[TFRC]: New rx history code
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / route.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67#include <linux/module.h>
68#include <asm/uaccess.h>
69#include <asm/system.h>
70#include <linux/bitops.h>
71#include <linux/types.h>
72#include <linux/kernel.h>
73#include <linux/mm.h>
74#include <linux/bootmem.h>
75#include <linux/string.h>
76#include <linux/socket.h>
77#include <linux/sockios.h>
78#include <linux/errno.h>
79#include <linux/in.h>
80#include <linux/inet.h>
81#include <linux/netdevice.h>
82#include <linux/proc_fs.h>
83#include <linux/init.h>
84#include <linux/workqueue.h>
85#include <linux/skbuff.h>
86#include <linux/inetdevice.h>
87#include <linux/igmp.h>
88#include <linux/pkt_sched.h>
89#include <linux/mroute.h>
90#include <linux/netfilter_ipv4.h>
91#include <linux/random.h>
92#include <linux/jhash.h>
93#include <linux/rcupdate.h>
94#include <linux/times.h>
95#include <net/dst.h>
96#include <net/net_namespace.h>
97#include <net/protocol.h>
98#include <net/ip.h>
99#include <net/route.h>
100#include <net/inetpeer.h>
101#include <net/sock.h>
102#include <net/ip_fib.h>
103#include <net/arp.h>
104#include <net/tcp.h>
105#include <net/icmp.h>
106#include <net/xfrm.h>
107#include <net/netevent.h>
108#include <net/rtnetlink.h>
109#ifdef CONFIG_SYSCTL
110#include <linux/sysctl.h>
111#endif
112
113#define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116#define IP_MAX_MTU 0xFFF0
117
118#define RT_GC_TIMEOUT (300*HZ)
119
120static int ip_rt_min_delay = 2 * HZ;
121static int ip_rt_max_delay = 10 * HZ;
122static int ip_rt_max_size;
123static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
124static int ip_rt_gc_interval = 60 * HZ;
125static int ip_rt_gc_min_interval = HZ / 2;
126static int ip_rt_redirect_number = 9;
127static int ip_rt_redirect_load = HZ / 50;
128static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
129static int ip_rt_error_cost = HZ;
130static int ip_rt_error_burst = 5 * HZ;
131static int ip_rt_gc_elasticity = 8;
132static int ip_rt_mtu_expires = 10 * 60 * HZ;
133static int ip_rt_min_pmtu = 512 + 20 + 20;
134static int ip_rt_min_advmss = 256;
135static int ip_rt_secret_interval = 10 * 60 * HZ;
136static int ip_rt_flush_expected;
137static unsigned long rt_deadline;
138
139#define RTprint(a...) printk(KERN_DEBUG a)
140
141static struct timer_list rt_flush_timer;
142static void rt_worker_func(struct work_struct *work);
143static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
144static struct timer_list rt_secret_timer;
145
146/*
147 * Interface to generic destination cache.
148 */
149
150static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
151static void ipv4_dst_destroy(struct dst_entry *dst);
152static void ipv4_dst_ifdown(struct dst_entry *dst,
153 struct net_device *dev, int how);
154static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
155static void ipv4_link_failure(struct sk_buff *skb);
156static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
157static int rt_garbage_collect(void);
158
159
160static struct dst_ops ipv4_dst_ops = {
161 .family = AF_INET,
162 .protocol = __constant_htons(ETH_P_IP),
163 .gc = rt_garbage_collect,
164 .check = ipv4_dst_check,
165 .destroy = ipv4_dst_destroy,
166 .ifdown = ipv4_dst_ifdown,
167 .negative_advice = ipv4_negative_advice,
168 .link_failure = ipv4_link_failure,
169 .update_pmtu = ip_rt_update_pmtu,
170 .local_out = ip_local_out,
171 .entry_size = sizeof(struct rtable),
172};
173
174#define ECN_OR_COST(class) TC_PRIO_##class
175
176const __u8 ip_tos2prio[16] = {
177 TC_PRIO_BESTEFFORT,
178 ECN_OR_COST(FILLER),
179 TC_PRIO_BESTEFFORT,
180 ECN_OR_COST(BESTEFFORT),
181 TC_PRIO_BULK,
182 ECN_OR_COST(BULK),
183 TC_PRIO_BULK,
184 ECN_OR_COST(BULK),
185 TC_PRIO_INTERACTIVE,
186 ECN_OR_COST(INTERACTIVE),
187 TC_PRIO_INTERACTIVE,
188 ECN_OR_COST(INTERACTIVE),
189 TC_PRIO_INTERACTIVE_BULK,
190 ECN_OR_COST(INTERACTIVE_BULK),
191 TC_PRIO_INTERACTIVE_BULK,
192 ECN_OR_COST(INTERACTIVE_BULK)
193};
194
195
196/*
197 * Route cache.
198 */
199
200/* The locking scheme is rather straight forward:
201 *
202 * 1) Read-Copy Update protects the buckets of the central route hash.
203 * 2) Only writers remove entries, and they hold the lock
204 * as they look at rtable reference counts.
205 * 3) Only readers acquire references to rtable entries,
206 * they do so with atomic increments and with the
207 * lock held.
208 */
209
210struct rt_hash_bucket {
211 struct rtable *chain;
212};
213#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
214 defined(CONFIG_PROVE_LOCKING)
215/*
216 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
217 * The size of this table is a power of two and depends on the number of CPUS.
218 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
219 */
220#ifdef CONFIG_LOCKDEP
221# define RT_HASH_LOCK_SZ 256
222#else
223# if NR_CPUS >= 32
224# define RT_HASH_LOCK_SZ 4096
225# elif NR_CPUS >= 16
226# define RT_HASH_LOCK_SZ 2048
227# elif NR_CPUS >= 8
228# define RT_HASH_LOCK_SZ 1024
229# elif NR_CPUS >= 4
230# define RT_HASH_LOCK_SZ 512
231# else
232# define RT_HASH_LOCK_SZ 256
233# endif
234#endif
235
236static spinlock_t *rt_hash_locks;
237# define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
238
239static __init void rt_hash_lock_init(void)
240{
241 int i;
242
243 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
244 GFP_KERNEL);
245 if (!rt_hash_locks)
246 panic("IP: failed to allocate rt_hash_locks\n");
247
248 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
249 spin_lock_init(&rt_hash_locks[i]);
250}
251#else
252# define rt_hash_lock_addr(slot) NULL
253
254static inline void rt_hash_lock_init(void)
255{
256}
257#endif
258
259static struct rt_hash_bucket *rt_hash_table;
260static unsigned rt_hash_mask;
261static unsigned int rt_hash_log;
262static unsigned int rt_hash_rnd;
263
264static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
265#define RT_CACHE_STAT_INC(field) \
266 (__raw_get_cpu_var(rt_cache_stat).field++)
267
268static int rt_intern_hash(unsigned hash, struct rtable *rth,
269 struct rtable **res);
270
271static unsigned int rt_hash_code(u32 daddr, u32 saddr)
272{
273 return (jhash_2words(daddr, saddr, rt_hash_rnd)
274 & rt_hash_mask);
275}
276
277#define rt_hash(daddr, saddr, idx) \
278 rt_hash_code((__force u32)(__be32)(daddr),\
279 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
280
281#ifdef CONFIG_PROC_FS
282struct rt_cache_iter_state {
283 int bucket;
284};
285
286static struct rtable *rt_cache_get_first(struct seq_file *seq)
287{
288 struct rtable *r = NULL;
289 struct rt_cache_iter_state *st = seq->private;
290
291 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
292 rcu_read_lock_bh();
293 r = rt_hash_table[st->bucket].chain;
294 if (r)
295 break;
296 rcu_read_unlock_bh();
297 }
298 return rcu_dereference(r);
299}
300
301static struct rtable *rt_cache_get_next(struct seq_file *seq, struct rtable *r)
302{
303 struct rt_cache_iter_state *st = seq->private;
304
305 r = r->u.dst.rt_next;
306 while (!r) {
307 rcu_read_unlock_bh();
308 if (--st->bucket < 0)
309 break;
310 rcu_read_lock_bh();
311 r = rt_hash_table[st->bucket].chain;
312 }
313 return rcu_dereference(r);
314}
315
316static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
317{
318 struct rtable *r = rt_cache_get_first(seq);
319
320 if (r)
321 while (pos && (r = rt_cache_get_next(seq, r)))
322 --pos;
323 return pos ? NULL : r;
324}
325
326static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
327{
328 return *pos ? rt_cache_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
329}
330
331static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
332{
333 struct rtable *r = NULL;
334
335 if (v == SEQ_START_TOKEN)
336 r = rt_cache_get_first(seq);
337 else
338 r = rt_cache_get_next(seq, v);
339 ++*pos;
340 return r;
341}
342
343static void rt_cache_seq_stop(struct seq_file *seq, void *v)
344{
345 if (v && v != SEQ_START_TOKEN)
346 rcu_read_unlock_bh();
347}
348
349static int rt_cache_seq_show(struct seq_file *seq, void *v)
350{
351 if (v == SEQ_START_TOKEN)
352 seq_printf(seq, "%-127s\n",
353 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
354 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
355 "HHUptod\tSpecDst");
356 else {
357 struct rtable *r = v;
358 char temp[256];
359
360 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
361 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
362 r->u.dst.dev ? r->u.dst.dev->name : "*",
363 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
364 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
365 r->u.dst.__use, 0, (unsigned long)r->rt_src,
366 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
367 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
368 dst_metric(&r->u.dst, RTAX_WINDOW),
369 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
370 dst_metric(&r->u.dst, RTAX_RTTVAR)),
371 r->fl.fl4_tos,
372 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
373 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
374 dev_queue_xmit) : 0,
375 r->rt_spec_dst);
376 seq_printf(seq, "%-127s\n", temp);
377 }
378 return 0;
379}
380
381static const struct seq_operations rt_cache_seq_ops = {
382 .start = rt_cache_seq_start,
383 .next = rt_cache_seq_next,
384 .stop = rt_cache_seq_stop,
385 .show = rt_cache_seq_show,
386};
387
388static int rt_cache_seq_open(struct inode *inode, struct file *file)
389{
390 return seq_open_private(file, &rt_cache_seq_ops,
391 sizeof(struct rt_cache_iter_state));
392}
393
394static const struct file_operations rt_cache_seq_fops = {
395 .owner = THIS_MODULE,
396 .open = rt_cache_seq_open,
397 .read = seq_read,
398 .llseek = seq_lseek,
399 .release = seq_release_private,
400};
401
402
403static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
404{
405 int cpu;
406
407 if (*pos == 0)
408 return SEQ_START_TOKEN;
409
410 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
411 if (!cpu_possible(cpu))
412 continue;
413 *pos = cpu+1;
414 return &per_cpu(rt_cache_stat, cpu);
415 }
416 return NULL;
417}
418
419static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
420{
421 int cpu;
422
423 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
424 if (!cpu_possible(cpu))
425 continue;
426 *pos = cpu+1;
427 return &per_cpu(rt_cache_stat, cpu);
428 }
429 return NULL;
430
431}
432
433static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
434{
435
436}
437
438static int rt_cpu_seq_show(struct seq_file *seq, void *v)
439{
440 struct rt_cache_stat *st = v;
441
442 if (v == SEQ_START_TOKEN) {
443 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
444 return 0;
445 }
446
447 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
448 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
449 atomic_read(&ipv4_dst_ops.entries),
450 st->in_hit,
451 st->in_slow_tot,
452 st->in_slow_mc,
453 st->in_no_route,
454 st->in_brd,
455 st->in_martian_dst,
456 st->in_martian_src,
457
458 st->out_hit,
459 st->out_slow_tot,
460 st->out_slow_mc,
461
462 st->gc_total,
463 st->gc_ignored,
464 st->gc_goal_miss,
465 st->gc_dst_overflow,
466 st->in_hlist_search,
467 st->out_hlist_search
468 );
469 return 0;
470}
471
472static const struct seq_operations rt_cpu_seq_ops = {
473 .start = rt_cpu_seq_start,
474 .next = rt_cpu_seq_next,
475 .stop = rt_cpu_seq_stop,
476 .show = rt_cpu_seq_show,
477};
478
479
480static int rt_cpu_seq_open(struct inode *inode, struct file *file)
481{
482 return seq_open(file, &rt_cpu_seq_ops);
483}
484
485static const struct file_operations rt_cpu_seq_fops = {
486 .owner = THIS_MODULE,
487 .open = rt_cpu_seq_open,
488 .read = seq_read,
489 .llseek = seq_lseek,
490 .release = seq_release,
491};
492
493#ifdef CONFIG_NET_CLS_ROUTE
494static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
495 int length, int *eof, void *data)
496{
497 unsigned int i;
498
499 if ((offset & 3) || (length & 3))
500 return -EIO;
501
502 if (offset >= sizeof(struct ip_rt_acct) * 256) {
503 *eof = 1;
504 return 0;
505 }
506
507 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
508 length = sizeof(struct ip_rt_acct) * 256 - offset;
509 *eof = 1;
510 }
511
512 offset /= sizeof(u32);
513
514 if (length > 0) {
515 u32 *dst = (u32 *) buffer;
516
517 *start = buffer;
518 memset(dst, 0, length);
519
520 for_each_possible_cpu(i) {
521 unsigned int j;
522 u32 *src;
523
524 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
525 for (j = 0; j < length/4; j++)
526 dst[j] += src[j];
527 }
528 }
529 return length;
530}
531#endif
532
533static __init int ip_rt_proc_init(struct net *net)
534{
535 struct proc_dir_entry *pde;
536
537 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
538 &rt_cache_seq_fops);
539 if (!pde)
540 goto err1;
541
542 pde = create_proc_entry("rt_cache", S_IRUGO, net->proc_net_stat);
543 if (!pde)
544 goto err2;
545
546 pde->proc_fops = &rt_cpu_seq_fops;
547
548#ifdef CONFIG_NET_CLS_ROUTE
549 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
550 ip_rt_acct_read, NULL);
551 if (!pde)
552 goto err3;
553#endif
554 return 0;
555
556#ifdef CONFIG_NET_CLS_ROUTE
557err3:
558 remove_proc_entry("rt_cache", net->proc_net_stat);
559#endif
560err2:
561 remove_proc_entry("rt_cache", net->proc_net);
562err1:
563 return -ENOMEM;
564}
565#else
566static inline int ip_rt_proc_init(struct net *net)
567{
568 return 0;
569}
570#endif /* CONFIG_PROC_FS */
571
572static __inline__ void rt_free(struct rtable *rt)
573{
574 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
575}
576
577static __inline__ void rt_drop(struct rtable *rt)
578{
579 ip_rt_put(rt);
580 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
581}
582
583static __inline__ int rt_fast_clean(struct rtable *rth)
584{
585 /* Kill broadcast/multicast entries very aggresively, if they
586 collide in hash table with more useful entries */
587 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
588 rth->fl.iif && rth->u.dst.rt_next;
589}
590
591static __inline__ int rt_valuable(struct rtable *rth)
592{
593 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
594 rth->u.dst.expires;
595}
596
597static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
598{
599 unsigned long age;
600 int ret = 0;
601
602 if (atomic_read(&rth->u.dst.__refcnt))
603 goto out;
604
605 ret = 1;
606 if (rth->u.dst.expires &&
607 time_after_eq(jiffies, rth->u.dst.expires))
608 goto out;
609
610 age = jiffies - rth->u.dst.lastuse;
611 ret = 0;
612 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
613 (age <= tmo2 && rt_valuable(rth)))
614 goto out;
615 ret = 1;
616out: return ret;
617}
618
619/* Bits of score are:
620 * 31: very valuable
621 * 30: not quite useless
622 * 29..0: usage counter
623 */
624static inline u32 rt_score(struct rtable *rt)
625{
626 u32 score = jiffies - rt->u.dst.lastuse;
627
628 score = ~score & ~(3<<30);
629
630 if (rt_valuable(rt))
631 score |= (1<<31);
632
633 if (!rt->fl.iif ||
634 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
635 score |= (1<<30);
636
637 return score;
638}
639
640static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
641{
642 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
643 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
644 (fl1->mark ^ fl2->mark) |
645 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
646 *(u16 *)&fl2->nl_u.ip4_u.tos) |
647 (fl1->oif ^ fl2->oif) |
648 (fl1->iif ^ fl2->iif)) == 0;
649}
650
651/*
652 * Perform a full scan of hash table and free all entries.
653 * Can be called by a softirq or a process.
654 * In the later case, we want to be reschedule if necessary
655 */
656static void rt_do_flush(int process_context)
657{
658 unsigned int i;
659 struct rtable *rth, *next;
660
661 for (i = 0; i <= rt_hash_mask; i++) {
662 if (process_context && need_resched())
663 cond_resched();
664 rth = rt_hash_table[i].chain;
665 if (!rth)
666 continue;
667
668 spin_lock_bh(rt_hash_lock_addr(i));
669 rth = rt_hash_table[i].chain;
670 rt_hash_table[i].chain = NULL;
671 spin_unlock_bh(rt_hash_lock_addr(i));
672
673 for (; rth; rth = next) {
674 next = rth->u.dst.rt_next;
675 rt_free(rth);
676 }
677 }
678}
679
680static void rt_check_expire(void)
681{
682 static unsigned int rover;
683 unsigned int i = rover, goal;
684 struct rtable *rth, **rthp;
685 u64 mult;
686
687 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
688 if (ip_rt_gc_timeout > 1)
689 do_div(mult, ip_rt_gc_timeout);
690 goal = (unsigned int)mult;
691 if (goal > rt_hash_mask)
692 goal = rt_hash_mask + 1;
693 for (; goal > 0; goal--) {
694 unsigned long tmo = ip_rt_gc_timeout;
695
696 i = (i + 1) & rt_hash_mask;
697 rthp = &rt_hash_table[i].chain;
698
699 if (need_resched())
700 cond_resched();
701
702 if (*rthp == NULL)
703 continue;
704 spin_lock_bh(rt_hash_lock_addr(i));
705 while ((rth = *rthp) != NULL) {
706 if (rth->u.dst.expires) {
707 /* Entry is expired even if it is in use */
708 if (time_before_eq(jiffies, rth->u.dst.expires)) {
709 tmo >>= 1;
710 rthp = &rth->u.dst.rt_next;
711 continue;
712 }
713 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
714 tmo >>= 1;
715 rthp = &rth->u.dst.rt_next;
716 continue;
717 }
718
719 /* Cleanup aged off entries. */
720 *rthp = rth->u.dst.rt_next;
721 rt_free(rth);
722 }
723 spin_unlock_bh(rt_hash_lock_addr(i));
724 }
725 rover = i;
726}
727
728/*
729 * rt_worker_func() is run in process context.
730 * If a whole flush was scheduled, it is done.
731 * Else, we call rt_check_expire() to scan part of the hash table
732 */
733static void rt_worker_func(struct work_struct *work)
734{
735 if (ip_rt_flush_expected) {
736 ip_rt_flush_expected = 0;
737 rt_do_flush(1);
738 } else
739 rt_check_expire();
740 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
741}
742
743/* This can run from both BH and non-BH contexts, the latter
744 * in the case of a forced flush event.
745 */
746static void rt_run_flush(unsigned long process_context)
747{
748 rt_deadline = 0;
749
750 get_random_bytes(&rt_hash_rnd, 4);
751
752 rt_do_flush(process_context);
753}
754
755static DEFINE_SPINLOCK(rt_flush_lock);
756
757void rt_cache_flush(int delay)
758{
759 unsigned long now = jiffies;
760 int user_mode = !in_softirq();
761
762 if (delay < 0)
763 delay = ip_rt_min_delay;
764
765 spin_lock_bh(&rt_flush_lock);
766
767 if (del_timer(&rt_flush_timer) && delay > 0 && rt_deadline) {
768 long tmo = (long)(rt_deadline - now);
769
770 /* If flush timer is already running
771 and flush request is not immediate (delay > 0):
772
773 if deadline is not achieved, prolongate timer to "delay",
774 otherwise fire it at deadline time.
775 */
776
777 if (user_mode && tmo < ip_rt_max_delay-ip_rt_min_delay)
778 tmo = 0;
779
780 if (delay > tmo)
781 delay = tmo;
782 }
783
784 if (delay <= 0) {
785 spin_unlock_bh(&rt_flush_lock);
786 rt_run_flush(user_mode);
787 return;
788 }
789
790 if (rt_deadline == 0)
791 rt_deadline = now + ip_rt_max_delay;
792
793 mod_timer(&rt_flush_timer, now+delay);
794 spin_unlock_bh(&rt_flush_lock);
795}
796
797/*
798 * We change rt_hash_rnd and ask next rt_worker_func() invocation
799 * to perform a flush in process context
800 */
801static void rt_secret_rebuild(unsigned long dummy)
802{
803 get_random_bytes(&rt_hash_rnd, 4);
804 ip_rt_flush_expected = 1;
805 cancel_delayed_work(&expires_work);
806 schedule_delayed_work(&expires_work, HZ/10);
807 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
808}
809
810/*
811 Short description of GC goals.
812
813 We want to build algorithm, which will keep routing cache
814 at some equilibrium point, when number of aged off entries
815 is kept approximately equal to newly generated ones.
816
817 Current expiration strength is variable "expire".
818 We try to adjust it dynamically, so that if networking
819 is idle expires is large enough to keep enough of warm entries,
820 and when load increases it reduces to limit cache size.
821 */
822
823static int rt_garbage_collect(void)
824{
825 static unsigned long expire = RT_GC_TIMEOUT;
826 static unsigned long last_gc;
827 static int rover;
828 static int equilibrium;
829 struct rtable *rth, **rthp;
830 unsigned long now = jiffies;
831 int goal;
832
833 /*
834 * Garbage collection is pretty expensive,
835 * do not make it too frequently.
836 */
837
838 RT_CACHE_STAT_INC(gc_total);
839
840 if (now - last_gc < ip_rt_gc_min_interval &&
841 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
842 RT_CACHE_STAT_INC(gc_ignored);
843 goto out;
844 }
845
846 /* Calculate number of entries, which we want to expire now. */
847 goal = atomic_read(&ipv4_dst_ops.entries) -
848 (ip_rt_gc_elasticity << rt_hash_log);
849 if (goal <= 0) {
850 if (equilibrium < ipv4_dst_ops.gc_thresh)
851 equilibrium = ipv4_dst_ops.gc_thresh;
852 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
853 if (goal > 0) {
854 equilibrium += min_t(unsigned int, goal / 2, rt_hash_mask + 1);
855 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
856 }
857 } else {
858 /* We are in dangerous area. Try to reduce cache really
859 * aggressively.
860 */
861 goal = max_t(unsigned int, goal / 2, rt_hash_mask + 1);
862 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
863 }
864
865 if (now - last_gc >= ip_rt_gc_min_interval)
866 last_gc = now;
867
868 if (goal <= 0) {
869 equilibrium += goal;
870 goto work_done;
871 }
872
873 do {
874 int i, k;
875
876 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
877 unsigned long tmo = expire;
878
879 k = (k + 1) & rt_hash_mask;
880 rthp = &rt_hash_table[k].chain;
881 spin_lock_bh(rt_hash_lock_addr(k));
882 while ((rth = *rthp) != NULL) {
883 if (!rt_may_expire(rth, tmo, expire)) {
884 tmo >>= 1;
885 rthp = &rth->u.dst.rt_next;
886 continue;
887 }
888 *rthp = rth->u.dst.rt_next;
889 rt_free(rth);
890 goal--;
891 }
892 spin_unlock_bh(rt_hash_lock_addr(k));
893 if (goal <= 0)
894 break;
895 }
896 rover = k;
897
898 if (goal <= 0)
899 goto work_done;
900
901 /* Goal is not achieved. We stop process if:
902
903 - if expire reduced to zero. Otherwise, expire is halfed.
904 - if table is not full.
905 - if we are called from interrupt.
906 - jiffies check is just fallback/debug loop breaker.
907 We will not spin here for long time in any case.
908 */
909
910 RT_CACHE_STAT_INC(gc_goal_miss);
911
912 if (expire == 0)
913 break;
914
915 expire >>= 1;
916#if RT_CACHE_DEBUG >= 2
917 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
918 atomic_read(&ipv4_dst_ops.entries), goal, i);
919#endif
920
921 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
922 goto out;
923 } while (!in_softirq() && time_before_eq(jiffies, now));
924
925 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
926 goto out;
927 if (net_ratelimit())
928 printk(KERN_WARNING "dst cache overflow\n");
929 RT_CACHE_STAT_INC(gc_dst_overflow);
930 return 1;
931
932work_done:
933 expire += ip_rt_gc_min_interval;
934 if (expire > ip_rt_gc_timeout ||
935 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
936 expire = ip_rt_gc_timeout;
937#if RT_CACHE_DEBUG >= 2
938 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
939 atomic_read(&ipv4_dst_ops.entries), goal, rover);
940#endif
941out: return 0;
942}
943
944static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
945{
946 struct rtable *rth, **rthp;
947 unsigned long now;
948 struct rtable *cand, **candp;
949 u32 min_score;
950 int chain_length;
951 int attempts = !in_softirq();
952
953restart:
954 chain_length = 0;
955 min_score = ~(u32)0;
956 cand = NULL;
957 candp = NULL;
958 now = jiffies;
959
960 rthp = &rt_hash_table[hash].chain;
961
962 spin_lock_bh(rt_hash_lock_addr(hash));
963 while ((rth = *rthp) != NULL) {
964 if (compare_keys(&rth->fl, &rt->fl)) {
965 /* Put it first */
966 *rthp = rth->u.dst.rt_next;
967 /*
968 * Since lookup is lockfree, the deletion
969 * must be visible to another weakly ordered CPU before
970 * the insertion at the start of the hash chain.
971 */
972 rcu_assign_pointer(rth->u.dst.rt_next,
973 rt_hash_table[hash].chain);
974 /*
975 * Since lookup is lockfree, the update writes
976 * must be ordered for consistency on SMP.
977 */
978 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
979
980 dst_use(&rth->u.dst, now);
981 spin_unlock_bh(rt_hash_lock_addr(hash));
982
983 rt_drop(rt);
984 *rp = rth;
985 return 0;
986 }
987
988 if (!atomic_read(&rth->u.dst.__refcnt)) {
989 u32 score = rt_score(rth);
990
991 if (score <= min_score) {
992 cand = rth;
993 candp = rthp;
994 min_score = score;
995 }
996 }
997
998 chain_length++;
999
1000 rthp = &rth->u.dst.rt_next;
1001 }
1002
1003 if (cand) {
1004 /* ip_rt_gc_elasticity used to be average length of chain
1005 * length, when exceeded gc becomes really aggressive.
1006 *
1007 * The second limit is less certain. At the moment it allows
1008 * only 2 entries per bucket. We will see.
1009 */
1010 if (chain_length > ip_rt_gc_elasticity) {
1011 *candp = cand->u.dst.rt_next;
1012 rt_free(cand);
1013 }
1014 }
1015
1016 /* Try to bind route to arp only if it is output
1017 route or unicast forwarding path.
1018 */
1019 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1020 int err = arp_bind_neighbour(&rt->u.dst);
1021 if (err) {
1022 spin_unlock_bh(rt_hash_lock_addr(hash));
1023
1024 if (err != -ENOBUFS) {
1025 rt_drop(rt);
1026 return err;
1027 }
1028
1029 /* Neighbour tables are full and nothing
1030 can be released. Try to shrink route cache,
1031 it is most likely it holds some neighbour records.
1032 */
1033 if (attempts-- > 0) {
1034 int saved_elasticity = ip_rt_gc_elasticity;
1035 int saved_int = ip_rt_gc_min_interval;
1036 ip_rt_gc_elasticity = 1;
1037 ip_rt_gc_min_interval = 0;
1038 rt_garbage_collect();
1039 ip_rt_gc_min_interval = saved_int;
1040 ip_rt_gc_elasticity = saved_elasticity;
1041 goto restart;
1042 }
1043
1044 if (net_ratelimit())
1045 printk(KERN_WARNING "Neighbour table overflow.\n");
1046 rt_drop(rt);
1047 return -ENOBUFS;
1048 }
1049 }
1050
1051 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1052#if RT_CACHE_DEBUG >= 2
1053 if (rt->u.dst.rt_next) {
1054 struct rtable *trt;
1055 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1056 NIPQUAD(rt->rt_dst));
1057 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1058 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1059 printk("\n");
1060 }
1061#endif
1062 rt_hash_table[hash].chain = rt;
1063 spin_unlock_bh(rt_hash_lock_addr(hash));
1064 *rp = rt;
1065 return 0;
1066}
1067
1068void rt_bind_peer(struct rtable *rt, int create)
1069{
1070 static DEFINE_SPINLOCK(rt_peer_lock);
1071 struct inet_peer *peer;
1072
1073 peer = inet_getpeer(rt->rt_dst, create);
1074
1075 spin_lock_bh(&rt_peer_lock);
1076 if (rt->peer == NULL) {
1077 rt->peer = peer;
1078 peer = NULL;
1079 }
1080 spin_unlock_bh(&rt_peer_lock);
1081 if (peer)
1082 inet_putpeer(peer);
1083}
1084
1085/*
1086 * Peer allocation may fail only in serious out-of-memory conditions. However
1087 * we still can generate some output.
1088 * Random ID selection looks a bit dangerous because we have no chances to
1089 * select ID being unique in a reasonable period of time.
1090 * But broken packet identifier may be better than no packet at all.
1091 */
1092static void ip_select_fb_ident(struct iphdr *iph)
1093{
1094 static DEFINE_SPINLOCK(ip_fb_id_lock);
1095 static u32 ip_fallback_id;
1096 u32 salt;
1097
1098 spin_lock_bh(&ip_fb_id_lock);
1099 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1100 iph->id = htons(salt & 0xFFFF);
1101 ip_fallback_id = salt;
1102 spin_unlock_bh(&ip_fb_id_lock);
1103}
1104
1105void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1106{
1107 struct rtable *rt = (struct rtable *) dst;
1108
1109 if (rt) {
1110 if (rt->peer == NULL)
1111 rt_bind_peer(rt, 1);
1112
1113 /* If peer is attached to destination, it is never detached,
1114 so that we need not to grab a lock to dereference it.
1115 */
1116 if (rt->peer) {
1117 iph->id = htons(inet_getid(rt->peer, more));
1118 return;
1119 }
1120 } else
1121 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1122 __builtin_return_address(0));
1123
1124 ip_select_fb_ident(iph);
1125}
1126
1127static void rt_del(unsigned hash, struct rtable *rt)
1128{
1129 struct rtable **rthp;
1130
1131 spin_lock_bh(rt_hash_lock_addr(hash));
1132 ip_rt_put(rt);
1133 for (rthp = &rt_hash_table[hash].chain; *rthp;
1134 rthp = &(*rthp)->u.dst.rt_next)
1135 if (*rthp == rt) {
1136 *rthp = rt->u.dst.rt_next;
1137 rt_free(rt);
1138 break;
1139 }
1140 spin_unlock_bh(rt_hash_lock_addr(hash));
1141}
1142
1143void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1144 __be32 saddr, struct net_device *dev)
1145{
1146 int i, k;
1147 struct in_device *in_dev = in_dev_get(dev);
1148 struct rtable *rth, **rthp;
1149 __be32 skeys[2] = { saddr, 0 };
1150 int ikeys[2] = { dev->ifindex, 0 };
1151 struct netevent_redirect netevent;
1152
1153 if (!in_dev)
1154 return;
1155
1156 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1157 || MULTICAST(new_gw) || BADCLASS(new_gw) || ZERONET(new_gw))
1158 goto reject_redirect;
1159
1160 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1161 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1162 goto reject_redirect;
1163 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1164 goto reject_redirect;
1165 } else {
1166 if (inet_addr_type(new_gw) != RTN_UNICAST)
1167 goto reject_redirect;
1168 }
1169
1170 for (i = 0; i < 2; i++) {
1171 for (k = 0; k < 2; k++) {
1172 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1173
1174 rthp=&rt_hash_table[hash].chain;
1175
1176 rcu_read_lock();
1177 while ((rth = rcu_dereference(*rthp)) != NULL) {
1178 struct rtable *rt;
1179
1180 if (rth->fl.fl4_dst != daddr ||
1181 rth->fl.fl4_src != skeys[i] ||
1182 rth->fl.oif != ikeys[k] ||
1183 rth->fl.iif != 0) {
1184 rthp = &rth->u.dst.rt_next;
1185 continue;
1186 }
1187
1188 if (rth->rt_dst != daddr ||
1189 rth->rt_src != saddr ||
1190 rth->u.dst.error ||
1191 rth->rt_gateway != old_gw ||
1192 rth->u.dst.dev != dev)
1193 break;
1194
1195 dst_hold(&rth->u.dst);
1196 rcu_read_unlock();
1197
1198 rt = dst_alloc(&ipv4_dst_ops);
1199 if (rt == NULL) {
1200 ip_rt_put(rth);
1201 in_dev_put(in_dev);
1202 return;
1203 }
1204
1205 /* Copy all the information. */
1206 *rt = *rth;
1207 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1208 rt->u.dst.__use = 1;
1209 atomic_set(&rt->u.dst.__refcnt, 1);
1210 rt->u.dst.child = NULL;
1211 if (rt->u.dst.dev)
1212 dev_hold(rt->u.dst.dev);
1213 if (rt->idev)
1214 in_dev_hold(rt->idev);
1215 rt->u.dst.obsolete = 0;
1216 rt->u.dst.lastuse = jiffies;
1217 rt->u.dst.path = &rt->u.dst;
1218 rt->u.dst.neighbour = NULL;
1219 rt->u.dst.hh = NULL;
1220 rt->u.dst.xfrm = NULL;
1221
1222 rt->rt_flags |= RTCF_REDIRECTED;
1223
1224 /* Gateway is different ... */
1225 rt->rt_gateway = new_gw;
1226
1227 /* Redirect received -> path was valid */
1228 dst_confirm(&rth->u.dst);
1229
1230 if (rt->peer)
1231 atomic_inc(&rt->peer->refcnt);
1232
1233 if (arp_bind_neighbour(&rt->u.dst) ||
1234 !(rt->u.dst.neighbour->nud_state &
1235 NUD_VALID)) {
1236 if (rt->u.dst.neighbour)
1237 neigh_event_send(rt->u.dst.neighbour, NULL);
1238 ip_rt_put(rth);
1239 rt_drop(rt);
1240 goto do_next;
1241 }
1242
1243 netevent.old = &rth->u.dst;
1244 netevent.new = &rt->u.dst;
1245 call_netevent_notifiers(NETEVENT_REDIRECT,
1246 &netevent);
1247
1248 rt_del(hash, rth);
1249 if (!rt_intern_hash(hash, rt, &rt))
1250 ip_rt_put(rt);
1251 goto do_next;
1252 }
1253 rcu_read_unlock();
1254 do_next:
1255 ;
1256 }
1257 }
1258 in_dev_put(in_dev);
1259 return;
1260
1261reject_redirect:
1262#ifdef CONFIG_IP_ROUTE_VERBOSE
1263 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1264 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1265 "%u.%u.%u.%u ignored.\n"
1266 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1267 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1268 NIPQUAD(saddr), NIPQUAD(daddr));
1269#endif
1270 in_dev_put(in_dev);
1271}
1272
1273static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1274{
1275 struct rtable *rt = (struct rtable*)dst;
1276 struct dst_entry *ret = dst;
1277
1278 if (rt) {
1279 if (dst->obsolete) {
1280 ip_rt_put(rt);
1281 ret = NULL;
1282 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1283 rt->u.dst.expires) {
1284 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1285 rt->fl.oif);
1286#if RT_CACHE_DEBUG >= 1
1287 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1288 "%u.%u.%u.%u/%02x dropped\n",
1289 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1290#endif
1291 rt_del(hash, rt);
1292 ret = NULL;
1293 }
1294 }
1295 return ret;
1296}
1297
1298/*
1299 * Algorithm:
1300 * 1. The first ip_rt_redirect_number redirects are sent
1301 * with exponential backoff, then we stop sending them at all,
1302 * assuming that the host ignores our redirects.
1303 * 2. If we did not see packets requiring redirects
1304 * during ip_rt_redirect_silence, we assume that the host
1305 * forgot redirected route and start to send redirects again.
1306 *
1307 * This algorithm is much cheaper and more intelligent than dumb load limiting
1308 * in icmp.c.
1309 *
1310 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1311 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1312 */
1313
1314void ip_rt_send_redirect(struct sk_buff *skb)
1315{
1316 struct rtable *rt = (struct rtable*)skb->dst;
1317 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1318
1319 if (!in_dev)
1320 return;
1321
1322 if (!IN_DEV_TX_REDIRECTS(in_dev))
1323 goto out;
1324
1325 /* No redirected packets during ip_rt_redirect_silence;
1326 * reset the algorithm.
1327 */
1328 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1329 rt->u.dst.rate_tokens = 0;
1330
1331 /* Too many ignored redirects; do not send anything
1332 * set u.dst.rate_last to the last seen redirected packet.
1333 */
1334 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1335 rt->u.dst.rate_last = jiffies;
1336 goto out;
1337 }
1338
1339 /* Check for load limit; set rate_last to the latest sent
1340 * redirect.
1341 */
1342 if (rt->u.dst.rate_tokens == 0 ||
1343 time_after(jiffies,
1344 (rt->u.dst.rate_last +
1345 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1346 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1347 rt->u.dst.rate_last = jiffies;
1348 ++rt->u.dst.rate_tokens;
1349#ifdef CONFIG_IP_ROUTE_VERBOSE
1350 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1351 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1352 net_ratelimit())
1353 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1354 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1355 NIPQUAD(rt->rt_src), rt->rt_iif,
1356 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1357#endif
1358 }
1359out:
1360 in_dev_put(in_dev);
1361}
1362
1363static int ip_error(struct sk_buff *skb)
1364{
1365 struct rtable *rt = (struct rtable*)skb->dst;
1366 unsigned long now;
1367 int code;
1368
1369 switch (rt->u.dst.error) {
1370 case EINVAL:
1371 default:
1372 goto out;
1373 case EHOSTUNREACH:
1374 code = ICMP_HOST_UNREACH;
1375 break;
1376 case ENETUNREACH:
1377 code = ICMP_NET_UNREACH;
1378 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1379 break;
1380 case EACCES:
1381 code = ICMP_PKT_FILTERED;
1382 break;
1383 }
1384
1385 now = jiffies;
1386 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1387 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1388 rt->u.dst.rate_tokens = ip_rt_error_burst;
1389 rt->u.dst.rate_last = now;
1390 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1391 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1392 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1393 }
1394
1395out: kfree_skb(skb);
1396 return 0;
1397}
1398
1399/*
1400 * The last two values are not from the RFC but
1401 * are needed for AMPRnet AX.25 paths.
1402 */
1403
1404static const unsigned short mtu_plateau[] =
1405{32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1406
1407static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1408{
1409 int i;
1410
1411 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1412 if (old_mtu > mtu_plateau[i])
1413 return mtu_plateau[i];
1414 return 68;
1415}
1416
1417unsigned short ip_rt_frag_needed(struct iphdr *iph, unsigned short new_mtu)
1418{
1419 int i;
1420 unsigned short old_mtu = ntohs(iph->tot_len);
1421 struct rtable *rth;
1422 __be32 skeys[2] = { iph->saddr, 0, };
1423 __be32 daddr = iph->daddr;
1424 unsigned short est_mtu = 0;
1425
1426 if (ipv4_config.no_pmtu_disc)
1427 return 0;
1428
1429 for (i = 0; i < 2; i++) {
1430 unsigned hash = rt_hash(daddr, skeys[i], 0);
1431
1432 rcu_read_lock();
1433 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1434 rth = rcu_dereference(rth->u.dst.rt_next)) {
1435 if (rth->fl.fl4_dst == daddr &&
1436 rth->fl.fl4_src == skeys[i] &&
1437 rth->rt_dst == daddr &&
1438 rth->rt_src == iph->saddr &&
1439 rth->fl.iif == 0 &&
1440 !(dst_metric_locked(&rth->u.dst, RTAX_MTU))) {
1441 unsigned short mtu = new_mtu;
1442
1443 if (new_mtu < 68 || new_mtu >= old_mtu) {
1444
1445 /* BSD 4.2 compatibility hack :-( */
1446 if (mtu == 0 &&
1447 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1448 old_mtu >= 68 + (iph->ihl << 2))
1449 old_mtu -= iph->ihl << 2;
1450
1451 mtu = guess_mtu(old_mtu);
1452 }
1453 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1454 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1455 dst_confirm(&rth->u.dst);
1456 if (mtu < ip_rt_min_pmtu) {
1457 mtu = ip_rt_min_pmtu;
1458 rth->u.dst.metrics[RTAX_LOCK-1] |=
1459 (1 << RTAX_MTU);
1460 }
1461 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1462 dst_set_expires(&rth->u.dst,
1463 ip_rt_mtu_expires);
1464 }
1465 est_mtu = mtu;
1466 }
1467 }
1468 }
1469 rcu_read_unlock();
1470 }
1471 return est_mtu ? : new_mtu;
1472}
1473
1474static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1475{
1476 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1477 !(dst_metric_locked(dst, RTAX_MTU))) {
1478 if (mtu < ip_rt_min_pmtu) {
1479 mtu = ip_rt_min_pmtu;
1480 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1481 }
1482 dst->metrics[RTAX_MTU-1] = mtu;
1483 dst_set_expires(dst, ip_rt_mtu_expires);
1484 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1485 }
1486}
1487
1488static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1489{
1490 return NULL;
1491}
1492
1493static void ipv4_dst_destroy(struct dst_entry *dst)
1494{
1495 struct rtable *rt = (struct rtable *) dst;
1496 struct inet_peer *peer = rt->peer;
1497 struct in_device *idev = rt->idev;
1498
1499 if (peer) {
1500 rt->peer = NULL;
1501 inet_putpeer(peer);
1502 }
1503
1504 if (idev) {
1505 rt->idev = NULL;
1506 in_dev_put(idev);
1507 }
1508}
1509
1510static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1511 int how)
1512{
1513 struct rtable *rt = (struct rtable *) dst;
1514 struct in_device *idev = rt->idev;
1515 if (dev != init_net.loopback_dev && idev && idev->dev == dev) {
1516 struct in_device *loopback_idev = in_dev_get(init_net.loopback_dev);
1517 if (loopback_idev) {
1518 rt->idev = loopback_idev;
1519 in_dev_put(idev);
1520 }
1521 }
1522}
1523
1524static void ipv4_link_failure(struct sk_buff *skb)
1525{
1526 struct rtable *rt;
1527
1528 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1529
1530 rt = (struct rtable *) skb->dst;
1531 if (rt)
1532 dst_set_expires(&rt->u.dst, 0);
1533}
1534
1535static int ip_rt_bug(struct sk_buff *skb)
1536{
1537 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1538 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1539 skb->dev ? skb->dev->name : "?");
1540 kfree_skb(skb);
1541 return 0;
1542}
1543
1544/*
1545 We do not cache source address of outgoing interface,
1546 because it is used only by IP RR, TS and SRR options,
1547 so that it out of fast path.
1548
1549 BTW remember: "addr" is allowed to be not aligned
1550 in IP options!
1551 */
1552
1553void ip_rt_get_source(u8 *addr, struct rtable *rt)
1554{
1555 __be32 src;
1556 struct fib_result res;
1557
1558 if (rt->fl.iif == 0)
1559 src = rt->rt_src;
1560 else if (fib_lookup(&rt->fl, &res) == 0) {
1561 src = FIB_RES_PREFSRC(res);
1562 fib_res_put(&res);
1563 } else
1564 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1565 RT_SCOPE_UNIVERSE);
1566 memcpy(addr, &src, 4);
1567}
1568
1569#ifdef CONFIG_NET_CLS_ROUTE
1570static void set_class_tag(struct rtable *rt, u32 tag)
1571{
1572 if (!(rt->u.dst.tclassid & 0xFFFF))
1573 rt->u.dst.tclassid |= tag & 0xFFFF;
1574 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1575 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1576}
1577#endif
1578
1579static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1580{
1581 struct fib_info *fi = res->fi;
1582
1583 if (fi) {
1584 if (FIB_RES_GW(*res) &&
1585 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1586 rt->rt_gateway = FIB_RES_GW(*res);
1587 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1588 sizeof(rt->u.dst.metrics));
1589 if (fi->fib_mtu == 0) {
1590 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1591 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1592 rt->rt_gateway != rt->rt_dst &&
1593 rt->u.dst.dev->mtu > 576)
1594 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1595 }
1596#ifdef CONFIG_NET_CLS_ROUTE
1597 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1598#endif
1599 } else
1600 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1601
1602 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1603 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1604 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1605 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1606 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1607 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1608 ip_rt_min_advmss);
1609 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1610 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1611
1612#ifdef CONFIG_NET_CLS_ROUTE
1613#ifdef CONFIG_IP_MULTIPLE_TABLES
1614 set_class_tag(rt, fib_rules_tclass(res));
1615#endif
1616 set_class_tag(rt, itag);
1617#endif
1618 rt->rt_type = res->type;
1619}
1620
1621static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1622 u8 tos, struct net_device *dev, int our)
1623{
1624 unsigned hash;
1625 struct rtable *rth;
1626 __be32 spec_dst;
1627 struct in_device *in_dev = in_dev_get(dev);
1628 u32 itag = 0;
1629
1630 /* Primary sanity checks. */
1631
1632 if (in_dev == NULL)
1633 return -EINVAL;
1634
1635 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr) ||
1636 skb->protocol != htons(ETH_P_IP))
1637 goto e_inval;
1638
1639 if (ZERONET(saddr)) {
1640 if (!LOCAL_MCAST(daddr))
1641 goto e_inval;
1642 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1643 } else if (fib_validate_source(saddr, 0, tos, 0,
1644 dev, &spec_dst, &itag) < 0)
1645 goto e_inval;
1646
1647 rth = dst_alloc(&ipv4_dst_ops);
1648 if (!rth)
1649 goto e_nobufs;
1650
1651 rth->u.dst.output= ip_rt_bug;
1652
1653 atomic_set(&rth->u.dst.__refcnt, 1);
1654 rth->u.dst.flags= DST_HOST;
1655 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1656 rth->u.dst.flags |= DST_NOPOLICY;
1657 rth->fl.fl4_dst = daddr;
1658 rth->rt_dst = daddr;
1659 rth->fl.fl4_tos = tos;
1660 rth->fl.mark = skb->mark;
1661 rth->fl.fl4_src = saddr;
1662 rth->rt_src = saddr;
1663#ifdef CONFIG_NET_CLS_ROUTE
1664 rth->u.dst.tclassid = itag;
1665#endif
1666 rth->rt_iif =
1667 rth->fl.iif = dev->ifindex;
1668 rth->u.dst.dev = init_net.loopback_dev;
1669 dev_hold(rth->u.dst.dev);
1670 rth->idev = in_dev_get(rth->u.dst.dev);
1671 rth->fl.oif = 0;
1672 rth->rt_gateway = daddr;
1673 rth->rt_spec_dst= spec_dst;
1674 rth->rt_type = RTN_MULTICAST;
1675 rth->rt_flags = RTCF_MULTICAST;
1676 if (our) {
1677 rth->u.dst.input= ip_local_deliver;
1678 rth->rt_flags |= RTCF_LOCAL;
1679 }
1680
1681#ifdef CONFIG_IP_MROUTE
1682 if (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
1683 rth->u.dst.input = ip_mr_input;
1684#endif
1685 RT_CACHE_STAT_INC(in_slow_mc);
1686
1687 in_dev_put(in_dev);
1688 hash = rt_hash(daddr, saddr, dev->ifindex);
1689 return rt_intern_hash(hash, rth, (struct rtable**) &skb->dst);
1690
1691e_nobufs:
1692 in_dev_put(in_dev);
1693 return -ENOBUFS;
1694
1695e_inval:
1696 in_dev_put(in_dev);
1697 return -EINVAL;
1698}
1699
1700
1701static void ip_handle_martian_source(struct net_device *dev,
1702 struct in_device *in_dev,
1703 struct sk_buff *skb,
1704 __be32 daddr,
1705 __be32 saddr)
1706{
1707 RT_CACHE_STAT_INC(in_martian_src);
1708#ifdef CONFIG_IP_ROUTE_VERBOSE
1709 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1710 /*
1711 * RFC1812 recommendation, if source is martian,
1712 * the only hint is MAC header.
1713 */
1714 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1715 "%u.%u.%u.%u, on dev %s\n",
1716 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1717 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1718 int i;
1719 const unsigned char *p = skb_mac_header(skb);
1720 printk(KERN_WARNING "ll header: ");
1721 for (i = 0; i < dev->hard_header_len; i++, p++) {
1722 printk("%02x", *p);
1723 if (i < (dev->hard_header_len - 1))
1724 printk(":");
1725 }
1726 printk("\n");
1727 }
1728 }
1729#endif
1730}
1731
1732static inline int __mkroute_input(struct sk_buff *skb,
1733 struct fib_result* res,
1734 struct in_device *in_dev,
1735 __be32 daddr, __be32 saddr, u32 tos,
1736 struct rtable **result)
1737{
1738
1739 struct rtable *rth;
1740 int err;
1741 struct in_device *out_dev;
1742 unsigned flags = 0;
1743 __be32 spec_dst;
1744 u32 itag;
1745
1746 /* get a working reference to the output device */
1747 out_dev = in_dev_get(FIB_RES_DEV(*res));
1748 if (out_dev == NULL) {
1749 if (net_ratelimit())
1750 printk(KERN_CRIT "Bug in ip_route_input" \
1751 "_slow(). Please, report\n");
1752 return -EINVAL;
1753 }
1754
1755
1756 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1757 in_dev->dev, &spec_dst, &itag);
1758 if (err < 0) {
1759 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1760 saddr);
1761
1762 err = -EINVAL;
1763 goto cleanup;
1764 }
1765
1766 if (err)
1767 flags |= RTCF_DIRECTSRC;
1768
1769 if (out_dev == in_dev && err && !(flags & (RTCF_NAT | RTCF_MASQ)) &&
1770 (IN_DEV_SHARED_MEDIA(out_dev) ||
1771 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1772 flags |= RTCF_DOREDIRECT;
1773
1774 if (skb->protocol != htons(ETH_P_IP)) {
1775 /* Not IP (i.e. ARP). Do not create route, if it is
1776 * invalid for proxy arp. DNAT routes are always valid.
1777 */
1778 if (out_dev == in_dev && !(flags & RTCF_DNAT)) {
1779 err = -EINVAL;
1780 goto cleanup;
1781 }
1782 }
1783
1784
1785 rth = dst_alloc(&ipv4_dst_ops);
1786 if (!rth) {
1787 err = -ENOBUFS;
1788 goto cleanup;
1789 }
1790
1791 atomic_set(&rth->u.dst.__refcnt, 1);
1792 rth->u.dst.flags= DST_HOST;
1793 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1794 rth->u.dst.flags |= DST_NOPOLICY;
1795 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1796 rth->u.dst.flags |= DST_NOXFRM;
1797 rth->fl.fl4_dst = daddr;
1798 rth->rt_dst = daddr;
1799 rth->fl.fl4_tos = tos;
1800 rth->fl.mark = skb->mark;
1801 rth->fl.fl4_src = saddr;
1802 rth->rt_src = saddr;
1803 rth->rt_gateway = daddr;
1804 rth->rt_iif =
1805 rth->fl.iif = in_dev->dev->ifindex;
1806 rth->u.dst.dev = (out_dev)->dev;
1807 dev_hold(rth->u.dst.dev);
1808 rth->idev = in_dev_get(rth->u.dst.dev);
1809 rth->fl.oif = 0;
1810 rth->rt_spec_dst= spec_dst;
1811
1812 rth->u.dst.input = ip_forward;
1813 rth->u.dst.output = ip_output;
1814
1815 rt_set_nexthop(rth, res, itag);
1816
1817 rth->rt_flags = flags;
1818
1819 *result = rth;
1820 err = 0;
1821 cleanup:
1822 /* release the working reference to the output device */
1823 in_dev_put(out_dev);
1824 return err;
1825}
1826
1827static inline int ip_mkroute_input(struct sk_buff *skb,
1828 struct fib_result* res,
1829 const struct flowi *fl,
1830 struct in_device *in_dev,
1831 __be32 daddr, __be32 saddr, u32 tos)
1832{
1833 struct rtable* rth = NULL;
1834 int err;
1835 unsigned hash;
1836
1837#ifdef CONFIG_IP_ROUTE_MULTIPATH
1838 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1839 fib_select_multipath(fl, res);
1840#endif
1841
1842 /* create a routing cache entry */
1843 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1844 if (err)
1845 return err;
1846
1847 /* put it into the cache */
1848 hash = rt_hash(daddr, saddr, fl->iif);
1849 return rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1850}
1851
1852/*
1853 * NOTE. We drop all the packets that has local source
1854 * addresses, because every properly looped back packet
1855 * must have correct destination already attached by output routine.
1856 *
1857 * Such approach solves two big problems:
1858 * 1. Not simplex devices are handled properly.
1859 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1860 */
1861
1862static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1863 u8 tos, struct net_device *dev)
1864{
1865 struct fib_result res;
1866 struct in_device *in_dev = in_dev_get(dev);
1867 struct flowi fl = { .nl_u = { .ip4_u =
1868 { .daddr = daddr,
1869 .saddr = saddr,
1870 .tos = tos,
1871 .scope = RT_SCOPE_UNIVERSE,
1872 } },
1873 .mark = skb->mark,
1874 .iif = dev->ifindex };
1875 unsigned flags = 0;
1876 u32 itag = 0;
1877 struct rtable * rth;
1878 unsigned hash;
1879 __be32 spec_dst;
1880 int err = -EINVAL;
1881 int free_res = 0;
1882
1883 /* IP on this device is disabled. */
1884
1885 if (!in_dev)
1886 goto out;
1887
1888 /* Check for the most weird martians, which can be not detected
1889 by fib_lookup.
1890 */
1891
1892 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr))
1893 goto martian_source;
1894
1895 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1896 goto brd_input;
1897
1898 /* Accept zero addresses only to limited broadcast;
1899 * I even do not know to fix it or not. Waiting for complains :-)
1900 */
1901 if (ZERONET(saddr))
1902 goto martian_source;
1903
1904 if (BADCLASS(daddr) || ZERONET(daddr) || LOOPBACK(daddr))
1905 goto martian_destination;
1906
1907 /*
1908 * Now we are ready to route packet.
1909 */
1910 if ((err = fib_lookup(&fl, &res)) != 0) {
1911 if (!IN_DEV_FORWARD(in_dev))
1912 goto e_hostunreach;
1913 goto no_route;
1914 }
1915 free_res = 1;
1916
1917 RT_CACHE_STAT_INC(in_slow_tot);
1918
1919 if (res.type == RTN_BROADCAST)
1920 goto brd_input;
1921
1922 if (res.type == RTN_LOCAL) {
1923 int result;
1924 result = fib_validate_source(saddr, daddr, tos,
1925 init_net.loopback_dev->ifindex,
1926 dev, &spec_dst, &itag);
1927 if (result < 0)
1928 goto martian_source;
1929 if (result)
1930 flags |= RTCF_DIRECTSRC;
1931 spec_dst = daddr;
1932 goto local_input;
1933 }
1934
1935 if (!IN_DEV_FORWARD(in_dev))
1936 goto e_hostunreach;
1937 if (res.type != RTN_UNICAST)
1938 goto martian_destination;
1939
1940 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1941done:
1942 in_dev_put(in_dev);
1943 if (free_res)
1944 fib_res_put(&res);
1945out: return err;
1946
1947brd_input:
1948 if (skb->protocol != htons(ETH_P_IP))
1949 goto e_inval;
1950
1951 if (ZERONET(saddr))
1952 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1953 else {
1954 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1955 &itag);
1956 if (err < 0)
1957 goto martian_source;
1958 if (err)
1959 flags |= RTCF_DIRECTSRC;
1960 }
1961 flags |= RTCF_BROADCAST;
1962 res.type = RTN_BROADCAST;
1963 RT_CACHE_STAT_INC(in_brd);
1964
1965local_input:
1966 rth = dst_alloc(&ipv4_dst_ops);
1967 if (!rth)
1968 goto e_nobufs;
1969
1970 rth->u.dst.output= ip_rt_bug;
1971
1972 atomic_set(&rth->u.dst.__refcnt, 1);
1973 rth->u.dst.flags= DST_HOST;
1974 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1975 rth->u.dst.flags |= DST_NOPOLICY;
1976 rth->fl.fl4_dst = daddr;
1977 rth->rt_dst = daddr;
1978 rth->fl.fl4_tos = tos;
1979 rth->fl.mark = skb->mark;
1980 rth->fl.fl4_src = saddr;
1981 rth->rt_src = saddr;
1982#ifdef CONFIG_NET_CLS_ROUTE
1983 rth->u.dst.tclassid = itag;
1984#endif
1985 rth->rt_iif =
1986 rth->fl.iif = dev->ifindex;
1987 rth->u.dst.dev = init_net.loopback_dev;
1988 dev_hold(rth->u.dst.dev);
1989 rth->idev = in_dev_get(rth->u.dst.dev);
1990 rth->rt_gateway = daddr;
1991 rth->rt_spec_dst= spec_dst;
1992 rth->u.dst.input= ip_local_deliver;
1993 rth->rt_flags = flags|RTCF_LOCAL;
1994 if (res.type == RTN_UNREACHABLE) {
1995 rth->u.dst.input= ip_error;
1996 rth->u.dst.error= -err;
1997 rth->rt_flags &= ~RTCF_LOCAL;
1998 }
1999 rth->rt_type = res.type;
2000 hash = rt_hash(daddr, saddr, fl.iif);
2001 err = rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
2002 goto done;
2003
2004no_route:
2005 RT_CACHE_STAT_INC(in_no_route);
2006 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2007 res.type = RTN_UNREACHABLE;
2008 if (err == -ESRCH)
2009 err = -ENETUNREACH;
2010 goto local_input;
2011
2012 /*
2013 * Do not cache martian addresses: they should be logged (RFC1812)
2014 */
2015martian_destination:
2016 RT_CACHE_STAT_INC(in_martian_dst);
2017#ifdef CONFIG_IP_ROUTE_VERBOSE
2018 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2019 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2020 "%u.%u.%u.%u, dev %s\n",
2021 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2022#endif
2023
2024e_hostunreach:
2025 err = -EHOSTUNREACH;
2026 goto done;
2027
2028e_inval:
2029 err = -EINVAL;
2030 goto done;
2031
2032e_nobufs:
2033 err = -ENOBUFS;
2034 goto done;
2035
2036martian_source:
2037 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2038 goto e_inval;
2039}
2040
2041int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2042 u8 tos, struct net_device *dev)
2043{
2044 struct rtable * rth;
2045 unsigned hash;
2046 int iif = dev->ifindex;
2047
2048 tos &= IPTOS_RT_MASK;
2049 hash = rt_hash(daddr, saddr, iif);
2050
2051 rcu_read_lock();
2052 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2053 rth = rcu_dereference(rth->u.dst.rt_next)) {
2054 if (rth->fl.fl4_dst == daddr &&
2055 rth->fl.fl4_src == saddr &&
2056 rth->fl.iif == iif &&
2057 rth->fl.oif == 0 &&
2058 rth->fl.mark == skb->mark &&
2059 rth->fl.fl4_tos == tos) {
2060 dst_use(&rth->u.dst, jiffies);
2061 RT_CACHE_STAT_INC(in_hit);
2062 rcu_read_unlock();
2063 skb->dst = (struct dst_entry*)rth;
2064 return 0;
2065 }
2066 RT_CACHE_STAT_INC(in_hlist_search);
2067 }
2068 rcu_read_unlock();
2069
2070 /* Multicast recognition logic is moved from route cache to here.
2071 The problem was that too many Ethernet cards have broken/missing
2072 hardware multicast filters :-( As result the host on multicasting
2073 network acquires a lot of useless route cache entries, sort of
2074 SDR messages from all the world. Now we try to get rid of them.
2075 Really, provided software IP multicast filter is organized
2076 reasonably (at least, hashed), it does not result in a slowdown
2077 comparing with route cache reject entries.
2078 Note, that multicast routers are not affected, because
2079 route cache entry is created eventually.
2080 */
2081 if (MULTICAST(daddr)) {
2082 struct in_device *in_dev;
2083
2084 rcu_read_lock();
2085 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2086 int our = ip_check_mc(in_dev, daddr, saddr,
2087 ip_hdr(skb)->protocol);
2088 if (our
2089#ifdef CONFIG_IP_MROUTE
2090 || (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
2091#endif
2092 ) {
2093 rcu_read_unlock();
2094 return ip_route_input_mc(skb, daddr, saddr,
2095 tos, dev, our);
2096 }
2097 }
2098 rcu_read_unlock();
2099 return -EINVAL;
2100 }
2101 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2102}
2103
2104static inline int __mkroute_output(struct rtable **result,
2105 struct fib_result* res,
2106 const struct flowi *fl,
2107 const struct flowi *oldflp,
2108 struct net_device *dev_out,
2109 unsigned flags)
2110{
2111 struct rtable *rth;
2112 struct in_device *in_dev;
2113 u32 tos = RT_FL_TOS(oldflp);
2114 int err = 0;
2115
2116 if (LOOPBACK(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2117 return -EINVAL;
2118
2119 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2120 res->type = RTN_BROADCAST;
2121 else if (MULTICAST(fl->fl4_dst))
2122 res->type = RTN_MULTICAST;
2123 else if (BADCLASS(fl->fl4_dst) || ZERONET(fl->fl4_dst))
2124 return -EINVAL;
2125
2126 if (dev_out->flags & IFF_LOOPBACK)
2127 flags |= RTCF_LOCAL;
2128
2129 /* get work reference to inet device */
2130 in_dev = in_dev_get(dev_out);
2131 if (!in_dev)
2132 return -EINVAL;
2133
2134 if (res->type == RTN_BROADCAST) {
2135 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2136 if (res->fi) {
2137 fib_info_put(res->fi);
2138 res->fi = NULL;
2139 }
2140 } else if (res->type == RTN_MULTICAST) {
2141 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2142 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2143 oldflp->proto))
2144 flags &= ~RTCF_LOCAL;
2145 /* If multicast route do not exist use
2146 default one, but do not gateway in this case.
2147 Yes, it is hack.
2148 */
2149 if (res->fi && res->prefixlen < 4) {
2150 fib_info_put(res->fi);
2151 res->fi = NULL;
2152 }
2153 }
2154
2155
2156 rth = dst_alloc(&ipv4_dst_ops);
2157 if (!rth) {
2158 err = -ENOBUFS;
2159 goto cleanup;
2160 }
2161
2162 atomic_set(&rth->u.dst.__refcnt, 1);
2163 rth->u.dst.flags= DST_HOST;
2164 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2165 rth->u.dst.flags |= DST_NOXFRM;
2166 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2167 rth->u.dst.flags |= DST_NOPOLICY;
2168
2169 rth->fl.fl4_dst = oldflp->fl4_dst;
2170 rth->fl.fl4_tos = tos;
2171 rth->fl.fl4_src = oldflp->fl4_src;
2172 rth->fl.oif = oldflp->oif;
2173 rth->fl.mark = oldflp->mark;
2174 rth->rt_dst = fl->fl4_dst;
2175 rth->rt_src = fl->fl4_src;
2176 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2177 /* get references to the devices that are to be hold by the routing
2178 cache entry */
2179 rth->u.dst.dev = dev_out;
2180 dev_hold(dev_out);
2181 rth->idev = in_dev_get(dev_out);
2182 rth->rt_gateway = fl->fl4_dst;
2183 rth->rt_spec_dst= fl->fl4_src;
2184
2185 rth->u.dst.output=ip_output;
2186
2187 RT_CACHE_STAT_INC(out_slow_tot);
2188
2189 if (flags & RTCF_LOCAL) {
2190 rth->u.dst.input = ip_local_deliver;
2191 rth->rt_spec_dst = fl->fl4_dst;
2192 }
2193 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2194 rth->rt_spec_dst = fl->fl4_src;
2195 if (flags & RTCF_LOCAL &&
2196 !(dev_out->flags & IFF_LOOPBACK)) {
2197 rth->u.dst.output = ip_mc_output;
2198 RT_CACHE_STAT_INC(out_slow_mc);
2199 }
2200#ifdef CONFIG_IP_MROUTE
2201 if (res->type == RTN_MULTICAST) {
2202 if (IN_DEV_MFORWARD(in_dev) &&
2203 !LOCAL_MCAST(oldflp->fl4_dst)) {
2204 rth->u.dst.input = ip_mr_input;
2205 rth->u.dst.output = ip_mc_output;
2206 }
2207 }
2208#endif
2209 }
2210
2211 rt_set_nexthop(rth, res, 0);
2212
2213 rth->rt_flags = flags;
2214
2215 *result = rth;
2216 cleanup:
2217 /* release work reference to inet device */
2218 in_dev_put(in_dev);
2219
2220 return err;
2221}
2222
2223static inline int ip_mkroute_output(struct rtable **rp,
2224 struct fib_result* res,
2225 const struct flowi *fl,
2226 const struct flowi *oldflp,
2227 struct net_device *dev_out,
2228 unsigned flags)
2229{
2230 struct rtable *rth = NULL;
2231 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2232 unsigned hash;
2233 if (err == 0) {
2234 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2235 err = rt_intern_hash(hash, rth, rp);
2236 }
2237
2238 return err;
2239}
2240
2241/*
2242 * Major route resolver routine.
2243 */
2244
2245static int ip_route_output_slow(struct rtable **rp, const struct flowi *oldflp)
2246{
2247 u32 tos = RT_FL_TOS(oldflp);
2248 struct flowi fl = { .nl_u = { .ip4_u =
2249 { .daddr = oldflp->fl4_dst,
2250 .saddr = oldflp->fl4_src,
2251 .tos = tos & IPTOS_RT_MASK,
2252 .scope = ((tos & RTO_ONLINK) ?
2253 RT_SCOPE_LINK :
2254 RT_SCOPE_UNIVERSE),
2255 } },
2256 .mark = oldflp->mark,
2257 .iif = init_net.loopback_dev->ifindex,
2258 .oif = oldflp->oif };
2259 struct fib_result res;
2260 unsigned flags = 0;
2261 struct net_device *dev_out = NULL;
2262 int free_res = 0;
2263 int err;
2264
2265
2266 res.fi = NULL;
2267#ifdef CONFIG_IP_MULTIPLE_TABLES
2268 res.r = NULL;
2269#endif
2270
2271 if (oldflp->fl4_src) {
2272 err = -EINVAL;
2273 if (MULTICAST(oldflp->fl4_src) ||
2274 BADCLASS(oldflp->fl4_src) ||
2275 ZERONET(oldflp->fl4_src))
2276 goto out;
2277
2278 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2279 dev_out = ip_dev_find(oldflp->fl4_src);
2280 if (dev_out == NULL)
2281 goto out;
2282
2283 /* I removed check for oif == dev_out->oif here.
2284 It was wrong for two reasons:
2285 1. ip_dev_find(saddr) can return wrong iface, if saddr is
2286 assigned to multiple interfaces.
2287 2. Moreover, we are allowed to send packets with saddr
2288 of another iface. --ANK
2289 */
2290
2291 if (oldflp->oif == 0
2292 && (MULTICAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2293 /* Special hack: user can direct multicasts
2294 and limited broadcast via necessary interface
2295 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2296 This hack is not just for fun, it allows
2297 vic,vat and friends to work.
2298 They bind socket to loopback, set ttl to zero
2299 and expect that it will work.
2300 From the viewpoint of routing cache they are broken,
2301 because we are not allowed to build multicast path
2302 with loopback source addr (look, routing cache
2303 cannot know, that ttl is zero, so that packet
2304 will not leave this host and route is valid).
2305 Luckily, this hack is good workaround.
2306 */
2307
2308 fl.oif = dev_out->ifindex;
2309 goto make_route;
2310 }
2311 if (dev_out)
2312 dev_put(dev_out);
2313 dev_out = NULL;
2314 }
2315
2316
2317 if (oldflp->oif) {
2318 dev_out = dev_get_by_index(&init_net, oldflp->oif);
2319 err = -ENODEV;
2320 if (dev_out == NULL)
2321 goto out;
2322
2323 /* RACE: Check return value of inet_select_addr instead. */
2324 if (__in_dev_get_rtnl(dev_out) == NULL) {
2325 dev_put(dev_out);
2326 goto out; /* Wrong error code */
2327 }
2328
2329 if (LOCAL_MCAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2330 if (!fl.fl4_src)
2331 fl.fl4_src = inet_select_addr(dev_out, 0,
2332 RT_SCOPE_LINK);
2333 goto make_route;
2334 }
2335 if (!fl.fl4_src) {
2336 if (MULTICAST(oldflp->fl4_dst))
2337 fl.fl4_src = inet_select_addr(dev_out, 0,
2338 fl.fl4_scope);
2339 else if (!oldflp->fl4_dst)
2340 fl.fl4_src = inet_select_addr(dev_out, 0,
2341 RT_SCOPE_HOST);
2342 }
2343 }
2344
2345 if (!fl.fl4_dst) {
2346 fl.fl4_dst = fl.fl4_src;
2347 if (!fl.fl4_dst)
2348 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2349 if (dev_out)
2350 dev_put(dev_out);
2351 dev_out = init_net.loopback_dev;
2352 dev_hold(dev_out);
2353 fl.oif = init_net.loopback_dev->ifindex;
2354 res.type = RTN_LOCAL;
2355 flags |= RTCF_LOCAL;
2356 goto make_route;
2357 }
2358
2359 if (fib_lookup(&fl, &res)) {
2360 res.fi = NULL;
2361 if (oldflp->oif) {
2362 /* Apparently, routing tables are wrong. Assume,
2363 that the destination is on link.
2364
2365 WHY? DW.
2366 Because we are allowed to send to iface
2367 even if it has NO routes and NO assigned
2368 addresses. When oif is specified, routing
2369 tables are looked up with only one purpose:
2370 to catch if destination is gatewayed, rather than
2371 direct. Moreover, if MSG_DONTROUTE is set,
2372 we send packet, ignoring both routing tables
2373 and ifaddr state. --ANK
2374
2375
2376 We could make it even if oif is unknown,
2377 likely IPv6, but we do not.
2378 */
2379
2380 if (fl.fl4_src == 0)
2381 fl.fl4_src = inet_select_addr(dev_out, 0,
2382 RT_SCOPE_LINK);
2383 res.type = RTN_UNICAST;
2384 goto make_route;
2385 }
2386 if (dev_out)
2387 dev_put(dev_out);
2388 err = -ENETUNREACH;
2389 goto out;
2390 }
2391 free_res = 1;
2392
2393 if (res.type == RTN_LOCAL) {
2394 if (!fl.fl4_src)
2395 fl.fl4_src = fl.fl4_dst;
2396 if (dev_out)
2397 dev_put(dev_out);
2398 dev_out = init_net.loopback_dev;
2399 dev_hold(dev_out);
2400 fl.oif = dev_out->ifindex;
2401 if (res.fi)
2402 fib_info_put(res.fi);
2403 res.fi = NULL;
2404 flags |= RTCF_LOCAL;
2405 goto make_route;
2406 }
2407
2408#ifdef CONFIG_IP_ROUTE_MULTIPATH
2409 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2410 fib_select_multipath(&fl, &res);
2411 else
2412#endif
2413 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2414 fib_select_default(&fl, &res);
2415
2416 if (!fl.fl4_src)
2417 fl.fl4_src = FIB_RES_PREFSRC(res);
2418
2419 if (dev_out)
2420 dev_put(dev_out);
2421 dev_out = FIB_RES_DEV(res);
2422 dev_hold(dev_out);
2423 fl.oif = dev_out->ifindex;
2424
2425
2426make_route:
2427 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2428
2429
2430 if (free_res)
2431 fib_res_put(&res);
2432 if (dev_out)
2433 dev_put(dev_out);
2434out: return err;
2435}
2436
2437int __ip_route_output_key(struct rtable **rp, const struct flowi *flp)
2438{
2439 unsigned hash;
2440 struct rtable *rth;
2441
2442 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2443
2444 rcu_read_lock_bh();
2445 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2446 rth = rcu_dereference(rth->u.dst.rt_next)) {
2447 if (rth->fl.fl4_dst == flp->fl4_dst &&
2448 rth->fl.fl4_src == flp->fl4_src &&
2449 rth->fl.iif == 0 &&
2450 rth->fl.oif == flp->oif &&
2451 rth->fl.mark == flp->mark &&
2452 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2453 (IPTOS_RT_MASK | RTO_ONLINK))) {
2454 dst_use(&rth->u.dst, jiffies);
2455 RT_CACHE_STAT_INC(out_hit);
2456 rcu_read_unlock_bh();
2457 *rp = rth;
2458 return 0;
2459 }
2460 RT_CACHE_STAT_INC(out_hlist_search);
2461 }
2462 rcu_read_unlock_bh();
2463
2464 return ip_route_output_slow(rp, flp);
2465}
2466
2467EXPORT_SYMBOL_GPL(__ip_route_output_key);
2468
2469static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2470{
2471}
2472
2473static struct dst_ops ipv4_dst_blackhole_ops = {
2474 .family = AF_INET,
2475 .protocol = __constant_htons(ETH_P_IP),
2476 .destroy = ipv4_dst_destroy,
2477 .check = ipv4_dst_check,
2478 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2479 .entry_size = sizeof(struct rtable),
2480};
2481
2482
2483static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2484{
2485 struct rtable *ort = *rp;
2486 struct rtable *rt = (struct rtable *)
2487 dst_alloc(&ipv4_dst_blackhole_ops);
2488
2489 if (rt) {
2490 struct dst_entry *new = &rt->u.dst;
2491
2492 atomic_set(&new->__refcnt, 1);
2493 new->__use = 1;
2494 new->input = dst_discard;
2495 new->output = dst_discard;
2496 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2497
2498 new->dev = ort->u.dst.dev;
2499 if (new->dev)
2500 dev_hold(new->dev);
2501
2502 rt->fl = ort->fl;
2503
2504 rt->idev = ort->idev;
2505 if (rt->idev)
2506 in_dev_hold(rt->idev);
2507 rt->rt_flags = ort->rt_flags;
2508 rt->rt_type = ort->rt_type;
2509 rt->rt_dst = ort->rt_dst;
2510 rt->rt_src = ort->rt_src;
2511 rt->rt_iif = ort->rt_iif;
2512 rt->rt_gateway = ort->rt_gateway;
2513 rt->rt_spec_dst = ort->rt_spec_dst;
2514 rt->peer = ort->peer;
2515 if (rt->peer)
2516 atomic_inc(&rt->peer->refcnt);
2517
2518 dst_free(new);
2519 }
2520
2521 dst_release(&(*rp)->u.dst);
2522 *rp = rt;
2523 return (rt ? 0 : -ENOMEM);
2524}
2525
2526int ip_route_output_flow(struct rtable **rp, struct flowi *flp, struct sock *sk, int flags)
2527{
2528 int err;
2529
2530 if ((err = __ip_route_output_key(rp, flp)) != 0)
2531 return err;
2532
2533 if (flp->proto) {
2534 if (!flp->fl4_src)
2535 flp->fl4_src = (*rp)->rt_src;
2536 if (!flp->fl4_dst)
2537 flp->fl4_dst = (*rp)->rt_dst;
2538 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk, flags);
2539 if (err == -EREMOTE)
2540 err = ipv4_dst_blackhole(rp, flp, sk);
2541
2542 return err;
2543 }
2544
2545 return 0;
2546}
2547
2548EXPORT_SYMBOL_GPL(ip_route_output_flow);
2549
2550int ip_route_output_key(struct rtable **rp, struct flowi *flp)
2551{
2552 return ip_route_output_flow(rp, flp, NULL, 0);
2553}
2554
2555static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2556 int nowait, unsigned int flags)
2557{
2558 struct rtable *rt = (struct rtable*)skb->dst;
2559 struct rtmsg *r;
2560 struct nlmsghdr *nlh;
2561 long expires;
2562 u32 id = 0, ts = 0, tsage = 0, error;
2563
2564 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2565 if (nlh == NULL)
2566 return -EMSGSIZE;
2567
2568 r = nlmsg_data(nlh);
2569 r->rtm_family = AF_INET;
2570 r->rtm_dst_len = 32;
2571 r->rtm_src_len = 0;
2572 r->rtm_tos = rt->fl.fl4_tos;
2573 r->rtm_table = RT_TABLE_MAIN;
2574 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2575 r->rtm_type = rt->rt_type;
2576 r->rtm_scope = RT_SCOPE_UNIVERSE;
2577 r->rtm_protocol = RTPROT_UNSPEC;
2578 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2579 if (rt->rt_flags & RTCF_NOTIFY)
2580 r->rtm_flags |= RTM_F_NOTIFY;
2581
2582 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2583
2584 if (rt->fl.fl4_src) {
2585 r->rtm_src_len = 32;
2586 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2587 }
2588 if (rt->u.dst.dev)
2589 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2590#ifdef CONFIG_NET_CLS_ROUTE
2591 if (rt->u.dst.tclassid)
2592 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2593#endif
2594 if (rt->fl.iif)
2595 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2596 else if (rt->rt_src != rt->fl.fl4_src)
2597 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2598
2599 if (rt->rt_dst != rt->rt_gateway)
2600 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2601
2602 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2603 goto nla_put_failure;
2604
2605 error = rt->u.dst.error;
2606 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2607 if (rt->peer) {
2608 id = rt->peer->ip_id_count;
2609 if (rt->peer->tcp_ts_stamp) {
2610 ts = rt->peer->tcp_ts;
2611 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2612 }
2613 }
2614
2615 if (rt->fl.iif) {
2616#ifdef CONFIG_IP_MROUTE
2617 __be32 dst = rt->rt_dst;
2618
2619 if (MULTICAST(dst) && !LOCAL_MCAST(dst) &&
2620 IPV4_DEVCONF_ALL(MC_FORWARDING)) {
2621 int err = ipmr_get_route(skb, r, nowait);
2622 if (err <= 0) {
2623 if (!nowait) {
2624 if (err == 0)
2625 return 0;
2626 goto nla_put_failure;
2627 } else {
2628 if (err == -EMSGSIZE)
2629 goto nla_put_failure;
2630 error = err;
2631 }
2632 }
2633 } else
2634#endif
2635 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2636 }
2637
2638 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2639 expires, error) < 0)
2640 goto nla_put_failure;
2641
2642 return nlmsg_end(skb, nlh);
2643
2644nla_put_failure:
2645 nlmsg_cancel(skb, nlh);
2646 return -EMSGSIZE;
2647}
2648
2649static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2650{
2651 struct net *net = in_skb->sk->sk_net;
2652 struct rtmsg *rtm;
2653 struct nlattr *tb[RTA_MAX+1];
2654 struct rtable *rt = NULL;
2655 __be32 dst = 0;
2656 __be32 src = 0;
2657 u32 iif;
2658 int err;
2659 struct sk_buff *skb;
2660
2661 if (net != &init_net)
2662 return -EINVAL;
2663
2664 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2665 if (err < 0)
2666 goto errout;
2667
2668 rtm = nlmsg_data(nlh);
2669
2670 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2671 if (skb == NULL) {
2672 err = -ENOBUFS;
2673 goto errout;
2674 }
2675
2676 /* Reserve room for dummy headers, this skb can pass
2677 through good chunk of routing engine.
2678 */
2679 skb_reset_mac_header(skb);
2680 skb_reset_network_header(skb);
2681
2682 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2683 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2684 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2685
2686 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2687 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2688 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2689
2690 if (iif) {
2691 struct net_device *dev;
2692
2693 dev = __dev_get_by_index(&init_net, iif);
2694 if (dev == NULL) {
2695 err = -ENODEV;
2696 goto errout_free;
2697 }
2698
2699 skb->protocol = htons(ETH_P_IP);
2700 skb->dev = dev;
2701 local_bh_disable();
2702 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2703 local_bh_enable();
2704
2705 rt = (struct rtable*) skb->dst;
2706 if (err == 0 && rt->u.dst.error)
2707 err = -rt->u.dst.error;
2708 } else {
2709 struct flowi fl = {
2710 .nl_u = {
2711 .ip4_u = {
2712 .daddr = dst,
2713 .saddr = src,
2714 .tos = rtm->rtm_tos,
2715 },
2716 },
2717 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2718 };
2719 err = ip_route_output_key(&rt, &fl);
2720 }
2721
2722 if (err)
2723 goto errout_free;
2724
2725 skb->dst = &rt->u.dst;
2726 if (rtm->rtm_flags & RTM_F_NOTIFY)
2727 rt->rt_flags |= RTCF_NOTIFY;
2728
2729 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2730 RTM_NEWROUTE, 0, 0);
2731 if (err <= 0)
2732 goto errout_free;
2733
2734 err = rtnl_unicast(skb, &init_net, NETLINK_CB(in_skb).pid);
2735errout:
2736 return err;
2737
2738errout_free:
2739 kfree_skb(skb);
2740 goto errout;
2741}
2742
2743int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2744{
2745 struct rtable *rt;
2746 int h, s_h;
2747 int idx, s_idx;
2748
2749 s_h = cb->args[0];
2750 if (s_h < 0)
2751 s_h = 0;
2752 s_idx = idx = cb->args[1];
2753 for (h = s_h; h <= rt_hash_mask; h++) {
2754 rcu_read_lock_bh();
2755 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2756 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2757 if (idx < s_idx)
2758 continue;
2759 skb->dst = dst_clone(&rt->u.dst);
2760 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2761 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2762 1, NLM_F_MULTI) <= 0) {
2763 dst_release(xchg(&skb->dst, NULL));
2764 rcu_read_unlock_bh();
2765 goto done;
2766 }
2767 dst_release(xchg(&skb->dst, NULL));
2768 }
2769 rcu_read_unlock_bh();
2770 s_idx = 0;
2771 }
2772
2773done:
2774 cb->args[0] = h;
2775 cb->args[1] = idx;
2776 return skb->len;
2777}
2778
2779void ip_rt_multicast_event(struct in_device *in_dev)
2780{
2781 rt_cache_flush(0);
2782}
2783
2784#ifdef CONFIG_SYSCTL
2785static int flush_delay;
2786
2787static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2788 struct file *filp, void __user *buffer,
2789 size_t *lenp, loff_t *ppos)
2790{
2791 if (write) {
2792 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2793 rt_cache_flush(flush_delay);
2794 return 0;
2795 }
2796
2797 return -EINVAL;
2798}
2799
2800static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2801 int __user *name,
2802 int nlen,
2803 void __user *oldval,
2804 size_t __user *oldlenp,
2805 void __user *newval,
2806 size_t newlen)
2807{
2808 int delay;
2809 if (newlen != sizeof(int))
2810 return -EINVAL;
2811 if (get_user(delay, (int __user *)newval))
2812 return -EFAULT;
2813 rt_cache_flush(delay);
2814 return 0;
2815}
2816
2817ctl_table ipv4_route_table[] = {
2818 {
2819 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2820 .procname = "flush",
2821 .data = &flush_delay,
2822 .maxlen = sizeof(int),
2823 .mode = 0200,
2824 .proc_handler = &ipv4_sysctl_rtcache_flush,
2825 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2826 },
2827 {
2828 .ctl_name = NET_IPV4_ROUTE_MIN_DELAY,
2829 .procname = "min_delay",
2830 .data = &ip_rt_min_delay,
2831 .maxlen = sizeof(int),
2832 .mode = 0644,
2833 .proc_handler = &proc_dointvec_jiffies,
2834 .strategy = &sysctl_jiffies,
2835 },
2836 {
2837 .ctl_name = NET_IPV4_ROUTE_MAX_DELAY,
2838 .procname = "max_delay",
2839 .data = &ip_rt_max_delay,
2840 .maxlen = sizeof(int),
2841 .mode = 0644,
2842 .proc_handler = &proc_dointvec_jiffies,
2843 .strategy = &sysctl_jiffies,
2844 },
2845 {
2846 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2847 .procname = "gc_thresh",
2848 .data = &ipv4_dst_ops.gc_thresh,
2849 .maxlen = sizeof(int),
2850 .mode = 0644,
2851 .proc_handler = &proc_dointvec,
2852 },
2853 {
2854 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2855 .procname = "max_size",
2856 .data = &ip_rt_max_size,
2857 .maxlen = sizeof(int),
2858 .mode = 0644,
2859 .proc_handler = &proc_dointvec,
2860 },
2861 {
2862 /* Deprecated. Use gc_min_interval_ms */
2863
2864 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2865 .procname = "gc_min_interval",
2866 .data = &ip_rt_gc_min_interval,
2867 .maxlen = sizeof(int),
2868 .mode = 0644,
2869 .proc_handler = &proc_dointvec_jiffies,
2870 .strategy = &sysctl_jiffies,
2871 },
2872 {
2873 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2874 .procname = "gc_min_interval_ms",
2875 .data = &ip_rt_gc_min_interval,
2876 .maxlen = sizeof(int),
2877 .mode = 0644,
2878 .proc_handler = &proc_dointvec_ms_jiffies,
2879 .strategy = &sysctl_ms_jiffies,
2880 },
2881 {
2882 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2883 .procname = "gc_timeout",
2884 .data = &ip_rt_gc_timeout,
2885 .maxlen = sizeof(int),
2886 .mode = 0644,
2887 .proc_handler = &proc_dointvec_jiffies,
2888 .strategy = &sysctl_jiffies,
2889 },
2890 {
2891 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2892 .procname = "gc_interval",
2893 .data = &ip_rt_gc_interval,
2894 .maxlen = sizeof(int),
2895 .mode = 0644,
2896 .proc_handler = &proc_dointvec_jiffies,
2897 .strategy = &sysctl_jiffies,
2898 },
2899 {
2900 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2901 .procname = "redirect_load",
2902 .data = &ip_rt_redirect_load,
2903 .maxlen = sizeof(int),
2904 .mode = 0644,
2905 .proc_handler = &proc_dointvec,
2906 },
2907 {
2908 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2909 .procname = "redirect_number",
2910 .data = &ip_rt_redirect_number,
2911 .maxlen = sizeof(int),
2912 .mode = 0644,
2913 .proc_handler = &proc_dointvec,
2914 },
2915 {
2916 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2917 .procname = "redirect_silence",
2918 .data = &ip_rt_redirect_silence,
2919 .maxlen = sizeof(int),
2920 .mode = 0644,
2921 .proc_handler = &proc_dointvec,
2922 },
2923 {
2924 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2925 .procname = "error_cost",
2926 .data = &ip_rt_error_cost,
2927 .maxlen = sizeof(int),
2928 .mode = 0644,
2929 .proc_handler = &proc_dointvec,
2930 },
2931 {
2932 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2933 .procname = "error_burst",
2934 .data = &ip_rt_error_burst,
2935 .maxlen = sizeof(int),
2936 .mode = 0644,
2937 .proc_handler = &proc_dointvec,
2938 },
2939 {
2940 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2941 .procname = "gc_elasticity",
2942 .data = &ip_rt_gc_elasticity,
2943 .maxlen = sizeof(int),
2944 .mode = 0644,
2945 .proc_handler = &proc_dointvec,
2946 },
2947 {
2948 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2949 .procname = "mtu_expires",
2950 .data = &ip_rt_mtu_expires,
2951 .maxlen = sizeof(int),
2952 .mode = 0644,
2953 .proc_handler = &proc_dointvec_jiffies,
2954 .strategy = &sysctl_jiffies,
2955 },
2956 {
2957 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2958 .procname = "min_pmtu",
2959 .data = &ip_rt_min_pmtu,
2960 .maxlen = sizeof(int),
2961 .mode = 0644,
2962 .proc_handler = &proc_dointvec,
2963 },
2964 {
2965 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2966 .procname = "min_adv_mss",
2967 .data = &ip_rt_min_advmss,
2968 .maxlen = sizeof(int),
2969 .mode = 0644,
2970 .proc_handler = &proc_dointvec,
2971 },
2972 {
2973 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2974 .procname = "secret_interval",
2975 .data = &ip_rt_secret_interval,
2976 .maxlen = sizeof(int),
2977 .mode = 0644,
2978 .proc_handler = &proc_dointvec_jiffies,
2979 .strategy = &sysctl_jiffies,
2980 },
2981 { .ctl_name = 0 }
2982};
2983#endif
2984
2985#ifdef CONFIG_NET_CLS_ROUTE
2986struct ip_rt_acct *ip_rt_acct __read_mostly;
2987#endif /* CONFIG_NET_CLS_ROUTE */
2988
2989static __initdata unsigned long rhash_entries;
2990static int __init set_rhash_entries(char *str)
2991{
2992 if (!str)
2993 return 0;
2994 rhash_entries = simple_strtoul(str, &str, 0);
2995 return 1;
2996}
2997__setup("rhash_entries=", set_rhash_entries);
2998
2999int __init ip_rt_init(void)
3000{
3001 int rc = 0;
3002
3003 rt_hash_rnd = (int) ((num_physpages ^ (num_physpages>>8)) ^
3004 (jiffies ^ (jiffies >> 7)));
3005
3006#ifdef CONFIG_NET_CLS_ROUTE
3007 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3008 if (!ip_rt_acct)
3009 panic("IP: failed to allocate ip_rt_acct\n");
3010#endif
3011
3012 ipv4_dst_ops.kmem_cachep =
3013 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3014 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3015
3016 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3017
3018 rt_hash_table = (struct rt_hash_bucket *)
3019 alloc_large_system_hash("IP route cache",
3020 sizeof(struct rt_hash_bucket),
3021 rhash_entries,
3022 (num_physpages >= 128 * 1024) ?
3023 15 : 17,
3024 0,
3025 &rt_hash_log,
3026 &rt_hash_mask,
3027 0);
3028 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3029 rt_hash_lock_init();
3030
3031 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3032 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3033
3034 devinet_init();
3035 ip_fib_init();
3036
3037 setup_timer(&rt_flush_timer, rt_run_flush, 0);
3038 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3039
3040 /* All the timers, started at system startup tend
3041 to synchronize. Perturb it a bit.
3042 */
3043 schedule_delayed_work(&expires_work,
3044 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3045
3046 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3047 ip_rt_secret_interval;
3048 add_timer(&rt_secret_timer);
3049
3050 if (ip_rt_proc_init(&init_net))
3051 printk(KERN_ERR "Unable to create route proc files\n");
3052#ifdef CONFIG_XFRM
3053 xfrm_init();
3054 xfrm4_init();
3055#endif
3056 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3057
3058 return rc;
3059}
3060
3061EXPORT_SYMBOL(__ip_select_ident);
3062EXPORT_SYMBOL(ip_route_input);
3063EXPORT_SYMBOL(ip_route_output_key);