defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / oom_kill.c
... / ...
CommitLineData
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/sched/mm.h>
26#include <linux/sched/coredump.h>
27#include <linux/sched/task.h>
28#include <linux/swap.h>
29#include <linux/timex.h>
30#include <linux/jiffies.h>
31#include <linux/cpuset.h>
32#include <linux/export.h>
33#include <linux/notifier.h>
34#include <linux/memcontrol.h>
35#include <linux/mempolicy.h>
36#include <linux/security.h>
37#include <linux/ptrace.h>
38#include <linux/freezer.h>
39#include <linux/ftrace.h>
40#include <linux/ratelimit.h>
41#include <linux/kthread.h>
42#include <linux/init.h>
43#include <linux/mmu_notifier.h>
44
45#include <asm/tlb.h>
46#include "internal.h"
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/oom.h>
50
51int sysctl_panic_on_oom;
52int sysctl_oom_kill_allocating_task;
53int sysctl_oom_dump_tasks = 1;
54int sysctl_reap_mem_on_sigkill;
55
56DEFINE_MUTEX(oom_lock);
57
58#ifdef CONFIG_NUMA
59/**
60 * has_intersects_mems_allowed() - check task eligiblity for kill
61 * @start: task struct of which task to consider
62 * @mask: nodemask passed to page allocator for mempolicy ooms
63 *
64 * Task eligibility is determined by whether or not a candidate task, @tsk,
65 * shares the same mempolicy nodes as current if it is bound by such a policy
66 * and whether or not it has the same set of allowed cpuset nodes.
67 */
68static bool has_intersects_mems_allowed(struct task_struct *start,
69 const nodemask_t *mask)
70{
71 struct task_struct *tsk;
72 bool ret = false;
73
74 rcu_read_lock();
75 for_each_thread(start, tsk) {
76 if (mask) {
77 /*
78 * If this is a mempolicy constrained oom, tsk's
79 * cpuset is irrelevant. Only return true if its
80 * mempolicy intersects current, otherwise it may be
81 * needlessly killed.
82 */
83 ret = mempolicy_nodemask_intersects(tsk, mask);
84 } else {
85 /*
86 * This is not a mempolicy constrained oom, so only
87 * check the mems of tsk's cpuset.
88 */
89 ret = cpuset_mems_allowed_intersects(current, tsk);
90 }
91 if (ret)
92 break;
93 }
94 rcu_read_unlock();
95
96 return ret;
97}
98#else
99static bool has_intersects_mems_allowed(struct task_struct *tsk,
100 const nodemask_t *mask)
101{
102 return true;
103}
104#endif /* CONFIG_NUMA */
105
106/*
107 * The process p may have detached its own ->mm while exiting or through
108 * use_mm(), but one or more of its subthreads may still have a valid
109 * pointer. Return p, or any of its subthreads with a valid ->mm, with
110 * task_lock() held.
111 */
112struct task_struct *find_lock_task_mm(struct task_struct *p)
113{
114 struct task_struct *t;
115
116 rcu_read_lock();
117
118 for_each_thread(p, t) {
119 task_lock(t);
120 if (likely(t->mm))
121 goto found;
122 task_unlock(t);
123 }
124 t = NULL;
125found:
126 rcu_read_unlock();
127
128 return t;
129}
130
131/*
132 * order == -1 means the oom kill is required by sysrq, otherwise only
133 * for display purposes.
134 */
135static inline bool is_sysrq_oom(struct oom_control *oc)
136{
137 return oc->order == -1;
138}
139
140static inline bool is_memcg_oom(struct oom_control *oc)
141{
142 return oc->memcg != NULL;
143}
144
145/* return true if the task is not adequate as candidate victim task. */
146static bool oom_unkillable_task(struct task_struct *p,
147 struct mem_cgroup *memcg, const nodemask_t *nodemask)
148{
149 if (is_global_init(p))
150 return true;
151 if (p->flags & PF_KTHREAD)
152 return true;
153
154 /* When mem_cgroup_out_of_memory() and p is not member of the group */
155 if (memcg && !task_in_mem_cgroup(p, memcg))
156 return true;
157
158 /* p may not have freeable memory in nodemask */
159 if (!has_intersects_mems_allowed(p, nodemask))
160 return true;
161
162 return false;
163}
164
165/**
166 * oom_badness - heuristic function to determine which candidate task to kill
167 * @p: task struct of which task we should calculate
168 * @totalpages: total present RAM allowed for page allocation
169 *
170 * The heuristic for determining which task to kill is made to be as simple and
171 * predictable as possible. The goal is to return the highest value for the
172 * task consuming the most memory to avoid subsequent oom failures.
173 */
174unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
175 const nodemask_t *nodemask, unsigned long totalpages)
176{
177 long points;
178 long adj;
179
180 if (oom_unkillable_task(p, memcg, nodemask))
181 return 0;
182
183 p = find_lock_task_mm(p);
184 if (!p)
185 return 0;
186
187 /*
188 * Do not even consider tasks which are explicitly marked oom
189 * unkillable or have been already oom reaped or the are in
190 * the middle of vfork
191 */
192 adj = (long)p->signal->oom_score_adj;
193 if (adj == OOM_SCORE_ADJ_MIN ||
194 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
195 in_vfork(p)) {
196 task_unlock(p);
197 return 0;
198 }
199
200 /*
201 * The baseline for the badness score is the proportion of RAM that each
202 * task's rss, pagetable and swap space use.
203 */
204 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
205 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
206 task_unlock(p);
207
208 /*
209 * Root processes get 3% bonus, just like the __vm_enough_memory()
210 * implementation used by LSMs.
211 */
212 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
213 points -= (points * 3) / 100;
214
215 /* Normalize to oom_score_adj units */
216 adj *= totalpages / 1000;
217 points += adj;
218
219 /*
220 * Never return 0 for an eligible task regardless of the root bonus and
221 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
222 */
223 return points > 0 ? points : 1;
224}
225
226enum oom_constraint {
227 CONSTRAINT_NONE,
228 CONSTRAINT_CPUSET,
229 CONSTRAINT_MEMORY_POLICY,
230 CONSTRAINT_MEMCG,
231};
232
233/*
234 * Determine the type of allocation constraint.
235 */
236static enum oom_constraint constrained_alloc(struct oom_control *oc)
237{
238 struct zone *zone;
239 struct zoneref *z;
240 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
241 bool cpuset_limited = false;
242 int nid;
243
244 if (is_memcg_oom(oc)) {
245 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
246 return CONSTRAINT_MEMCG;
247 }
248
249 /* Default to all available memory */
250 oc->totalpages = totalram_pages + total_swap_pages;
251
252 if (!IS_ENABLED(CONFIG_NUMA))
253 return CONSTRAINT_NONE;
254
255 if (!oc->zonelist)
256 return CONSTRAINT_NONE;
257 /*
258 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
259 * to kill current.We have to random task kill in this case.
260 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
261 */
262 if (oc->gfp_mask & __GFP_THISNODE)
263 return CONSTRAINT_NONE;
264
265 /*
266 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
267 * the page allocator means a mempolicy is in effect. Cpuset policy
268 * is enforced in get_page_from_freelist().
269 */
270 if (oc->nodemask &&
271 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
272 oc->totalpages = total_swap_pages;
273 for_each_node_mask(nid, *oc->nodemask)
274 oc->totalpages += node_spanned_pages(nid);
275 return CONSTRAINT_MEMORY_POLICY;
276 }
277
278 /* Check this allocation failure is caused by cpuset's wall function */
279 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
280 high_zoneidx, oc->nodemask)
281 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
282 cpuset_limited = true;
283
284 if (cpuset_limited) {
285 oc->totalpages = total_swap_pages;
286 for_each_node_mask(nid, cpuset_current_mems_allowed)
287 oc->totalpages += node_spanned_pages(nid);
288 return CONSTRAINT_CPUSET;
289 }
290 return CONSTRAINT_NONE;
291}
292
293static int oom_evaluate_task(struct task_struct *task, void *arg)
294{
295 struct oom_control *oc = arg;
296 unsigned long points;
297
298 if (oom_unkillable_task(task, NULL, oc->nodemask))
299 goto next;
300
301 /*
302 * This task already has access to memory reserves and is being killed.
303 * Don't allow any other task to have access to the reserves unless
304 * the task has MMF_OOM_SKIP because chances that it would release
305 * any memory is quite low.
306 */
307 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
308 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
309 goto next;
310 goto abort;
311 }
312
313 /*
314 * If task is allocating a lot of memory and has been marked to be
315 * killed first if it triggers an oom, then select it.
316 */
317 if (oom_task_origin(task)) {
318 points = ULONG_MAX;
319 goto select;
320 }
321
322 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
323 if (!points || points < oc->chosen_points)
324 goto next;
325
326 /* Prefer thread group leaders for display purposes */
327 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
328 goto next;
329select:
330 if (oc->chosen)
331 put_task_struct(oc->chosen);
332 get_task_struct(task);
333 oc->chosen = task;
334 oc->chosen_points = points;
335next:
336 return 0;
337abort:
338 if (oc->chosen)
339 put_task_struct(oc->chosen);
340 oc->chosen = (void *)-1UL;
341 return 1;
342}
343
344/*
345 * Simple selection loop. We choose the process with the highest number of
346 * 'points'. In case scan was aborted, oc->chosen is set to -1.
347 */
348static void select_bad_process(struct oom_control *oc)
349{
350 if (is_memcg_oom(oc))
351 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
352 else {
353 struct task_struct *p;
354
355 rcu_read_lock();
356 for_each_process(p)
357 if (oom_evaluate_task(p, oc))
358 break;
359 rcu_read_unlock();
360 }
361
362 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
363}
364
365/**
366 * dump_tasks - dump current memory state of all system tasks
367 * @memcg: current's memory controller, if constrained
368 * @nodemask: nodemask passed to page allocator for mempolicy ooms
369 *
370 * Dumps the current memory state of all eligible tasks. Tasks not in the same
371 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
372 * are not shown.
373 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
374 * swapents, oom_score_adj value, and name.
375 */
376static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
377{
378 struct task_struct *p;
379 struct task_struct *task;
380
381 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
382 rcu_read_lock();
383 for_each_process(p) {
384 if (oom_unkillable_task(p, memcg, nodemask))
385 continue;
386
387 task = find_lock_task_mm(p);
388 if (!task) {
389 /*
390 * This is a kthread or all of p's threads have already
391 * detached their mm's. There's no need to report
392 * them; they can't be oom killed anyway.
393 */
394 continue;
395 }
396
397 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
398 task->pid, from_kuid(&init_user_ns, task_uid(task)),
399 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
400 atomic_long_read(&task->mm->nr_ptes),
401 mm_nr_pmds(task->mm),
402 get_mm_counter(task->mm, MM_SWAPENTS),
403 task->signal->oom_score_adj, task->comm);
404 task_unlock(task);
405 }
406 rcu_read_unlock();
407}
408
409static void dump_header(struct oom_control *oc, struct task_struct *p)
410{
411 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
412 current->comm, oc->gfp_mask, &oc->gfp_mask);
413 if (oc->nodemask)
414 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
415 else
416 pr_cont("(null)");
417 pr_cont(", order=%d, oom_score_adj=%hd\n",
418 oc->order, current->signal->oom_score_adj);
419 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
420 pr_warn("COMPACTION is disabled!!!\n");
421
422 cpuset_print_current_mems_allowed();
423 dump_stack();
424 if (oc->memcg)
425 mem_cgroup_print_oom_info(oc->memcg, p);
426 else
427 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
428 if (sysctl_oom_dump_tasks)
429 dump_tasks(oc->memcg, oc->nodemask);
430}
431
432/*
433 * Number of OOM victims in flight
434 */
435static atomic_t oom_victims = ATOMIC_INIT(0);
436static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
437
438static bool oom_killer_disabled __read_mostly;
439
440#define K(x) ((x) << (PAGE_SHIFT-10))
441
442/*
443 * task->mm can be NULL if the task is the exited group leader. So to
444 * determine whether the task is using a particular mm, we examine all the
445 * task's threads: if one of those is using this mm then this task was also
446 * using it.
447 */
448bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
449{
450 struct task_struct *t;
451
452 for_each_thread(p, t) {
453 struct mm_struct *t_mm = READ_ONCE(t->mm);
454 if (t_mm)
455 return t_mm == mm;
456 }
457 return false;
458}
459
460#ifdef CONFIG_MMU
461/*
462 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
463 * victim (if that is possible) to help the OOM killer to move on.
464 */
465static struct task_struct *oom_reaper_th;
466static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
467static struct task_struct *oom_reaper_list;
468static DEFINE_SPINLOCK(oom_reaper_lock);
469
470void __oom_reap_task_mm(struct mm_struct *mm)
471{
472 struct vm_area_struct *vma;
473
474 /*
475 * Tell all users of get_user/copy_from_user etc... that the content
476 * is no longer stable. No barriers really needed because unmapping
477 * should imply barriers already and the reader would hit a page fault
478 * if it stumbled over a reaped memory.
479 */
480 set_bit(MMF_UNSTABLE, &mm->flags);
481
482 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
483 if (!can_madv_dontneed_vma(vma))
484 continue;
485
486 /*
487 * Only anonymous pages have a good chance to be dropped
488 * without additional steps which we cannot afford as we
489 * are OOM already.
490 *
491 * We do not even care about fs backed pages because all
492 * which are reclaimable have already been reclaimed and
493 * we do not want to block exit_mmap by keeping mm ref
494 * count elevated without a good reason.
495 */
496 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
497 struct mmu_gather tlb;
498
499 tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
500 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
501 NULL);
502 tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
503 }
504 }
505}
506
507static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
508{
509 bool ret = true;
510
511 /*
512 * We have to make sure to not race with the victim exit path
513 * and cause premature new oom victim selection:
514 * oom_reap_task_mm exit_mm
515 * mmget_not_zero
516 * mmput
517 * atomic_dec_and_test
518 * exit_oom_victim
519 * [...]
520 * out_of_memory
521 * select_bad_process
522 * # no TIF_MEMDIE task selects new victim
523 * unmap_page_range # frees some memory
524 */
525 mutex_lock(&oom_lock);
526
527 if (!down_read_trylock(&mm->mmap_sem)) {
528 ret = false;
529 trace_skip_task_reaping(tsk->pid);
530 goto unlock_oom;
531 }
532
533 /*
534 * If the mm has notifiers then we would need to invalidate them around
535 * unmap_page_range and that is risky because notifiers can sleep and
536 * what they do is basically undeterministic. So let's have a short
537 * sleep to give the oom victim some more time.
538 * TODO: we really want to get rid of this ugly hack and make sure that
539 * notifiers cannot block for unbounded amount of time and add
540 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
541 */
542 if (mm_has_notifiers(mm)) {
543 up_read(&mm->mmap_sem);
544 schedule_timeout_idle(HZ);
545 goto unlock_oom;
546 }
547
548 /*
549 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
550 * work on the mm anymore. The check for MMF_OOM_SKIP must run
551 * under mmap_sem for reading because it serializes against the
552 * down_write();up_write() cycle in exit_mmap().
553 */
554 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
555 up_read(&mm->mmap_sem);
556 trace_skip_task_reaping(tsk->pid);
557 goto unlock_oom;
558 }
559
560 trace_start_task_reaping(tsk->pid);
561
562 __oom_reap_task_mm(mm);
563
564 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
565 task_pid_nr(tsk), tsk->comm,
566 K(get_mm_counter(mm, MM_ANONPAGES)),
567 K(get_mm_counter(mm, MM_FILEPAGES)),
568 K(get_mm_counter(mm, MM_SHMEMPAGES)));
569 up_read(&mm->mmap_sem);
570
571 trace_finish_task_reaping(tsk->pid);
572unlock_oom:
573 mutex_unlock(&oom_lock);
574 return ret;
575}
576
577#define MAX_OOM_REAP_RETRIES 10
578static void oom_reap_task(struct task_struct *tsk)
579{
580 int attempts = 0;
581 struct mm_struct *mm = tsk->signal->oom_mm;
582
583 /* Retry the down_read_trylock(mmap_sem) a few times */
584 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
585 schedule_timeout_idle(HZ/10);
586
587 if (attempts <= MAX_OOM_REAP_RETRIES)
588 goto done;
589
590 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
591 task_pid_nr(tsk), tsk->comm);
592 debug_show_all_locks();
593
594done:
595 tsk->oom_reaper_list = NULL;
596
597 /*
598 * Hide this mm from OOM killer because it has been either reaped or
599 * somebody can't call up_write(mmap_sem).
600 */
601 set_bit(MMF_OOM_SKIP, &mm->flags);
602
603 /* Drop a reference taken by wake_oom_reaper */
604 put_task_struct(tsk);
605}
606
607static int oom_reaper(void *unused)
608{
609 while (true) {
610 struct task_struct *tsk = NULL;
611
612 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
613 spin_lock(&oom_reaper_lock);
614 if (oom_reaper_list != NULL) {
615 tsk = oom_reaper_list;
616 oom_reaper_list = tsk->oom_reaper_list;
617 }
618 spin_unlock(&oom_reaper_lock);
619
620 if (tsk)
621 oom_reap_task(tsk);
622 }
623
624 return 0;
625}
626
627static void wake_oom_reaper(struct task_struct *tsk)
628{
629 if (!oom_reaper_th)
630 return;
631 /*
632 * Move the lock here to avoid scenario of queuing
633 * the same task by both OOM killer and any other SIGKILL
634 * path.
635 */
636
637 spin_lock(&oom_reaper_lock);
638
639 /* mm is already queued? */
640 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) {
641 spin_unlock(&oom_reaper_lock);
642 return;
643 }
644
645 get_task_struct(tsk);
646
647 tsk->oom_reaper_list = oom_reaper_list;
648 oom_reaper_list = tsk;
649 spin_unlock(&oom_reaper_lock);
650 trace_wake_reaper(tsk->pid);
651 wake_up(&oom_reaper_wait);
652}
653
654static int __init oom_init(void)
655{
656 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
657 if (IS_ERR(oom_reaper_th)) {
658 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
659 PTR_ERR(oom_reaper_th));
660 oom_reaper_th = NULL;
661 }
662 return 0;
663}
664subsys_initcall(oom_init)
665#else
666static inline void wake_oom_reaper(struct task_struct *tsk)
667{
668}
669#endif /* CONFIG_MMU */
670
671static void __mark_oom_victim(struct task_struct *tsk)
672{
673 struct mm_struct *mm = tsk->mm;
674
675 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
676 mmgrab(tsk->signal->oom_mm);
677 set_bit(MMF_OOM_VICTIM, &mm->flags);
678 }
679}
680
681/**
682 * mark_oom_victim - mark the given task as OOM victim
683 * @tsk: task to mark
684 *
685 * Has to be called with oom_lock held and never after
686 * oom has been disabled already.
687 *
688 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
689 * under task_lock or operate on the current).
690 */
691static void mark_oom_victim(struct task_struct *tsk)
692{
693 WARN_ON(oom_killer_disabled);
694 /* OOM killer might race with memcg OOM */
695 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
696 return;
697
698 /* oom_mm is bound to the signal struct life time. */
699 __mark_oom_victim(tsk);
700
701 /*
702 * Make sure that the task is woken up from uninterruptible sleep
703 * if it is frozen because OOM killer wouldn't be able to free
704 * any memory and livelock. freezing_slow_path will tell the freezer
705 * that TIF_MEMDIE tasks should be ignored.
706 */
707 __thaw_task(tsk);
708 atomic_inc(&oom_victims);
709 trace_mark_victim(tsk->pid);
710}
711
712/**
713 * exit_oom_victim - note the exit of an OOM victim
714 */
715void exit_oom_victim(void)
716{
717 clear_thread_flag(TIF_MEMDIE);
718
719 if (!atomic_dec_return(&oom_victims))
720 wake_up_all(&oom_victims_wait);
721}
722
723/**
724 * oom_killer_enable - enable OOM killer
725 */
726void oom_killer_enable(void)
727{
728 oom_killer_disabled = false;
729 pr_info("OOM killer enabled.\n");
730}
731
732/**
733 * oom_killer_disable - disable OOM killer
734 * @timeout: maximum timeout to wait for oom victims in jiffies
735 *
736 * Forces all page allocations to fail rather than trigger OOM killer.
737 * Will block and wait until all OOM victims are killed or the given
738 * timeout expires.
739 *
740 * The function cannot be called when there are runnable user tasks because
741 * the userspace would see unexpected allocation failures as a result. Any
742 * new usage of this function should be consulted with MM people.
743 *
744 * Returns true if successful and false if the OOM killer cannot be
745 * disabled.
746 */
747bool oom_killer_disable(signed long timeout)
748{
749 signed long ret;
750
751 /*
752 * Make sure to not race with an ongoing OOM killer. Check that the
753 * current is not killed (possibly due to sharing the victim's memory).
754 */
755 if (mutex_lock_killable(&oom_lock))
756 return false;
757 oom_killer_disabled = true;
758 mutex_unlock(&oom_lock);
759
760 ret = wait_event_interruptible_timeout(oom_victims_wait,
761 !atomic_read(&oom_victims), timeout);
762 if (ret <= 0) {
763 oom_killer_enable();
764 return false;
765 }
766 pr_info("OOM killer disabled.\n");
767
768 return true;
769}
770
771static inline bool __task_will_free_mem(struct task_struct *task)
772{
773 struct signal_struct *sig = task->signal;
774
775 /*
776 * A coredumping process may sleep for an extended period in exit_mm(),
777 * so the oom killer cannot assume that the process will promptly exit
778 * and release memory.
779 */
780 if (sig->flags & SIGNAL_GROUP_COREDUMP)
781 return false;
782
783 if (sig->flags & SIGNAL_GROUP_EXIT)
784 return true;
785
786 if (thread_group_empty(task) && (task->flags & PF_EXITING))
787 return true;
788
789 return false;
790}
791
792/*
793 * Checks whether the given task is dying or exiting and likely to
794 * release its address space. This means that all threads and processes
795 * sharing the same mm have to be killed or exiting.
796 * Caller has to make sure that task->mm is stable (hold task_lock or
797 * it operates on the current).
798 */
799static bool task_will_free_mem(struct task_struct *task)
800{
801 struct mm_struct *mm = task->mm;
802 struct task_struct *p;
803 bool ret = true;
804
805 /*
806 * Skip tasks without mm because it might have passed its exit_mm and
807 * exit_oom_victim. oom_reaper could have rescued that but do not rely
808 * on that for now. We can consider find_lock_task_mm in future.
809 */
810 if (!mm)
811 return false;
812
813 if (!__task_will_free_mem(task))
814 return false;
815
816 /*
817 * This task has already been drained by the oom reaper so there are
818 * only small chances it will free some more
819 */
820 if (test_bit(MMF_OOM_SKIP, &mm->flags))
821 return false;
822
823 if (atomic_read(&mm->mm_users) <= 1)
824 return true;
825
826 /*
827 * Make sure that all tasks which share the mm with the given tasks
828 * are dying as well to make sure that a) nobody pins its mm and
829 * b) the task is also reapable by the oom reaper.
830 */
831 rcu_read_lock();
832 for_each_process(p) {
833 if (!process_shares_mm(p, mm))
834 continue;
835 if (same_thread_group(task, p))
836 continue;
837 ret = __task_will_free_mem(p);
838 if (!ret)
839 break;
840 }
841 rcu_read_unlock();
842
843 return ret;
844}
845
846static void oom_kill_process(struct oom_control *oc, const char *message)
847{
848 struct task_struct *p = oc->chosen;
849 unsigned int points = oc->chosen_points;
850 struct task_struct *victim = p;
851 struct task_struct *child;
852 struct task_struct *t;
853 struct mm_struct *mm;
854 unsigned int victim_points = 0;
855 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
856 DEFAULT_RATELIMIT_BURST);
857 bool can_oom_reap = true;
858
859 /*
860 * If the task is already exiting, don't alarm the sysadmin or kill
861 * its children or threads, just give it access to memory reserves
862 * so it can die quickly
863 */
864 task_lock(p);
865 if (task_will_free_mem(p)) {
866 mark_oom_victim(p);
867 wake_oom_reaper(p);
868 task_unlock(p);
869 put_task_struct(p);
870 return;
871 }
872 task_unlock(p);
873
874 if (__ratelimit(&oom_rs))
875 dump_header(oc, p);
876
877 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
878 message, task_pid_nr(p), p->comm, points);
879
880 /*
881 * If any of p's children has a different mm and is eligible for kill,
882 * the one with the highest oom_badness() score is sacrificed for its
883 * parent. This attempts to lose the minimal amount of work done while
884 * still freeing memory.
885 */
886 read_lock(&tasklist_lock);
887
888 /*
889 * The task 'p' might have already exited before reaching here. The
890 * put_task_struct() will free task_struct 'p' while the loop still try
891 * to access the field of 'p', so, get an extra reference.
892 */
893 get_task_struct(p);
894 for_each_thread(p, t) {
895 list_for_each_entry(child, &t->children, sibling) {
896 unsigned int child_points;
897
898 if (process_shares_mm(child, p->mm))
899 continue;
900 /*
901 * oom_badness() returns 0 if the thread is unkillable
902 */
903 child_points = oom_badness(child,
904 oc->memcg, oc->nodemask, oc->totalpages);
905 if (child_points > victim_points) {
906 put_task_struct(victim);
907 victim = child;
908 victim_points = child_points;
909 get_task_struct(victim);
910 }
911 }
912 }
913 put_task_struct(p);
914 read_unlock(&tasklist_lock);
915
916 p = find_lock_task_mm(victim);
917 if (!p) {
918 put_task_struct(victim);
919 return;
920 } else if (victim != p) {
921 get_task_struct(p);
922 put_task_struct(victim);
923 victim = p;
924 }
925
926 /* Get a reference to safely compare mm after task_unlock(victim) */
927 mm = victim->mm;
928 mmgrab(mm);
929
930 /* Raise event before sending signal: task reaper must see this */
931 count_vm_event(OOM_KILL);
932 count_memcg_event_mm(mm, OOM_KILL);
933
934 /*
935 * We should send SIGKILL before granting access to memory reserves
936 * in order to prevent the OOM victim from depleting the memory
937 * reserves from the user space under its control.
938 */
939 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
940 mark_oom_victim(victim);
941 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
942 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
943 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
944 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
945 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
946 task_unlock(victim);
947
948 /*
949 * Kill all user processes sharing victim->mm in other thread groups, if
950 * any. They don't get access to memory reserves, though, to avoid
951 * depletion of all memory. This prevents mm->mmap_sem livelock when an
952 * oom killed thread cannot exit because it requires the semaphore and
953 * its contended by another thread trying to allocate memory itself.
954 * That thread will now get access to memory reserves since it has a
955 * pending fatal signal.
956 */
957 rcu_read_lock();
958 for_each_process(p) {
959 if (!process_shares_mm(p, mm))
960 continue;
961 if (same_thread_group(p, victim))
962 continue;
963 if (is_global_init(p)) {
964 can_oom_reap = false;
965 set_bit(MMF_OOM_SKIP, &mm->flags);
966 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
967 task_pid_nr(victim), victim->comm,
968 task_pid_nr(p), p->comm);
969 continue;
970 }
971 /*
972 * No use_mm() user needs to read from the userspace so we are
973 * ok to reap it.
974 */
975 if (unlikely(p->flags & PF_KTHREAD))
976 continue;
977 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
978 }
979 rcu_read_unlock();
980
981 if (can_oom_reap)
982 wake_oom_reaper(victim);
983
984 mmdrop(mm);
985 put_task_struct(victim);
986}
987#undef K
988
989/*
990 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
991 */
992static void check_panic_on_oom(struct oom_control *oc,
993 enum oom_constraint constraint)
994{
995 if (likely(!sysctl_panic_on_oom))
996 return;
997 if (sysctl_panic_on_oom != 2) {
998 /*
999 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1000 * does not panic for cpuset, mempolicy, or memcg allocation
1001 * failures.
1002 */
1003 if (constraint != CONSTRAINT_NONE)
1004 return;
1005 }
1006 /* Do not panic for oom kills triggered by sysrq */
1007 if (is_sysrq_oom(oc))
1008 return;
1009 dump_header(oc, NULL);
1010 panic("Out of memory: %s panic_on_oom is enabled\n",
1011 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1012}
1013
1014static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1015
1016int register_oom_notifier(struct notifier_block *nb)
1017{
1018 return blocking_notifier_chain_register(&oom_notify_list, nb);
1019}
1020EXPORT_SYMBOL_GPL(register_oom_notifier);
1021
1022int unregister_oom_notifier(struct notifier_block *nb)
1023{
1024 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1025}
1026EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1027
1028/**
1029 * out_of_memory - kill the "best" process when we run out of memory
1030 * @oc: pointer to struct oom_control
1031 *
1032 * If we run out of memory, we have the choice between either
1033 * killing a random task (bad), letting the system crash (worse)
1034 * OR try to be smart about which process to kill. Note that we
1035 * don't have to be perfect here, we just have to be good.
1036 */
1037bool out_of_memory(struct oom_control *oc)
1038{
1039 unsigned long freed = 0;
1040 enum oom_constraint constraint = CONSTRAINT_NONE;
1041
1042 if (oom_killer_disabled)
1043 return false;
1044
1045 if (!is_memcg_oom(oc)) {
1046 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1047 if (freed > 0)
1048 /* Got some memory back in the last second. */
1049 return true;
1050 }
1051
1052 /*
1053 * If current has a pending SIGKILL or is exiting, then automatically
1054 * select it. The goal is to allow it to allocate so that it may
1055 * quickly exit and free its memory.
1056 */
1057 if (task_will_free_mem(current)) {
1058 mark_oom_victim(current);
1059 wake_oom_reaper(current);
1060 return true;
1061 }
1062
1063 /*
1064 * The OOM killer does not compensate for IO-less reclaim.
1065 * pagefault_out_of_memory lost its gfp context so we have to
1066 * make sure exclude 0 mask - all other users should have at least
1067 * ___GFP_DIRECT_RECLAIM to get here.
1068 */
1069 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1070 return true;
1071
1072 /*
1073 * Check if there were limitations on the allocation (only relevant for
1074 * NUMA and memcg) that may require different handling.
1075 */
1076 constraint = constrained_alloc(oc);
1077 if (constraint != CONSTRAINT_MEMORY_POLICY)
1078 oc->nodemask = NULL;
1079 check_panic_on_oom(oc, constraint);
1080
1081 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1082 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1083 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1084 get_task_struct(current);
1085 oc->chosen = current;
1086 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1087 return true;
1088 }
1089
1090 select_bad_process(oc);
1091 /* Found nothing?!?! Either we hang forever, or we panic. */
1092 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1093 dump_header(oc, NULL);
1094 panic("Out of memory and no killable processes...\n");
1095 }
1096 if (oc->chosen && oc->chosen != (void *)-1UL) {
1097 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1098 "Memory cgroup out of memory");
1099 /*
1100 * Give the killed process a good chance to exit before trying
1101 * to allocate memory again.
1102 */
1103 schedule_timeout_killable(1);
1104 }
1105 return !!oc->chosen;
1106}
1107
1108/*
1109 * The pagefault handler calls here because it is out of memory, so kill a
1110 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1111 * killing is already in progress so do nothing.
1112 */
1113void pagefault_out_of_memory(void)
1114{
1115 struct oom_control oc = {
1116 .zonelist = NULL,
1117 .nodemask = NULL,
1118 .memcg = NULL,
1119 .gfp_mask = 0,
1120 .order = 0,
1121 };
1122
1123 if (mem_cgroup_oom_synchronize(true))
1124 return;
1125
1126 if (!mutex_trylock(&oom_lock))
1127 return;
1128 out_of_memory(&oc);
1129 mutex_unlock(&oom_lock);
1130}
1131
1132void add_to_oom_reaper(struct task_struct *p)
1133{
1134 if (!sysctl_reap_mem_on_sigkill)
1135 return;
1136
1137 p = find_lock_task_mm(p);
1138 if (!p)
1139 return;
1140
1141 get_task_struct(p);
1142 if (task_will_free_mem(p)) {
1143 __mark_oom_victim(p);
1144 wake_oom_reaper(p);
1145 }
1146 task_unlock(p);
1147 put_task_struct(p);
1148}