Merge branch 'for-usb-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sarah...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/export.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608}
609
610/* Apply policy to a single VMA */
611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612{
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629}
630
631/* Step 2: apply policy to a range and do splits. */
632static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634{
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 pgoff_t pgoff;
640 unsigned long vmstart;
641 unsigned long vmend;
642
643 vma = find_vma_prev(mm, start, &prev);
644 if (!vma || vma->vm_start > start)
645 return -EFAULT;
646
647 if (start > vma->vm_start)
648 prev = vma;
649
650 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
651 next = vma->vm_next;
652 vmstart = max(start, vma->vm_start);
653 vmend = min(end, vma->vm_end);
654
655 if (mpol_equal(vma_policy(vma), new_pol))
656 continue;
657
658 pgoff = vma->vm_pgoff +
659 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
660 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
661 vma->anon_vma, vma->vm_file, pgoff,
662 new_pol);
663 if (prev) {
664 vma = prev;
665 next = vma->vm_next;
666 continue;
667 }
668 if (vma->vm_start != vmstart) {
669 err = split_vma(vma->vm_mm, vma, vmstart, 1);
670 if (err)
671 goto out;
672 }
673 if (vma->vm_end != vmend) {
674 err = split_vma(vma->vm_mm, vma, vmend, 0);
675 if (err)
676 goto out;
677 }
678 err = policy_vma(vma, new_pol);
679 if (err)
680 goto out;
681 }
682
683 out:
684 return err;
685}
686
687/*
688 * Update task->flags PF_MEMPOLICY bit: set iff non-default
689 * mempolicy. Allows more rapid checking of this (combined perhaps
690 * with other PF_* flag bits) on memory allocation hot code paths.
691 *
692 * If called from outside this file, the task 'p' should -only- be
693 * a newly forked child not yet visible on the task list, because
694 * manipulating the task flags of a visible task is not safe.
695 *
696 * The above limitation is why this routine has the funny name
697 * mpol_fix_fork_child_flag().
698 *
699 * It is also safe to call this with a task pointer of current,
700 * which the static wrapper mpol_set_task_struct_flag() does,
701 * for use within this file.
702 */
703
704void mpol_fix_fork_child_flag(struct task_struct *p)
705{
706 if (p->mempolicy)
707 p->flags |= PF_MEMPOLICY;
708 else
709 p->flags &= ~PF_MEMPOLICY;
710}
711
712static void mpol_set_task_struct_flag(void)
713{
714 mpol_fix_fork_child_flag(current);
715}
716
717/* Set the process memory policy */
718static long do_set_mempolicy(unsigned short mode, unsigned short flags,
719 nodemask_t *nodes)
720{
721 struct mempolicy *new, *old;
722 struct mm_struct *mm = current->mm;
723 NODEMASK_SCRATCH(scratch);
724 int ret;
725
726 if (!scratch)
727 return -ENOMEM;
728
729 new = mpol_new(mode, flags, nodes);
730 if (IS_ERR(new)) {
731 ret = PTR_ERR(new);
732 goto out;
733 }
734 /*
735 * prevent changing our mempolicy while show_numa_maps()
736 * is using it.
737 * Note: do_set_mempolicy() can be called at init time
738 * with no 'mm'.
739 */
740 if (mm)
741 down_write(&mm->mmap_sem);
742 task_lock(current);
743 ret = mpol_set_nodemask(new, nodes, scratch);
744 if (ret) {
745 task_unlock(current);
746 if (mm)
747 up_write(&mm->mmap_sem);
748 mpol_put(new);
749 goto out;
750 }
751 old = current->mempolicy;
752 current->mempolicy = new;
753 mpol_set_task_struct_flag();
754 if (new && new->mode == MPOL_INTERLEAVE &&
755 nodes_weight(new->v.nodes))
756 current->il_next = first_node(new->v.nodes);
757 task_unlock(current);
758 if (mm)
759 up_write(&mm->mmap_sem);
760
761 mpol_put(old);
762 ret = 0;
763out:
764 NODEMASK_SCRATCH_FREE(scratch);
765 return ret;
766}
767
768/*
769 * Return nodemask for policy for get_mempolicy() query
770 *
771 * Called with task's alloc_lock held
772 */
773static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
774{
775 nodes_clear(*nodes);
776 if (p == &default_policy)
777 return;
778
779 switch (p->mode) {
780 case MPOL_BIND:
781 /* Fall through */
782 case MPOL_INTERLEAVE:
783 *nodes = p->v.nodes;
784 break;
785 case MPOL_PREFERRED:
786 if (!(p->flags & MPOL_F_LOCAL))
787 node_set(p->v.preferred_node, *nodes);
788 /* else return empty node mask for local allocation */
789 break;
790 default:
791 BUG();
792 }
793}
794
795static int lookup_node(struct mm_struct *mm, unsigned long addr)
796{
797 struct page *p;
798 int err;
799
800 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
801 if (err >= 0) {
802 err = page_to_nid(p);
803 put_page(p);
804 }
805 return err;
806}
807
808/* Retrieve NUMA policy */
809static long do_get_mempolicy(int *policy, nodemask_t *nmask,
810 unsigned long addr, unsigned long flags)
811{
812 int err;
813 struct mm_struct *mm = current->mm;
814 struct vm_area_struct *vma = NULL;
815 struct mempolicy *pol = current->mempolicy;
816
817 if (flags &
818 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
819 return -EINVAL;
820
821 if (flags & MPOL_F_MEMS_ALLOWED) {
822 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
823 return -EINVAL;
824 *policy = 0; /* just so it's initialized */
825 task_lock(current);
826 *nmask = cpuset_current_mems_allowed;
827 task_unlock(current);
828 return 0;
829 }
830
831 if (flags & MPOL_F_ADDR) {
832 /*
833 * Do NOT fall back to task policy if the
834 * vma/shared policy at addr is NULL. We
835 * want to return MPOL_DEFAULT in this case.
836 */
837 down_read(&mm->mmap_sem);
838 vma = find_vma_intersection(mm, addr, addr+1);
839 if (!vma) {
840 up_read(&mm->mmap_sem);
841 return -EFAULT;
842 }
843 if (vma->vm_ops && vma->vm_ops->get_policy)
844 pol = vma->vm_ops->get_policy(vma, addr);
845 else
846 pol = vma->vm_policy;
847 } else if (addr)
848 return -EINVAL;
849
850 if (!pol)
851 pol = &default_policy; /* indicates default behavior */
852
853 if (flags & MPOL_F_NODE) {
854 if (flags & MPOL_F_ADDR) {
855 err = lookup_node(mm, addr);
856 if (err < 0)
857 goto out;
858 *policy = err;
859 } else if (pol == current->mempolicy &&
860 pol->mode == MPOL_INTERLEAVE) {
861 *policy = current->il_next;
862 } else {
863 err = -EINVAL;
864 goto out;
865 }
866 } else {
867 *policy = pol == &default_policy ? MPOL_DEFAULT :
868 pol->mode;
869 /*
870 * Internal mempolicy flags must be masked off before exposing
871 * the policy to userspace.
872 */
873 *policy |= (pol->flags & MPOL_MODE_FLAGS);
874 }
875
876 if (vma) {
877 up_read(&current->mm->mmap_sem);
878 vma = NULL;
879 }
880
881 err = 0;
882 if (nmask) {
883 if (mpol_store_user_nodemask(pol)) {
884 *nmask = pol->w.user_nodemask;
885 } else {
886 task_lock(current);
887 get_policy_nodemask(pol, nmask);
888 task_unlock(current);
889 }
890 }
891
892 out:
893 mpol_cond_put(pol);
894 if (vma)
895 up_read(&current->mm->mmap_sem);
896 return err;
897}
898
899#ifdef CONFIG_MIGRATION
900/*
901 * page migration
902 */
903static void migrate_page_add(struct page *page, struct list_head *pagelist,
904 unsigned long flags)
905{
906 /*
907 * Avoid migrating a page that is shared with others.
908 */
909 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
910 if (!isolate_lru_page(page)) {
911 list_add_tail(&page->lru, pagelist);
912 inc_zone_page_state(page, NR_ISOLATED_ANON +
913 page_is_file_cache(page));
914 }
915 }
916}
917
918static struct page *new_node_page(struct page *page, unsigned long node, int **x)
919{
920 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
921}
922
923/*
924 * Migrate pages from one node to a target node.
925 * Returns error or the number of pages not migrated.
926 */
927static int migrate_to_node(struct mm_struct *mm, int source, int dest,
928 int flags)
929{
930 nodemask_t nmask;
931 LIST_HEAD(pagelist);
932 int err = 0;
933 struct vm_area_struct *vma;
934
935 nodes_clear(nmask);
936 node_set(source, nmask);
937
938 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
939 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
940 if (IS_ERR(vma))
941 return PTR_ERR(vma);
942
943 if (!list_empty(&pagelist)) {
944 err = migrate_pages(&pagelist, new_node_page, dest,
945 false, MIGRATE_SYNC);
946 if (err)
947 putback_lru_pages(&pagelist);
948 }
949
950 return err;
951}
952
953/*
954 * Move pages between the two nodesets so as to preserve the physical
955 * layout as much as possible.
956 *
957 * Returns the number of page that could not be moved.
958 */
959int do_migrate_pages(struct mm_struct *mm,
960 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
961{
962 int busy = 0;
963 int err;
964 nodemask_t tmp;
965
966 err = migrate_prep();
967 if (err)
968 return err;
969
970 down_read(&mm->mmap_sem);
971
972 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
973 if (err)
974 goto out;
975
976 /*
977 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
978 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
979 * bit in 'tmp', and return that <source, dest> pair for migration.
980 * The pair of nodemasks 'to' and 'from' define the map.
981 *
982 * If no pair of bits is found that way, fallback to picking some
983 * pair of 'source' and 'dest' bits that are not the same. If the
984 * 'source' and 'dest' bits are the same, this represents a node
985 * that will be migrating to itself, so no pages need move.
986 *
987 * If no bits are left in 'tmp', or if all remaining bits left
988 * in 'tmp' correspond to the same bit in 'to', return false
989 * (nothing left to migrate).
990 *
991 * This lets us pick a pair of nodes to migrate between, such that
992 * if possible the dest node is not already occupied by some other
993 * source node, minimizing the risk of overloading the memory on a
994 * node that would happen if we migrated incoming memory to a node
995 * before migrating outgoing memory source that same node.
996 *
997 * A single scan of tmp is sufficient. As we go, we remember the
998 * most recent <s, d> pair that moved (s != d). If we find a pair
999 * that not only moved, but what's better, moved to an empty slot
1000 * (d is not set in tmp), then we break out then, with that pair.
1001 * Otherwise when we finish scanning from_tmp, we at least have the
1002 * most recent <s, d> pair that moved. If we get all the way through
1003 * the scan of tmp without finding any node that moved, much less
1004 * moved to an empty node, then there is nothing left worth migrating.
1005 */
1006
1007 tmp = *from_nodes;
1008 while (!nodes_empty(tmp)) {
1009 int s,d;
1010 int source = -1;
1011 int dest = 0;
1012
1013 for_each_node_mask(s, tmp) {
1014 d = node_remap(s, *from_nodes, *to_nodes);
1015 if (s == d)
1016 continue;
1017
1018 source = s; /* Node moved. Memorize */
1019 dest = d;
1020
1021 /* dest not in remaining from nodes? */
1022 if (!node_isset(dest, tmp))
1023 break;
1024 }
1025 if (source == -1)
1026 break;
1027
1028 node_clear(source, tmp);
1029 err = migrate_to_node(mm, source, dest, flags);
1030 if (err > 0)
1031 busy += err;
1032 if (err < 0)
1033 break;
1034 }
1035out:
1036 up_read(&mm->mmap_sem);
1037 if (err < 0)
1038 return err;
1039 return busy;
1040
1041}
1042
1043/*
1044 * Allocate a new page for page migration based on vma policy.
1045 * Start assuming that page is mapped by vma pointed to by @private.
1046 * Search forward from there, if not. N.B., this assumes that the
1047 * list of pages handed to migrate_pages()--which is how we get here--
1048 * is in virtual address order.
1049 */
1050static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1051{
1052 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1053 unsigned long uninitialized_var(address);
1054
1055 while (vma) {
1056 address = page_address_in_vma(page, vma);
1057 if (address != -EFAULT)
1058 break;
1059 vma = vma->vm_next;
1060 }
1061
1062 /*
1063 * if !vma, alloc_page_vma() will use task or system default policy
1064 */
1065 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1066}
1067#else
1068
1069static void migrate_page_add(struct page *page, struct list_head *pagelist,
1070 unsigned long flags)
1071{
1072}
1073
1074int do_migrate_pages(struct mm_struct *mm,
1075 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1076{
1077 return -ENOSYS;
1078}
1079
1080static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1081{
1082 return NULL;
1083}
1084#endif
1085
1086static long do_mbind(unsigned long start, unsigned long len,
1087 unsigned short mode, unsigned short mode_flags,
1088 nodemask_t *nmask, unsigned long flags)
1089{
1090 struct vm_area_struct *vma;
1091 struct mm_struct *mm = current->mm;
1092 struct mempolicy *new;
1093 unsigned long end;
1094 int err;
1095 LIST_HEAD(pagelist);
1096
1097 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1098 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1099 return -EINVAL;
1100 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1101 return -EPERM;
1102
1103 if (start & ~PAGE_MASK)
1104 return -EINVAL;
1105
1106 if (mode == MPOL_DEFAULT)
1107 flags &= ~MPOL_MF_STRICT;
1108
1109 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1110 end = start + len;
1111
1112 if (end < start)
1113 return -EINVAL;
1114 if (end == start)
1115 return 0;
1116
1117 new = mpol_new(mode, mode_flags, nmask);
1118 if (IS_ERR(new))
1119 return PTR_ERR(new);
1120
1121 /*
1122 * If we are using the default policy then operation
1123 * on discontinuous address spaces is okay after all
1124 */
1125 if (!new)
1126 flags |= MPOL_MF_DISCONTIG_OK;
1127
1128 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1129 start, start + len, mode, mode_flags,
1130 nmask ? nodes_addr(*nmask)[0] : -1);
1131
1132 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1133
1134 err = migrate_prep();
1135 if (err)
1136 goto mpol_out;
1137 }
1138 {
1139 NODEMASK_SCRATCH(scratch);
1140 if (scratch) {
1141 down_write(&mm->mmap_sem);
1142 task_lock(current);
1143 err = mpol_set_nodemask(new, nmask, scratch);
1144 task_unlock(current);
1145 if (err)
1146 up_write(&mm->mmap_sem);
1147 } else
1148 err = -ENOMEM;
1149 NODEMASK_SCRATCH_FREE(scratch);
1150 }
1151 if (err)
1152 goto mpol_out;
1153
1154 vma = check_range(mm, start, end, nmask,
1155 flags | MPOL_MF_INVERT, &pagelist);
1156
1157 err = PTR_ERR(vma);
1158 if (!IS_ERR(vma)) {
1159 int nr_failed = 0;
1160
1161 err = mbind_range(mm, start, end, new);
1162
1163 if (!list_empty(&pagelist)) {
1164 nr_failed = migrate_pages(&pagelist, new_vma_page,
1165 (unsigned long)vma,
1166 false, true);
1167 if (nr_failed)
1168 putback_lru_pages(&pagelist);
1169 }
1170
1171 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1172 err = -EIO;
1173 } else
1174 putback_lru_pages(&pagelist);
1175
1176 up_write(&mm->mmap_sem);
1177 mpol_out:
1178 mpol_put(new);
1179 return err;
1180}
1181
1182/*
1183 * User space interface with variable sized bitmaps for nodelists.
1184 */
1185
1186/* Copy a node mask from user space. */
1187static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1188 unsigned long maxnode)
1189{
1190 unsigned long k;
1191 unsigned long nlongs;
1192 unsigned long endmask;
1193
1194 --maxnode;
1195 nodes_clear(*nodes);
1196 if (maxnode == 0 || !nmask)
1197 return 0;
1198 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1199 return -EINVAL;
1200
1201 nlongs = BITS_TO_LONGS(maxnode);
1202 if ((maxnode % BITS_PER_LONG) == 0)
1203 endmask = ~0UL;
1204 else
1205 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1206
1207 /* When the user specified more nodes than supported just check
1208 if the non supported part is all zero. */
1209 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1210 if (nlongs > PAGE_SIZE/sizeof(long))
1211 return -EINVAL;
1212 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1213 unsigned long t;
1214 if (get_user(t, nmask + k))
1215 return -EFAULT;
1216 if (k == nlongs - 1) {
1217 if (t & endmask)
1218 return -EINVAL;
1219 } else if (t)
1220 return -EINVAL;
1221 }
1222 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1223 endmask = ~0UL;
1224 }
1225
1226 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1227 return -EFAULT;
1228 nodes_addr(*nodes)[nlongs-1] &= endmask;
1229 return 0;
1230}
1231
1232/* Copy a kernel node mask to user space */
1233static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1234 nodemask_t *nodes)
1235{
1236 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1237 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1238
1239 if (copy > nbytes) {
1240 if (copy > PAGE_SIZE)
1241 return -EINVAL;
1242 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1243 return -EFAULT;
1244 copy = nbytes;
1245 }
1246 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1247}
1248
1249SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1250 unsigned long, mode, unsigned long __user *, nmask,
1251 unsigned long, maxnode, unsigned, flags)
1252{
1253 nodemask_t nodes;
1254 int err;
1255 unsigned short mode_flags;
1256
1257 mode_flags = mode & MPOL_MODE_FLAGS;
1258 mode &= ~MPOL_MODE_FLAGS;
1259 if (mode >= MPOL_MAX)
1260 return -EINVAL;
1261 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1262 (mode_flags & MPOL_F_RELATIVE_NODES))
1263 return -EINVAL;
1264 err = get_nodes(&nodes, nmask, maxnode);
1265 if (err)
1266 return err;
1267 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1268}
1269
1270/* Set the process memory policy */
1271SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1272 unsigned long, maxnode)
1273{
1274 int err;
1275 nodemask_t nodes;
1276 unsigned short flags;
1277
1278 flags = mode & MPOL_MODE_FLAGS;
1279 mode &= ~MPOL_MODE_FLAGS;
1280 if ((unsigned int)mode >= MPOL_MAX)
1281 return -EINVAL;
1282 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1283 return -EINVAL;
1284 err = get_nodes(&nodes, nmask, maxnode);
1285 if (err)
1286 return err;
1287 return do_set_mempolicy(mode, flags, &nodes);
1288}
1289
1290SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1291 const unsigned long __user *, old_nodes,
1292 const unsigned long __user *, new_nodes)
1293{
1294 const struct cred *cred = current_cred(), *tcred;
1295 struct mm_struct *mm = NULL;
1296 struct task_struct *task;
1297 nodemask_t task_nodes;
1298 int err;
1299 nodemask_t *old;
1300 nodemask_t *new;
1301 NODEMASK_SCRATCH(scratch);
1302
1303 if (!scratch)
1304 return -ENOMEM;
1305
1306 old = &scratch->mask1;
1307 new = &scratch->mask2;
1308
1309 err = get_nodes(old, old_nodes, maxnode);
1310 if (err)
1311 goto out;
1312
1313 err = get_nodes(new, new_nodes, maxnode);
1314 if (err)
1315 goto out;
1316
1317 /* Find the mm_struct */
1318 rcu_read_lock();
1319 task = pid ? find_task_by_vpid(pid) : current;
1320 if (!task) {
1321 rcu_read_unlock();
1322 err = -ESRCH;
1323 goto out;
1324 }
1325 mm = get_task_mm(task);
1326 rcu_read_unlock();
1327
1328 err = -EINVAL;
1329 if (!mm)
1330 goto out;
1331
1332 /*
1333 * Check if this process has the right to modify the specified
1334 * process. The right exists if the process has administrative
1335 * capabilities, superuser privileges or the same
1336 * userid as the target process.
1337 */
1338 rcu_read_lock();
1339 tcred = __task_cred(task);
1340 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1341 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1342 !capable(CAP_SYS_NICE)) {
1343 rcu_read_unlock();
1344 err = -EPERM;
1345 goto out;
1346 }
1347 rcu_read_unlock();
1348
1349 task_nodes = cpuset_mems_allowed(task);
1350 /* Is the user allowed to access the target nodes? */
1351 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1352 err = -EPERM;
1353 goto out;
1354 }
1355
1356 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1357 err = -EINVAL;
1358 goto out;
1359 }
1360
1361 err = security_task_movememory(task);
1362 if (err)
1363 goto out;
1364
1365 err = do_migrate_pages(mm, old, new,
1366 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1367out:
1368 if (mm)
1369 mmput(mm);
1370 NODEMASK_SCRATCH_FREE(scratch);
1371
1372 return err;
1373}
1374
1375
1376/* Retrieve NUMA policy */
1377SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1378 unsigned long __user *, nmask, unsigned long, maxnode,
1379 unsigned long, addr, unsigned long, flags)
1380{
1381 int err;
1382 int uninitialized_var(pval);
1383 nodemask_t nodes;
1384
1385 if (nmask != NULL && maxnode < MAX_NUMNODES)
1386 return -EINVAL;
1387
1388 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1389
1390 if (err)
1391 return err;
1392
1393 if (policy && put_user(pval, policy))
1394 return -EFAULT;
1395
1396 if (nmask)
1397 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1398
1399 return err;
1400}
1401
1402#ifdef CONFIG_COMPAT
1403
1404asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1405 compat_ulong_t __user *nmask,
1406 compat_ulong_t maxnode,
1407 compat_ulong_t addr, compat_ulong_t flags)
1408{
1409 long err;
1410 unsigned long __user *nm = NULL;
1411 unsigned long nr_bits, alloc_size;
1412 DECLARE_BITMAP(bm, MAX_NUMNODES);
1413
1414 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1415 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1416
1417 if (nmask)
1418 nm = compat_alloc_user_space(alloc_size);
1419
1420 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1421
1422 if (!err && nmask) {
1423 unsigned long copy_size;
1424 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1425 err = copy_from_user(bm, nm, copy_size);
1426 /* ensure entire bitmap is zeroed */
1427 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1428 err |= compat_put_bitmap(nmask, bm, nr_bits);
1429 }
1430
1431 return err;
1432}
1433
1434asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1435 compat_ulong_t maxnode)
1436{
1437 long err = 0;
1438 unsigned long __user *nm = NULL;
1439 unsigned long nr_bits, alloc_size;
1440 DECLARE_BITMAP(bm, MAX_NUMNODES);
1441
1442 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1443 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1444
1445 if (nmask) {
1446 err = compat_get_bitmap(bm, nmask, nr_bits);
1447 nm = compat_alloc_user_space(alloc_size);
1448 err |= copy_to_user(nm, bm, alloc_size);
1449 }
1450
1451 if (err)
1452 return -EFAULT;
1453
1454 return sys_set_mempolicy(mode, nm, nr_bits+1);
1455}
1456
1457asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1458 compat_ulong_t mode, compat_ulong_t __user *nmask,
1459 compat_ulong_t maxnode, compat_ulong_t flags)
1460{
1461 long err = 0;
1462 unsigned long __user *nm = NULL;
1463 unsigned long nr_bits, alloc_size;
1464 nodemask_t bm;
1465
1466 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1467 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1468
1469 if (nmask) {
1470 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1471 nm = compat_alloc_user_space(alloc_size);
1472 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1473 }
1474
1475 if (err)
1476 return -EFAULT;
1477
1478 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1479}
1480
1481#endif
1482
1483/*
1484 * get_vma_policy(@task, @vma, @addr)
1485 * @task - task for fallback if vma policy == default
1486 * @vma - virtual memory area whose policy is sought
1487 * @addr - address in @vma for shared policy lookup
1488 *
1489 * Returns effective policy for a VMA at specified address.
1490 * Falls back to @task or system default policy, as necessary.
1491 * Current or other task's task mempolicy and non-shared vma policies
1492 * are protected by the task's mmap_sem, which must be held for read by
1493 * the caller.
1494 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1495 * count--added by the get_policy() vm_op, as appropriate--to protect against
1496 * freeing by another task. It is the caller's responsibility to free the
1497 * extra reference for shared policies.
1498 */
1499struct mempolicy *get_vma_policy(struct task_struct *task,
1500 struct vm_area_struct *vma, unsigned long addr)
1501{
1502 struct mempolicy *pol = task->mempolicy;
1503
1504 if (vma) {
1505 if (vma->vm_ops && vma->vm_ops->get_policy) {
1506 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1507 addr);
1508 if (vpol)
1509 pol = vpol;
1510 } else if (vma->vm_policy)
1511 pol = vma->vm_policy;
1512 }
1513 if (!pol)
1514 pol = &default_policy;
1515 return pol;
1516}
1517
1518/*
1519 * Return a nodemask representing a mempolicy for filtering nodes for
1520 * page allocation
1521 */
1522static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1523{
1524 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1525 if (unlikely(policy->mode == MPOL_BIND) &&
1526 gfp_zone(gfp) >= policy_zone &&
1527 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1528 return &policy->v.nodes;
1529
1530 return NULL;
1531}
1532
1533/* Return a zonelist indicated by gfp for node representing a mempolicy */
1534static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1535 int nd)
1536{
1537 switch (policy->mode) {
1538 case MPOL_PREFERRED:
1539 if (!(policy->flags & MPOL_F_LOCAL))
1540 nd = policy->v.preferred_node;
1541 break;
1542 case MPOL_BIND:
1543 /*
1544 * Normally, MPOL_BIND allocations are node-local within the
1545 * allowed nodemask. However, if __GFP_THISNODE is set and the
1546 * current node isn't part of the mask, we use the zonelist for
1547 * the first node in the mask instead.
1548 */
1549 if (unlikely(gfp & __GFP_THISNODE) &&
1550 unlikely(!node_isset(nd, policy->v.nodes)))
1551 nd = first_node(policy->v.nodes);
1552 break;
1553 default:
1554 BUG();
1555 }
1556 return node_zonelist(nd, gfp);
1557}
1558
1559/* Do dynamic interleaving for a process */
1560static unsigned interleave_nodes(struct mempolicy *policy)
1561{
1562 unsigned nid, next;
1563 struct task_struct *me = current;
1564
1565 nid = me->il_next;
1566 next = next_node(nid, policy->v.nodes);
1567 if (next >= MAX_NUMNODES)
1568 next = first_node(policy->v.nodes);
1569 if (next < MAX_NUMNODES)
1570 me->il_next = next;
1571 return nid;
1572}
1573
1574/*
1575 * Depending on the memory policy provide a node from which to allocate the
1576 * next slab entry.
1577 * @policy must be protected by freeing by the caller. If @policy is
1578 * the current task's mempolicy, this protection is implicit, as only the
1579 * task can change it's policy. The system default policy requires no
1580 * such protection.
1581 */
1582unsigned slab_node(struct mempolicy *policy)
1583{
1584 if (!policy || policy->flags & MPOL_F_LOCAL)
1585 return numa_node_id();
1586
1587 switch (policy->mode) {
1588 case MPOL_PREFERRED:
1589 /*
1590 * handled MPOL_F_LOCAL above
1591 */
1592 return policy->v.preferred_node;
1593
1594 case MPOL_INTERLEAVE:
1595 return interleave_nodes(policy);
1596
1597 case MPOL_BIND: {
1598 /*
1599 * Follow bind policy behavior and start allocation at the
1600 * first node.
1601 */
1602 struct zonelist *zonelist;
1603 struct zone *zone;
1604 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1605 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1606 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1607 &policy->v.nodes,
1608 &zone);
1609 return zone ? zone->node : numa_node_id();
1610 }
1611
1612 default:
1613 BUG();
1614 }
1615}
1616
1617/* Do static interleaving for a VMA with known offset. */
1618static unsigned offset_il_node(struct mempolicy *pol,
1619 struct vm_area_struct *vma, unsigned long off)
1620{
1621 unsigned nnodes = nodes_weight(pol->v.nodes);
1622 unsigned target;
1623 int c;
1624 int nid = -1;
1625
1626 if (!nnodes)
1627 return numa_node_id();
1628 target = (unsigned int)off % nnodes;
1629 c = 0;
1630 do {
1631 nid = next_node(nid, pol->v.nodes);
1632 c++;
1633 } while (c <= target);
1634 return nid;
1635}
1636
1637/* Determine a node number for interleave */
1638static inline unsigned interleave_nid(struct mempolicy *pol,
1639 struct vm_area_struct *vma, unsigned long addr, int shift)
1640{
1641 if (vma) {
1642 unsigned long off;
1643
1644 /*
1645 * for small pages, there is no difference between
1646 * shift and PAGE_SHIFT, so the bit-shift is safe.
1647 * for huge pages, since vm_pgoff is in units of small
1648 * pages, we need to shift off the always 0 bits to get
1649 * a useful offset.
1650 */
1651 BUG_ON(shift < PAGE_SHIFT);
1652 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1653 off += (addr - vma->vm_start) >> shift;
1654 return offset_il_node(pol, vma, off);
1655 } else
1656 return interleave_nodes(pol);
1657}
1658
1659/*
1660 * Return the bit number of a random bit set in the nodemask.
1661 * (returns -1 if nodemask is empty)
1662 */
1663int node_random(const nodemask_t *maskp)
1664{
1665 int w, bit = -1;
1666
1667 w = nodes_weight(*maskp);
1668 if (w)
1669 bit = bitmap_ord_to_pos(maskp->bits,
1670 get_random_int() % w, MAX_NUMNODES);
1671 return bit;
1672}
1673
1674#ifdef CONFIG_HUGETLBFS
1675/*
1676 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1677 * @vma = virtual memory area whose policy is sought
1678 * @addr = address in @vma for shared policy lookup and interleave policy
1679 * @gfp_flags = for requested zone
1680 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1681 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1682 *
1683 * Returns a zonelist suitable for a huge page allocation and a pointer
1684 * to the struct mempolicy for conditional unref after allocation.
1685 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1686 * @nodemask for filtering the zonelist.
1687 *
1688 * Must be protected by get_mems_allowed()
1689 */
1690struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1691 gfp_t gfp_flags, struct mempolicy **mpol,
1692 nodemask_t **nodemask)
1693{
1694 struct zonelist *zl;
1695
1696 *mpol = get_vma_policy(current, vma, addr);
1697 *nodemask = NULL; /* assume !MPOL_BIND */
1698
1699 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1700 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1701 huge_page_shift(hstate_vma(vma))), gfp_flags);
1702 } else {
1703 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1704 if ((*mpol)->mode == MPOL_BIND)
1705 *nodemask = &(*mpol)->v.nodes;
1706 }
1707 return zl;
1708}
1709
1710/*
1711 * init_nodemask_of_mempolicy
1712 *
1713 * If the current task's mempolicy is "default" [NULL], return 'false'
1714 * to indicate default policy. Otherwise, extract the policy nodemask
1715 * for 'bind' or 'interleave' policy into the argument nodemask, or
1716 * initialize the argument nodemask to contain the single node for
1717 * 'preferred' or 'local' policy and return 'true' to indicate presence
1718 * of non-default mempolicy.
1719 *
1720 * We don't bother with reference counting the mempolicy [mpol_get/put]
1721 * because the current task is examining it's own mempolicy and a task's
1722 * mempolicy is only ever changed by the task itself.
1723 *
1724 * N.B., it is the caller's responsibility to free a returned nodemask.
1725 */
1726bool init_nodemask_of_mempolicy(nodemask_t *mask)
1727{
1728 struct mempolicy *mempolicy;
1729 int nid;
1730
1731 if (!(mask && current->mempolicy))
1732 return false;
1733
1734 task_lock(current);
1735 mempolicy = current->mempolicy;
1736 switch (mempolicy->mode) {
1737 case MPOL_PREFERRED:
1738 if (mempolicy->flags & MPOL_F_LOCAL)
1739 nid = numa_node_id();
1740 else
1741 nid = mempolicy->v.preferred_node;
1742 init_nodemask_of_node(mask, nid);
1743 break;
1744
1745 case MPOL_BIND:
1746 /* Fall through */
1747 case MPOL_INTERLEAVE:
1748 *mask = mempolicy->v.nodes;
1749 break;
1750
1751 default:
1752 BUG();
1753 }
1754 task_unlock(current);
1755
1756 return true;
1757}
1758#endif
1759
1760/*
1761 * mempolicy_nodemask_intersects
1762 *
1763 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1764 * policy. Otherwise, check for intersection between mask and the policy
1765 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1766 * policy, always return true since it may allocate elsewhere on fallback.
1767 *
1768 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1769 */
1770bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1771 const nodemask_t *mask)
1772{
1773 struct mempolicy *mempolicy;
1774 bool ret = true;
1775
1776 if (!mask)
1777 return ret;
1778 task_lock(tsk);
1779 mempolicy = tsk->mempolicy;
1780 if (!mempolicy)
1781 goto out;
1782
1783 switch (mempolicy->mode) {
1784 case MPOL_PREFERRED:
1785 /*
1786 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1787 * allocate from, they may fallback to other nodes when oom.
1788 * Thus, it's possible for tsk to have allocated memory from
1789 * nodes in mask.
1790 */
1791 break;
1792 case MPOL_BIND:
1793 case MPOL_INTERLEAVE:
1794 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1795 break;
1796 default:
1797 BUG();
1798 }
1799out:
1800 task_unlock(tsk);
1801 return ret;
1802}
1803
1804/* Allocate a page in interleaved policy.
1805 Own path because it needs to do special accounting. */
1806static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1807 unsigned nid)
1808{
1809 struct zonelist *zl;
1810 struct page *page;
1811
1812 zl = node_zonelist(nid, gfp);
1813 page = __alloc_pages(gfp, order, zl);
1814 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1815 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1816 return page;
1817}
1818
1819/**
1820 * alloc_pages_vma - Allocate a page for a VMA.
1821 *
1822 * @gfp:
1823 * %GFP_USER user allocation.
1824 * %GFP_KERNEL kernel allocations,
1825 * %GFP_HIGHMEM highmem/user allocations,
1826 * %GFP_FS allocation should not call back into a file system.
1827 * %GFP_ATOMIC don't sleep.
1828 *
1829 * @order:Order of the GFP allocation.
1830 * @vma: Pointer to VMA or NULL if not available.
1831 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1832 *
1833 * This function allocates a page from the kernel page pool and applies
1834 * a NUMA policy associated with the VMA or the current process.
1835 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1836 * mm_struct of the VMA to prevent it from going away. Should be used for
1837 * all allocations for pages that will be mapped into
1838 * user space. Returns NULL when no page can be allocated.
1839 *
1840 * Should be called with the mm_sem of the vma hold.
1841 */
1842struct page *
1843alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1844 unsigned long addr, int node)
1845{
1846 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1847 struct zonelist *zl;
1848 struct page *page;
1849
1850 get_mems_allowed();
1851 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1852 unsigned nid;
1853
1854 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1855 mpol_cond_put(pol);
1856 page = alloc_page_interleave(gfp, order, nid);
1857 put_mems_allowed();
1858 return page;
1859 }
1860 zl = policy_zonelist(gfp, pol, node);
1861 if (unlikely(mpol_needs_cond_ref(pol))) {
1862 /*
1863 * slow path: ref counted shared policy
1864 */
1865 struct page *page = __alloc_pages_nodemask(gfp, order,
1866 zl, policy_nodemask(gfp, pol));
1867 __mpol_put(pol);
1868 put_mems_allowed();
1869 return page;
1870 }
1871 /*
1872 * fast path: default or task policy
1873 */
1874 page = __alloc_pages_nodemask(gfp, order, zl,
1875 policy_nodemask(gfp, pol));
1876 put_mems_allowed();
1877 return page;
1878}
1879
1880/**
1881 * alloc_pages_current - Allocate pages.
1882 *
1883 * @gfp:
1884 * %GFP_USER user allocation,
1885 * %GFP_KERNEL kernel allocation,
1886 * %GFP_HIGHMEM highmem allocation,
1887 * %GFP_FS don't call back into a file system.
1888 * %GFP_ATOMIC don't sleep.
1889 * @order: Power of two of allocation size in pages. 0 is a single page.
1890 *
1891 * Allocate a page from the kernel page pool. When not in
1892 * interrupt context and apply the current process NUMA policy.
1893 * Returns NULL when no page can be allocated.
1894 *
1895 * Don't call cpuset_update_task_memory_state() unless
1896 * 1) it's ok to take cpuset_sem (can WAIT), and
1897 * 2) allocating for current task (not interrupt).
1898 */
1899struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1900{
1901 struct mempolicy *pol = current->mempolicy;
1902 struct page *page;
1903
1904 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1905 pol = &default_policy;
1906
1907 get_mems_allowed();
1908 /*
1909 * No reference counting needed for current->mempolicy
1910 * nor system default_policy
1911 */
1912 if (pol->mode == MPOL_INTERLEAVE)
1913 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1914 else
1915 page = __alloc_pages_nodemask(gfp, order,
1916 policy_zonelist(gfp, pol, numa_node_id()),
1917 policy_nodemask(gfp, pol));
1918 put_mems_allowed();
1919 return page;
1920}
1921EXPORT_SYMBOL(alloc_pages_current);
1922
1923/*
1924 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1925 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1926 * with the mems_allowed returned by cpuset_mems_allowed(). This
1927 * keeps mempolicies cpuset relative after its cpuset moves. See
1928 * further kernel/cpuset.c update_nodemask().
1929 *
1930 * current's mempolicy may be rebinded by the other task(the task that changes
1931 * cpuset's mems), so we needn't do rebind work for current task.
1932 */
1933
1934/* Slow path of a mempolicy duplicate */
1935struct mempolicy *__mpol_dup(struct mempolicy *old)
1936{
1937 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1938
1939 if (!new)
1940 return ERR_PTR(-ENOMEM);
1941
1942 /* task's mempolicy is protected by alloc_lock */
1943 if (old == current->mempolicy) {
1944 task_lock(current);
1945 *new = *old;
1946 task_unlock(current);
1947 } else
1948 *new = *old;
1949
1950 rcu_read_lock();
1951 if (current_cpuset_is_being_rebound()) {
1952 nodemask_t mems = cpuset_mems_allowed(current);
1953 if (new->flags & MPOL_F_REBINDING)
1954 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1955 else
1956 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1957 }
1958 rcu_read_unlock();
1959 atomic_set(&new->refcnt, 1);
1960 return new;
1961}
1962
1963/*
1964 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1965 * eliminate the * MPOL_F_* flags that require conditional ref and
1966 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1967 * after return. Use the returned value.
1968 *
1969 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1970 * policy lookup, even if the policy needs/has extra ref on lookup.
1971 * shmem_readahead needs this.
1972 */
1973struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1974 struct mempolicy *frompol)
1975{
1976 if (!mpol_needs_cond_ref(frompol))
1977 return frompol;
1978
1979 *tompol = *frompol;
1980 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1981 __mpol_put(frompol);
1982 return tompol;
1983}
1984
1985/* Slow path of a mempolicy comparison */
1986bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1987{
1988 if (!a || !b)
1989 return false;
1990 if (a->mode != b->mode)
1991 return false;
1992 if (a->flags != b->flags)
1993 return false;
1994 if (mpol_store_user_nodemask(a))
1995 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1996 return false;
1997
1998 switch (a->mode) {
1999 case MPOL_BIND:
2000 /* Fall through */
2001 case MPOL_INTERLEAVE:
2002 return !!nodes_equal(a->v.nodes, b->v.nodes);
2003 case MPOL_PREFERRED:
2004 return a->v.preferred_node == b->v.preferred_node;
2005 default:
2006 BUG();
2007 return false;
2008 }
2009}
2010
2011/*
2012 * Shared memory backing store policy support.
2013 *
2014 * Remember policies even when nobody has shared memory mapped.
2015 * The policies are kept in Red-Black tree linked from the inode.
2016 * They are protected by the sp->lock spinlock, which should be held
2017 * for any accesses to the tree.
2018 */
2019
2020/* lookup first element intersecting start-end */
2021/* Caller holds sp->lock */
2022static struct sp_node *
2023sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2024{
2025 struct rb_node *n = sp->root.rb_node;
2026
2027 while (n) {
2028 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2029
2030 if (start >= p->end)
2031 n = n->rb_right;
2032 else if (end <= p->start)
2033 n = n->rb_left;
2034 else
2035 break;
2036 }
2037 if (!n)
2038 return NULL;
2039 for (;;) {
2040 struct sp_node *w = NULL;
2041 struct rb_node *prev = rb_prev(n);
2042 if (!prev)
2043 break;
2044 w = rb_entry(prev, struct sp_node, nd);
2045 if (w->end <= start)
2046 break;
2047 n = prev;
2048 }
2049 return rb_entry(n, struct sp_node, nd);
2050}
2051
2052/* Insert a new shared policy into the list. */
2053/* Caller holds sp->lock */
2054static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2055{
2056 struct rb_node **p = &sp->root.rb_node;
2057 struct rb_node *parent = NULL;
2058 struct sp_node *nd;
2059
2060 while (*p) {
2061 parent = *p;
2062 nd = rb_entry(parent, struct sp_node, nd);
2063 if (new->start < nd->start)
2064 p = &(*p)->rb_left;
2065 else if (new->end > nd->end)
2066 p = &(*p)->rb_right;
2067 else
2068 BUG();
2069 }
2070 rb_link_node(&new->nd, parent, p);
2071 rb_insert_color(&new->nd, &sp->root);
2072 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2073 new->policy ? new->policy->mode : 0);
2074}
2075
2076/* Find shared policy intersecting idx */
2077struct mempolicy *
2078mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2079{
2080 struct mempolicy *pol = NULL;
2081 struct sp_node *sn;
2082
2083 if (!sp->root.rb_node)
2084 return NULL;
2085 spin_lock(&sp->lock);
2086 sn = sp_lookup(sp, idx, idx+1);
2087 if (sn) {
2088 mpol_get(sn->policy);
2089 pol = sn->policy;
2090 }
2091 spin_unlock(&sp->lock);
2092 return pol;
2093}
2094
2095static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2096{
2097 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2098 rb_erase(&n->nd, &sp->root);
2099 mpol_put(n->policy);
2100 kmem_cache_free(sn_cache, n);
2101}
2102
2103static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2104 struct mempolicy *pol)
2105{
2106 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2107
2108 if (!n)
2109 return NULL;
2110 n->start = start;
2111 n->end = end;
2112 mpol_get(pol);
2113 pol->flags |= MPOL_F_SHARED; /* for unref */
2114 n->policy = pol;
2115 return n;
2116}
2117
2118/* Replace a policy range. */
2119static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2120 unsigned long end, struct sp_node *new)
2121{
2122 struct sp_node *n, *new2 = NULL;
2123
2124restart:
2125 spin_lock(&sp->lock);
2126 n = sp_lookup(sp, start, end);
2127 /* Take care of old policies in the same range. */
2128 while (n && n->start < end) {
2129 struct rb_node *next = rb_next(&n->nd);
2130 if (n->start >= start) {
2131 if (n->end <= end)
2132 sp_delete(sp, n);
2133 else
2134 n->start = end;
2135 } else {
2136 /* Old policy spanning whole new range. */
2137 if (n->end > end) {
2138 if (!new2) {
2139 spin_unlock(&sp->lock);
2140 new2 = sp_alloc(end, n->end, n->policy);
2141 if (!new2)
2142 return -ENOMEM;
2143 goto restart;
2144 }
2145 n->end = start;
2146 sp_insert(sp, new2);
2147 new2 = NULL;
2148 break;
2149 } else
2150 n->end = start;
2151 }
2152 if (!next)
2153 break;
2154 n = rb_entry(next, struct sp_node, nd);
2155 }
2156 if (new)
2157 sp_insert(sp, new);
2158 spin_unlock(&sp->lock);
2159 if (new2) {
2160 mpol_put(new2->policy);
2161 kmem_cache_free(sn_cache, new2);
2162 }
2163 return 0;
2164}
2165
2166/**
2167 * mpol_shared_policy_init - initialize shared policy for inode
2168 * @sp: pointer to inode shared policy
2169 * @mpol: struct mempolicy to install
2170 *
2171 * Install non-NULL @mpol in inode's shared policy rb-tree.
2172 * On entry, the current task has a reference on a non-NULL @mpol.
2173 * This must be released on exit.
2174 * This is called at get_inode() calls and we can use GFP_KERNEL.
2175 */
2176void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2177{
2178 int ret;
2179
2180 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2181 spin_lock_init(&sp->lock);
2182
2183 if (mpol) {
2184 struct vm_area_struct pvma;
2185 struct mempolicy *new;
2186 NODEMASK_SCRATCH(scratch);
2187
2188 if (!scratch)
2189 goto put_mpol;
2190 /* contextualize the tmpfs mount point mempolicy */
2191 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2192 if (IS_ERR(new))
2193 goto free_scratch; /* no valid nodemask intersection */
2194
2195 task_lock(current);
2196 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2197 task_unlock(current);
2198 if (ret)
2199 goto put_new;
2200
2201 /* Create pseudo-vma that contains just the policy */
2202 memset(&pvma, 0, sizeof(struct vm_area_struct));
2203 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2204 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2205
2206put_new:
2207 mpol_put(new); /* drop initial ref */
2208free_scratch:
2209 NODEMASK_SCRATCH_FREE(scratch);
2210put_mpol:
2211 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2212 }
2213}
2214
2215int mpol_set_shared_policy(struct shared_policy *info,
2216 struct vm_area_struct *vma, struct mempolicy *npol)
2217{
2218 int err;
2219 struct sp_node *new = NULL;
2220 unsigned long sz = vma_pages(vma);
2221
2222 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2223 vma->vm_pgoff,
2224 sz, npol ? npol->mode : -1,
2225 npol ? npol->flags : -1,
2226 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2227
2228 if (npol) {
2229 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2230 if (!new)
2231 return -ENOMEM;
2232 }
2233 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2234 if (err && new)
2235 kmem_cache_free(sn_cache, new);
2236 return err;
2237}
2238
2239/* Free a backing policy store on inode delete. */
2240void mpol_free_shared_policy(struct shared_policy *p)
2241{
2242 struct sp_node *n;
2243 struct rb_node *next;
2244
2245 if (!p->root.rb_node)
2246 return;
2247 spin_lock(&p->lock);
2248 next = rb_first(&p->root);
2249 while (next) {
2250 n = rb_entry(next, struct sp_node, nd);
2251 next = rb_next(&n->nd);
2252 rb_erase(&n->nd, &p->root);
2253 mpol_put(n->policy);
2254 kmem_cache_free(sn_cache, n);
2255 }
2256 spin_unlock(&p->lock);
2257}
2258
2259/* assumes fs == KERNEL_DS */
2260void __init numa_policy_init(void)
2261{
2262 nodemask_t interleave_nodes;
2263 unsigned long largest = 0;
2264 int nid, prefer = 0;
2265
2266 policy_cache = kmem_cache_create("numa_policy",
2267 sizeof(struct mempolicy),
2268 0, SLAB_PANIC, NULL);
2269
2270 sn_cache = kmem_cache_create("shared_policy_node",
2271 sizeof(struct sp_node),
2272 0, SLAB_PANIC, NULL);
2273
2274 /*
2275 * Set interleaving policy for system init. Interleaving is only
2276 * enabled across suitably sized nodes (default is >= 16MB), or
2277 * fall back to the largest node if they're all smaller.
2278 */
2279 nodes_clear(interleave_nodes);
2280 for_each_node_state(nid, N_HIGH_MEMORY) {
2281 unsigned long total_pages = node_present_pages(nid);
2282
2283 /* Preserve the largest node */
2284 if (largest < total_pages) {
2285 largest = total_pages;
2286 prefer = nid;
2287 }
2288
2289 /* Interleave this node? */
2290 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2291 node_set(nid, interleave_nodes);
2292 }
2293
2294 /* All too small, use the largest */
2295 if (unlikely(nodes_empty(interleave_nodes)))
2296 node_set(prefer, interleave_nodes);
2297
2298 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2299 printk("numa_policy_init: interleaving failed\n");
2300}
2301
2302/* Reset policy of current process to default */
2303void numa_default_policy(void)
2304{
2305 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2306}
2307
2308/*
2309 * Parse and format mempolicy from/to strings
2310 */
2311
2312/*
2313 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2314 * Used only for mpol_parse_str() and mpol_to_str()
2315 */
2316#define MPOL_LOCAL MPOL_MAX
2317static const char * const policy_modes[] =
2318{
2319 [MPOL_DEFAULT] = "default",
2320 [MPOL_PREFERRED] = "prefer",
2321 [MPOL_BIND] = "bind",
2322 [MPOL_INTERLEAVE] = "interleave",
2323 [MPOL_LOCAL] = "local"
2324};
2325
2326
2327#ifdef CONFIG_TMPFS
2328/**
2329 * mpol_parse_str - parse string to mempolicy
2330 * @str: string containing mempolicy to parse
2331 * @mpol: pointer to struct mempolicy pointer, returned on success.
2332 * @no_context: flag whether to "contextualize" the mempolicy
2333 *
2334 * Format of input:
2335 * <mode>[=<flags>][:<nodelist>]
2336 *
2337 * if @no_context is true, save the input nodemask in w.user_nodemask in
2338 * the returned mempolicy. This will be used to "clone" the mempolicy in
2339 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2340 * mount option. Note that if 'static' or 'relative' mode flags were
2341 * specified, the input nodemask will already have been saved. Saving
2342 * it again is redundant, but safe.
2343 *
2344 * On success, returns 0, else 1
2345 */
2346int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2347{
2348 struct mempolicy *new = NULL;
2349 unsigned short mode;
2350 unsigned short uninitialized_var(mode_flags);
2351 nodemask_t nodes;
2352 char *nodelist = strchr(str, ':');
2353 char *flags = strchr(str, '=');
2354 int err = 1;
2355
2356 if (nodelist) {
2357 /* NUL-terminate mode or flags string */
2358 *nodelist++ = '\0';
2359 if (nodelist_parse(nodelist, nodes))
2360 goto out;
2361 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2362 goto out;
2363 } else
2364 nodes_clear(nodes);
2365
2366 if (flags)
2367 *flags++ = '\0'; /* terminate mode string */
2368
2369 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2370 if (!strcmp(str, policy_modes[mode])) {
2371 break;
2372 }
2373 }
2374 if (mode > MPOL_LOCAL)
2375 goto out;
2376
2377 switch (mode) {
2378 case MPOL_PREFERRED:
2379 /*
2380 * Insist on a nodelist of one node only
2381 */
2382 if (nodelist) {
2383 char *rest = nodelist;
2384 while (isdigit(*rest))
2385 rest++;
2386 if (*rest)
2387 goto out;
2388 }
2389 break;
2390 case MPOL_INTERLEAVE:
2391 /*
2392 * Default to online nodes with memory if no nodelist
2393 */
2394 if (!nodelist)
2395 nodes = node_states[N_HIGH_MEMORY];
2396 break;
2397 case MPOL_LOCAL:
2398 /*
2399 * Don't allow a nodelist; mpol_new() checks flags
2400 */
2401 if (nodelist)
2402 goto out;
2403 mode = MPOL_PREFERRED;
2404 break;
2405 case MPOL_DEFAULT:
2406 /*
2407 * Insist on a empty nodelist
2408 */
2409 if (!nodelist)
2410 err = 0;
2411 goto out;
2412 case MPOL_BIND:
2413 /*
2414 * Insist on a nodelist
2415 */
2416 if (!nodelist)
2417 goto out;
2418 }
2419
2420 mode_flags = 0;
2421 if (flags) {
2422 /*
2423 * Currently, we only support two mutually exclusive
2424 * mode flags.
2425 */
2426 if (!strcmp(flags, "static"))
2427 mode_flags |= MPOL_F_STATIC_NODES;
2428 else if (!strcmp(flags, "relative"))
2429 mode_flags |= MPOL_F_RELATIVE_NODES;
2430 else
2431 goto out;
2432 }
2433
2434 new = mpol_new(mode, mode_flags, &nodes);
2435 if (IS_ERR(new))
2436 goto out;
2437
2438 if (no_context) {
2439 /* save for contextualization */
2440 new->w.user_nodemask = nodes;
2441 } else {
2442 int ret;
2443 NODEMASK_SCRATCH(scratch);
2444 if (scratch) {
2445 task_lock(current);
2446 ret = mpol_set_nodemask(new, &nodes, scratch);
2447 task_unlock(current);
2448 } else
2449 ret = -ENOMEM;
2450 NODEMASK_SCRATCH_FREE(scratch);
2451 if (ret) {
2452 mpol_put(new);
2453 goto out;
2454 }
2455 }
2456 err = 0;
2457
2458out:
2459 /* Restore string for error message */
2460 if (nodelist)
2461 *--nodelist = ':';
2462 if (flags)
2463 *--flags = '=';
2464 if (!err)
2465 *mpol = new;
2466 return err;
2467}
2468#endif /* CONFIG_TMPFS */
2469
2470/**
2471 * mpol_to_str - format a mempolicy structure for printing
2472 * @buffer: to contain formatted mempolicy string
2473 * @maxlen: length of @buffer
2474 * @pol: pointer to mempolicy to be formatted
2475 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2476 *
2477 * Convert a mempolicy into a string.
2478 * Returns the number of characters in buffer (if positive)
2479 * or an error (negative)
2480 */
2481int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2482{
2483 char *p = buffer;
2484 int l;
2485 nodemask_t nodes;
2486 unsigned short mode;
2487 unsigned short flags = pol ? pol->flags : 0;
2488
2489 /*
2490 * Sanity check: room for longest mode, flag and some nodes
2491 */
2492 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2493
2494 if (!pol || pol == &default_policy)
2495 mode = MPOL_DEFAULT;
2496 else
2497 mode = pol->mode;
2498
2499 switch (mode) {
2500 case MPOL_DEFAULT:
2501 nodes_clear(nodes);
2502 break;
2503
2504 case MPOL_PREFERRED:
2505 nodes_clear(nodes);
2506 if (flags & MPOL_F_LOCAL)
2507 mode = MPOL_LOCAL; /* pseudo-policy */
2508 else
2509 node_set(pol->v.preferred_node, nodes);
2510 break;
2511
2512 case MPOL_BIND:
2513 /* Fall through */
2514 case MPOL_INTERLEAVE:
2515 if (no_context)
2516 nodes = pol->w.user_nodemask;
2517 else
2518 nodes = pol->v.nodes;
2519 break;
2520
2521 default:
2522 BUG();
2523 }
2524
2525 l = strlen(policy_modes[mode]);
2526 if (buffer + maxlen < p + l + 1)
2527 return -ENOSPC;
2528
2529 strcpy(p, policy_modes[mode]);
2530 p += l;
2531
2532 if (flags & MPOL_MODE_FLAGS) {
2533 if (buffer + maxlen < p + 2)
2534 return -ENOSPC;
2535 *p++ = '=';
2536
2537 /*
2538 * Currently, the only defined flags are mutually exclusive
2539 */
2540 if (flags & MPOL_F_STATIC_NODES)
2541 p += snprintf(p, buffer + maxlen - p, "static");
2542 else if (flags & MPOL_F_RELATIVE_NODES)
2543 p += snprintf(p, buffer + maxlen - p, "relative");
2544 }
2545
2546 if (!nodes_empty(nodes)) {
2547 if (buffer + maxlen < p + 2)
2548 return -ENOSPC;
2549 *p++ = ':';
2550 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2551 }
2552 return p - buffer;
2553}