5 Signature option
3989 */
3990const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3991{
3992 int length = (th->doff << 2) - sizeof(*th);
3993 const u8 *ptr = (const u8 *)(th + 1);
3994
3995 /* If the TCP option is too short, we can short cut */
3996 if (length < TCPOLEN_MD5SIG)
3997 return NULL;
3998
3999 while (length > 0) {
4000 int opcode = *ptr++;
4001 int opsize;
4002
4003 switch(opcode) {
4004 case TCPOPT_EOL:
4005 return NULL;
4006 case TCPOPT_NOP:
4007 length--;
4008 continue;
4009 default:
4010 opsize = *ptr++;
4011 if (opsize < 2 || opsize > length)
4012 return NULL;
4013 if (opcode == TCPOPT_MD5SIG)
4014 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4015 }
4016 ptr += opsize - 2;
4017 length -= opsize;
4018 }
4019 return NULL;
4020}
4021EXPORT_SYMBOL(tcp_parse_md5sig_option);
4022#endif
4023
4024static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4025{
4026 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4027 tp->rx_opt.ts_recent_stamp = get_seconds();
4028}
4029
4030static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4031{
4032 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4033 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4034 * extra check below makes sure this can only happen
4035 * for pure ACK frames. -DaveM
4036 *
4037 * Not only, also it occurs for expired timestamps.
4038 */
4039
4040 if (tcp_paws_check(&tp->rx_opt, 0))
4041 tcp_store_ts_recent(tp);
4042 }
4043}
4044
4045/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4046 *
4047 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4048 * it can pass through stack. So, the following predicate verifies that
4049 * this segment is not used for anything but congestion avoidance or
4050 * fast retransmit. Moreover, we even are able to eliminate most of such
4051 * second order effects, if we apply some small "replay" window (~RTO)
4052 * to timestamp space.
4053 *
4054 * All these measures still do not guarantee that we reject wrapped ACKs
4055 * on networks with high bandwidth, when sequence space is recycled fastly,
4056 * but it guarantees that such events will be very rare and do not affect
4057 * connection seriously. This doesn't look nice, but alas, PAWS is really
4058 * buggy extension.
4059 *
4060 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4061 * states that events when retransmit arrives after original data are rare.
4062 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4063 * the biggest problem on large power networks even with minor reordering.
4064 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4065 * up to bandwidth of 18Gigabit/sec. 8) ]
4066 */
4067
4068static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4069{
4070 const struct tcp_sock *tp = tcp_sk(sk);
4071 const struct tcphdr *th = tcp_hdr(skb);
4072 u32 seq = TCP_SKB_CB(skb)->seq;
4073 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4074
4075 return (/* 1. Pure ACK with correct sequence number. */
4076 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4077
4078 /* 2. ... and duplicate ACK. */
4079 ack == tp->snd_una &&
4080
4081 /* 3. ... and does not update window. */
4082 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4083
4084 /* 4. ... and sits in replay window. */
4085 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4086}
4087
4088static inline int tcp_paws_discard(const struct sock *sk,
4089 const struct sk_buff *skb)
4090{
4091 const struct tcp_sock *tp = tcp_sk(sk);
4092
4093 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4094 !tcp_disordered_ack(sk, skb);
4095}
4096
4097/* Check segment sequence number for validity.
4098 *
4099 * Segment controls are considered valid, if the segment
4100 * fits to the window after truncation to the window. Acceptability
4101 * of data (and SYN, FIN, of course) is checked separately.
4102 * See tcp_data_queue(), for example.
4103 *
4104 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4105 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4106 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4107 * (borrowed from freebsd)
4108 */
4109
4110static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4111{
4112 return !before(end_seq, tp->rcv_wup) &&
4113 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4114}
4115
4116/* When we get a reset we do this. */
4117static void tcp_reset(struct sock *sk)
4118{
4119 /* We want the right error as BSD sees it (and indeed as we do). */
4120 switch (sk->sk_state) {
4121 case TCP_SYN_SENT:
4122 sk->sk_err = ECONNREFUSED;
4123 break;
4124 case TCP_CLOSE_WAIT:
4125 sk->sk_err = EPIPE;
4126 break;
4127 case TCP_CLOSE:
4128 return;
4129 default:
4130 sk->sk_err = ECONNRESET;
4131 }
4132 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4133 smp_wmb();
4134
4135 if (!sock_flag(sk, SOCK_DEAD))
4136 sk->sk_error_report(sk);
4137
4138 tcp_done(sk);
4139}
4140
4141/*
4142 * Process the FIN bit. This now behaves as it is supposed to work
4143 * and the FIN takes effect when it is validly part of sequence
4144 * space. Not before when we get holes.
4145 *
4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4148 * TIME-WAIT)
4149 *
4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4151 * close and we go into CLOSING (and later onto TIME-WAIT)
4152 *
4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4154 */
4155static void tcp_fin(struct sock *sk)
4156{
4157 struct tcp_sock *tp = tcp_sk(sk);
4158
4159 inet_csk_schedule_ack(sk);
4160
4161 sk->sk_shutdown |= RCV_SHUTDOWN;
4162 sock_set_flag(sk, SOCK_DONE);
4163
4164 switch (sk->sk_state) {
4165 case TCP_SYN_RECV:
4166 case TCP_ESTABLISHED:
4167 /* Move to CLOSE_WAIT */
4168 tcp_set_state(sk, TCP_CLOSE_WAIT);
4169 inet_csk(sk)->icsk_ack.pingpong = 1;
4170 break;
4171
4172 case TCP_CLOSE_WAIT:
4173 case TCP_CLOSING:
4174 /* Received a retransmission of the FIN, do
4175 * nothing.
4176 */
4177 break;
4178 case TCP_LAST_ACK:
4179 /* RFC793: Remain in the LAST-ACK state. */
4180 break;
4181
4182 case TCP_FIN_WAIT1:
4183 /* This case occurs when a simultaneous close
4184 * happens, we must ack the received FIN and
4185 * enter the CLOSING state.
4186 */
4187 tcp_send_ack(sk);
4188 tcp_set_state(sk, TCP_CLOSING);
4189 break;
4190 case TCP_FIN_WAIT2:
4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4192 tcp_send_ack(sk);
4193 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4194 break;
4195 default:
4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197 * cases we should never reach this piece of code.
4198 */
4199 pr_err("%s: Impossible, sk->sk_state=%d\n",
4200 __func__, sk->sk_state);
4201 break;
4202 }
4203
4204 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4205 * Probably, we should reset in this case. For now drop them.
4206 */
4207 __skb_queue_purge(&tp->out_of_order_queue);
4208 if (tcp_is_sack(tp))
4209 tcp_sack_reset(&tp->rx_opt);
4210 sk_mem_reclaim(sk);
4211
4212 if (!sock_flag(sk, SOCK_DEAD)) {
4213 sk->sk_state_change(sk);
4214
4215 /* Do not send POLL_HUP for half duplex close. */
4216 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4217 sk->sk_state == TCP_CLOSE)
4218 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4219 else
4220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4221 }
4222}
4223
4224static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4225 u32 end_seq)
4226{
4227 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4228 if (before(seq, sp->start_seq))
4229 sp->start_seq = seq;
4230 if (after(end_seq, sp->end_seq))
4231 sp->end_seq = end_seq;
4232 return 1;
4233 }
4234 return 0;
4235}
4236
4237static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4238{
4239 struct tcp_sock *tp = tcp_sk(sk);
4240
4241 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4242 int mib_idx;
4243
4244 if (before(seq, tp->rcv_nxt))
4245 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4246 else
4247 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4248
4249 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4250
4251 tp->rx_opt.dsack = 1;
4252 tp->duplicate_sack[0].start_seq = seq;
4253 tp->duplicate_sack[0].end_seq = end_seq;
4254 }
4255}
4256
4257static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4258{
4259 struct tcp_sock *tp = tcp_sk(sk);
4260
4261 if (!tp->rx_opt.dsack)
4262 tcp_dsack_set(sk, seq, end_seq);
4263 else
4264 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4265}
4266
4267static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4268{
4269 struct tcp_sock *tp = tcp_sk(sk);
4270
4271 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4272 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4274 tcp_enter_quickack_mode(sk);
4275
4276 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4277 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4278
4279 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4280 end_seq = tp->rcv_nxt;
4281 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4282 }
4283 }
4284
4285 tcp_send_ack(sk);
4286}
4287
4288/* These routines update the SACK block as out-of-order packets arrive or
4289 * in-order packets close up the sequence space.
4290 */
4291static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4292{
4293 int this_sack;
4294 struct tcp_sack_block *sp = &tp->selective_acks[0];
4295 struct tcp_sack_block *swalk = sp + 1;
4296
4297 /* See if the recent change to the first SACK eats into
4298 * or hits the sequence space of other SACK blocks, if so coalesce.
4299 */
4300 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4301 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4302 int i;
4303
4304 /* Zap SWALK, by moving every further SACK up by one slot.
4305 * Decrease num_sacks.
4306 */
4307 tp->rx_opt.num_sacks--;
4308 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4309 sp[i] = sp[i + 1];
4310 continue;
4311 }
4312 this_sack++, swalk++;
4313 }
4314}
4315
4316static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4317{
4318 struct tcp_sock *tp = tcp_sk(sk);
4319 struct tcp_sack_block *sp = &tp->selective_acks[0];
4320 int cur_sacks = tp->rx_opt.num_sacks;
4321 int this_sack;
4322
4323 if (!cur_sacks)
4324 goto new_sack;
4325
4326 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4327 if (tcp_sack_extend(sp, seq, end_seq)) {
4328 /* Rotate this_sack to the first one. */
4329 for (; this_sack > 0; this_sack--, sp--)
4330 swap(*sp, *(sp - 1));
4331 if (cur_sacks > 1)
4332 tcp_sack_maybe_coalesce(tp);
4333 return;
4334 }
4335 }
4336
4337 /* Could not find an adjacent existing SACK, build a new one,
4338 * put it at the front, and shift everyone else down. We
4339 * always know there is at least one SACK present already here.
4340 *
4341 * If the sack array is full, forget about the last one.
4342 */
4343 if (this_sack >= TCP_NUM_SACKS) {
4344 this_sack--;
4345 tp->rx_opt.num_sacks--;
4346 sp--;
4347 }
4348 for (; this_sack > 0; this_sack--, sp--)
4349 *sp = *(sp - 1);
4350
4351new_sack:
4352 /* Build the new head SACK, and we're done. */
4353 sp->start_seq = seq;
4354 sp->end_seq = end_seq;
4355 tp->rx_opt.num_sacks++;
4356}
4357
4358/* RCV.NXT advances, some SACKs should be eaten. */
4359
4360static void tcp_sack_remove(struct tcp_sock *tp)
4361{
4362 struct tcp_sack_block *sp = &tp->selective_acks[0];
4363 int num_sacks = tp->rx_opt.num_sacks;
4364 int this_sack;
4365
4366 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4367 if (skb_queue_empty(&tp->out_of_order_queue)) {
4368 tp->rx_opt.num_sacks = 0;
4369 return;
4370 }
4371
4372 for (this_sack = 0; this_sack < num_sacks;) {
4373 /* Check if the start of the sack is covered by RCV.NXT. */
4374 if (!before(tp->rcv_nxt, sp->start_seq)) {
4375 int i;
4376
4377 /* RCV.NXT must cover all the block! */
4378 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4379
4380 /* Zap this SACK, by moving forward any other SACKS. */
4381 for (i=this_sack+1; i < num_sacks; i++)
4382 tp->selective_acks[i-1] = tp->selective_acks[i];
4383 num_sacks--;
4384 continue;
4385 }
4386 this_sack++;
4387 sp++;
4388 }
4389 tp->rx_opt.num_sacks = num_sacks;
4390}
4391
4392/* This one checks to see if we can put data from the
4393 * out_of_order queue into the receive_queue.
4394 */
4395static void tcp_ofo_queue(struct sock *sk)
4396{
4397 struct tcp_sock *tp = tcp_sk(sk);
4398 __u32 dsack_high = tp->rcv_nxt;
4399 struct sk_buff *skb;
4400
4401 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4402 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4403 break;
4404
4405 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4406 __u32 dsack = dsack_high;
4407 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4408 dsack_high = TCP_SKB_CB(skb)->end_seq;
4409 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4410 }
4411
4412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4413 SOCK_DEBUG(sk, "ofo packet was already received\n");
4414 __skb_unlink(skb, &tp->out_of_order_queue);
4415 __kfree_skb(skb);
4416 continue;
4417 }
4418 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4419 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4420 TCP_SKB_CB(skb)->end_seq);
4421
4422 __skb_unlink(skb, &tp->out_of_order_queue);
4423 __skb_queue_tail(&sk->sk_receive_queue, skb);
4424 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4425 if (tcp_hdr(skb)->fin)
4426 tcp_fin(sk);
4427 }
4428}
4429
4430static int tcp_prune_ofo_queue(struct sock *sk);
4431static int tcp_prune_queue(struct sock *sk);
4432
4433static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4434{
4435 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4436 !sk_rmem_schedule(sk, size)) {
4437
4438 if (tcp_prune_queue(sk) < 0)
4439 return -1;
4440
4441 if (!sk_rmem_schedule(sk, size)) {
4442 if (!tcp_prune_ofo_queue(sk))
4443 return -1;
4444
4445 if (!sk_rmem_schedule(sk, size))
4446 return -1;
4447 }
4448 }
4449 return 0;
4450}
4451
4452static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4453{
4454 struct tcp_sock *tp = tcp_sk(sk);
4455 struct sk_buff *skb1;
4456 u32 seq, end_seq;
4457
4458 TCP_ECN_check_ce(tp, skb);
4459
4460 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4461 /* TODO: should increment a counter */
4462 __kfree_skb(skb);
4463 return;
4464 }
4465
4466 /* Disable header prediction. */
4467 tp->pred_flags = 0;
4468 inet_csk_schedule_ack(sk);
4469
4470 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4471 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4472
4473 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4474 if (!skb1) {
4475 /* Initial out of order segment, build 1 SACK. */
4476 if (tcp_is_sack(tp)) {
4477 tp->rx_opt.num_sacks = 1;
4478 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4479 tp->selective_acks[0].end_seq =
4480 TCP_SKB_CB(skb)->end_seq;
4481 }
4482 __skb_queue_head(&tp->out_of_order_queue, skb);
4483 goto end;
4484 }
4485
4486 seq = TCP_SKB_CB(skb)->seq;
4487 end_seq = TCP_SKB_CB(skb)->end_seq;
4488
4489 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4490 /* Packets in ofo can stay in queue a long time.
4491 * Better try to coalesce them right now
4492 * to avoid future tcp_collapse_ofo_queue(),
4493 * probably the most expensive function in tcp stack.
4494 */
4495 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4496 NET_INC_STATS_BH(sock_net(sk),
4497 LINUX_MIB_TCPRCVCOALESCE);
4498 BUG_ON(skb_copy_bits(skb, 0,
4499 skb_put(skb1, skb->len),
4500 skb->len));
4501 TCP_SKB_CB(skb1)->end_seq = end_seq;
4502 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4503 __kfree_skb(skb);
4504 skb = NULL;
4505 } else {
4506 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4507 }
4508
4509 if (!tp->rx_opt.num_sacks ||
4510 tp->selective_acks[0].end_seq != seq)
4511 goto add_sack;
4512
4513 /* Common case: data arrive in order after hole. */
4514 tp->selective_acks[0].end_seq = end_seq;
4515 goto end;
4516 }
4517
4518 /* Find place to insert this segment. */
4519 while (1) {
4520 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4521 break;
4522 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4523 skb1 = NULL;
4524 break;
4525 }
4526 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4527 }
4528
4529 /* Do skb overlap to previous one? */
4530 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4531 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4532 /* All the bits are present. Drop. */
4533 __kfree_skb(skb);
4534 skb = NULL;
4535 tcp_dsack_set(sk, seq, end_seq);
4536 goto add_sack;
4537 }
4538 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4539 /* Partial overlap. */
4540 tcp_dsack_set(sk, seq,
4541 TCP_SKB_CB(skb1)->end_seq);
4542 } else {
4543 if (skb_queue_is_first(&tp->out_of_order_queue,
4544 skb1))
4545 skb1 = NULL;
4546 else
4547 skb1 = skb_queue_prev(
4548 &tp->out_of_order_queue,
4549 skb1);
4550 }
4551 }
4552 if (!skb1)
4553 __skb_queue_head(&tp->out_of_order_queue, skb);
4554 else
4555 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4556
4557 /* And clean segments covered by new one as whole. */
4558 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4559 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4560
4561 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4562 break;
4563 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4564 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565 end_seq);
4566 break;
4567 }
4568 __skb_unlink(skb1, &tp->out_of_order_queue);
4569 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4570 TCP_SKB_CB(skb1)->end_seq);
4571 __kfree_skb(skb1);
4572 }
4573
4574add_sack:
4575 if (tcp_is_sack(tp))
4576 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4577end:
4578 if (skb)
4579 skb_set_owner_r(skb, sk);
4580}
4581
4582
4583static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584{
4585 const struct tcphdr *th = tcp_hdr(skb);
4586 struct tcp_sock *tp = tcp_sk(sk);
4587 int eaten = -1;
4588
4589 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4590 goto drop;
4591
4592 skb_dst_drop(skb);
4593 __skb_pull(skb, th->doff * 4);
4594
4595 TCP_ECN_accept_cwr(tp, skb);
4596
4597 tp->rx_opt.dsack = 0;
4598
4599 /* Queue data for delivery to the user.
4600 * Packets in sequence go to the receive queue.
4601 * Out of sequence packets to the out_of_order_queue.
4602 */
4603 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4604 if (tcp_receive_window(tp) == 0)
4605 goto out_of_window;
4606
4607 /* Ok. In sequence. In window. */
4608 if (tp->ucopy.task == current &&
4609 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4610 sock_owned_by_user(sk) && !tp->urg_data) {
4611 int chunk = min_t(unsigned int, skb->len,
4612 tp->ucopy.len);
4613
4614 __set_current_state(TASK_RUNNING);
4615
4616 local_bh_enable();
4617 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4618 tp->ucopy.len -= chunk;
4619 tp->copied_seq += chunk;
4620 eaten = (chunk == skb->len);
4621 tcp_rcv_space_adjust(sk);
4622 }
4623 local_bh_disable();
4624 }
4625
4626 if (eaten <= 0) {
4627queue_and_out:
4628 if (eaten < 0 &&
4629 tcp_try_rmem_schedule(sk, skb->truesize))
4630 goto drop;
4631
4632 skb_set_owner_r(skb, sk);
4633 __skb_queue_tail(&sk->sk_receive_queue, skb);
4634 }
4635 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4636 if (skb->len)
4637 tcp_event_data_recv(sk, skb);
4638 if (th->fin)
4639 tcp_fin(sk);
4640
4641 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642 tcp_ofo_queue(sk);
4643
4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 * gap in queue is filled.
4646 */
4647 if (skb_queue_empty(&tp->out_of_order_queue))
4648 inet_csk(sk)->icsk_ack.pingpong = 0;
4649 }
4650
4651 if (tp->rx_opt.num_sacks)
4652 tcp_sack_remove(tp);
4653
4654 tcp_fast_path_check(sk);
4655
4656 if (eaten > 0)
4657 __kfree_skb(skb);
4658 else if (!sock_flag(sk, SOCK_DEAD))
4659 sk->sk_data_ready(sk, 0);
4660 return;
4661 }
4662
4663 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664 /* A retransmit, 2nd most common case. Force an immediate ack. */
4665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668out_of_window:
4669 tcp_enter_quickack_mode(sk);
4670 inet_csk_schedule_ack(sk);
4671drop:
4672 __kfree_skb(skb);
4673 return;
4674 }
4675
4676 /* Out of window. F.e. zero window probe. */
4677 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678 goto out_of_window;
4679
4680 tcp_enter_quickack_mode(sk);
4681
4682 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683 /* Partial packet, seq < rcv_next < end_seq */
4684 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686 TCP_SKB_CB(skb)->end_seq);
4687
4688 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690 /* If window is closed, drop tail of packet. But after
4691 * remembering D-SACK for its head made in previous line.
4692 */
4693 if (!tcp_receive_window(tp))
4694 goto out_of_window;
4695 goto queue_and_out;
4696 }
4697
4698 tcp_data_queue_ofo(sk, skb);
4699}
4700
4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702 struct sk_buff_head *list)
4703{
4704 struct sk_buff *next = NULL;
4705
4706 if (!skb_queue_is_last(list, skb))
4707 next = skb_queue_next(list, skb);
4708
4709 __skb_unlink(skb, list);
4710 __kfree_skb(skb);
4711 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713 return next;
4714}
4715
4716/* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4718 *
4719 * If tail is NULL, this means until the end of the list.
4720 *
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4723 */
4724static void
4725tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726 struct sk_buff *head, struct sk_buff *tail,
4727 u32 start, u32 end)
4728{
4729 struct sk_buff *skb, *n;
4730 bool end_of_skbs;
4731
4732 /* First, check that queue is collapsible and find
4733 * the point where collapsing can be useful. */
4734 skb = head;
4735restart:
4736 end_of_skbs = true;
4737 skb_queue_walk_from_safe(list, skb, n) {
4738 if (skb == tail)
4739 break;
4740 /* No new bits? It is possible on ofo queue. */
4741 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742 skb = tcp_collapse_one(sk, skb, list);
4743 if (!skb)
4744 break;
4745 goto restart;
4746 }
4747
4748 /* The first skb to collapse is:
4749 * - not SYN/FIN and
4750 * - bloated or contains data before "start" or
4751 * overlaps to the next one.
4752 */
4753 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4754 (tcp_win_from_space(skb->truesize) > skb->len ||
4755 before(TCP_SKB_CB(skb)->seq, start))) {
4756 end_of_skbs = false;
4757 break;
4758 }
4759
4760 if (!skb_queue_is_last(list, skb)) {
4761 struct sk_buff *next = skb_queue_next(list, skb);
4762 if (next != tail &&
4763 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764 end_of_skbs = false;
4765 break;
4766 }
4767 }
4768
4769 /* Decided to skip this, advance start seq. */
4770 start = TCP_SKB_CB(skb)->end_seq;
4771 }
4772 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4773 return;
4774
4775 while (before(start, end)) {
4776 struct sk_buff *nskb;
4777 unsigned int header = skb_headroom(skb);
4778 int copy = SKB_MAX_ORDER(header, 0);
4779
4780 /* Too big header? This can happen with IPv6. */
4781 if (copy < 0)
4782 return;
4783 if (end - start < copy)
4784 copy = end - start;
4785 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4786 if (!nskb)
4787 return;
4788
4789 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4790 skb_set_network_header(nskb, (skb_network_header(skb) -
4791 skb->head));
4792 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4793 skb->head));
4794 skb_reserve(nskb, header);
4795 memcpy(nskb->head, skb->head, header);
4796 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4797 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4798 __skb_queue_before(list, skb, nskb);
4799 skb_set_owner_r(nskb, sk);
4800
4801 /* Copy data, releasing collapsed skbs. */
4802 while (copy > 0) {
4803 int offset = start - TCP_SKB_CB(skb)->seq;
4804 int size = TCP_SKB_CB(skb)->end_seq - start;
4805
4806 BUG_ON(offset < 0);
4807 if (size > 0) {
4808 size = min(copy, size);
4809 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4810 BUG();
4811 TCP_SKB_CB(nskb)->end_seq += size;
4812 copy -= size;
4813 start += size;
4814 }
4815 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4816 skb = tcp_collapse_one(sk, skb, list);
4817 if (!skb ||
4818 skb == tail ||
4819 tcp_hdr(skb)->syn ||
4820 tcp_hdr(skb)->fin)
4821 return;
4822 }
4823 }
4824 }
4825}
4826
4827/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4828 * and tcp_collapse() them until all the queue is collapsed.
4829 */
4830static void tcp_collapse_ofo_queue(struct sock *sk)
4831{
4832 struct tcp_sock *tp = tcp_sk(sk);
4833 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4834 struct sk_buff *head;
4835 u32 start, end;
4836
4837 if (skb == NULL)
4838 return;
4839
4840 start = TCP_SKB_CB(skb)->seq;
4841 end = TCP_SKB_CB(skb)->end_seq;
4842 head = skb;
4843
4844 for (;;) {
4845 struct sk_buff *next = NULL;
4846
4847 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4848 next = skb_queue_next(&tp->out_of_order_queue, skb);
4849 skb = next;
4850
4851 /* Segment is terminated when we see gap or when
4852 * we are at the end of all the queue. */
4853 if (!skb ||
4854 after(TCP_SKB_CB(skb)->seq, end) ||
4855 before(TCP_SKB_CB(skb)->end_seq, start)) {
4856 tcp_collapse(sk, &tp->out_of_order_queue,
4857 head, skb, start, end);
4858 head = skb;
4859 if (!skb)
4860 break;
4861 /* Start new segment */
4862 start = TCP_SKB_CB(skb)->seq;
4863 end = TCP_SKB_CB(skb)->end_seq;
4864 } else {
4865 if (before(TCP_SKB_CB(skb)->seq, start))
4866 start = TCP_SKB_CB(skb)->seq;
4867 if (after(TCP_SKB_CB(skb)->end_seq, end))
4868 end = TCP_SKB_CB(skb)->end_seq;
4869 }
4870 }
4871}
4872
4873/*
4874 * Purge the out-of-order queue.
4875 * Return true if queue was pruned.
4876 */
4877static int tcp_prune_ofo_queue(struct sock *sk)
4878{
4879 struct tcp_sock *tp = tcp_sk(sk);
4880 int res = 0;
4881
4882 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4883 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4884 __skb_queue_purge(&tp->out_of_order_queue);
4885
4886 /* Reset SACK state. A conforming SACK implementation will
4887 * do the same at a timeout based retransmit. When a connection
4888 * is in a sad state like this, we care only about integrity
4889 * of the connection not performance.
4890 */
4891 if (tp->rx_opt.sack_ok)
4892 tcp_sack_reset(&tp->rx_opt);
4893 sk_mem_reclaim(sk);
4894 res = 1;
4895 }
4896 return res;
4897}
4898
4899/* Reduce allocated memory if we can, trying to get
4900 * the socket within its memory limits again.
4901 *
4902 * Return less than zero if we should start dropping frames
4903 * until the socket owning process reads some of the data
4904 * to stabilize the situation.
4905 */
4906static int tcp_prune_queue(struct sock *sk)
4907{
4908 struct tcp_sock *tp = tcp_sk(sk);
4909
4910 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4911
4912 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4913
4914 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4915 tcp_clamp_window(sk);
4916 else if (sk_under_memory_pressure(sk))
4917 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4918
4919 tcp_collapse_ofo_queue(sk);
4920 if (!skb_queue_empty(&sk->sk_receive_queue))
4921 tcp_collapse(sk, &sk->sk_receive_queue,
4922 skb_peek(&sk->sk_receive_queue),
4923 NULL,
4924 tp->copied_seq, tp->rcv_nxt);
4925 sk_mem_reclaim(sk);
4926
4927 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4928 return 0;
4929
4930 /* Collapsing did not help, destructive actions follow.
4931 * This must not ever occur. */
4932
4933 tcp_prune_ofo_queue(sk);
4934
4935 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4936 return 0;
4937
4938 /* If we are really being abused, tell the caller to silently
4939 * drop receive data on the floor. It will get retransmitted
4940 * and hopefully then we'll have sufficient space.
4941 */
4942 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4943
4944 /* Massive buffer overcommit. */
4945 tp->pred_flags = 0;
4946 return -1;
4947}
4948
4949/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4950 * As additional protections, we do not touch cwnd in retransmission phases,
4951 * and if application hit its sndbuf limit recently.
4952 */
4953void tcp_cwnd_application_limited(struct sock *sk)
4954{
4955 struct tcp_sock *tp = tcp_sk(sk);
4956
4957 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4958 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4959 /* Limited by application or receiver window. */
4960 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4961 u32 win_used = max(tp->snd_cwnd_used, init_win);
4962 if (win_used < tp->snd_cwnd) {
4963 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4964 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4965 }
4966 tp->snd_cwnd_used = 0;
4967 }
4968 tp->snd_cwnd_stamp = tcp_time_stamp;
4969}
4970
4971static int tcp_should_expand_sndbuf(const struct sock *sk)
4972{
4973 const struct tcp_sock *tp = tcp_sk(sk);
4974
4975 /* If the user specified a specific send buffer setting, do
4976 * not modify it.
4977 */
4978 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4979 return 0;
4980
4981 /* If we are under global TCP memory pressure, do not expand. */
4982 if (sk_under_memory_pressure(sk))
4983 return 0;
4984
4985 /* If we are under soft global TCP memory pressure, do not expand. */
4986 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4987 return 0;
4988
4989 /* If we filled the congestion window, do not expand. */
4990 if (tp->packets_out >= tp->snd_cwnd)
4991 return 0;
4992
4993 return 1;
4994}
4995
4996/* When incoming ACK allowed to free some skb from write_queue,
4997 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4998 * on the exit from tcp input handler.
4999 *
5000 * PROBLEM: sndbuf expansion does not work well with largesend.
5001 */
5002static void tcp_new_space(struct sock *sk)
5003{
5004 struct tcp_sock *tp = tcp_sk(sk);
5005
5006 if (tcp_should_expand_sndbuf(sk)) {
5007 int sndmem = SKB_TRUESIZE(max_t(u32,
5008 tp->rx_opt.mss_clamp,
5009 tp->mss_cache) +
5010 MAX_TCP_HEADER);
5011 int demanded = max_t(unsigned int, tp->snd_cwnd,
5012 tp->reordering + 1);
5013 sndmem *= 2 * demanded;
5014 if (sndmem > sk->sk_sndbuf)
5015 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5016 tp->snd_cwnd_stamp = tcp_time_stamp;
5017 }
5018
5019 sk->sk_write_space(sk);
5020}
5021
5022static void tcp_check_space(struct sock *sk)
5023{
5024 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5025 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5026 if (sk->sk_socket &&
5027 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5028 tcp_new_space(sk);
5029 }
5030}
5031
5032static inline void tcp_data_snd_check(struct sock *sk)
5033{
5034 tcp_push_pending_frames(sk);
5035 tcp_check_space(sk);
5036}
5037
5038/*
5039 * Check if sending an ack is needed.
5040 */
5041static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5042{
5043 struct tcp_sock *tp = tcp_sk(sk);
5044
5045 /* More than one full frame received... */
5046 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5047 /* ... and right edge of window advances far enough.
5048 * (tcp_recvmsg() will send ACK otherwise). Or...
5049 */
5050 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5051 /* We ACK each frame or... */
5052 tcp_in_quickack_mode(sk) ||
5053 /* We have out of order data. */
5054 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5055 /* Then ack it now */
5056 tcp_send_ack(sk);
5057 } else {
5058 /* Else, send delayed ack. */
5059 tcp_send_delayed_ack(sk);
5060 }
5061}
5062
5063static inline void tcp_ack_snd_check(struct sock *sk)
5064{
5065 if (!inet_csk_ack_scheduled(sk)) {
5066 /* We sent a data segment already. */
5067 return;
5068 }
5069 __tcp_ack_snd_check(sk, 1);
5070}
5071
5072/*
5073 * This routine is only called when we have urgent data
5074 * signaled. Its the 'slow' part of tcp_urg. It could be
5075 * moved inline now as tcp_urg is only called from one
5076 * place. We handle URGent data wrong. We have to - as
5077 * BSD still doesn't use the correction from RFC961.
5078 * For 1003.1g we should support a new option TCP_STDURG to permit
5079 * either form (or just set the sysctl tcp_stdurg).
5080 */
5081
5082static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5083{
5084 struct tcp_sock *tp = tcp_sk(sk);
5085 u32 ptr = ntohs(th->urg_ptr);
5086
5087 if (ptr && !sysctl_tcp_stdurg)
5088 ptr--;
5089 ptr += ntohl(th->seq);
5090
5091 /* Ignore urgent data that we've already seen and read. */
5092 if (after(tp->copied_seq, ptr))
5093 return;
5094
5095 /* Do not replay urg ptr.
5096 *
5097 * NOTE: interesting situation not covered by specs.
5098 * Misbehaving sender may send urg ptr, pointing to segment,
5099 * which we already have in ofo queue. We are not able to fetch
5100 * such data and will stay in TCP_URG_NOTYET until will be eaten
5101 * by recvmsg(). Seems, we are not obliged to handle such wicked
5102 * situations. But it is worth to think about possibility of some
5103 * DoSes using some hypothetical application level deadlock.
5104 */
5105 if (before(ptr, tp->rcv_nxt))
5106 return;
5107
5108 /* Do we already have a newer (or duplicate) urgent pointer? */
5109 if (tp->urg_data && !after(ptr, tp->urg_seq))
5110 return;
5111
5112 /* Tell the world about our new urgent pointer. */
5113 sk_send_sigurg(sk);
5114
5115 /* We may be adding urgent data when the last byte read was
5116 * urgent. To do this requires some care. We cannot just ignore
5117 * tp->copied_seq since we would read the last urgent byte again
5118 * as data, nor can we alter copied_seq until this data arrives
5119 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5120 *
5121 * NOTE. Double Dutch. Rendering to plain English: author of comment
5122 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5123 * and expect that both A and B disappear from stream. This is _wrong_.
5124 * Though this happens in BSD with high probability, this is occasional.
5125 * Any application relying on this is buggy. Note also, that fix "works"
5126 * only in this artificial test. Insert some normal data between A and B and we will
5127 * decline of BSD again. Verdict: it is better to remove to trap
5128 * buggy users.
5129 */
5130 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5131 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5132 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5133 tp->copied_seq++;
5134 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5135 __skb_unlink(skb, &sk->sk_receive_queue);
5136 __kfree_skb(skb);
5137 }
5138 }
5139
5140 tp->urg_data = TCP_URG_NOTYET;
5141 tp->urg_seq = ptr;
5142
5143 /* Disable header prediction. */
5144 tp->pred_flags = 0;
5145}
5146
5147/* This is the 'fast' part of urgent handling. */
5148static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5149{
5150 struct tcp_sock *tp = tcp_sk(sk);
5151
5152 /* Check if we get a new urgent pointer - normally not. */
5153 if (th->urg)
5154 tcp_check_urg(sk, th);
5155
5156 /* Do we wait for any urgent data? - normally not... */
5157 if (tp->urg_data == TCP_URG_NOTYET) {
5158 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5159 th->syn;
5160
5161 /* Is the urgent pointer pointing into this packet? */
5162 if (ptr < skb->len) {
5163 u8 tmp;
5164 if (skb_copy_bits(skb, ptr, &tmp, 1))
5165 BUG();
5166 tp->urg_data = TCP_URG_VALID | tmp;
5167 if (!sock_flag(sk, SOCK_DEAD))
5168 sk->sk_data_ready(sk, 0);
5169 }
5170 }
5171}
5172
5173static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5174{
5175 struct tcp_sock *tp = tcp_sk(sk);
5176 int chunk = skb->len - hlen;
5177 int err;
5178
5179 local_bh_enable();
5180 if (skb_csum_unnecessary(skb))
5181 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5182 else
5183 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5184 tp->ucopy.iov);
5185
5186 if (!err) {
5187 tp->ucopy.len -= chunk;
5188 tp->copied_seq += chunk;
5189 tcp_rcv_space_adjust(sk);
5190 }
5191
5192 local_bh_disable();
5193 return err;
5194}
5195
5196static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5197 struct sk_buff *skb)
5198{
5199 __sum16 result;
5200
5201 if (sock_owned_by_user(sk)) {
5202 local_bh_enable();
5203 result = __tcp_checksum_complete(skb);
5204 local_bh_disable();
5205 } else {
5206 result = __tcp_checksum_complete(skb);
5207 }
5208 return result;
5209}
5210
5211static inline int tcp_checksum_complete_user(struct sock *sk,
5212 struct sk_buff *skb)
5213{
5214 return !skb_csum_unnecessary(skb) &&
5215 __tcp_checksum_complete_user(sk, skb);
5216}
5217
5218#ifdef CONFIG_NET_DMA
5219static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5220 int hlen)
5221{
5222 struct tcp_sock *tp = tcp_sk(sk);
5223 int chunk = skb->len - hlen;
5224 int dma_cookie;
5225 int copied_early = 0;
5226
5227 if (tp->ucopy.wakeup)
5228 return 0;
5229
5230 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5231 tp->ucopy.dma_chan = net_dma_find_channel();
5232
5233 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5234
5235 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5236 skb, hlen,
5237 tp->ucopy.iov, chunk,
5238 tp->ucopy.pinned_list);
5239
5240 if (dma_cookie < 0)
5241 goto out;
5242
5243 tp->ucopy.dma_cookie = dma_cookie;
5244 copied_early = 1;
5245
5246 tp->ucopy.len -= chunk;
5247 tp->copied_seq += chunk;
5248 tcp_rcv_space_adjust(sk);
5249
5250 if ((tp->ucopy.len == 0) ||
5251 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5252 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5253 tp->ucopy.wakeup = 1;
5254 sk->sk_data_ready(sk, 0);
5255 }
5256 } else if (chunk > 0) {
5257 tp->ucopy.wakeup = 1;
5258 sk->sk_data_ready(sk, 0);
5259 }
5260out:
5261 return copied_early;
5262}
5263#endif /* CONFIG_NET_DMA */
5264
5265/* Does PAWS and seqno based validation of an incoming segment, flags will
5266 * play significant role here.
5267 */
5268static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5269 const struct tcphdr *th, int syn_inerr)
5270{
5271 const u8 *hash_location;
5272 struct tcp_sock *tp = tcp_sk(sk);
5273
5274 /* RFC1323: H1. Apply PAWS check first. */
5275 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5276 tp->rx_opt.saw_tstamp &&
5277 tcp_paws_discard(sk, skb)) {
5278 if (!th->rst) {
5279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5280 tcp_send_dupack(sk, skb);
5281 goto discard;
5282 }
5283 /* Reset is accepted even if it did not pass PAWS. */
5284 }
5285
5286 /* Step 1: check sequence number */
5287 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5288 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5289 * (RST) segments are validated by checking their SEQ-fields."
5290 * And page 69: "If an incoming segment is not acceptable,
5291 * an acknowledgment should be sent in reply (unless the RST
5292 * bit is set, if so drop the segment and return)".
5293 */
5294 if (!th->rst)
5295 tcp_send_dupack(sk, skb);
5296 goto discard;
5297 }
5298
5299 /* Step 2: check RST bit */
5300 if (th->rst) {
5301 tcp_reset(sk);
5302 goto discard;
5303 }
5304
5305 /* ts_recent update must be made after we are sure that the packet
5306 * is in window.
5307 */
5308 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5309
5310 /* step 3: check security and precedence [ignored] */
5311
5312 /* step 4: Check for a SYN in window. */
5313 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5314 if (syn_inerr)
5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5317 tcp_reset(sk);
5318 return -1;
5319 }
5320
5321 return 1;
5322
5323discard:
5324 __kfree_skb(skb);
5325 return 0;
5326}
5327
5328/*
5329 * TCP receive function for the ESTABLISHED state.
5330 *
5331 * It is split into a fast path and a slow path. The fast path is
5332 * disabled when:
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5344 *
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5350 */
5351int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5352 const struct tcphdr *th, unsigned int len)
5353{
5354 struct tcp_sock *tp = tcp_sk(sk);
5355 int res;
5356
5357 /*
5358 * Header prediction.
5359 * The code loosely follows the one in the famous
5360 * "30 instruction TCP receive" Van Jacobson mail.
5361 *
5362 * Van's trick is to deposit buffers into socket queue
5363 * on a device interrupt, to call tcp_recv function
5364 * on the receive process context and checksum and copy
5365 * the buffer to user space. smart...
5366 *
5367 * Our current scheme is not silly either but we take the
5368 * extra cost of the net_bh soft interrupt processing...
5369 * We do checksum and copy also but from device to kernel.
5370 */
5371
5372 tp->rx_opt.saw_tstamp = 0;
5373
5374 /* pred_flags is 0xS?10 << 16 + snd_wnd
5375 * if header_prediction is to be made
5376 * 'S' will always be tp->tcp_header_len >> 2
5377 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5378 * turn it off (when there are holes in the receive
5379 * space for instance)
5380 * PSH flag is ignored.
5381 */
5382
5383 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5384 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5385 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5386 int tcp_header_len = tp->tcp_header_len;
5387
5388 /* Timestamp header prediction: tcp_header_len
5389 * is automatically equal to th->doff*4 due to pred_flags
5390 * match.
5391 */
5392
5393 /* Check timestamp */
5394 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5395 /* No? Slow path! */
5396 if (!tcp_parse_aligned_timestamp(tp, th))
5397 goto slow_path;
5398
5399 /* If PAWS failed, check it more carefully in slow path */
5400 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5401 goto slow_path;
5402
5403 /* DO NOT update ts_recent here, if checksum fails
5404 * and timestamp was corrupted part, it will result
5405 * in a hung connection since we will drop all
5406 * future packets due to the PAWS test.
5407 */
5408 }
5409
5410 if (len <= tcp_header_len) {
5411 /* Bulk data transfer: sender */
5412 if (len == tcp_header_len) {
5413 /* Predicted packet is in window by definition.
5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415 * Hence, check seq<=rcv_wup reduces to:
5416 */
5417 if (tcp_header_len ==
5418 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5419 tp->rcv_nxt == tp->rcv_wup)
5420 tcp_store_ts_recent(tp);
5421
5422 /* We know that such packets are checksummed
5423 * on entry.
5424 */
5425 tcp_ack(sk, skb, 0);
5426 __kfree_skb(skb);
5427 tcp_data_snd_check(sk);
5428 return 0;
5429 } else { /* Header too small */
5430 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5431 goto discard;
5432 }
5433 } else {
5434 int eaten = 0;
5435 int copied_early = 0;
5436
5437 if (tp->copied_seq == tp->rcv_nxt &&
5438 len - tcp_header_len <= tp->ucopy.len) {
5439#ifdef CONFIG_NET_DMA
5440 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5441 copied_early = 1;
5442 eaten = 1;
5443 }
5444#endif
5445 if (tp->ucopy.task == current &&
5446 sock_owned_by_user(sk) && !copied_early) {
5447 __set_current_state(TASK_RUNNING);
5448
5449 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5450 eaten = 1;
5451 }
5452 if (eaten) {
5453 /* Predicted packet is in window by definition.
5454 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5455 * Hence, check seq<=rcv_wup reduces to:
5456 */
5457 if (tcp_header_len ==
5458 (sizeof(struct tcphdr) +
5459 TCPOLEN_TSTAMP_ALIGNED) &&
5460 tp->rcv_nxt == tp->rcv_wup)
5461 tcp_store_ts_recent(tp);
5462
5463 tcp_rcv_rtt_measure_ts(sk, skb);
5464
5465 __skb_pull(skb, tcp_header_len);
5466 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5467 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5468 }
5469 if (copied_early)
5470 tcp_cleanup_rbuf(sk, skb->len);
5471 }
5472 if (!eaten) {
5473 if (tcp_checksum_complete_user(sk, skb))
5474 goto csum_error;
5475
5476 /* Predicted packet is in window by definition.
5477 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5478 * Hence, check seq<=rcv_wup reduces to:
5479 */
5480 if (tcp_header_len ==
5481 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5482 tp->rcv_nxt == tp->rcv_wup)
5483 tcp_store_ts_recent(tp);
5484
5485 tcp_rcv_rtt_measure_ts(sk, skb);
5486
5487 if ((int)skb->truesize > sk->sk_forward_alloc)
5488 goto step5;
5489
5490 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5491
5492 /* Bulk data transfer: receiver */
5493 __skb_pull(skb, tcp_header_len);
5494 __skb_queue_tail(&sk->sk_receive_queue, skb);
5495 skb_set_owner_r(skb, sk);
5496 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5497 }
5498
5499 tcp_event_data_recv(sk, skb);
5500
5501 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5502 /* Well, only one small jumplet in fast path... */
5503 tcp_ack(sk, skb, FLAG_DATA);
5504 tcp_data_snd_check(sk);
5505 if (!inet_csk_ack_scheduled(sk))
5506 goto no_ack;
5507 }
5508
5509 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5510 __tcp_ack_snd_check(sk, 0);
5511no_ack:
5512#ifdef CONFIG_NET_DMA
5513 if (copied_early)
5514 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5515 else
5516#endif
5517 if (eaten)
5518 __kfree_skb(skb);
5519 else
5520 sk->sk_data_ready(sk, 0);
5521 return 0;
5522 }
5523 }
5524
5525slow_path:
5526 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5527 goto csum_error;
5528
5529 /*
5530 * Standard slow path.
5531 */
5532
5533 res = tcp_validate_incoming(sk, skb, th, 1);
5534 if (res <= 0)
5535 return -res;
5536
5537step5:
5538 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5539 goto discard;
5540
5541 tcp_rcv_rtt_measure_ts(sk, skb);
5542
5543 /* Process urgent data. */
5544 tcp_urg(sk, skb, th);
5545
5546 /* step 7: process the segment text */
5547 tcp_data_queue(sk, skb);
5548
5549 tcp_data_snd_check(sk);
5550 tcp_ack_snd_check(sk);
5551 return 0;
5552
5553csum_error:
5554 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5555
5556discard:
5557 __kfree_skb(skb);
5558 return 0;
5559}
5560EXPORT_SYMBOL(tcp_rcv_established);
5561
5562static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5563 const struct tcphdr *th, unsigned int len)
5564{
5565 const u8 *hash_location;
5566 struct inet_connection_sock *icsk = inet_csk(sk);
5567 struct tcp_sock *tp = tcp_sk(sk);
5568 struct tcp_cookie_values *cvp = tp->cookie_values;
5569 int saved_clamp = tp->rx_opt.mss_clamp;
5570
5571 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5572
5573 if (th->ack) {
5574 /* rfc793:
5575 * "If the state is SYN-SENT then
5576 * first check the ACK bit
5577 * If the ACK bit is set
5578 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5579 * a reset (unless the RST bit is set, if so drop
5580 * the segment and return)"
5581 *
5582 * We do not send data with SYN, so that RFC-correct
5583 * test reduces to:
5584 */
5585 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5586 goto reset_and_undo;
5587
5588 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5589 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5590 tcp_time_stamp)) {
5591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5592 goto reset_and_undo;
5593 }
5594
5595 /* Now ACK is acceptable.
5596 *
5597 * "If the RST bit is set
5598 * If the ACK was acceptable then signal the user "error:
5599 * connection reset", drop the segment, enter CLOSED state,
5600 * delete TCB, and return."
5601 */
5602
5603 if (th->rst) {
5604 tcp_reset(sk);
5605 goto discard;
5606 }
5607
5608 /* rfc793:
5609 * "fifth, if neither of the SYN or RST bits is set then
5610 * drop the segment and return."
5611 *
5612 * See note below!
5613 * --ANK(990513)
5614 */
5615 if (!th->syn)
5616 goto discard_and_undo;
5617
5618 /* rfc793:
5619 * "If the SYN bit is on ...
5620 * are acceptable then ...
5621 * (our SYN has been ACKed), change the connection
5622 * state to ESTABLISHED..."
5623 */
5624
5625 TCP_ECN_rcv_synack(tp, th);
5626
5627 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5628 tcp_ack(sk, skb, FLAG_SLOWPATH);
5629
5630 /* Ok.. it's good. Set up sequence numbers and
5631 * move to established.
5632 */
5633 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5634 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5635
5636 /* RFC1323: The window in SYN & SYN/ACK segments is
5637 * never scaled.
5638 */
5639 tp->snd_wnd = ntohs(th->window);
5640 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5641
5642 if (!tp->rx_opt.wscale_ok) {
5643 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5644 tp->window_clamp = min(tp->window_clamp, 65535U);
5645 }
5646
5647 if (tp->rx_opt.saw_tstamp) {
5648 tp->rx_opt.tstamp_ok = 1;
5649 tp->tcp_header_len =
5650 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5651 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5652 tcp_store_ts_recent(tp);
5653 } else {
5654 tp->tcp_header_len = sizeof(struct tcphdr);
5655 }
5656
5657 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5658 tcp_enable_fack(tp);
5659
5660 tcp_mtup_init(sk);
5661 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5662 tcp_initialize_rcv_mss(sk);
5663
5664 /* Remember, tcp_poll() does not lock socket!
5665 * Change state from SYN-SENT only after copied_seq
5666 * is initialized. */
5667 tp->copied_seq = tp->rcv_nxt;
5668
5669 if (cvp != NULL &&
5670 cvp->cookie_pair_size > 0 &&
5671 tp->rx_opt.cookie_plus > 0) {
5672 int cookie_size = tp->rx_opt.cookie_plus
5673 - TCPOLEN_COOKIE_BASE;
5674 int cookie_pair_size = cookie_size
5675 + cvp->cookie_desired;
5676
5677 /* A cookie extension option was sent and returned.
5678 * Note that each incoming SYNACK replaces the
5679 * Responder cookie. The initial exchange is most
5680 * fragile, as protection against spoofing relies
5681 * entirely upon the sequence and timestamp (above).
5682 * This replacement strategy allows the correct pair to
5683 * pass through, while any others will be filtered via
5684 * Responder verification later.
5685 */
5686 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5687 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5688 hash_location, cookie_size);
5689 cvp->cookie_pair_size = cookie_pair_size;
5690 }
5691 }
5692
5693 smp_mb();
5694 tcp_set_state(sk, TCP_ESTABLISHED);
5695
5696 security_inet_conn_established(sk, skb);
5697
5698 /* Make sure socket is routed, for correct metrics. */
5699 icsk->icsk_af_ops->rebuild_header(sk);
5700
5701 tcp_init_metrics(sk);
5702
5703 tcp_init_congestion_control(sk);
5704
5705 /* Prevent spurious tcp_cwnd_restart() on first data
5706 * packet.
5707 */
5708 tp->lsndtime = tcp_time_stamp;
5709
5710 tcp_init_buffer_space(sk);
5711
5712 if (sock_flag(sk, SOCK_KEEPOPEN))
5713 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5714
5715 if (!tp->rx_opt.snd_wscale)
5716 __tcp_fast_path_on(tp, tp->snd_wnd);
5717 else
5718 tp->pred_flags = 0;
5719
5720 if (!sock_flag(sk, SOCK_DEAD)) {
5721 sk->sk_state_change(sk);
5722 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5723 }
5724
5725 if (sk->sk_write_pending ||
5726 icsk->icsk_accept_queue.rskq_defer_accept ||
5727 icsk->icsk_ack.pingpong) {
5728 /* Save one ACK. Data will be ready after
5729 * several ticks, if write_pending is set.
5730 *
5731 * It may be deleted, but with this feature tcpdumps
5732 * look so _wonderfully_ clever, that I was not able
5733 * to stand against the temptation 8) --ANK
5734 */
5735 inet_csk_schedule_ack(sk);
5736 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5737 tcp_enter_quickack_mode(sk);
5738 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5739 TCP_DELACK_MAX, TCP_RTO_MAX);
5740
5741discard:
5742 __kfree_skb(skb);
5743 return 0;
5744 } else {
5745 tcp_send_ack(sk);
5746 }
5747 return -1;
5748 }
5749
5750 /* No ACK in the segment */
5751
5752 if (th->rst) {
5753 /* rfc793:
5754 * "If the RST bit is set
5755 *
5756 * Otherwise (no ACK) drop the segment and return."
5757 */
5758
5759 goto discard_and_undo;
5760 }
5761
5762 /* PAWS check. */
5763 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5764 tcp_paws_reject(&tp->rx_opt, 0))
5765 goto discard_and_undo;
5766
5767 if (th->syn) {
5768 /* We see SYN without ACK. It is attempt of
5769 * simultaneous connect with crossed SYNs.
5770 * Particularly, it can be connect to self.
5771 */
5772 tcp_set_state(sk, TCP_SYN_RECV);
5773
5774 if (tp->rx_opt.saw_tstamp) {
5775 tp->rx_opt.tstamp_ok = 1;
5776 tcp_store_ts_recent(tp);
5777 tp->tcp_header_len =
5778 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5779 } else {
5780 tp->tcp_header_len = sizeof(struct tcphdr);
5781 }
5782
5783 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5784 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5785
5786 /* RFC1323: The window in SYN & SYN/ACK segments is
5787 * never scaled.
5788 */
5789 tp->snd_wnd = ntohs(th->window);
5790 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5791 tp->max_window = tp->snd_wnd;
5792
5793 TCP_ECN_rcv_syn(tp, th);
5794
5795 tcp_mtup_init(sk);
5796 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5797 tcp_initialize_rcv_mss(sk);
5798
5799 tcp_send_synack(sk);
5800#if 0
5801 /* Note, we could accept data and URG from this segment.
5802 * There are no obstacles to make this.
5803 *
5804 * However, if we ignore data in ACKless segments sometimes,
5805 * we have no reasons to accept it sometimes.
5806 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5807 * is not flawless. So, discard packet for sanity.
5808 * Uncomment this return to process the data.
5809 */
5810 return -1;
5811#else
5812 goto discard;
5813#endif
5814 }
5815 /* "fifth, if neither of the SYN or RST bits is set then
5816 * drop the segment and return."
5817 */
5818
5819discard_and_undo:
5820 tcp_clear_options(&tp->rx_opt);
5821 tp->rx_opt.mss_clamp = saved_clamp;
5822 goto discard;
5823
5824reset_and_undo:
5825 tcp_clear_options(&tp->rx_opt);
5826 tp->rx_opt.mss_clamp = saved_clamp;
5827 return 1;
5828}
5829
5830/*
5831 * This function implements the receiving procedure of RFC 793 for
5832 * all states except ESTABLISHED and TIME_WAIT.
5833 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5834 * address independent.
5835 */
5836
5837int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5838 const struct tcphdr *th, unsigned int len)
5839{
5840 struct tcp_sock *tp = tcp_sk(sk);
5841 struct inet_connection_sock *icsk = inet_csk(sk);
5842 int queued = 0;
5843 int res;
5844
5845 tp->rx_opt.saw_tstamp = 0;
5846
5847 switch (sk->sk_state) {
5848 case TCP_CLOSE:
5849 goto discard;
5850
5851 case TCP_LISTEN:
5852 if (th->ack)
5853 return 1;
5854
5855 if (th->rst)
5856 goto discard;
5857
5858 if (th->syn) {
5859 if (th->fin)
5860 goto discard;
5861 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5862 return 1;
5863
5864 /* Now we have several options: In theory there is
5865 * nothing else in the frame. KA9Q has an option to
5866 * send data with the syn, BSD accepts data with the
5867 * syn up to the [to be] advertised window and
5868 * Solaris 2.1 gives you a protocol error. For now
5869 * we just ignore it, that fits the spec precisely
5870 * and avoids incompatibilities. It would be nice in
5871 * future to drop through and process the data.
5872 *
5873 * Now that TTCP is starting to be used we ought to
5874 * queue this data.
5875 * But, this leaves one open to an easy denial of
5876 * service attack, and SYN cookies can't defend
5877 * against this problem. So, we drop the data
5878 * in the interest of security over speed unless
5879 * it's still in use.
5880 */
5881 kfree_skb(skb);
5882 return 0;
5883 }
5884 goto discard;
5885
5886 case TCP_SYN_SENT:
5887 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5888 if (queued >= 0)
5889 return queued;
5890
5891 /* Do step6 onward by hand. */
5892 tcp_urg(sk, skb, th);
5893 __kfree_skb(skb);
5894 tcp_data_snd_check(sk);
5895 return 0;
5896 }
5897
5898 res = tcp_validate_incoming(sk, skb, th, 0);
5899 if (res <= 0)
5900 return -res;
5901
5902 /* step 5: check the ACK field */
5903 if (th->ack) {
5904 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5905
5906 switch (sk->sk_state) {
5907 case TCP_SYN_RECV:
5908 if (acceptable) {
5909 tp->copied_seq = tp->rcv_nxt;
5910 smp_mb();
5911 tcp_set_state(sk, TCP_ESTABLISHED);
5912 sk->sk_state_change(sk);
5913
5914 /* Note, that this wakeup is only for marginal
5915 * crossed SYN case. Passively open sockets
5916 * are not waked up, because sk->sk_sleep ==
5917 * NULL and sk->sk_socket == NULL.
5918 */
5919 if (sk->sk_socket)
5920 sk_wake_async(sk,
5921 SOCK_WAKE_IO, POLL_OUT);
5922
5923 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5924 tp->snd_wnd = ntohs(th->window) <<
5925 tp->rx_opt.snd_wscale;
5926 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5927
5928 if (tp->rx_opt.tstamp_ok)
5929 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5930
5931 /* Make sure socket is routed, for
5932 * correct metrics.
5933 */
5934 icsk->icsk_af_ops->rebuild_header(sk);
5935
5936 tcp_init_metrics(sk);
5937
5938 tcp_init_congestion_control(sk);
5939
5940 /* Prevent spurious tcp_cwnd_restart() on
5941 * first data packet.
5942 */
5943 tp->lsndtime = tcp_time_stamp;
5944
5945 tcp_mtup_init(sk);
5946 tcp_initialize_rcv_mss(sk);
5947 tcp_init_buffer_space(sk);
5948 tcp_fast_path_on(tp);
5949 } else {
5950 return 1;
5951 }
5952 break;
5953
5954 case TCP_FIN_WAIT1:
5955 if (tp->snd_una == tp->write_seq) {
5956 tcp_set_state(sk, TCP_FIN_WAIT2);
5957 sk->sk_shutdown |= SEND_SHUTDOWN;
5958 dst_confirm(__sk_dst_get(sk));
5959
5960 if (!sock_flag(sk, SOCK_DEAD))
5961 /* Wake up lingering close() */
5962 sk->sk_state_change(sk);
5963 else {
5964 int tmo;
5965
5966 if (tp->linger2 < 0 ||
5967 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5968 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5969 tcp_done(sk);
5970 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5971 return 1;
5972 }
5973
5974 tmo = tcp_fin_time(sk);
5975 if (tmo > TCP_TIMEWAIT_LEN) {
5976 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5977 } else if (th->fin || sock_owned_by_user(sk)) {
5978 /* Bad case. We could lose such FIN otherwise.
5979 * It is not a big problem, but it looks confusing
5980 * and not so rare event. We still can lose it now,
5981 * if it spins in bh_lock_sock(), but it is really
5982 * marginal case.
5983 */
5984 inet_csk_reset_keepalive_timer(sk, tmo);
5985 } else {
5986 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5987 goto discard;
5988 }
5989 }
5990 }
5991 break;
5992
5993 case TCP_CLOSING:
5994 if (tp->snd_una == tp->write_seq) {
5995 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5996 goto discard;
5997 }
5998 break;
5999
6000 case TCP_LAST_ACK:
6001 if (tp->snd_una == tp->write_seq) {
6002 tcp_update_metrics(sk);
6003 tcp_done(sk);
6004 goto discard;
6005 }
6006 break;
6007 }
6008 } else
6009 goto discard;
6010
6011 /* step 6: check the URG bit */
6012 tcp_urg(sk, skb, th);
6013
6014 /* step 7: process the segment text */
6015 switch (sk->sk_state) {
6016 case TCP_CLOSE_WAIT:
6017 case TCP_CLOSING:
6018 case TCP_LAST_ACK:
6019 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6020 break;
6021 case TCP_FIN_WAIT1:
6022 case TCP_FIN_WAIT2:
6023 /* RFC 793 says to queue data in these states,
6024 * RFC 1122 says we MUST send a reset.
6025 * BSD 4.4 also does reset.
6026 */
6027 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6028 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6029 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6030 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6031 tcp_reset(sk);
6032 return 1;
6033 }
6034 }
6035 /* Fall through */
6036 case TCP_ESTABLISHED:
6037 tcp_data_queue(sk, skb);
6038 queued = 1;
6039 break;
6040 }
6041
6042 /* tcp_data could move socket to TIME-WAIT */
6043 if (sk->sk_state != TCP_CLOSE) {
6044 tcp_data_snd_check(sk);
6045 tcp_ack_snd_check(sk);
6046 }
6047
6048 if (!queued) {
6049discard:
6050 __kfree_skb(skb);
6051 }
6052 return 0;
6053}
6054EXPORT_SYMBOL(tcp_rcv_state_process);