usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page-writeback.c
... / ...
CommitLineData
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/mm_inline.h>
40#include <trace/events/writeback.h>
41#include <linux/version.h>
42
43#include "internal.h"
44
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61#define RATELIMIT_CALC_SHIFT 10
62
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74#ifdef CONFIG_LARGE_DIRTY_BUFFER
75int dirty_background_ratio = 5;
76#else
77int dirty_background_ratio = 0;
78#endif
79
80/*
81 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
82 * dirty_background_ratio * the amount of dirtyable memory
83 */
84#ifdef CONFIG_LARGE_DIRTY_BUFFER
85unsigned long dirty_background_bytes = 0;
86#else
87unsigned long dirty_background_bytes = 25 * 1024 * 1024;
88#endif
89
90/*
91 * free highmem will not be subtracted from the total free memory
92 * for calculating free ratios if vm_highmem_is_dirtyable is true
93 */
94int vm_highmem_is_dirtyable;
95
96/*
97 * The generator of dirty data starts writeback at this percentage
98 */
99#ifdef CONFIG_LARGE_DIRTY_BUFFER
100int vm_dirty_ratio = 25;
101#else
102int vm_dirty_ratio = 0;
103#endif
104
105/*
106 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
107 * vm_dirty_ratio * the amount of dirtyable memory
108 */
109#ifdef CONFIG_LARGE_DIRTY_BUFFER
110unsigned long vm_dirty_bytes = 0;
111#else
112unsigned long vm_dirty_bytes = 50 * 1024 * 1024;
113#endif
114
115/*
116 * The interval between `kupdate'-style writebacks
117 */
118unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
119
120EXPORT_SYMBOL_GPL(dirty_writeback_interval);
121
122/*
123 * The longest time for which data is allowed to remain dirty
124 */
125unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
126
127/*
128 * Flag that makes the machine dump writes/reads and block dirtyings.
129 */
130int block_dump;
131
132/*
133 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
134 * a full sync is triggered after this time elapses without any disk activity.
135 */
136int laptop_mode;
137
138EXPORT_SYMBOL(laptop_mode);
139
140/* End of sysctl-exported parameters */
141
142struct wb_domain global_wb_domain;
143
144/* consolidated parameters for balance_dirty_pages() and its subroutines */
145struct dirty_throttle_control {
146#ifdef CONFIG_CGROUP_WRITEBACK
147 struct wb_domain *dom;
148 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
149#endif
150 struct bdi_writeback *wb;
151 struct fprop_local_percpu *wb_completions;
152
153 unsigned long avail; /* dirtyable */
154 unsigned long dirty; /* file_dirty + write + nfs */
155 unsigned long thresh; /* dirty threshold */
156 unsigned long bg_thresh; /* dirty background threshold */
157
158 unsigned long wb_dirty; /* per-wb counterparts */
159 unsigned long wb_thresh;
160 unsigned long wb_bg_thresh;
161
162 unsigned long pos_ratio;
163};
164
165/*
166 * Length of period for aging writeout fractions of bdis. This is an
167 * arbitrarily chosen number. The longer the period, the slower fractions will
168 * reflect changes in current writeout rate.
169 */
170#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
171
172#ifdef CONFIG_CGROUP_WRITEBACK
173
174#define GDTC_INIT(__wb) .wb = (__wb), \
175 .dom = &global_wb_domain, \
176 .wb_completions = &(__wb)->completions
177
178#define GDTC_INIT_NO_WB .dom = &global_wb_domain
179
180#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
181 .dom = mem_cgroup_wb_domain(__wb), \
182 .wb_completions = &(__wb)->memcg_completions, \
183 .gdtc = __gdtc
184
185static bool mdtc_valid(struct dirty_throttle_control *dtc)
186{
187 return dtc->dom;
188}
189
190static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
191{
192 return dtc->dom;
193}
194
195static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
196{
197 return mdtc->gdtc;
198}
199
200static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
201{
202 return &wb->memcg_completions;
203}
204
205static void wb_min_max_ratio(struct bdi_writeback *wb,
206 unsigned long *minp, unsigned long *maxp)
207{
208 unsigned long this_bw = wb->avg_write_bandwidth;
209 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
210 unsigned long long min = wb->bdi->min_ratio;
211 unsigned long long max = wb->bdi->max_ratio;
212
213 /*
214 * @wb may already be clean by the time control reaches here and
215 * the total may not include its bw.
216 */
217 if (this_bw < tot_bw) {
218 if (min) {
219 min *= this_bw;
220 do_div(min, tot_bw);
221 }
222 if (max < 100) {
223 max *= this_bw;
224 do_div(max, tot_bw);
225 }
226 }
227
228 *minp = min;
229 *maxp = max;
230}
231
232#else /* CONFIG_CGROUP_WRITEBACK */
233
234#define GDTC_INIT(__wb) .wb = (__wb), \
235 .wb_completions = &(__wb)->completions
236#define GDTC_INIT_NO_WB
237#define MDTC_INIT(__wb, __gdtc)
238
239static bool mdtc_valid(struct dirty_throttle_control *dtc)
240{
241 return false;
242}
243
244static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
245{
246 return &global_wb_domain;
247}
248
249static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
250{
251 return NULL;
252}
253
254static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
255{
256 return NULL;
257}
258
259static void wb_min_max_ratio(struct bdi_writeback *wb,
260 unsigned long *minp, unsigned long *maxp)
261{
262 *minp = wb->bdi->min_ratio;
263 *maxp = wb->bdi->max_ratio;
264}
265
266#endif /* CONFIG_CGROUP_WRITEBACK */
267
268/*
269 * In a memory zone, there is a certain amount of pages we consider
270 * available for the page cache, which is essentially the number of
271 * free and reclaimable pages, minus some zone reserves to protect
272 * lowmem and the ability to uphold the zone's watermarks without
273 * requiring writeback.
274 *
275 * This number of dirtyable pages is the base value of which the
276 * user-configurable dirty ratio is the effictive number of pages that
277 * are allowed to be actually dirtied. Per individual zone, or
278 * globally by using the sum of dirtyable pages over all zones.
279 *
280 * Because the user is allowed to specify the dirty limit globally as
281 * absolute number of bytes, calculating the per-zone dirty limit can
282 * require translating the configured limit into a percentage of
283 * global dirtyable memory first.
284 */
285
286/**
287 * zone_dirtyable_memory - number of dirtyable pages in a zone
288 * @zone: the zone
289 *
290 * Returns the zone's number of pages potentially available for dirty
291 * page cache. This is the base value for the per-zone dirty limits.
292 */
293static unsigned long zone_dirtyable_memory(struct zone *zone)
294{
295 unsigned long nr_pages;
296
297 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
298 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
299
300 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
301 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
302
303 return nr_pages;
304}
305
306static unsigned long highmem_dirtyable_memory(unsigned long total)
307{
308#ifdef CONFIG_HIGHMEM
309 int node;
310 unsigned long x = 0;
311
312 for_each_node_state(node, N_HIGH_MEMORY) {
313 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
314
315 x += zone_dirtyable_memory(z);
316 }
317 /*
318 * Unreclaimable memory (kernel memory or anonymous memory
319 * without swap) can bring down the dirtyable pages below
320 * the zone's dirty balance reserve and the above calculation
321 * will underflow. However we still want to add in nodes
322 * which are below threshold (negative values) to get a more
323 * accurate calculation but make sure that the total never
324 * underflows.
325 */
326 if ((long)x < 0)
327 x = 0;
328
329 /*
330 * Make sure that the number of highmem pages is never larger
331 * than the number of the total dirtyable memory. This can only
332 * occur in very strange VM situations but we want to make sure
333 * that this does not occur.
334 */
335 return min(x, total);
336#else
337 return 0;
338#endif
339}
340
341/**
342 * global_dirtyable_memory - number of globally dirtyable pages
343 *
344 * Returns the global number of pages potentially available for dirty
345 * page cache. This is the base value for the global dirty limits.
346 */
347static unsigned long global_dirtyable_memory(void)
348{
349 unsigned long x;
350
351 x = global_page_state(NR_FREE_PAGES);
352 x -= min(x, dirty_balance_reserve);
353
354 x += global_page_state(NR_INACTIVE_FILE);
355 x += global_page_state(NR_ACTIVE_FILE);
356
357 if (!vm_highmem_is_dirtyable)
358 x -= highmem_dirtyable_memory(x);
359
360 return x + 1; /* Ensure that we never return 0 */
361}
362
363/**
364 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
365 * @dtc: dirty_throttle_control of interest
366 *
367 * Calculate @dtc->thresh and ->bg_thresh considering
368 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
369 * must ensure that @dtc->avail is set before calling this function. The
370 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
371 * real-time tasks.
372 */
373static void domain_dirty_limits(struct dirty_throttle_control *dtc)
374{
375 unsigned long available_memory = dtc->avail;
376 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
377 unsigned long bytes = vm_dirty_bytes;
378 unsigned long bg_bytes = dirty_background_bytes;
379 /* convert ratios to per-PAGE_SIZE for higher precision */
380 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
381 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
382 unsigned long thresh;
383 unsigned long bg_thresh;
384 struct task_struct *tsk;
385
386 /* gdtc is !NULL iff @dtc is for memcg domain */
387 if (gdtc) {
388 unsigned long global_avail = gdtc->avail;
389
390 /*
391 * The byte settings can't be applied directly to memcg
392 * domains. Convert them to ratios by scaling against
393 * globally available memory. As the ratios are in
394 * per-PAGE_SIZE, they can be obtained by dividing bytes by
395 * number of pages.
396 */
397 if (bytes)
398 ratio = min(DIV_ROUND_UP(bytes, global_avail),
399 PAGE_SIZE);
400 if (bg_bytes)
401 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
402 PAGE_SIZE);
403 bytes = bg_bytes = 0;
404 }
405
406 if (bytes)
407 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
408 else
409 thresh = (ratio * available_memory) / PAGE_SIZE;
410
411#if defined(CONFIG_MAX_DIRTY_THRESH_PAGES) && CONFIG_MAX_DIRTY_THRESH_PAGES > 0
412 if (!bytes && thresh > CONFIG_MAX_DIRTY_THRESH_PAGES) {
413 thresh = CONFIG_MAX_DIRTY_THRESH_PAGES;
414 /* reduce available memory not to make bg_thresh too high */
415 available_memory = thresh * PAGE_SIZE / ratio;
416 }
417#endif
418
419 if (bg_bytes)
420 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
421 else
422 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
423
424 if (bg_thresh >= thresh)
425 bg_thresh = thresh / 2;
426 tsk = current;
427 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428 bg_thresh += bg_thresh / 4;
429 thresh += thresh / 4;
430 }
431 dtc->thresh = thresh;
432 dtc->bg_thresh = bg_thresh;
433
434 /* we should eventually report the domain in the TP */
435 if (!gdtc)
436 trace_global_dirty_state(bg_thresh, thresh);
437}
438
439/**
440 * global_dirty_limits - background-writeback and dirty-throttling thresholds
441 * @pbackground: out parameter for bg_thresh
442 * @pdirty: out parameter for thresh
443 *
444 * Calculate bg_thresh and thresh for global_wb_domain. See
445 * domain_dirty_limits() for details.
446 */
447void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
448{
449 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
450
451 gdtc.avail = global_dirtyable_memory();
452 domain_dirty_limits(&gdtc);
453
454 *pbackground = gdtc.bg_thresh;
455 *pdirty = gdtc.thresh;
456}
457
458/**
459 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
460 * @zone: the zone
461 *
462 * Returns the maximum number of dirty pages allowed in a zone, based
463 * on the zone's dirtyable memory.
464 */
465static unsigned long zone_dirty_limit(struct zone *zone)
466{
467 unsigned long zone_memory = zone_dirtyable_memory(zone);
468 struct task_struct *tsk = current;
469 unsigned long dirty;
470
471 if (vm_dirty_bytes)
472 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
473 zone_memory / global_dirtyable_memory();
474 else
475 dirty = vm_dirty_ratio * zone_memory / 100;
476
477#if defined(CONFIG_MAX_DIRTY_THRESH_PAGES) && CONFIG_MAX_DIRTY_THRESH_PAGES > 0
478 if (!vm_dirty_bytes && dirty > CONFIG_MAX_DIRTY_THRESH_PAGES)
479 dirty = CONFIG_MAX_DIRTY_THRESH_PAGES;
480#endif
481
482 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
483 dirty += dirty / 4;
484
485 return dirty;
486}
487
488/**
489 * zone_dirty_ok - tells whether a zone is within its dirty limits
490 * @zone: the zone to check
491 *
492 * Returns %true when the dirty pages in @zone are within the zone's
493 * dirty limit, %false if the limit is exceeded.
494 */
495bool zone_dirty_ok(struct zone *zone)
496{
497 unsigned long limit = zone_dirty_limit(zone);
498
499 return zone_page_state(zone, NR_FILE_DIRTY) +
500 zone_page_state(zone, NR_UNSTABLE_NFS) +
501 zone_page_state(zone, NR_WRITEBACK) <= limit;
502}
503
504int dirty_background_ratio_handler(struct ctl_table *table, int write,
505 void __user *buffer, size_t *lenp,
506 loff_t *ppos)
507{
508 int ret;
509
510 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
511 if (ret == 0 && write)
512 dirty_background_bytes = 0;
513 return ret;
514}
515
516int dirty_background_bytes_handler(struct ctl_table *table, int write,
517 void __user *buffer, size_t *lenp,
518 loff_t *ppos)
519{
520 int ret;
521
522 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
523 if (ret == 0 && write)
524 dirty_background_ratio = 0;
525 return ret;
526}
527
528int dirty_ratio_handler(struct ctl_table *table, int write,
529 void __user *buffer, size_t *lenp,
530 loff_t *ppos)
531{
532 int old_ratio = vm_dirty_ratio;
533 int ret;
534
535 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
536 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
537 writeback_set_ratelimit();
538 vm_dirty_bytes = 0;
539 }
540 return ret;
541}
542
543int dirty_bytes_handler(struct ctl_table *table, int write,
544 void __user *buffer, size_t *lenp,
545 loff_t *ppos)
546{
547 unsigned long old_bytes = vm_dirty_bytes;
548 int ret;
549
550 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
551 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
552 writeback_set_ratelimit();
553 vm_dirty_ratio = 0;
554 }
555 return ret;
556}
557
558static unsigned long wp_next_time(unsigned long cur_time)
559{
560 cur_time += VM_COMPLETIONS_PERIOD_LEN;
561 /* 0 has a special meaning... */
562 if (!cur_time)
563 return 1;
564 return cur_time;
565}
566
567static void wb_domain_writeout_inc(struct wb_domain *dom,
568 struct fprop_local_percpu *completions,
569 unsigned int max_prop_frac)
570{
571 __fprop_inc_percpu_max(&dom->completions, completions,
572 max_prop_frac);
573 /* First event after period switching was turned off? */
574 if (!unlikely(dom->period_time)) {
575 /*
576 * We can race with other __bdi_writeout_inc calls here but
577 * it does not cause any harm since the resulting time when
578 * timer will fire and what is in writeout_period_time will be
579 * roughly the same.
580 */
581 dom->period_time = wp_next_time(jiffies);
582 mod_timer(&dom->period_timer, dom->period_time);
583 }
584}
585
586/*
587 * Increment @wb's writeout completion count and the global writeout
588 * completion count. Called from test_clear_page_writeback().
589 */
590static inline void __wb_writeout_inc(struct bdi_writeback *wb)
591{
592 struct wb_domain *cgdom;
593
594 __inc_wb_stat(wb, WB_WRITTEN);
595 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
596 wb->bdi->max_prop_frac);
597
598 cgdom = mem_cgroup_wb_domain(wb);
599 if (cgdom)
600 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
601 wb->bdi->max_prop_frac);
602}
603
604void wb_writeout_inc(struct bdi_writeback *wb)
605{
606 unsigned long flags;
607
608 local_irq_save(flags);
609 __wb_writeout_inc(wb);
610 local_irq_restore(flags);
611}
612EXPORT_SYMBOL_GPL(wb_writeout_inc);
613
614/*
615 * On idle system, we can be called long after we scheduled because we use
616 * deferred timers so count with missed periods.
617 */
618static void writeout_period(unsigned long t)
619{
620 struct wb_domain *dom = (void *)t;
621 int miss_periods = (jiffies - dom->period_time) /
622 VM_COMPLETIONS_PERIOD_LEN;
623
624 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
625 dom->period_time = wp_next_time(dom->period_time +
626 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
627 mod_timer(&dom->period_timer, dom->period_time);
628 } else {
629 /*
630 * Aging has zeroed all fractions. Stop wasting CPU on period
631 * updates.
632 */
633 dom->period_time = 0;
634 }
635}
636
637int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
638{
639 memset(dom, 0, sizeof(*dom));
640
641 spin_lock_init(&dom->lock);
642
643 init_timer_deferrable(&dom->period_timer);
644 dom->period_timer.function = writeout_period;
645 dom->period_timer.data = (unsigned long)dom;
646
647 dom->dirty_limit_tstamp = jiffies;
648
649 return fprop_global_init(&dom->completions, gfp);
650}
651
652#ifdef CONFIG_CGROUP_WRITEBACK
653void wb_domain_exit(struct wb_domain *dom)
654{
655 del_timer_sync(&dom->period_timer);
656 fprop_global_destroy(&dom->completions);
657}
658#endif
659
660/*
661 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
662 * registered backing devices, which, for obvious reasons, can not
663 * exceed 100%.
664 */
665static unsigned int bdi_min_ratio;
666
667int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
668{
669 int ret = 0;
670
671 spin_lock_bh(&bdi_lock);
672 if (min_ratio > bdi->max_ratio) {
673 ret = -EINVAL;
674 } else {
675 min_ratio -= bdi->min_ratio;
676 if (bdi_min_ratio + min_ratio < 100) {
677 bdi_min_ratio += min_ratio;
678 bdi->min_ratio += min_ratio;
679 } else {
680 ret = -EINVAL;
681 }
682 }
683 spin_unlock_bh(&bdi_lock);
684
685 return ret;
686}
687
688int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
689{
690 int ret = 0;
691
692 if (max_ratio > 100)
693 return -EINVAL;
694
695 spin_lock_bh(&bdi_lock);
696 if (bdi->min_ratio > max_ratio) {
697 ret = -EINVAL;
698 } else {
699 bdi->max_ratio = max_ratio;
700 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
701 }
702 spin_unlock_bh(&bdi_lock);
703
704 return ret;
705}
706EXPORT_SYMBOL(bdi_set_max_ratio);
707
708static unsigned long dirty_freerun_ceiling(unsigned long thresh,
709 unsigned long bg_thresh)
710{
711#ifdef CONFIG_LARGE_DIRTY_BUFFER
712 return (3 * thresh + bg_thresh) / 4;
713#else
714 return (thresh + bg_thresh) / 2;
715#endif
716}
717
718static unsigned long hard_dirty_limit(struct wb_domain *dom,
719 unsigned long thresh)
720{
721 return max(thresh, dom->dirty_limit);
722}
723
724/*
725 * Memory which can be further allocated to a memcg domain is capped by
726 * system-wide clean memory excluding the amount being used in the domain.
727 */
728static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
729 unsigned long filepages, unsigned long headroom)
730{
731 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
732 unsigned long clean = filepages - min(filepages, mdtc->dirty);
733 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
734 unsigned long other_clean = global_clean - min(global_clean, clean);
735
736 mdtc->avail = filepages + min(headroom, other_clean);
737}
738
739/**
740 * __wb_calc_thresh - @wb's share of dirty throttling threshold
741 * @dtc: dirty_throttle_context of interest
742 *
743 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
744 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
745 *
746 * Note that balance_dirty_pages() will only seriously take it as a hard limit
747 * when sleeping max_pause per page is not enough to keep the dirty pages under
748 * control. For example, when the device is completely stalled due to some error
749 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
750 * In the other normal situations, it acts more gently by throttling the tasks
751 * more (rather than completely block them) when the wb dirty pages go high.
752 *
753 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
754 * - starving fast devices
755 * - piling up dirty pages (that will take long time to sync) on slow devices
756 *
757 * The wb's share of dirty limit will be adapting to its throughput and
758 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
759 */
760static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
761{
762 struct wb_domain *dom = dtc_dom(dtc);
763 unsigned long thresh = dtc->thresh;
764 u64 wb_thresh;
765 long numerator, denominator;
766 unsigned long wb_min_ratio, wb_max_ratio;
767
768 /*
769 * Calculate this BDI's share of the thresh ratio.
770 */
771 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
772 &numerator, &denominator);
773
774 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
775 wb_thresh *= numerator;
776 do_div(wb_thresh, denominator);
777
778 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
779
780 wb_thresh += (thresh * wb_min_ratio) / 100;
781 if (wb_thresh > (thresh * wb_max_ratio) / 100)
782 wb_thresh = thresh * wb_max_ratio / 100;
783
784 return wb_thresh;
785}
786
787unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
788{
789 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
790 .thresh = thresh };
791 return __wb_calc_thresh(&gdtc);
792}
793
794/*
795 * setpoint - dirty 3
796 * f(dirty) := 1.0 + (----------------)
797 * limit - setpoint
798 *
799 * it's a 3rd order polynomial that subjects to
800 *
801 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
802 * (2) f(setpoint) = 1.0 => the balance point
803 * (3) f(limit) = 0 => the hard limit
804 * (4) df/dx <= 0 => negative feedback control
805 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
806 * => fast response on large errors; small oscillation near setpoint
807 */
808static long long pos_ratio_polynom(unsigned long setpoint,
809 unsigned long dirty,
810 unsigned long limit)
811{
812 long long pos_ratio;
813 long x;
814
815 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
816 (limit - setpoint) | 1);
817 pos_ratio = x;
818 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
819 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
820 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
821
822 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
823}
824
825/*
826 * Dirty position control.
827 *
828 * (o) global/bdi setpoints
829 *
830 * We want the dirty pages be balanced around the global/wb setpoints.
831 * When the number of dirty pages is higher/lower than the setpoint, the
832 * dirty position control ratio (and hence task dirty ratelimit) will be
833 * decreased/increased to bring the dirty pages back to the setpoint.
834 *
835 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
836 *
837 * if (dirty < setpoint) scale up pos_ratio
838 * if (dirty > setpoint) scale down pos_ratio
839 *
840 * if (wb_dirty < wb_setpoint) scale up pos_ratio
841 * if (wb_dirty > wb_setpoint) scale down pos_ratio
842 *
843 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
844 *
845 * (o) global control line
846 *
847 * ^ pos_ratio
848 * |
849 * | |<===== global dirty control scope ======>|
850 * 2.0 .............*
851 * | .*
852 * | . *
853 * | . *
854 * | . *
855 * | . *
856 * | . *
857 * 1.0 ................................*
858 * | . . *
859 * | . . *
860 * | . . *
861 * | . . *
862 * | . . *
863 * 0 +------------.------------------.----------------------*------------->
864 * freerun^ setpoint^ limit^ dirty pages
865 *
866 * (o) wb control line
867 *
868 * ^ pos_ratio
869 * |
870 * | *
871 * | *
872 * | *
873 * | *
874 * | * |<=========== span ============>|
875 * 1.0 .......................*
876 * | . *
877 * | . *
878 * | . *
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * 1/4 ...............................................* * * * * * * * * * * *
888 * | . .
889 * | . .
890 * | . .
891 * 0 +----------------------.-------------------------------.------------->
892 * wb_setpoint^ x_intercept^
893 *
894 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
895 * be smoothly throttled down to normal if it starts high in situations like
896 * - start writing to a slow SD card and a fast disk at the same time. The SD
897 * card's wb_dirty may rush to many times higher than wb_setpoint.
898 * - the wb dirty thresh drops quickly due to change of JBOD workload
899 */
900static void wb_position_ratio(struct dirty_throttle_control *dtc)
901{
902 struct bdi_writeback *wb = dtc->wb;
903 unsigned long write_bw = wb->avg_write_bandwidth;
904 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
905 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
906 unsigned long wb_thresh = dtc->wb_thresh;
907 unsigned long x_intercept;
908 unsigned long setpoint; /* dirty pages' target balance point */
909 unsigned long wb_setpoint;
910 unsigned long span;
911 long long pos_ratio; /* for scaling up/down the rate limit */
912 long x;
913
914 dtc->pos_ratio = 0;
915
916 if (unlikely(dtc->dirty >= limit))
917 return;
918
919 /*
920 * global setpoint
921 *
922 * See comment for pos_ratio_polynom().
923 */
924 setpoint = (freerun + limit) / 2;
925 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
926
927 /*
928 * The strictlimit feature is a tool preventing mistrusted filesystems
929 * from growing a large number of dirty pages before throttling. For
930 * such filesystems balance_dirty_pages always checks wb counters
931 * against wb limits. Even if global "nr_dirty" is under "freerun".
932 * This is especially important for fuse which sets bdi->max_ratio to
933 * 1% by default. Without strictlimit feature, fuse writeback may
934 * consume arbitrary amount of RAM because it is accounted in
935 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
936 *
937 * Here, in wb_position_ratio(), we calculate pos_ratio based on
938 * two values: wb_dirty and wb_thresh. Let's consider an example:
939 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
940 * limits are set by default to 10% and 20% (background and throttle).
941 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
942 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
943 * about ~6K pages (as the average of background and throttle wb
944 * limits). The 3rd order polynomial will provide positive feedback if
945 * wb_dirty is under wb_setpoint and vice versa.
946 *
947 * Note, that we cannot use global counters in these calculations
948 * because we want to throttle process writing to a strictlimit wb
949 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
950 * in the example above).
951 */
952 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
953 long long wb_pos_ratio;
954
955 if (dtc->wb_dirty < 8) {
956 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
957 2 << RATELIMIT_CALC_SHIFT);
958 return;
959 }
960
961 if (dtc->wb_dirty >= wb_thresh)
962 return;
963
964 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
965 dtc->wb_bg_thresh);
966
967 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
968 return;
969
970 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
971 wb_thresh);
972
973 /*
974 * Typically, for strictlimit case, wb_setpoint << setpoint
975 * and pos_ratio >> wb_pos_ratio. In the other words global
976 * state ("dirty") is not limiting factor and we have to
977 * make decision based on wb counters. But there is an
978 * important case when global pos_ratio should get precedence:
979 * global limits are exceeded (e.g. due to activities on other
980 * wb's) while given strictlimit wb is below limit.
981 *
982 * "pos_ratio * wb_pos_ratio" would work for the case above,
983 * but it would look too non-natural for the case of all
984 * activity in the system coming from a single strictlimit wb
985 * with bdi->max_ratio == 100%.
986 *
987 * Note that min() below somewhat changes the dynamics of the
988 * control system. Normally, pos_ratio value can be well over 3
989 * (when globally we are at freerun and wb is well below wb
990 * setpoint). Now the maximum pos_ratio in the same situation
991 * is 2. We might want to tweak this if we observe the control
992 * system is too slow to adapt.
993 */
994 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
995 return;
996 }
997
998 /*
999 * We have computed basic pos_ratio above based on global situation. If
1000 * the wb is over/under its share of dirty pages, we want to scale
1001 * pos_ratio further down/up. That is done by the following mechanism.
1002 */
1003
1004 /*
1005 * wb setpoint
1006 *
1007 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1008 *
1009 * x_intercept - wb_dirty
1010 * := --------------------------
1011 * x_intercept - wb_setpoint
1012 *
1013 * The main wb control line is a linear function that subjects to
1014 *
1015 * (1) f(wb_setpoint) = 1.0
1016 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1017 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1018 *
1019 * For single wb case, the dirty pages are observed to fluctuate
1020 * regularly within range
1021 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1022 * for various filesystems, where (2) can yield in a reasonable 12.5%
1023 * fluctuation range for pos_ratio.
1024 *
1025 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1026 * own size, so move the slope over accordingly and choose a slope that
1027 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1028 */
1029 if (unlikely(wb_thresh > dtc->thresh))
1030 wb_thresh = dtc->thresh;
1031 /*
1032 * It's very possible that wb_thresh is close to 0 not because the
1033 * device is slow, but that it has remained inactive for long time.
1034 * Honour such devices a reasonable good (hopefully IO efficient)
1035 * threshold, so that the occasional writes won't be blocked and active
1036 * writes can rampup the threshold quickly.
1037 */
1038 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1039 /*
1040 * scale global setpoint to wb's:
1041 * wb_setpoint = setpoint * wb_thresh / thresh
1042 */
1043 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1044 wb_setpoint = setpoint * (u64)x >> 16;
1045 /*
1046 * Use span=(8*write_bw) in single wb case as indicated by
1047 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1048 *
1049 * wb_thresh thresh - wb_thresh
1050 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1051 * thresh thresh
1052 */
1053 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1054 x_intercept = wb_setpoint + span;
1055
1056 if (dtc->wb_dirty < x_intercept - span / 4) {
1057 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1058 (x_intercept - wb_setpoint) | 1);
1059 } else
1060 pos_ratio /= 4;
1061
1062 /*
1063 * wb reserve area, safeguard against dirty pool underrun and disk idle
1064 * It may push the desired control point of global dirty pages higher
1065 * than setpoint.
1066 */
1067 x_intercept = wb_thresh / 2;
1068 if (dtc->wb_dirty < x_intercept) {
1069 if (dtc->wb_dirty > x_intercept / 8)
1070 pos_ratio = div_u64(pos_ratio * x_intercept,
1071 dtc->wb_dirty);
1072 else
1073 pos_ratio *= 8;
1074 }
1075
1076 dtc->pos_ratio = pos_ratio;
1077}
1078
1079static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1080 unsigned long elapsed,
1081 unsigned long written)
1082{
1083 const unsigned long period = roundup_pow_of_two(3 * HZ);
1084 unsigned long avg = wb->avg_write_bandwidth;
1085 unsigned long old = wb->write_bandwidth;
1086 u64 bw;
1087
1088 /*
1089 * bw = written * HZ / elapsed
1090 *
1091 * bw * elapsed + write_bandwidth * (period - elapsed)
1092 * write_bandwidth = ---------------------------------------------------
1093 * period
1094 *
1095 * @written may have decreased due to account_page_redirty().
1096 * Avoid underflowing @bw calculation.
1097 */
1098 bw = written - min(written, wb->written_stamp);
1099 bw *= HZ;
1100 if (unlikely(elapsed > period)) {
1101 do_div(bw, elapsed);
1102 avg = bw;
1103 goto out;
1104 }
1105 bw += (u64)wb->write_bandwidth * (period - elapsed);
1106 bw >>= ilog2(period);
1107
1108 /*
1109 * one more level of smoothing, for filtering out sudden spikes
1110 */
1111 if (avg > old && old >= (unsigned long)bw)
1112 avg -= (avg - old) >> 3;
1113
1114 if (avg < old && old <= (unsigned long)bw)
1115 avg += (old - avg) >> 3;
1116
1117out:
1118 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1119 avg = max(avg, 1LU);
1120 if (wb_has_dirty_io(wb)) {
1121 long delta = avg - wb->avg_write_bandwidth;
1122 WARN_ON_ONCE(atomic_long_add_return(delta,
1123 &wb->bdi->tot_write_bandwidth) <= 0);
1124 }
1125 wb->write_bandwidth = bw;
1126 wb->avg_write_bandwidth = avg;
1127}
1128
1129static void update_dirty_limit(struct dirty_throttle_control *dtc)
1130{
1131 struct wb_domain *dom = dtc_dom(dtc);
1132 unsigned long thresh = dtc->thresh;
1133 unsigned long limit = dom->dirty_limit;
1134
1135 /*
1136 * Follow up in one step.
1137 */
1138 if (limit < thresh) {
1139 limit = thresh;
1140 goto update;
1141 }
1142
1143 /*
1144 * Follow down slowly. Use the higher one as the target, because thresh
1145 * may drop below dirty. This is exactly the reason to introduce
1146 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1147 */
1148 thresh = max(thresh, dtc->dirty);
1149 if (limit > thresh) {
1150 limit -= (limit - thresh) >> 5;
1151 goto update;
1152 }
1153 return;
1154update:
1155 dom->dirty_limit = limit;
1156}
1157
1158static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1159 unsigned long now)
1160{
1161 struct wb_domain *dom = dtc_dom(dtc);
1162
1163 /*
1164 * check locklessly first to optimize away locking for the most time
1165 */
1166 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1167 return;
1168
1169 spin_lock(&dom->lock);
1170 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1171 update_dirty_limit(dtc);
1172 dom->dirty_limit_tstamp = now;
1173 }
1174 spin_unlock(&dom->lock);
1175}
1176
1177/*
1178 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1179 *
1180 * Normal wb tasks will be curbed at or below it in long term.
1181 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1182 */
1183static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1184 unsigned long dirtied,
1185 unsigned long elapsed)
1186{
1187 struct bdi_writeback *wb = dtc->wb;
1188 unsigned long dirty = dtc->dirty;
1189 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1190 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1191 unsigned long setpoint = (freerun + limit) / 2;
1192 unsigned long write_bw = wb->avg_write_bandwidth;
1193 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1194 unsigned long dirty_rate;
1195 unsigned long task_ratelimit;
1196 unsigned long balanced_dirty_ratelimit;
1197 unsigned long step;
1198 unsigned long x;
1199
1200 /*
1201 * The dirty rate will match the writeout rate in long term, except
1202 * when dirty pages are truncated by userspace or re-dirtied by FS.
1203 */
1204 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1205
1206 /*
1207 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1208 */
1209 task_ratelimit = (u64)dirty_ratelimit *
1210 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1211 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1212
1213 /*
1214 * A linear estimation of the "balanced" throttle rate. The theory is,
1215 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1216 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1217 * formula will yield the balanced rate limit (write_bw / N).
1218 *
1219 * Note that the expanded form is not a pure rate feedback:
1220 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1221 * but also takes pos_ratio into account:
1222 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1223 *
1224 * (1) is not realistic because pos_ratio also takes part in balancing
1225 * the dirty rate. Consider the state
1226 * pos_ratio = 0.5 (3)
1227 * rate = 2 * (write_bw / N) (4)
1228 * If (1) is used, it will stuck in that state! Because each dd will
1229 * be throttled at
1230 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1231 * yielding
1232 * dirty_rate = N * task_ratelimit = write_bw (6)
1233 * put (6) into (1) we get
1234 * rate_(i+1) = rate_(i) (7)
1235 *
1236 * So we end up using (2) to always keep
1237 * rate_(i+1) ~= (write_bw / N) (8)
1238 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1239 * pos_ratio is able to drive itself to 1.0, which is not only where
1240 * the dirty count meet the setpoint, but also where the slope of
1241 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1242 */
1243 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1244 dirty_rate | 1);
1245 /*
1246 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1247 */
1248 if (unlikely(balanced_dirty_ratelimit > write_bw))
1249 balanced_dirty_ratelimit = write_bw;
1250
1251 /*
1252 * We could safely do this and return immediately:
1253 *
1254 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1255 *
1256 * However to get a more stable dirty_ratelimit, the below elaborated
1257 * code makes use of task_ratelimit to filter out singular points and
1258 * limit the step size.
1259 *
1260 * The below code essentially only uses the relative value of
1261 *
1262 * task_ratelimit - dirty_ratelimit
1263 * = (pos_ratio - 1) * dirty_ratelimit
1264 *
1265 * which reflects the direction and size of dirty position error.
1266 */
1267
1268 /*
1269 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1270 * task_ratelimit is on the same side of dirty_ratelimit, too.
1271 * For example, when
1272 * - dirty_ratelimit > balanced_dirty_ratelimit
1273 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1274 * lowering dirty_ratelimit will help meet both the position and rate
1275 * control targets. Otherwise, don't update dirty_ratelimit if it will
1276 * only help meet the rate target. After all, what the users ultimately
1277 * feel and care are stable dirty rate and small position error.
1278 *
1279 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1280 * and filter out the singular points of balanced_dirty_ratelimit. Which
1281 * keeps jumping around randomly and can even leap far away at times
1282 * due to the small 200ms estimation period of dirty_rate (we want to
1283 * keep that period small to reduce time lags).
1284 */
1285 step = 0;
1286
1287 /*
1288 * For strictlimit case, calculations above were based on wb counters
1289 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1290 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1291 * Hence, to calculate "step" properly, we have to use wb_dirty as
1292 * "dirty" and wb_setpoint as "setpoint".
1293 *
1294 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1295 * it's possible that wb_thresh is close to zero due to inactivity
1296 * of backing device.
1297 */
1298 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1299 dirty = dtc->wb_dirty;
1300 if (dtc->wb_dirty < 8)
1301 setpoint = dtc->wb_dirty + 1;
1302 else
1303 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1304 }
1305
1306 if (dirty < setpoint) {
1307 x = min3(wb->balanced_dirty_ratelimit,
1308 balanced_dirty_ratelimit, task_ratelimit);
1309 if (dirty_ratelimit < x)
1310 step = x - dirty_ratelimit;
1311 } else {
1312 x = max3(wb->balanced_dirty_ratelimit,
1313 balanced_dirty_ratelimit, task_ratelimit);
1314 if (dirty_ratelimit > x)
1315 step = dirty_ratelimit - x;
1316 }
1317
1318 /*
1319 * Don't pursue 100% rate matching. It's impossible since the balanced
1320 * rate itself is constantly fluctuating. So decrease the track speed
1321 * when it gets close to the target. Helps eliminate pointless tremors.
1322 */
1323 step >>= dirty_ratelimit / (2 * step + 1);
1324 /*
1325 * Limit the tracking speed to avoid overshooting.
1326 */
1327 step = (step + 7) / 8;
1328
1329 if (dirty_ratelimit < balanced_dirty_ratelimit)
1330 dirty_ratelimit += step;
1331 else
1332 dirty_ratelimit -= step;
1333
1334 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1335 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1336
1337 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1338}
1339
1340static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1341 struct dirty_throttle_control *mdtc,
1342 unsigned long start_time,
1343 bool update_ratelimit)
1344{
1345 struct bdi_writeback *wb = gdtc->wb;
1346 unsigned long now = jiffies;
1347 unsigned long elapsed = now - wb->bw_time_stamp;
1348 unsigned long dirtied;
1349 unsigned long written;
1350
1351 lockdep_assert_held(&wb->list_lock);
1352
1353 /*
1354 * rate-limit, only update once every 200ms.
1355 */
1356 if (elapsed < BANDWIDTH_INTERVAL)
1357 return;
1358
1359 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1360 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1361
1362 /*
1363 * Skip quiet periods when disk bandwidth is under-utilized.
1364 * (at least 1s idle time between two flusher runs)
1365 */
1366 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1367 goto snapshot;
1368
1369 if (update_ratelimit) {
1370 domain_update_bandwidth(gdtc, now);
1371 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1372
1373 /*
1374 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1375 * compiler has no way to figure that out. Help it.
1376 */
1377 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1378 domain_update_bandwidth(mdtc, now);
1379 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1380 }
1381 }
1382 wb_update_write_bandwidth(wb, elapsed, written);
1383
1384snapshot:
1385 wb->dirtied_stamp = dirtied;
1386 wb->written_stamp = written;
1387 wb->bw_time_stamp = now;
1388}
1389
1390void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1391{
1392 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1393
1394 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1395}
1396
1397/*
1398 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1399 * will look to see if it needs to start dirty throttling.
1400 *
1401 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1402 * global_page_state() too often. So scale it near-sqrt to the safety margin
1403 * (the number of pages we may dirty without exceeding the dirty limits).
1404 */
1405static unsigned long dirty_poll_interval(unsigned long dirty,
1406 unsigned long thresh)
1407{
1408 if (thresh > dirty)
1409 return 1UL << (ilog2(thresh - dirty) >> 1);
1410
1411 return 1;
1412}
1413
1414static unsigned long wb_max_pause(struct bdi_writeback *wb,
1415 unsigned long wb_dirty)
1416{
1417 unsigned long bw = wb->avg_write_bandwidth;
1418 unsigned long t;
1419
1420 /*
1421 * Limit pause time for small memory systems. If sleeping for too long
1422 * time, a small pool of dirty/writeback pages may go empty and disk go
1423 * idle.
1424 *
1425 * 8 serves as the safety ratio.
1426 */
1427 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1428 t++;
1429
1430 return min_t(unsigned long, t, MAX_PAUSE);
1431}
1432
1433static long wb_min_pause(struct bdi_writeback *wb,
1434 long max_pause,
1435 unsigned long task_ratelimit,
1436 unsigned long dirty_ratelimit,
1437 int *nr_dirtied_pause)
1438{
1439 long hi = ilog2(wb->avg_write_bandwidth);
1440 long lo = ilog2(wb->dirty_ratelimit);
1441 long t; /* target pause */
1442 long pause; /* estimated next pause */
1443 int pages; /* target nr_dirtied_pause */
1444
1445 /* target for 10ms pause on 1-dd case */
1446 t = max(1, HZ / 100);
1447
1448 /*
1449 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1450 * overheads.
1451 *
1452 * (N * 10ms) on 2^N concurrent tasks.
1453 */
1454 if (hi > lo)
1455 t += (hi - lo) * (10 * HZ) / 1024;
1456
1457 /*
1458 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1459 * on the much more stable dirty_ratelimit. However the next pause time
1460 * will be computed based on task_ratelimit and the two rate limits may
1461 * depart considerably at some time. Especially if task_ratelimit goes
1462 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1463 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1464 * result task_ratelimit won't be executed faithfully, which could
1465 * eventually bring down dirty_ratelimit.
1466 *
1467 * We apply two rules to fix it up:
1468 * 1) try to estimate the next pause time and if necessary, use a lower
1469 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1470 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1471 * 2) limit the target pause time to max_pause/2, so that the normal
1472 * small fluctuations of task_ratelimit won't trigger rule (1) and
1473 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1474 */
1475 t = min(t, 1 + max_pause / 2);
1476 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1477
1478 /*
1479 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1480 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1481 * When the 16 consecutive reads are often interrupted by some dirty
1482 * throttling pause during the async writes, cfq will go into idles
1483 * (deadline is fine). So push nr_dirtied_pause as high as possible
1484 * until reaches DIRTY_POLL_THRESH=32 pages.
1485 */
1486 if (pages < DIRTY_POLL_THRESH) {
1487 t = max_pause;
1488 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1489 if (pages > DIRTY_POLL_THRESH) {
1490 pages = DIRTY_POLL_THRESH;
1491 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1492 }
1493 }
1494
1495 pause = HZ * pages / (task_ratelimit + 1);
1496 if (pause > max_pause) {
1497 t = max_pause;
1498 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1499 }
1500
1501 *nr_dirtied_pause = pages;
1502 /*
1503 * The minimal pause time will normally be half the target pause time.
1504 */
1505 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1506}
1507
1508static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1509{
1510 struct bdi_writeback *wb = dtc->wb;
1511 unsigned long wb_reclaimable;
1512
1513 /*
1514 * wb_thresh is not treated as some limiting factor as
1515 * dirty_thresh, due to reasons
1516 * - in JBOD setup, wb_thresh can fluctuate a lot
1517 * - in a system with HDD and USB key, the USB key may somehow
1518 * go into state (wb_dirty >> wb_thresh) either because
1519 * wb_dirty starts high, or because wb_thresh drops low.
1520 * In this case we don't want to hard throttle the USB key
1521 * dirtiers for 100 seconds until wb_dirty drops under
1522 * wb_thresh. Instead the auxiliary wb control line in
1523 * wb_position_ratio() will let the dirtier task progress
1524 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1525 */
1526 dtc->wb_thresh = __wb_calc_thresh(dtc);
1527 dtc->wb_bg_thresh = dtc->thresh ?
1528 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1529
1530 /*
1531 * In order to avoid the stacked BDI deadlock we need
1532 * to ensure we accurately count the 'dirty' pages when
1533 * the threshold is low.
1534 *
1535 * Otherwise it would be possible to get thresh+n pages
1536 * reported dirty, even though there are thresh-m pages
1537 * actually dirty; with m+n sitting in the percpu
1538 * deltas.
1539 */
1540 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1541 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1542 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1543 } else {
1544 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1545 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1546 }
1547}
1548
1549/*
1550 * balance_dirty_pages() must be called by processes which are generating dirty
1551 * data. It looks at the number of dirty pages in the machine and will force
1552 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1553 * If we're over `background_thresh' then the writeback threads are woken to
1554 * perform some writeout.
1555 */
1556
1557SIO_PATCH_VERSION(prevent_infinite_writeback, 1, 0, "");
1558
1559static void balance_dirty_pages(struct address_space *mapping,
1560 struct bdi_writeback *wb,
1561 unsigned long pages_dirtied)
1562{
1563 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567 &mdtc_stor : NULL;
1568 struct dirty_throttle_control *sdtc;
1569 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1570 long period;
1571 long pause;
1572 long max_pause;
1573 long min_pause;
1574 int nr_dirtied_pause;
1575 bool dirty_exceeded = false;
1576 unsigned long task_ratelimit;
1577 unsigned long dirty_ratelimit;
1578 struct backing_dev_info *bdi = wb->bdi;
1579 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580 unsigned long start_time = jiffies;
1581
1582 for (;;) {
1583 unsigned long now = jiffies;
1584 unsigned long dirty, thresh, bg_thresh;
1585 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1586 unsigned long m_thresh = 0;
1587 unsigned long m_bg_thresh = 0;
1588
1589 /*
1590 * Unstable writes are a feature of certain networked
1591 * filesystems (i.e. NFS) in which data may have been
1592 * written to the server's write cache, but has not yet
1593 * been flushed to permanent storage.
1594 */
1595 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1596 global_page_state(NR_UNSTABLE_NFS);
1597 gdtc->avail = global_dirtyable_memory();
1598 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1599
1600 domain_dirty_limits(gdtc);
1601
1602 if (unlikely(strictlimit)) {
1603 wb_dirty_limits(gdtc);
1604
1605 dirty = gdtc->wb_dirty;
1606 thresh = gdtc->wb_thresh;
1607 bg_thresh = gdtc->wb_bg_thresh;
1608 } else {
1609 dirty = gdtc->dirty;
1610 thresh = gdtc->thresh;
1611 bg_thresh = gdtc->bg_thresh;
1612 }
1613
1614 if (mdtc) {
1615 unsigned long filepages, headroom, writeback;
1616
1617 /*
1618 * If @wb belongs to !root memcg, repeat the same
1619 * basic calculations for the memcg domain.
1620 */
1621 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1622 &mdtc->dirty, &writeback);
1623 mdtc->dirty += writeback;
1624 mdtc_calc_avail(mdtc, filepages, headroom);
1625
1626 domain_dirty_limits(mdtc);
1627
1628 if (unlikely(strictlimit)) {
1629 wb_dirty_limits(mdtc);
1630 m_dirty = mdtc->wb_dirty;
1631 m_thresh = mdtc->wb_thresh;
1632 m_bg_thresh = mdtc->wb_bg_thresh;
1633 } else {
1634 m_dirty = mdtc->dirty;
1635 m_thresh = mdtc->thresh;
1636 m_bg_thresh = mdtc->bg_thresh;
1637 }
1638 }
1639
1640 /*
1641 * Throttle it only when the background writeback cannot
1642 * catch-up. This avoids (excessively) small writeouts
1643 * when the wb limits are ramping up in case of !strictlimit.
1644 *
1645 * In strictlimit case make decision based on the wb counters
1646 * and limits. Small writeouts when the wb limits are ramping
1647 * up are the price we consciously pay for strictlimit-ing.
1648 *
1649 * If memcg domain is in effect, @dirty should be under
1650 * both global and memcg freerun ceilings.
1651 */
1652 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1653 (!mdtc ||
1654 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1655 unsigned long intv = dirty_poll_interval(dirty, thresh);
1656 unsigned long m_intv = ULONG_MAX;
1657
1658 current->dirty_paused_when = now;
1659 current->nr_dirtied = 0;
1660 if (mdtc)
1661 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1662 current->nr_dirtied_pause = min(intv, m_intv);
1663 break;
1664 }
1665
1666 if (unlikely(!writeback_in_progress(wb)))
1667 wb_start_background_writeback(wb);
1668
1669 /*
1670 * Calculate global domain's pos_ratio and select the
1671 * global dtc by default.
1672 */
1673 if (!strictlimit)
1674 wb_dirty_limits(gdtc);
1675
1676 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1677 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1678
1679 wb_position_ratio(gdtc);
1680 sdtc = gdtc;
1681
1682 if (mdtc) {
1683 /*
1684 * If memcg domain is in effect, calculate its
1685 * pos_ratio. @wb should satisfy constraints from
1686 * both global and memcg domains. Choose the one
1687 * w/ lower pos_ratio.
1688 */
1689 if (!strictlimit)
1690 wb_dirty_limits(mdtc);
1691
1692 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1693 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1694
1695 wb_position_ratio(mdtc);
1696 if (mdtc->pos_ratio < gdtc->pos_ratio)
1697 sdtc = mdtc;
1698 }
1699
1700 if (dirty_exceeded && !wb->dirty_exceeded)
1701 wb->dirty_exceeded = 1;
1702
1703 if (time_is_before_jiffies(wb->bw_time_stamp +
1704 BANDWIDTH_INTERVAL)) {
1705 spin_lock(&wb->list_lock);
1706 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1707 spin_unlock(&wb->list_lock);
1708 }
1709
1710 /* throttle according to the chosen dtc */
1711 dirty_ratelimit = wb->dirty_ratelimit;
1712 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1713 RATELIMIT_CALC_SHIFT;
1714 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1715 min_pause = wb_min_pause(wb, max_pause,
1716 task_ratelimit, dirty_ratelimit,
1717 &nr_dirtied_pause);
1718
1719 if (unlikely(task_ratelimit == 0)) {
1720 period = max_pause;
1721 pause = max_pause;
1722 goto pause;
1723 }
1724 period = HZ * pages_dirtied / task_ratelimit;
1725 pause = period;
1726 if (current->dirty_paused_when)
1727 pause -= now - current->dirty_paused_when;
1728 /*
1729 * For less than 1s think time (ext3/4 may block the dirtier
1730 * for up to 800ms from time to time on 1-HDD; so does xfs,
1731 * however at much less frequency), try to compensate it in
1732 * future periods by updating the virtual time; otherwise just
1733 * do a reset, as it may be a light dirtier.
1734 */
1735 if (pause < min_pause) {
1736 trace_balance_dirty_pages(wb,
1737 sdtc->thresh,
1738 sdtc->bg_thresh,
1739 sdtc->dirty,
1740 sdtc->wb_thresh,
1741 sdtc->wb_dirty,
1742 dirty_ratelimit,
1743 task_ratelimit,
1744 pages_dirtied,
1745 period,
1746 min(pause, 0L),
1747 start_time);
1748 if (pause < -HZ) {
1749 current->dirty_paused_when = now;
1750 current->nr_dirtied = 0;
1751 } else if (period) {
1752 current->dirty_paused_when += period;
1753 current->nr_dirtied = 0;
1754 } else if (current->nr_dirtied_pause <= pages_dirtied)
1755 current->nr_dirtied_pause += pages_dirtied;
1756 break;
1757 }
1758 if (unlikely(pause > max_pause)) {
1759 /* for occasional dropped task_ratelimit */
1760 now += min(pause - max_pause, max_pause);
1761 pause = max_pause;
1762 }
1763
1764pause:
1765 trace_balance_dirty_pages(wb,
1766 sdtc->thresh,
1767 sdtc->bg_thresh,
1768 sdtc->dirty,
1769 sdtc->wb_thresh,
1770 sdtc->wb_dirty,
1771 dirty_ratelimit,
1772 task_ratelimit,
1773 pages_dirtied,
1774 period,
1775 pause,
1776 start_time);
1777
1778 /* Do not sleep if the backing device is removed */
1779 if (unlikely(!bdi->dev))
1780 return;
1781
1782 /* Just collecting approximate value. No lock required. */
1783#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
1784 bdi->last_thresh = thresh;
1785 bdi->last_nr_dirty = dirty;
1786#else
1787 bdi->last_thresh = dirty_thresh;
1788 bdi->last_nr_dirty = nr_dirty;
1789#endif
1790 bdi->paused_total += pause;
1791
1792 __set_current_state(TASK_KILLABLE);
1793 io_schedule_timeout(pause);
1794
1795 current->dirty_paused_when = now + pause;
1796 current->nr_dirtied = 0;
1797 current->nr_dirtied_pause = nr_dirtied_pause;
1798
1799 /*
1800 * This is typically equal to (dirty < thresh) and can also
1801 * keep "1000+ dd on a slow USB stick" under control.
1802 */
1803 if (task_ratelimit)
1804 break;
1805
1806 /*
1807 * In the case of an unresponding NFS server and the NFS dirty
1808 * pages exceeds dirty_thresh, give the other good wb's a pipe
1809 * to go through, so that tasks on them still remain responsive.
1810 *
1811 * In theory 1 page is enough to keep the comsumer-producer
1812 * pipe going: the flusher cleans 1 page => the task dirties 1
1813 * more page. However wb_dirty has accounting errors. So use
1814 * the larger and more IO friendly wb_stat_error.
1815 */
1816 if (sdtc->wb_dirty <= wb_stat_error(wb))
1817 break;
1818
1819 if (fatal_signal_pending(current))
1820 break;
1821 }
1822
1823 if (!dirty_exceeded && wb->dirty_exceeded)
1824 wb->dirty_exceeded = 0;
1825
1826 if (writeback_in_progress(wb))
1827 return;
1828
1829 /*
1830 * In laptop mode, we wait until hitting the higher threshold before
1831 * starting background writeout, and then write out all the way down
1832 * to the lower threshold. So slow writers cause minimal disk activity.
1833 *
1834 * In normal mode, we start background writeout at the lower
1835 * background_thresh, to keep the amount of dirty memory low.
1836 */
1837 if (laptop_mode)
1838 return;
1839
1840 if (nr_reclaimable > gdtc->bg_thresh)
1841 wb_start_background_writeback(wb);
1842}
1843
1844static DEFINE_PER_CPU(int, bdp_ratelimits);
1845
1846/*
1847 * Normal tasks are throttled by
1848 * loop {
1849 * dirty tsk->nr_dirtied_pause pages;
1850 * take a snap in balance_dirty_pages();
1851 * }
1852 * However there is a worst case. If every task exit immediately when dirtied
1853 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1854 * called to throttle the page dirties. The solution is to save the not yet
1855 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1856 * randomly into the running tasks. This works well for the above worst case,
1857 * as the new task will pick up and accumulate the old task's leaked dirty
1858 * count and eventually get throttled.
1859 */
1860DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1861
1862/**
1863 * balance_dirty_pages_ratelimited - balance dirty memory state
1864 * @mapping: address_space which was dirtied
1865 *
1866 * Processes which are dirtying memory should call in here once for each page
1867 * which was newly dirtied. The function will periodically check the system's
1868 * dirty state and will initiate writeback if needed.
1869 *
1870 * On really big machines, get_writeback_state is expensive, so try to avoid
1871 * calling it too often (ratelimiting). But once we're over the dirty memory
1872 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1873 * from overshooting the limit by (ratelimit_pages) each.
1874 */
1875void balance_dirty_pages_ratelimited(struct address_space *mapping)
1876{
1877 struct inode *inode = mapping->host;
1878 struct backing_dev_info *bdi = inode_to_bdi(inode);
1879 struct bdi_writeback *wb = NULL;
1880 int ratelimit;
1881 int *p;
1882
1883 if (!bdi_cap_account_dirty(bdi))
1884 return;
1885
1886 if (inode_cgwb_enabled(inode))
1887 wb = wb_get_create_current(bdi, GFP_KERNEL);
1888 if (!wb)
1889 wb = &bdi->wb;
1890
1891 ratelimit = current->nr_dirtied_pause;
1892 if (wb->dirty_exceeded)
1893 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1894
1895 preempt_disable();
1896 /*
1897 * This prevents one CPU to accumulate too many dirtied pages without
1898 * calling into balance_dirty_pages(), which can happen when there are
1899 * 1000+ tasks, all of them start dirtying pages at exactly the same
1900 * time, hence all honoured too large initial task->nr_dirtied_pause.
1901 */
1902 p = this_cpu_ptr(&bdp_ratelimits);
1903 if (unlikely(current->nr_dirtied >= ratelimit))
1904 *p = 0;
1905 else if (unlikely(*p >= ratelimit_pages)) {
1906 *p = 0;
1907 ratelimit = 0;
1908 }
1909 /*
1910 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1911 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1912 * the dirty throttling and livelock other long-run dirtiers.
1913 */
1914 p = this_cpu_ptr(&dirty_throttle_leaks);
1915 if (*p > 0 && current->nr_dirtied < ratelimit) {
1916 unsigned long nr_pages_dirtied;
1917 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1918 *p -= nr_pages_dirtied;
1919 current->nr_dirtied += nr_pages_dirtied;
1920 }
1921 preempt_enable();
1922
1923 if (unlikely(current->nr_dirtied >= ratelimit))
1924 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1925
1926 wb_put(wb);
1927}
1928EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1929
1930/**
1931 * wb_over_bg_thresh - does @wb need to be written back?
1932 * @wb: bdi_writeback of interest
1933 *
1934 * Determines whether background writeback should keep writing @wb or it's
1935 * clean enough. Returns %true if writeback should continue.
1936 */
1937bool wb_over_bg_thresh(struct bdi_writeback *wb)
1938{
1939 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1940 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1941 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1942 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1943 &mdtc_stor : NULL;
1944
1945 /*
1946 * Similar to balance_dirty_pages() but ignores pages being written
1947 * as we're trying to decide whether to put more under writeback.
1948 */
1949 gdtc->avail = global_dirtyable_memory();
1950 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1951 global_page_state(NR_UNSTABLE_NFS);
1952 domain_dirty_limits(gdtc);
1953
1954 if (gdtc->dirty > gdtc->bg_thresh)
1955 return true;
1956
1957 if (wb_stat(wb, WB_RECLAIMABLE) >
1958 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1959 return true;
1960
1961 if (mdtc) {
1962 unsigned long filepages, headroom, writeback;
1963
1964 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1965 &writeback);
1966 mdtc_calc_avail(mdtc, filepages, headroom);
1967 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1968
1969 if (mdtc->dirty > mdtc->bg_thresh)
1970 return true;
1971
1972 if (wb_stat(wb, WB_RECLAIMABLE) >
1973 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1974 return true;
1975 }
1976
1977 return false;
1978}
1979
1980void throttle_vm_writeout(gfp_t gfp_mask)
1981{
1982 unsigned long background_thresh;
1983 unsigned long dirty_thresh;
1984
1985 for ( ; ; ) {
1986 global_dirty_limits(&background_thresh, &dirty_thresh);
1987 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1988
1989 /*
1990 * Boost the allowable dirty threshold a bit for page
1991 * allocators so they don't get DoS'ed by heavy writers
1992 */
1993 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1994
1995 if (global_page_state(NR_UNSTABLE_NFS) +
1996 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1997 break;
1998 congestion_wait(BLK_RW_ASYNC, HZ/10);
1999
2000 /*
2001 * The caller might hold locks which can prevent IO completion
2002 * or progress in the filesystem. So we cannot just sit here
2003 * waiting for IO to complete.
2004 */
2005 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
2006 break;
2007 }
2008}
2009
2010/*
2011 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2012 */
2013int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2014 void __user *buffer, size_t *length, loff_t *ppos)
2015{
2016 proc_dointvec(table, write, buffer, length, ppos);
2017 return 0;
2018}
2019
2020#ifdef CONFIG_BLOCK
2021void laptop_mode_timer_fn(unsigned long data)
2022{
2023 struct request_queue *q = (struct request_queue *)data;
2024 int nr_pages = global_page_state(NR_FILE_DIRTY) +
2025 global_page_state(NR_UNSTABLE_NFS);
2026 struct bdi_writeback *wb;
2027
2028 /*
2029 * We want to write everything out, not just down to the dirty
2030 * threshold
2031 */
2032 if (!bdi_has_dirty_io(&q->backing_dev_info))
2033 return;
2034
2035 rcu_read_lock();
2036 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2037 if (wb_has_dirty_io(wb))
2038 wb_start_writeback(wb, nr_pages, true,
2039 WB_REASON_LAPTOP_TIMER);
2040 rcu_read_unlock();
2041}
2042
2043/*
2044 * We've spun up the disk and we're in laptop mode: schedule writeback
2045 * of all dirty data a few seconds from now. If the flush is already scheduled
2046 * then push it back - the user is still using the disk.
2047 */
2048void laptop_io_completion(struct backing_dev_info *info)
2049{
2050 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2051}
2052
2053/*
2054 * We're in laptop mode and we've just synced. The sync's writes will have
2055 * caused another writeback to be scheduled by laptop_io_completion.
2056 * Nothing needs to be written back anymore, so we unschedule the writeback.
2057 */
2058void laptop_sync_completion(void)
2059{
2060 struct backing_dev_info *bdi;
2061
2062 rcu_read_lock();
2063
2064 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2065 del_timer(&bdi->laptop_mode_wb_timer);
2066
2067 rcu_read_unlock();
2068}
2069#endif
2070
2071/*
2072 * If ratelimit_pages is too high then we can get into dirty-data overload
2073 * if a large number of processes all perform writes at the same time.
2074 * If it is too low then SMP machines will call the (expensive)
2075 * get_writeback_state too often.
2076 *
2077 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2078 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2079 * thresholds.
2080 */
2081
2082void writeback_set_ratelimit(void)
2083{
2084 struct wb_domain *dom = &global_wb_domain;
2085 unsigned long background_thresh;
2086 unsigned long dirty_thresh;
2087
2088 global_dirty_limits(&background_thresh, &dirty_thresh);
2089 dom->dirty_limit = dirty_thresh;
2090 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2091 if (ratelimit_pages < 16)
2092 ratelimit_pages = 16;
2093}
2094
2095static int
2096ratelimit_handler(struct notifier_block *self, unsigned long action,
2097 void *hcpu)
2098{
2099
2100 switch (action & ~CPU_TASKS_FROZEN) {
2101 case CPU_ONLINE:
2102 case CPU_DEAD:
2103 writeback_set_ratelimit();
2104 return NOTIFY_OK;
2105 default:
2106 return NOTIFY_DONE;
2107 }
2108}
2109
2110static struct notifier_block ratelimit_nb = {
2111 .notifier_call = ratelimit_handler,
2112 .next = NULL,
2113};
2114
2115/*
2116 * Called early on to tune the page writeback dirty limits.
2117 *
2118 * We used to scale dirty pages according to how total memory
2119 * related to pages that could be allocated for buffers (by
2120 * comparing nr_free_buffer_pages() to vm_total_pages.
2121 *
2122 * However, that was when we used "dirty_ratio" to scale with
2123 * all memory, and we don't do that any more. "dirty_ratio"
2124 * is now applied to total non-HIGHPAGE memory (by subtracting
2125 * totalhigh_pages from vm_total_pages), and as such we can't
2126 * get into the old insane situation any more where we had
2127 * large amounts of dirty pages compared to a small amount of
2128 * non-HIGHMEM memory.
2129 *
2130 * But we might still want to scale the dirty_ratio by how
2131 * much memory the box has..
2132 */
2133void __init page_writeback_init(void)
2134{
2135 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2136
2137 writeback_set_ratelimit();
2138 register_cpu_notifier(&ratelimit_nb);
2139}
2140
2141/**
2142 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2143 * @mapping: address space structure to write
2144 * @start: starting page index
2145 * @end: ending page index (inclusive)
2146 *
2147 * This function scans the page range from @start to @end (inclusive) and tags
2148 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2149 * that write_cache_pages (or whoever calls this function) will then use
2150 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2151 * used to avoid livelocking of writeback by a process steadily creating new
2152 * dirty pages in the file (thus it is important for this function to be quick
2153 * so that it can tag pages faster than a dirtying process can create them).
2154 */
2155/*
2156 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2157 */
2158void tag_pages_for_writeback(struct address_space *mapping,
2159 pgoff_t start, pgoff_t end)
2160{
2161#define WRITEBACK_TAG_BATCH 4096
2162 unsigned long tagged;
2163
2164 do {
2165 spin_lock_irq(&mapping->tree_lock);
2166 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2167 &start, end, WRITEBACK_TAG_BATCH,
2168 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2169 spin_unlock_irq(&mapping->tree_lock);
2170 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2171 cond_resched();
2172 /* We check 'start' to handle wrapping when end == ~0UL */
2173 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2174}
2175EXPORT_SYMBOL(tag_pages_for_writeback);
2176
2177/**
2178 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2179 * @mapping: address space structure to write
2180 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2181 * @writepage: function called for each page
2182 * @data: data passed to writepage function
2183 *
2184 * If a page is already under I/O, write_cache_pages() skips it, even
2185 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2186 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2187 * and msync() need to guarantee that all the data which was dirty at the time
2188 * the call was made get new I/O started against them. If wbc->sync_mode is
2189 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2190 * existing IO to complete.
2191 *
2192 * To avoid livelocks (when other process dirties new pages), we first tag
2193 * pages which should be written back with TOWRITE tag and only then start
2194 * writing them. For data-integrity sync we have to be careful so that we do
2195 * not miss some pages (e.g., because some other process has cleared TOWRITE
2196 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2197 * by the process clearing the DIRTY tag (and submitting the page for IO).
2198 */
2199int write_cache_pages(struct address_space *mapping,
2200 struct writeback_control *wbc, writepage_t writepage,
2201 void *data)
2202{
2203 int ret = 0;
2204 int done = 0;
2205 struct pagevec pvec;
2206 int nr_pages;
2207 pgoff_t uninitialized_var(writeback_index);
2208 pgoff_t index;
2209 pgoff_t end; /* Inclusive */
2210 pgoff_t done_index;
2211 int cycled;
2212 int range_whole = 0;
2213 int tag;
2214
2215 pagevec_init(&pvec, 0);
2216 if (wbc->range_cyclic) {
2217 writeback_index = mapping->writeback_index; /* prev offset */
2218 index = writeback_index;
2219 if (index == 0)
2220 cycled = 1;
2221 else
2222 cycled = 0;
2223 end = -1;
2224 } else {
2225 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2226 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2227 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2228 range_whole = 1;
2229 cycled = 1; /* ignore range_cyclic tests */
2230 }
2231 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2232 tag = PAGECACHE_TAG_TOWRITE;
2233 else
2234 tag = PAGECACHE_TAG_DIRTY;
2235retry:
2236 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2237 tag_pages_for_writeback(mapping, index, end);
2238 done_index = index;
2239 while (!done && (index <= end)) {
2240 int i;
2241
2242 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2243 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2244 if (nr_pages == 0)
2245 break;
2246
2247 for (i = 0; i < nr_pages; i++) {
2248 struct page *page = pvec.pages[i];
2249
2250 /*
2251 * At this point, the page may be truncated or
2252 * invalidated (changing page->mapping to NULL), or
2253 * even swizzled back from swapper_space to tmpfs file
2254 * mapping. However, page->index will not change
2255 * because we have a reference on the page.
2256 */
2257 if (page->index > end) {
2258 /*
2259 * can't be range_cyclic (1st pass) because
2260 * end == -1 in that case.
2261 */
2262 done = 1;
2263 break;
2264 }
2265
2266 done_index = page->index;
2267
2268 lock_page(page);
2269
2270 /*
2271 * Page truncated or invalidated. We can freely skip it
2272 * then, even for data integrity operations: the page
2273 * has disappeared concurrently, so there could be no
2274 * real expectation of this data interity operation
2275 * even if there is now a new, dirty page at the same
2276 * pagecache address.
2277 */
2278 if (unlikely(page->mapping != mapping)) {
2279continue_unlock:
2280 unlock_page(page);
2281 continue;
2282 }
2283
2284 if (!PageDirty(page)) {
2285 /* someone wrote it for us */
2286 goto continue_unlock;
2287 }
2288
2289 if (PageWriteback(page)) {
2290 if (wbc->sync_mode != WB_SYNC_NONE)
2291 wait_on_page_writeback(page);
2292 else
2293 goto continue_unlock;
2294 }
2295
2296 BUG_ON(PageWriteback(page));
2297 if (!clear_page_dirty_for_io(page))
2298 goto continue_unlock;
2299
2300 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2301 ret = (*writepage)(page, wbc, data);
2302 if (unlikely(ret)) {
2303 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2304 unlock_page(page);
2305 ret = 0;
2306 } else {
2307 /*
2308 * done_index is set past this page,
2309 * so media errors will not choke
2310 * background writeout for the entire
2311 * file. This has consequences for
2312 * range_cyclic semantics (ie. it may
2313 * not be suitable for data integrity
2314 * writeout).
2315 */
2316 done_index = page->index + 1;
2317 done = 1;
2318 break;
2319 }
2320 }
2321
2322 /*
2323 * We stop writing back only if we are not doing
2324 * integrity sync. In case of integrity sync we have to
2325 * keep going until we have written all the pages
2326 * we tagged for writeback prior to entering this loop.
2327 */
2328 if (--wbc->nr_to_write <= 0 &&
2329 wbc->sync_mode == WB_SYNC_NONE) {
2330 done = 1;
2331 break;
2332 }
2333 }
2334 pagevec_release(&pvec);
2335 cond_resched();
2336 }
2337 if (!cycled && !done) {
2338 /*
2339 * range_cyclic:
2340 * We hit the last page and there is more work to be done: wrap
2341 * back to the start of the file
2342 */
2343 cycled = 1;
2344 index = 0;
2345 end = writeback_index - 1;
2346 goto retry;
2347 }
2348 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2349 mapping->writeback_index = done_index;
2350
2351 return ret;
2352}
2353EXPORT_SYMBOL(write_cache_pages);
2354
2355/*
2356 * Function used by generic_writepages to call the real writepage
2357 * function and set the mapping flags on error
2358 */
2359static int __writepage(struct page *page, struct writeback_control *wbc,
2360 void *data)
2361{
2362 struct address_space *mapping = data;
2363 int ret = mapping->a_ops->writepage(page, wbc);
2364 mapping_set_error(mapping, ret);
2365 return ret;
2366}
2367
2368/**
2369 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2370 * @mapping: address space structure to write
2371 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2372 *
2373 * This is a library function, which implements the writepages()
2374 * address_space_operation.
2375 */
2376int generic_writepages(struct address_space *mapping,
2377 struct writeback_control *wbc)
2378{
2379 struct blk_plug plug;
2380 int ret;
2381
2382 /* deal with chardevs and other special file */
2383 if (!mapping->a_ops->writepage)
2384 return 0;
2385
2386 blk_start_plug(&plug);
2387 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2388 blk_finish_plug(&plug);
2389 return ret;
2390}
2391
2392EXPORT_SYMBOL(generic_writepages);
2393
2394int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2395{
2396 int ret;
2397
2398 if (wbc->nr_to_write <= 0)
2399 return 0;
2400 if (mapping->a_ops->writepages)
2401 ret = mapping->a_ops->writepages(mapping, wbc);
2402 else
2403 ret = generic_writepages(mapping, wbc);
2404 return ret;
2405}
2406
2407/**
2408 * write_one_page - write out a single page and optionally wait on I/O
2409 * @page: the page to write
2410 * @wait: if true, wait on writeout
2411 *
2412 * The page must be locked by the caller and will be unlocked upon return.
2413 *
2414 * write_one_page() returns a negative error code if I/O failed.
2415 */
2416int write_one_page(struct page *page, int wait)
2417{
2418 struct address_space *mapping = page->mapping;
2419 int ret = 0;
2420 struct writeback_control wbc = {
2421 .sync_mode = WB_SYNC_ALL,
2422 .nr_to_write = 1,
2423 };
2424
2425 BUG_ON(!PageLocked(page));
2426
2427 if (wait)
2428 wait_on_page_writeback(page);
2429
2430 if (clear_page_dirty_for_io(page)) {
2431 page_cache_get(page);
2432 ret = mapping->a_ops->writepage(page, &wbc);
2433 if (ret == 0 && wait) {
2434 wait_on_page_writeback(page);
2435 if (PageError(page))
2436 ret = -EIO;
2437 }
2438 page_cache_release(page);
2439 } else {
2440 unlock_page(page);
2441 }
2442 return ret;
2443}
2444EXPORT_SYMBOL(write_one_page);
2445
2446/*
2447 * For address_spaces which do not use buffers nor write back.
2448 */
2449int __set_page_dirty_no_writeback(struct page *page)
2450{
2451 if (!PageDirty(page))
2452 return !TestSetPageDirty(page);
2453 return 0;
2454}
2455
2456/*
2457 * Helper function for set_page_dirty family.
2458 *
2459 * Caller must hold mem_cgroup_begin_page_stat().
2460 *
2461 * NOTE: This relies on being atomic wrt interrupts.
2462 */
2463void account_page_dirtied(struct page *page, struct address_space *mapping,
2464 struct mem_cgroup *memcg)
2465{
2466 struct inode *inode = mapping->host;
2467
2468 trace_writeback_dirty_page(page, mapping);
2469
2470 if (mapping_cap_account_dirty(mapping)) {
2471 struct bdi_writeback *wb;
2472
2473 inode_attach_wb(inode, page);
2474 wb = inode_to_wb(inode);
2475
2476 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2477 __inc_zone_page_state(page, NR_FILE_DIRTY);
2478 __inc_zone_page_state(page, NR_DIRTIED);
2479 __inc_wb_stat(wb, WB_RECLAIMABLE);
2480 __inc_wb_stat(wb, WB_DIRTIED);
2481 task_io_account_write(PAGE_CACHE_SIZE);
2482 current->nr_dirtied++;
2483 this_cpu_inc(bdp_ratelimits);
2484 }
2485}
2486EXPORT_SYMBOL(account_page_dirtied);
2487
2488/*
2489 * Helper function for deaccounting dirty page without writeback.
2490 *
2491 * Caller must hold mem_cgroup_begin_page_stat().
2492 */
2493void account_page_cleaned(struct page *page, struct address_space *mapping,
2494 struct mem_cgroup *memcg, struct bdi_writeback *wb)
2495{
2496 if (mapping_cap_account_dirty(mapping)) {
2497 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2498 dec_zone_page_state(page, NR_FILE_DIRTY);
2499 dec_wb_stat(wb, WB_RECLAIMABLE);
2500 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2501 }
2502}
2503
2504/*
2505 * For address_spaces which do not use buffers. Just tag the page as dirty in
2506 * its radix tree.
2507 *
2508 * This is also used when a single buffer is being dirtied: we want to set the
2509 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2510 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2511 *
2512 * The caller must ensure this doesn't race with truncation. Most will simply
2513 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2514 * the pte lock held, which also locks out truncation.
2515 */
2516int __set_page_dirty_nobuffers(struct page *page)
2517{
2518 struct mem_cgroup *memcg;
2519
2520 memcg = mem_cgroup_begin_page_stat(page);
2521 if (!TestSetPageDirty(page)) {
2522 struct address_space *mapping = page_mapping(page);
2523 unsigned long flags;
2524
2525 if (!mapping) {
2526 mem_cgroup_end_page_stat(memcg);
2527 return 1;
2528 }
2529
2530 spin_lock_irqsave(&mapping->tree_lock, flags);
2531 BUG_ON(page_mapping(page) != mapping);
2532 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2533 account_page_dirtied(page, mapping, memcg);
2534 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2535 PAGECACHE_TAG_DIRTY);
2536 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2537 mem_cgroup_end_page_stat(memcg);
2538
2539 if (mapping->host) {
2540 /* !PageAnon && !swapper_space */
2541 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2542 }
2543 return 1;
2544 }
2545 mem_cgroup_end_page_stat(memcg);
2546 return 0;
2547}
2548EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2549
2550/*
2551 * Call this whenever redirtying a page, to de-account the dirty counters
2552 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2553 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2554 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2555 * control.
2556 */
2557void account_page_redirty(struct page *page)
2558{
2559 struct address_space *mapping = page->mapping;
2560
2561 if (mapping && mapping_cap_account_dirty(mapping)) {
2562 struct inode *inode = mapping->host;
2563 struct bdi_writeback *wb;
2564 bool locked;
2565
2566 wb = unlocked_inode_to_wb_begin(inode, &locked);
2567 current->nr_dirtied--;
2568 dec_zone_page_state(page, NR_DIRTIED);
2569 dec_wb_stat(wb, WB_DIRTIED);
2570 unlocked_inode_to_wb_end(inode, locked);
2571 }
2572}
2573EXPORT_SYMBOL(account_page_redirty);
2574
2575/*
2576 * When a writepage implementation decides that it doesn't want to write this
2577 * page for some reason, it should redirty the locked page via
2578 * redirty_page_for_writepage() and it should then unlock the page and return 0
2579 */
2580int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2581{
2582 int ret;
2583
2584 wbc->pages_skipped++;
2585 ret = __set_page_dirty_nobuffers(page);
2586 account_page_redirty(page);
2587 return ret;
2588}
2589EXPORT_SYMBOL(redirty_page_for_writepage);
2590
2591/*
2592 * Dirty a page.
2593 *
2594 * For pages with a mapping this should be done under the page lock
2595 * for the benefit of asynchronous memory errors who prefer a consistent
2596 * dirty state. This rule can be broken in some special cases,
2597 * but should be better not to.
2598 *
2599 * If the mapping doesn't provide a set_page_dirty a_op, then
2600 * just fall through and assume that it wants buffer_heads.
2601 */
2602int set_page_dirty(struct page *page)
2603{
2604 struct address_space *mapping = page_mapping(page);
2605
2606 if (likely(mapping)) {
2607 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2608 /*
2609 * readahead/lru_deactivate_page could remain
2610 * PG_readahead/PG_reclaim due to race with end_page_writeback
2611 * About readahead, if the page is written, the flags would be
2612 * reset. So no problem.
2613 * About lru_deactivate_page, if the page is redirty, the flag
2614 * will be reset. So no problem. but if the page is used by readahead
2615 * it will confuse readahead and make it restart the size rampup
2616 * process. But it's a trivial problem.
2617 */
2618 if (PageReclaim(page))
2619 ClearPageReclaim(page);
2620#ifdef CONFIG_BLOCK
2621 if (!spd)
2622 spd = __set_page_dirty_buffers;
2623#endif
2624 return (*spd)(page);
2625 }
2626 if (!PageDirty(page)) {
2627 if (!TestSetPageDirty(page))
2628 return 1;
2629 }
2630 return 0;
2631}
2632EXPORT_SYMBOL(set_page_dirty);
2633
2634/*
2635 * set_page_dirty() is racy if the caller has no reference against
2636 * page->mapping->host, and if the page is unlocked. This is because another
2637 * CPU could truncate the page off the mapping and then free the mapping.
2638 *
2639 * Usually, the page _is_ locked, or the caller is a user-space process which
2640 * holds a reference on the inode by having an open file.
2641 *
2642 * In other cases, the page should be locked before running set_page_dirty().
2643 */
2644int set_page_dirty_lock(struct page *page)
2645{
2646 int ret;
2647
2648 lock_page(page);
2649 ret = set_page_dirty(page);
2650 unlock_page(page);
2651 return ret;
2652}
2653EXPORT_SYMBOL(set_page_dirty_lock);
2654
2655/*
2656 * This cancels just the dirty bit on the kernel page itself, it does NOT
2657 * actually remove dirty bits on any mmap's that may be around. It also
2658 * leaves the page tagged dirty, so any sync activity will still find it on
2659 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2660 * look at the dirty bits in the VM.
2661 *
2662 * Doing this should *normally* only ever be done when a page is truncated,
2663 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2664 * this when it notices that somebody has cleaned out all the buffers on a
2665 * page without actually doing it through the VM. Can you say "ext3 is
2666 * horribly ugly"? Thought you could.
2667 */
2668void cancel_dirty_page(struct page *page)
2669{
2670 struct address_space *mapping = page_mapping(page);
2671
2672 if (mapping_cap_account_dirty(mapping)) {
2673 struct inode *inode = mapping->host;
2674 struct bdi_writeback *wb;
2675 struct mem_cgroup *memcg;
2676 bool locked;
2677
2678 memcg = mem_cgroup_begin_page_stat(page);
2679 wb = unlocked_inode_to_wb_begin(inode, &locked);
2680
2681 if (TestClearPageDirty(page))
2682 account_page_cleaned(page, mapping, memcg, wb);
2683
2684 unlocked_inode_to_wb_end(inode, locked);
2685 mem_cgroup_end_page_stat(memcg);
2686 } else {
2687 ClearPageDirty(page);
2688 }
2689}
2690EXPORT_SYMBOL(cancel_dirty_page);
2691
2692/*
2693 * Clear a page's dirty flag, while caring for dirty memory accounting.
2694 * Returns true if the page was previously dirty.
2695 *
2696 * This is for preparing to put the page under writeout. We leave the page
2697 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2698 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2699 * implementation will run either set_page_writeback() or set_page_dirty(),
2700 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2701 * back into sync.
2702 *
2703 * This incoherency between the page's dirty flag and radix-tree tag is
2704 * unfortunate, but it only exists while the page is locked.
2705 */
2706int clear_page_dirty_for_io(struct page *page)
2707{
2708 struct address_space *mapping = page_mapping(page);
2709 int ret = 0;
2710
2711 BUG_ON(!PageLocked(page));
2712
2713 if (mapping && mapping_cap_account_dirty(mapping)) {
2714 struct inode *inode = mapping->host;
2715 struct bdi_writeback *wb;
2716 struct mem_cgroup *memcg;
2717 bool locked;
2718
2719 /*
2720 * Yes, Virginia, this is indeed insane.
2721 *
2722 * We use this sequence to make sure that
2723 * (a) we account for dirty stats properly
2724 * (b) we tell the low-level filesystem to
2725 * mark the whole page dirty if it was
2726 * dirty in a pagetable. Only to then
2727 * (c) clean the page again and return 1 to
2728 * cause the writeback.
2729 *
2730 * This way we avoid all nasty races with the
2731 * dirty bit in multiple places and clearing
2732 * them concurrently from different threads.
2733 *
2734 * Note! Normally the "set_page_dirty(page)"
2735 * has no effect on the actual dirty bit - since
2736 * that will already usually be set. But we
2737 * need the side effects, and it can help us
2738 * avoid races.
2739 *
2740 * We basically use the page "master dirty bit"
2741 * as a serialization point for all the different
2742 * threads doing their things.
2743 */
2744 if (page_mkclean(page))
2745 set_page_dirty(page);
2746 /*
2747 * We carefully synchronise fault handlers against
2748 * installing a dirty pte and marking the page dirty
2749 * at this point. We do this by having them hold the
2750 * page lock while dirtying the page, and pages are
2751 * always locked coming in here, so we get the desired
2752 * exclusion.
2753 */
2754 memcg = mem_cgroup_begin_page_stat(page);
2755 wb = unlocked_inode_to_wb_begin(inode, &locked);
2756 if (TestClearPageDirty(page)) {
2757 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2758 dec_zone_page_state(page, NR_FILE_DIRTY);
2759 dec_wb_stat(wb, WB_RECLAIMABLE);
2760 ret = 1;
2761 }
2762 unlocked_inode_to_wb_end(inode, locked);
2763 mem_cgroup_end_page_stat(memcg);
2764 return ret;
2765 }
2766 return TestClearPageDirty(page);
2767}
2768EXPORT_SYMBOL(clear_page_dirty_for_io);
2769
2770int test_clear_page_writeback(struct page *page)
2771{
2772 struct address_space *mapping = page_mapping(page);
2773 struct mem_cgroup *memcg;
2774 int ret;
2775
2776 memcg = mem_cgroup_begin_page_stat(page);
2777 if (mapping) {
2778 struct inode *inode = mapping->host;
2779 struct backing_dev_info *bdi = inode_to_bdi(inode);
2780 unsigned long flags;
2781
2782 spin_lock_irqsave(&mapping->tree_lock, flags);
2783 ret = TestClearPageWriteback(page);
2784 if (ret) {
2785 radix_tree_tag_clear(&mapping->page_tree,
2786 page_index(page),
2787 PAGECACHE_TAG_WRITEBACK);
2788 if (bdi_cap_account_writeback(bdi)) {
2789 struct bdi_writeback *wb = inode_to_wb(inode);
2790
2791 __dec_wb_stat(wb, WB_WRITEBACK);
2792 __wb_writeout_inc(wb);
2793 }
2794 }
2795 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2796 } else {
2797 ret = TestClearPageWriteback(page);
2798 }
2799 if (ret) {
2800 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2801 dec_zone_page_state(page, NR_WRITEBACK);
2802 inc_zone_page_state(page, NR_WRITTEN);
2803 }
2804 mem_cgroup_end_page_stat(memcg);
2805 return ret;
2806}
2807
2808int __test_set_page_writeback(struct page *page, bool keep_write)
2809{
2810 struct address_space *mapping = page_mapping(page);
2811 struct mem_cgroup *memcg;
2812 int ret;
2813
2814 memcg = mem_cgroup_begin_page_stat(page);
2815 if (mapping) {
2816 struct inode *inode = mapping->host;
2817 struct backing_dev_info *bdi = inode_to_bdi(inode);
2818 unsigned long flags;
2819
2820 spin_lock_irqsave(&mapping->tree_lock, flags);
2821 ret = TestSetPageWriteback(page);
2822 if (!ret) {
2823 radix_tree_tag_set(&mapping->page_tree,
2824 page_index(page),
2825 PAGECACHE_TAG_WRITEBACK);
2826 if (bdi_cap_account_writeback(bdi))
2827 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2828 }
2829 if (!PageDirty(page))
2830 radix_tree_tag_clear(&mapping->page_tree,
2831 page_index(page),
2832 PAGECACHE_TAG_DIRTY);
2833 if (!keep_write)
2834 radix_tree_tag_clear(&mapping->page_tree,
2835 page_index(page),
2836 PAGECACHE_TAG_TOWRITE);
2837 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2838 } else {
2839 ret = TestSetPageWriteback(page);
2840 }
2841 if (!ret) {
2842 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2843 inc_zone_page_state(page, NR_WRITEBACK);
2844 }
2845 mem_cgroup_end_page_stat(memcg);
2846 return ret;
2847
2848}
2849EXPORT_SYMBOL(__test_set_page_writeback);
2850
2851/*
2852 * Return true if any of the pages in the mapping are marked with the
2853 * passed tag.
2854 */
2855int mapping_tagged(struct address_space *mapping, int tag)
2856{
2857 return radix_tree_tagged(&mapping->page_tree, tag);
2858}
2859EXPORT_SYMBOL(mapping_tagged);
2860
2861/**
2862 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2863 * @page: The page to wait on.
2864 *
2865 * This function determines if the given page is related to a backing device
2866 * that requires page contents to be held stable during writeback. If so, then
2867 * it will wait for any pending writeback to complete.
2868 */
2869void wait_for_stable_page(struct page *page)
2870{
2871 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2872 wait_on_page_writeback(page);
2873}
2874EXPORT_SYMBOL_GPL(wait_for_stable_page);