battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / memory.c
... / ...
CommitLineData
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/delay.h>
53#include <linux/init.h>
54#include <linux/writeback.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
60#include <linux/gfp.h>
61#include <linux/migrate.h>
62#include <linux/string.h>
63
64#ifdef CONFIG_CMA_PINPAGE_MIGRATION
65#include <linux/mm_inline.h>
66#endif
67
68#include <asm/io.h>
69#include <asm/pgalloc.h>
70#include <asm/uaccess.h>
71#include <asm/tlb.h>
72#include <asm/tlbflush.h>
73#include <asm/pgtable.h>
74
75#include "internal.h"
76
77#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
79#endif
80
81#ifndef CONFIG_NEED_MULTIPLE_NODES
82/* use the per-pgdat data instead for discontigmem - mbligh */
83unsigned long max_mapnr;
84struct page *mem_map;
85
86EXPORT_SYMBOL(max_mapnr);
87EXPORT_SYMBOL(mem_map);
88#endif
89
90unsigned long num_physpages;
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
99
100EXPORT_SYMBOL(num_physpages);
101EXPORT_SYMBOL(high_memory);
102
103/*
104 * Randomize the address space (stacks, mmaps, brk, etc.).
105 *
106 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
107 * as ancient (libc5 based) binaries can segfault. )
108 */
109int randomize_va_space __read_mostly =
110#ifdef CONFIG_COMPAT_BRK
111 1;
112#else
113 2;
114#endif
115
116static int __init disable_randmaps(char *s)
117{
118 randomize_va_space = 0;
119 return 1;
120}
121__setup("norandmaps", disable_randmaps);
122
123unsigned long zero_pfn __read_mostly;
124unsigned long highest_memmap_pfn __read_mostly;
125
126/*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129static int __init init_zero_pfn(void)
130{
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133}
134core_initcall(init_zero_pfn);
135
136
137#if defined(SPLIT_RSS_COUNTING)
138
139void sync_mm_rss(struct mm_struct *mm)
140{
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
147 }
148 }
149 current->rss_stat.events = 0;
150}
151
152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153{
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160}
161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164/* sync counter once per 64 page faults */
165#define TASK_RSS_EVENTS_THRESH (64)
166static void check_sync_rss_stat(struct task_struct *task)
167{
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
172}
173#else /* SPLIT_RSS_COUNTING */
174
175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178static void check_sync_rss_stat(struct task_struct *task)
179{
180}
181
182#endif /* SPLIT_RSS_COUNTING */
183
184#ifdef HAVE_GENERIC_MMU_GATHER
185
186static int tlb_next_batch(struct mmu_gather *tlb)
187{
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return 1;
194 }
195
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return 0;
198
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return 0;
202
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
211 return 1;
212}
213
214/* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220{
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->start = start;
227 tlb->end = end;
228 tlb->need_flush = 0;
229 tlb->local.next = NULL;
230 tlb->local.nr = 0;
231 tlb->local.max = ARRAY_SIZE(tlb->__pages);
232 tlb->active = &tlb->local;
233 tlb->batch_count = 0;
234
235#ifdef CONFIG_HAVE_RCU_TABLE_FREE
236 tlb->batch = NULL;
237#endif
238}
239
240void tlb_flush_mmu(struct mmu_gather *tlb)
241{
242 struct mmu_gather_batch *batch;
243
244 if (!tlb->need_flush)
245 return;
246 tlb->need_flush = 0;
247 tlb_flush(tlb);
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250#endif
251
252 for (batch = &tlb->local; batch; batch = batch->next) {
253 free_pages_and_swap_cache(batch->pages, batch->nr);
254 batch->nr = 0;
255 }
256 tlb->active = &tlb->local;
257}
258
259/* tlb_finish_mmu
260 * Called at the end of the shootdown operation to free up any resources
261 * that were required.
262 */
263void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
264{
265 struct mmu_gather_batch *batch, *next;
266
267 tlb_flush_mmu(tlb);
268
269 /* keep the page table cache within bounds */
270 check_pgt_cache();
271
272 for (batch = tlb->local.next; batch; batch = next) {
273 next = batch->next;
274 free_pages((unsigned long)batch, 0);
275 }
276 tlb->local.next = NULL;
277}
278
279/* __tlb_remove_page
280 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
281 * handling the additional races in SMP caused by other CPUs caching valid
282 * mappings in their TLBs. Returns the number of free page slots left.
283 * When out of page slots we must call tlb_flush_mmu().
284 */
285int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
286{
287 struct mmu_gather_batch *batch;
288
289 VM_BUG_ON(!tlb->need_flush);
290
291 batch = tlb->active;
292 batch->pages[batch->nr++] = page;
293 if (batch->nr == batch->max) {
294 if (!tlb_next_batch(tlb))
295 return 0;
296 batch = tlb->active;
297 }
298 VM_BUG_ON(batch->nr > batch->max);
299
300 return batch->max - batch->nr;
301}
302
303#endif /* HAVE_GENERIC_MMU_GATHER */
304
305#ifdef CONFIG_HAVE_RCU_TABLE_FREE
306
307/*
308 * See the comment near struct mmu_table_batch.
309 */
310
311static void tlb_remove_table_smp_sync(void *arg)
312{
313 /* Simply deliver the interrupt */
314}
315
316static void tlb_remove_table_one(void *table)
317{
318 /*
319 * This isn't an RCU grace period and hence the page-tables cannot be
320 * assumed to be actually RCU-freed.
321 *
322 * It is however sufficient for software page-table walkers that rely on
323 * IRQ disabling. See the comment near struct mmu_table_batch.
324 */
325 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326 __tlb_remove_table(table);
327}
328
329static void tlb_remove_table_rcu(struct rcu_head *head)
330{
331 struct mmu_table_batch *batch;
332 int i;
333
334 batch = container_of(head, struct mmu_table_batch, rcu);
335
336 for (i = 0; i < batch->nr; i++)
337 __tlb_remove_table(batch->tables[i]);
338
339 free_page((unsigned long)batch);
340}
341
342void tlb_table_flush(struct mmu_gather *tlb)
343{
344 struct mmu_table_batch **batch = &tlb->batch;
345
346 if (*batch) {
347 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348 *batch = NULL;
349 }
350}
351
352void tlb_remove_table(struct mmu_gather *tlb, void *table)
353{
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 tlb->need_flush = 1;
357
358 /*
359 * When there's less then two users of this mm there cannot be a
360 * concurrent page-table walk.
361 */
362 if (atomic_read(&tlb->mm->mm_users) < 2) {
363 __tlb_remove_table(table);
364 return;
365 }
366
367 if (*batch == NULL) {
368 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369 if (*batch == NULL) {
370 tlb_remove_table_one(table);
371 return;
372 }
373 (*batch)->nr = 0;
374 }
375 (*batch)->tables[(*batch)->nr++] = table;
376 if ((*batch)->nr == MAX_TABLE_BATCH)
377 tlb_table_flush(tlb);
378}
379
380#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381
382/*
383 * If a p?d_bad entry is found while walking page tables, report
384 * the error, before resetting entry to p?d_none. Usually (but
385 * very seldom) called out from the p?d_none_or_clear_bad macros.
386 */
387
388void pgd_clear_bad(pgd_t *pgd)
389{
390 pgd_ERROR(*pgd);
391 pgd_clear(pgd);
392}
393
394void pud_clear_bad(pud_t *pud)
395{
396 pud_ERROR(*pud);
397 pud_clear(pud);
398}
399
400void pmd_clear_bad(pmd_t *pmd)
401{
402 pmd_ERROR(*pmd);
403 pmd_clear(pmd);
404}
405
406/*
407 * Note: this doesn't free the actual pages themselves. That
408 * has been handled earlier when unmapping all the memory regions.
409 */
410static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411 unsigned long addr)
412{
413 pgtable_t token = pmd_pgtable(*pmd);
414 pmd_clear(pmd);
415 pte_free_tlb(tlb, token, addr);
416 tlb->mm->nr_ptes--;
417}
418
419static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420 unsigned long addr, unsigned long end,
421 unsigned long floor, unsigned long ceiling)
422{
423 pmd_t *pmd;
424 unsigned long next;
425 unsigned long start;
426
427 start = addr;
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 free_pte_range(tlb, pmd, addr);
434 } while (pmd++, addr = next, addr != end);
435
436 start &= PUD_MASK;
437 if (start < floor)
438 return;
439 if (ceiling) {
440 ceiling &= PUD_MASK;
441 if (!ceiling)
442 return;
443 }
444 if (end - 1 > ceiling - 1)
445 return;
446
447 pmd = pmd_offset(pud, start);
448 pud_clear(pud);
449 pmd_free_tlb(tlb, pmd, start);
450}
451
452static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453 unsigned long addr, unsigned long end,
454 unsigned long floor, unsigned long ceiling)
455{
456 pud_t *pud;
457 unsigned long next;
458 unsigned long start;
459
460 start = addr;
461 pud = pud_offset(pgd, addr);
462 do {
463 next = pud_addr_end(addr, end);
464 if (pud_none_or_clear_bad(pud))
465 continue;
466 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467 } while (pud++, addr = next, addr != end);
468
469 start &= PGDIR_MASK;
470 if (start < floor)
471 return;
472 if (ceiling) {
473 ceiling &= PGDIR_MASK;
474 if (!ceiling)
475 return;
476 }
477 if (end - 1 > ceiling - 1)
478 return;
479
480 pud = pud_offset(pgd, start);
481 pgd_clear(pgd);
482 pud_free_tlb(tlb, pud, start);
483}
484
485/*
486 * This function frees user-level page tables of a process.
487 *
488 * Must be called with pagetable lock held.
489 */
490void free_pgd_range(struct mmu_gather *tlb,
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
493{
494 pgd_t *pgd;
495 unsigned long next;
496
497 /*
498 * The next few lines have given us lots of grief...
499 *
500 * Why are we testing PMD* at this top level? Because often
501 * there will be no work to do at all, and we'd prefer not to
502 * go all the way down to the bottom just to discover that.
503 *
504 * Why all these "- 1"s? Because 0 represents both the bottom
505 * of the address space and the top of it (using -1 for the
506 * top wouldn't help much: the masks would do the wrong thing).
507 * The rule is that addr 0 and floor 0 refer to the bottom of
508 * the address space, but end 0 and ceiling 0 refer to the top
509 * Comparisons need to use "end - 1" and "ceiling - 1" (though
510 * that end 0 case should be mythical).
511 *
512 * Wherever addr is brought up or ceiling brought down, we must
513 * be careful to reject "the opposite 0" before it confuses the
514 * subsequent tests. But what about where end is brought down
515 * by PMD_SIZE below? no, end can't go down to 0 there.
516 *
517 * Whereas we round start (addr) and ceiling down, by different
518 * masks at different levels, in order to test whether a table
519 * now has no other vmas using it, so can be freed, we don't
520 * bother to round floor or end up - the tests don't need that.
521 */
522
523 addr &= PMD_MASK;
524 if (addr < floor) {
525 addr += PMD_SIZE;
526 if (!addr)
527 return;
528 }
529 if (ceiling) {
530 ceiling &= PMD_MASK;
531 if (!ceiling)
532 return;
533 }
534 if (end - 1 > ceiling - 1)
535 end -= PMD_SIZE;
536 if (addr > end - 1)
537 return;
538
539 pgd = pgd_offset(tlb->mm, addr);
540 do {
541 next = pgd_addr_end(addr, end);
542 if (pgd_none_or_clear_bad(pgd))
543 continue;
544 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545 } while (pgd++, addr = next, addr != end);
546}
547
548void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549 unsigned long floor, unsigned long ceiling)
550{
551 while (vma) {
552 struct vm_area_struct *next = vma->vm_next;
553 unsigned long addr = vma->vm_start;
554
555 /*
556 * Hide vma from rmap and truncate_pagecache before freeing
557 * pgtables
558 */
559 unlink_anon_vmas(vma);
560 unlink_file_vma(vma);
561
562 if (is_vm_hugetlb_page(vma)) {
563 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564 floor, next? next->vm_start: ceiling);
565 } else {
566 /*
567 * Optimization: gather nearby vmas into one call down
568 */
569 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570 && !is_vm_hugetlb_page(next)) {
571 vma = next;
572 next = vma->vm_next;
573 unlink_anon_vmas(vma);
574 unlink_file_vma(vma);
575 }
576 free_pgd_range(tlb, addr, vma->vm_end,
577 floor, next? next->vm_start: ceiling);
578 }
579 vma = next;
580 }
581}
582
583int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584 pmd_t *pmd, unsigned long address)
585{
586 pgtable_t new = pte_alloc_one(mm, address);
587 int wait_split_huge_page;
588 if (!new)
589 return -ENOMEM;
590
591 /*
592 * Ensure all pte setup (eg. pte page lock and page clearing) are
593 * visible before the pte is made visible to other CPUs by being
594 * put into page tables.
595 *
596 * The other side of the story is the pointer chasing in the page
597 * table walking code (when walking the page table without locking;
598 * ie. most of the time). Fortunately, these data accesses consist
599 * of a chain of data-dependent loads, meaning most CPUs (alpha
600 * being the notable exception) will already guarantee loads are
601 * seen in-order. See the alpha page table accessors for the
602 * smp_read_barrier_depends() barriers in page table walking code.
603 */
604 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605
606 spin_lock(&mm->page_table_lock);
607 wait_split_huge_page = 0;
608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
609 mm->nr_ptes++;
610 pmd_populate(mm, pmd, new);
611 new = NULL;
612 } else if (unlikely(pmd_trans_splitting(*pmd)))
613 wait_split_huge_page = 1;
614 spin_unlock(&mm->page_table_lock);
615 if (new)
616 pte_free(mm, new);
617 if (wait_split_huge_page)
618 wait_split_huge_page(vma->anon_vma, pmd);
619 return 0;
620}
621
622int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623{
624 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625 if (!new)
626 return -ENOMEM;
627
628 smp_wmb(); /* See comment in __pte_alloc */
629
630 spin_lock(&init_mm.page_table_lock);
631 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
632 pmd_populate_kernel(&init_mm, pmd, new);
633 new = NULL;
634 } else
635 VM_BUG_ON(pmd_trans_splitting(*pmd));
636 spin_unlock(&init_mm.page_table_lock);
637 if (new)
638 pte_free_kernel(&init_mm, new);
639 return 0;
640}
641
642static inline void init_rss_vec(int *rss)
643{
644 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645}
646
647static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648{
649 int i;
650
651 if (current->mm == mm)
652 sync_mm_rss(mm);
653 for (i = 0; i < NR_MM_COUNTERS; i++)
654 if (rss[i])
655 add_mm_counter(mm, i, rss[i]);
656}
657
658/*
659 * This function is called to print an error when a bad pte
660 * is found. For example, we might have a PFN-mapped pte in
661 * a region that doesn't allow it.
662 *
663 * The calling function must still handle the error.
664 */
665static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666 pte_t pte, struct page *page)
667{
668 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669 pud_t *pud = pud_offset(pgd, addr);
670 pmd_t *pmd = pmd_offset(pud, addr);
671 struct address_space *mapping;
672 pgoff_t index;
673 static unsigned long resume;
674 static unsigned long nr_shown;
675 static unsigned long nr_unshown;
676
677 /*
678 * Allow a burst of 60 reports, then keep quiet for that minute;
679 * or allow a steady drip of one report per second.
680 */
681 if (nr_shown == 60) {
682 if (time_before(jiffies, resume)) {
683 nr_unshown++;
684 return;
685 }
686 if (nr_unshown) {
687 printk(KERN_ALERT
688 "BUG: Bad page map: %lu messages suppressed\n",
689 nr_unshown);
690 nr_unshown = 0;
691 }
692 nr_shown = 0;
693 }
694 if (nr_shown++ == 0)
695 resume = jiffies + 60 * HZ;
696
697 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698 index = linear_page_index(vma, addr);
699
700 printk(KERN_ALERT
701 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
702 current->comm,
703 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704 if (page)
705 dump_page(page);
706 printk(KERN_ALERT
707 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709 /*
710 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711 */
712 if (vma->vm_ops)
713 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
714 vma->vm_ops->fault);
715 if (vma->vm_file && vma->vm_file->f_op)
716 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
717 vma->vm_file->f_op->mmap);
718 dump_stack();
719 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
720}
721
722static inline bool is_cow_mapping(vm_flags_t flags)
723{
724 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725}
726
727/*
728 * vm_normal_page -- This function gets the "struct page" associated with a pte.
729 *
730 * "Special" mappings do not wish to be associated with a "struct page" (either
731 * it doesn't exist, or it exists but they don't want to touch it). In this
732 * case, NULL is returned here. "Normal" mappings do have a struct page.
733 *
734 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735 * pte bit, in which case this function is trivial. Secondly, an architecture
736 * may not have a spare pte bit, which requires a more complicated scheme,
737 * described below.
738 *
739 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740 * special mapping (even if there are underlying and valid "struct pages").
741 * COWed pages of a VM_PFNMAP are always normal.
742 *
743 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746 * mapping will always honor the rule
747 *
748 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
749 *
750 * And for normal mappings this is false.
751 *
752 * This restricts such mappings to be a linear translation from virtual address
753 * to pfn. To get around this restriction, we allow arbitrary mappings so long
754 * as the vma is not a COW mapping; in that case, we know that all ptes are
755 * special (because none can have been COWed).
756 *
757 *
758 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
759 *
760 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761 * page" backing, however the difference is that _all_ pages with a struct
762 * page (that is, those where pfn_valid is true) are refcounted and considered
763 * normal pages by the VM. The disadvantage is that pages are refcounted
764 * (which can be slower and simply not an option for some PFNMAP users). The
765 * advantage is that we don't have to follow the strict linearity rule of
766 * PFNMAP mappings in order to support COWable mappings.
767 *
768 */
769#ifdef __HAVE_ARCH_PTE_SPECIAL
770# define HAVE_PTE_SPECIAL 1
771#else
772# define HAVE_PTE_SPECIAL 0
773#endif
774struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
775 pte_t pte)
776{
777 unsigned long pfn = pte_pfn(pte);
778
779 if (HAVE_PTE_SPECIAL) {
780 if (likely(!pte_special(pte)))
781 goto check_pfn;
782 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
783 return NULL;
784 if (!is_zero_pfn(pfn))
785 print_bad_pte(vma, addr, pte, NULL);
786 return NULL;
787 }
788
789 /* !HAVE_PTE_SPECIAL case follows: */
790
791 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
792 if (vma->vm_flags & VM_MIXEDMAP) {
793 if (!pfn_valid(pfn))
794 return NULL;
795 goto out;
796 } else {
797 unsigned long off;
798 off = (addr - vma->vm_start) >> PAGE_SHIFT;
799 if (pfn == vma->vm_pgoff + off)
800 return NULL;
801 if (!is_cow_mapping(vma->vm_flags))
802 return NULL;
803 }
804 }
805
806 if (is_zero_pfn(pfn))
807 return NULL;
808check_pfn:
809 if (unlikely(pfn > highest_memmap_pfn)) {
810 print_bad_pte(vma, addr, pte, NULL);
811 return NULL;
812 }
813
814 /*
815 * NOTE! We still have PageReserved() pages in the page tables.
816 * eg. VDSO mappings can cause them to exist.
817 */
818out:
819 return pfn_to_page(pfn);
820}
821
822/*
823 * copy one vm_area from one task to the other. Assumes the page tables
824 * already present in the new task to be cleared in the whole range
825 * covered by this vma.
826 */
827
828static inline unsigned long
829copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
831 unsigned long addr, int *rss)
832{
833 unsigned long vm_flags = vma->vm_flags;
834 pte_t pte = *src_pte;
835 struct page *page;
836
837 /* pte contains position in swap or file, so copy. */
838 if (unlikely(!pte_present(pte))) {
839 if (!pte_file(pte)) {
840 swp_entry_t entry = pte_to_swp_entry(pte);
841
842 if (swap_duplicate(entry) < 0)
843 return entry.val;
844
845 /* make sure dst_mm is on swapoff's mmlist. */
846 if (unlikely(list_empty(&dst_mm->mmlist))) {
847 spin_lock(&mmlist_lock);
848 if (list_empty(&dst_mm->mmlist))
849 list_add(&dst_mm->mmlist,
850 &src_mm->mmlist);
851 spin_unlock(&mmlist_lock);
852 }
853 if (likely(!non_swap_entry(entry)))
854 rss[MM_SWAPENTS]++;
855 else if (is_migration_entry(entry)) {
856 page = migration_entry_to_page(entry);
857
858 if (PageAnon(page))
859 rss[MM_ANONPAGES]++;
860 else
861 rss[MM_FILEPAGES]++;
862
863 if (is_write_migration_entry(entry) &&
864 is_cow_mapping(vm_flags)) {
865 /*
866 * COW mappings require pages in both
867 * parent and child to be set to read.
868 */
869 make_migration_entry_read(&entry);
870 pte = swp_entry_to_pte(entry);
871 set_pte_at(src_mm, addr, src_pte, pte);
872 }
873 }
874 }
875 goto out_set_pte;
876 }
877
878 /*
879 * If it's a COW mapping, write protect it both
880 * in the parent and the child
881 */
882 if (is_cow_mapping(vm_flags)) {
883 ptep_set_wrprotect(src_mm, addr, src_pte);
884 pte = pte_wrprotect(pte);
885 }
886
887 /*
888 * If it's a shared mapping, mark it clean in
889 * the child
890 */
891 if (vm_flags & VM_SHARED)
892 pte = pte_mkclean(pte);
893 pte = pte_mkold(pte);
894
895 page = vm_normal_page(vma, addr, pte);
896 if (page) {
897 get_page(page);
898 page_dup_rmap(page);
899 if (PageAnon(page))
900 rss[MM_ANONPAGES]++;
901 else
902 rss[MM_FILEPAGES]++;
903 }
904
905out_set_pte:
906 set_pte_at(dst_mm, addr, dst_pte, pte);
907 return 0;
908}
909
910int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
912 unsigned long addr, unsigned long end)
913{
914 pte_t *orig_src_pte, *orig_dst_pte;
915 pte_t *src_pte, *dst_pte;
916 spinlock_t *src_ptl, *dst_ptl;
917 int progress = 0;
918 int rss[NR_MM_COUNTERS];
919 swp_entry_t entry = (swp_entry_t){0};
920
921again:
922 init_rss_vec(rss);
923
924 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
925 if (!dst_pte)
926 return -ENOMEM;
927 src_pte = pte_offset_map(src_pmd, addr);
928 src_ptl = pte_lockptr(src_mm, src_pmd);
929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930 orig_src_pte = src_pte;
931 orig_dst_pte = dst_pte;
932 arch_enter_lazy_mmu_mode();
933
934 do {
935 /*
936 * We are holding two locks at this point - either of them
937 * could generate latencies in another task on another CPU.
938 */
939 if (progress >= 32) {
940 progress = 0;
941 if (need_resched() ||
942 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
943 break;
944 }
945 if (pte_none(*src_pte)) {
946 progress++;
947 continue;
948 }
949 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
950 vma, addr, rss);
951 if (entry.val)
952 break;
953 progress += 8;
954 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
955
956 arch_leave_lazy_mmu_mode();
957 spin_unlock(src_ptl);
958 pte_unmap(orig_src_pte);
959 add_mm_rss_vec(dst_mm, rss);
960 pte_unmap_unlock(orig_dst_pte, dst_ptl);
961 cond_resched();
962
963 if (entry.val) {
964 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
965 return -ENOMEM;
966 progress = 0;
967 }
968 if (addr != end)
969 goto again;
970 return 0;
971}
972
973static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
975 unsigned long addr, unsigned long end)
976{
977 pmd_t *src_pmd, *dst_pmd;
978 unsigned long next;
979
980 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
981 if (!dst_pmd)
982 return -ENOMEM;
983 src_pmd = pmd_offset(src_pud, addr);
984 do {
985 next = pmd_addr_end(addr, end);
986 if (pmd_trans_huge(*src_pmd)) {
987 int err;
988 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
989 err = copy_huge_pmd(dst_mm, src_mm,
990 dst_pmd, src_pmd, addr, vma);
991 if (err == -ENOMEM)
992 return -ENOMEM;
993 if (!err)
994 continue;
995 /* fall through */
996 }
997 if (pmd_none_or_clear_bad(src_pmd))
998 continue;
999 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1003 return 0;
1004}
1005
1006static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1008 unsigned long addr, unsigned long end)
1009{
1010 pud_t *src_pud, *dst_pud;
1011 unsigned long next;
1012
1013 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1014 if (!dst_pud)
1015 return -ENOMEM;
1016 src_pud = pud_offset(src_pgd, addr);
1017 do {
1018 next = pud_addr_end(addr, end);
1019 if (pud_none_or_clear_bad(src_pud))
1020 continue;
1021 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1022 vma, addr, next))
1023 return -ENOMEM;
1024 } while (dst_pud++, src_pud++, addr = next, addr != end);
1025 return 0;
1026}
1027
1028int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 struct vm_area_struct *vma)
1030{
1031 pgd_t *src_pgd, *dst_pgd;
1032 unsigned long next;
1033 unsigned long addr = vma->vm_start;
1034 unsigned long end = vma->vm_end;
1035 unsigned long mmun_start; /* For mmu_notifiers */
1036 unsigned long mmun_end; /* For mmu_notifiers */
1037 bool is_cow;
1038 int ret;
1039
1040 /*
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1045 */
1046 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1047 VM_PFNMAP | VM_MIXEDMAP))) {
1048 if (!vma->anon_vma)
1049 return 0;
1050 }
1051
1052 if (is_vm_hugetlb_page(vma))
1053 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1054
1055 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1056 /*
1057 * We do not free on error cases below as remove_vma
1058 * gets called on error from higher level routine
1059 */
1060 ret = track_pfn_copy(vma);
1061 if (ret)
1062 return ret;
1063 }
1064
1065 /*
1066 * We need to invalidate the secondary MMU mappings only when
1067 * there could be a permission downgrade on the ptes of the
1068 * parent mm. And a permission downgrade will only happen if
1069 * is_cow_mapping() returns true.
1070 */
1071 is_cow = is_cow_mapping(vma->vm_flags);
1072 mmun_start = addr;
1073 mmun_end = end;
1074 if (is_cow)
1075 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1076 mmun_end);
1077
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092 if (is_cow)
1093 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1094 return ret;
1095}
1096
1097static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 struct vm_area_struct *vma, pmd_t *pmd,
1099 unsigned long addr, unsigned long end,
1100 struct zap_details *details)
1101{
1102 struct mm_struct *mm = tlb->mm;
1103 int force_flush = 0;
1104 int rss[NR_MM_COUNTERS];
1105 spinlock_t *ptl;
1106 pte_t *start_pte;
1107 pte_t *pte;
1108
1109again:
1110 init_rss_vec(rss);
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
1113 arch_enter_lazy_mmu_mode();
1114 do {
1115 pte_t ptent = *pte;
1116 if (pte_none(ptent)) {
1117 continue;
1118 }
1119
1120 if (pte_present(ptent)) {
1121 struct page *page;
1122
1123 page = vm_normal_page(vma, addr, ptent);
1124 if (unlikely(details) && page) {
1125 /*
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1129 */
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1133 /*
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1136 */
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1141 }
1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 tlb->fullmm);
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
1150 set_pte_at(mm, addr, pte,
1151 pgoff_to_pte(page->index));
1152 if (PageAnon(page))
1153 rss[MM_ANONPAGES]--;
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
1159 mark_page_accessed(page);
1160 rss[MM_FILEPAGES]--;
1161 }
1162 page_remove_rmap(page);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1168 continue;
1169 }
1170 /*
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1173 */
1174 if (unlikely(details))
1175 continue;
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1186
1187 page = migration_entry_to_page(entry);
1188
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1193 }
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 unsigned long old_end;
1211
1212 force_flush = 0;
1213
1214 /*
1215 * Flush the TLB just for the previous segment,
1216 * then update the range to be the remaining
1217 * TLB range.
1218 */
1219 old_end = tlb->end;
1220 tlb->end = addr;
1221
1222 tlb_flush_mmu(tlb);
1223
1224 tlb->start = addr;
1225 tlb->end = old_end;
1226
1227 if (addr != end)
1228 goto again;
1229 }
1230
1231 return addr;
1232}
1233
1234static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1235 struct vm_area_struct *vma, pud_t *pud,
1236 unsigned long addr, unsigned long end,
1237 struct zap_details *details)
1238{
1239 pmd_t *pmd;
1240 unsigned long next;
1241
1242 pmd = pmd_offset(pud, addr);
1243 do {
1244 next = pmd_addr_end(addr, end);
1245 if (pmd_trans_huge(*pmd)) {
1246 if (next - addr != HPAGE_PMD_SIZE) {
1247#ifdef CONFIG_DEBUG_VM
1248 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1249 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1250 __func__, addr, end,
1251 vma->vm_start,
1252 vma->vm_end);
1253 BUG();
1254 }
1255#endif
1256 split_huge_page_pmd(vma, addr, pmd);
1257 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1258 goto next;
1259 /* fall through */
1260 }
1261 /*
1262 * Here there can be other concurrent MADV_DONTNEED or
1263 * trans huge page faults running, and if the pmd is
1264 * none or trans huge it can change under us. This is
1265 * because MADV_DONTNEED holds the mmap_sem in read
1266 * mode.
1267 */
1268 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1269 goto next;
1270 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1271next:
1272 cond_resched();
1273 } while (pmd++, addr = next, addr != end);
1274
1275 return addr;
1276}
1277
1278static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pgd_t *pgd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1282{
1283 pud_t *pud;
1284 unsigned long next;
1285
1286 pud = pud_offset(pgd, addr);
1287 do {
1288 next = pud_addr_end(addr, end);
1289 if (pud_none_or_clear_bad(pud))
1290 continue;
1291 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1292 } while (pud++, addr = next, addr != end);
1293
1294 return addr;
1295}
1296
1297static void unmap_page_range(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma,
1299 unsigned long addr, unsigned long end,
1300 struct zap_details *details)
1301{
1302 pgd_t *pgd;
1303 unsigned long next;
1304
1305 if (details && !details->check_mapping && !details->nonlinear_vma)
1306 details = NULL;
1307
1308 BUG_ON(addr >= end);
1309 mem_cgroup_uncharge_start();
1310 tlb_start_vma(tlb, vma);
1311 pgd = pgd_offset(vma->vm_mm, addr);
1312 do {
1313 next = pgd_addr_end(addr, end);
1314 if (pgd_none_or_clear_bad(pgd))
1315 continue;
1316 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1317 } while (pgd++, addr = next, addr != end);
1318 tlb_end_vma(tlb, vma);
1319 mem_cgroup_uncharge_end();
1320}
1321
1322
1323static void unmap_single_vma(struct mmu_gather *tlb,
1324 struct vm_area_struct *vma, unsigned long start_addr,
1325 unsigned long end_addr,
1326 struct zap_details *details)
1327{
1328 unsigned long start = max(vma->vm_start, start_addr);
1329 unsigned long end;
1330
1331 if (start >= vma->vm_end)
1332 return;
1333 end = min(vma->vm_end, end_addr);
1334 if (end <= vma->vm_start)
1335 return;
1336
1337 if (vma->vm_file)
1338 uprobe_munmap(vma, start, end);
1339
1340 if (unlikely(vma->vm_flags & VM_PFNMAP))
1341 untrack_pfn(vma, 0, 0);
1342
1343 if (start != end) {
1344 if (unlikely(is_vm_hugetlb_page(vma))) {
1345 /*
1346 * It is undesirable to test vma->vm_file as it
1347 * should be non-null for valid hugetlb area.
1348 * However, vm_file will be NULL in the error
1349 * cleanup path of do_mmap_pgoff. When
1350 * hugetlbfs ->mmap method fails,
1351 * do_mmap_pgoff() nullifies vma->vm_file
1352 * before calling this function to clean up.
1353 * Since no pte has actually been setup, it is
1354 * safe to do nothing in this case.
1355 */
1356 if (vma->vm_file) {
1357 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1358 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1359 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1360 }
1361 } else
1362 unmap_page_range(tlb, vma, start, end, details);
1363 }
1364}
1365
1366/**
1367 * unmap_vmas - unmap a range of memory covered by a list of vma's
1368 * @tlb: address of the caller's struct mmu_gather
1369 * @vma: the starting vma
1370 * @start_addr: virtual address at which to start unmapping
1371 * @end_addr: virtual address at which to end unmapping
1372 *
1373 * Unmap all pages in the vma list.
1374 *
1375 * Only addresses between `start' and `end' will be unmapped.
1376 *
1377 * The VMA list must be sorted in ascending virtual address order.
1378 *
1379 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1380 * range after unmap_vmas() returns. So the only responsibility here is to
1381 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1382 * drops the lock and schedules.
1383 */
1384void unmap_vmas(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, unsigned long start_addr,
1386 unsigned long end_addr)
1387{
1388 struct mm_struct *mm = vma->vm_mm;
1389
1390 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1391 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1392 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1393 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1394}
1395
1396/**
1397 * zap_page_range - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @start: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * Caller must protect the VMA list
1404 */
1405void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1406 unsigned long size, struct zap_details *details)
1407{
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = start + size;
1411
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, start, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, start, end);
1416 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1417 unmap_single_vma(&tlb, vma, start, end, details);
1418 mmu_notifier_invalidate_range_end(mm, start, end);
1419 tlb_finish_mmu(&tlb, start, end);
1420}
1421
1422/**
1423 * zap_page_range_single - remove user pages in a given range
1424 * @vma: vm_area_struct holding the applicable pages
1425 * @address: starting address of pages to zap
1426 * @size: number of bytes to zap
1427 * @details: details of nonlinear truncation or shared cache invalidation
1428 *
1429 * The range must fit into one VMA.
1430 */
1431static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size, struct zap_details *details)
1433{
1434 struct mm_struct *mm = vma->vm_mm;
1435 struct mmu_gather tlb;
1436 unsigned long end = address + size;
1437
1438 lru_add_drain();
1439 tlb_gather_mmu(&tlb, mm, address, end);
1440 update_hiwater_rss(mm);
1441 mmu_notifier_invalidate_range_start(mm, address, end);
1442 unmap_single_vma(&tlb, vma, address, end, details);
1443 mmu_notifier_invalidate_range_end(mm, address, end);
1444 tlb_finish_mmu(&tlb, address, end);
1445}
1446
1447/*
1448 * FOLL_FORCE can write to even unwritable pte's, but only
1449 * after we've gone through a COW cycle and they are dirty.
1450 */
1451static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
1452{
1453 return pte_write(pte) ||
1454 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
1455}
1456
1457/**
1458 * zap_vma_ptes - remove ptes mapping the vma
1459 * @vma: vm_area_struct holding ptes to be zapped
1460 * @address: starting address of pages to zap
1461 * @size: number of bytes to zap
1462 *
1463 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1464 *
1465 * The entire address range must be fully contained within the vma.
1466 *
1467 * Returns 0 if successful.
1468 */
1469int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1470 unsigned long size)
1471{
1472 if (address < vma->vm_start || address + size > vma->vm_end ||
1473 !(vma->vm_flags & VM_PFNMAP))
1474 return -1;
1475 zap_page_range_single(vma, address, size, NULL);
1476 return 0;
1477}
1478EXPORT_SYMBOL_GPL(zap_vma_ptes);
1479
1480#ifdef CONFIG_CMA_PINPAGE_MIGRATION
1481static struct page *__alloc_nonmovable_userpage(struct page *page,
1482 unsigned long private, int **result)
1483{
1484 return alloc_page(GFP_HIGHUSER);
1485}
1486
1487static bool __need_migrate_cma_page(struct page *page,
1488 struct vm_area_struct *vma,
1489 unsigned long start, unsigned int flags)
1490{
1491 if (!(flags & FOLL_GET))
1492 return false;
1493
1494 if (!is_cma_pageblock(page))
1495 return false;
1496
1497 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1498 VM_STACK_INCOMPLETE_SETUP)
1499 return false;
1500
1501 if (!(flags & FOLL_CMA))
1502 return false;
1503
1504 migrate_prep_local();
1505
1506 if (!PageLRU(page))
1507 return false;
1508
1509 return true;
1510}
1511
1512static int __migrate_cma_pinpage(struct page *page, struct vm_area_struct *vma)
1513{
1514 struct zone *zone = page_zone(page);
1515 struct list_head migratepages;
1516 struct lruvec *lruvec;
1517 int tries = 0;
1518 int ret = 0;
1519
1520 INIT_LIST_HEAD(&migratepages);
1521
1522 if (__isolate_lru_page(page, 0) != 0) {
1523 pr_warn("%s: failed to isolate lru page\n", __func__);
1524 dump_page(page);
1525 return -EFAULT;
1526 } else {
1527 spin_lock_irq(&zone->lru_lock);
1528 lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
1529 del_page_from_lru_list(page, lruvec, page_lru(page));
1530 spin_unlock_irq(&zone->lru_lock);
1531 }
1532
1533 list_add(&page->lru, &migratepages);
1534 inc_zone_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
1535
1536 while (!list_empty(&migratepages) && tries++ < 5) {
1537 ret = migrate_pages(&migratepages,
1538 __alloc_nonmovable_userpage, 0, MIGRATE_SYNC, MR_CMA);
1539 }
1540
1541 if (ret < 0) {
1542 putback_movable_pages(&migratepages);
1543 pr_err("%s: migration failed %p[%#lx]\n", __func__,
1544 page, page_to_pfn(page));
1545 return -EFAULT;
1546 }
1547
1548 return 0;
1549}
1550#endif
1551
1552/**
1553 * follow_page_mask - look up a page descriptor from a user-virtual address
1554 * @vma: vm_area_struct mapping @address
1555 * @address: virtual address to look up
1556 * @flags: flags modifying lookup behaviour
1557 * @page_mask: on output, *page_mask is set according to the size of the page
1558 *
1559 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1560 *
1561 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1562 * an error pointer if there is a mapping to something not represented
1563 * by a page descriptor (see also vm_normal_page()).
1564 */
1565struct page *follow_page_mask(struct vm_area_struct *vma,
1566 unsigned long address, unsigned int flags,
1567 unsigned int *page_mask)
1568{
1569 pgd_t *pgd;
1570 pud_t *pud;
1571 pmd_t *pmd;
1572 pte_t *ptep, pte;
1573 spinlock_t *ptl;
1574 struct page *page;
1575 struct mm_struct *mm = vma->vm_mm;
1576
1577 *page_mask = 0;
1578
1579 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1580 if (!IS_ERR(page)) {
1581 BUG_ON(flags & FOLL_GET);
1582 goto out;
1583 }
1584
1585 page = NULL;
1586 pgd = pgd_offset(mm, address);
1587 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1588 goto no_page_table;
1589
1590 pud = pud_offset(pgd, address);
1591 if (pud_none(*pud))
1592 goto no_page_table;
1593 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1594 BUG_ON(flags & FOLL_GET);
1595 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1596 goto out;
1597 }
1598 if (unlikely(pud_bad(*pud)))
1599 goto no_page_table;
1600
1601 pmd = pmd_offset(pud, address);
1602 if (pmd_none(*pmd))
1603 goto no_page_table;
1604 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1605 BUG_ON(flags & FOLL_GET);
1606 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1607 goto out;
1608 }
1609 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1610 goto no_page_table;
1611 if (pmd_trans_huge(*pmd)) {
1612 if (flags & FOLL_SPLIT) {
1613 split_huge_page_pmd(vma, address, pmd);
1614 goto split_fallthrough;
1615 }
1616 spin_lock(&mm->page_table_lock);
1617 if (likely(pmd_trans_huge(*pmd))) {
1618 if (unlikely(pmd_trans_splitting(*pmd))) {
1619 spin_unlock(&mm->page_table_lock);
1620 wait_split_huge_page(vma->anon_vma, pmd);
1621 } else {
1622 page = follow_trans_huge_pmd(vma, address,
1623 pmd, flags);
1624 spin_unlock(&mm->page_table_lock);
1625 *page_mask = HPAGE_PMD_NR - 1;
1626 goto out;
1627 }
1628 } else
1629 spin_unlock(&mm->page_table_lock);
1630 /* fall through */
1631 }
1632split_fallthrough:
1633 if (unlikely(pmd_bad(*pmd)))
1634 goto no_page_table;
1635
1636 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1637
1638 pte = *ptep;
1639 if (!pte_present(pte)) {
1640 swp_entry_t entry;
1641 /*
1642 * KSM's break_ksm() relies upon recognizing a ksm page
1643 * even while it is being migrated, so for that case we
1644 * need migration_entry_wait().
1645 */
1646 if (likely(!(flags & FOLL_MIGRATION)))
1647 goto no_page;
1648 if (pte_none(pte) || pte_file(pte))
1649 goto no_page;
1650 entry = pte_to_swp_entry(pte);
1651 if (!is_migration_entry(entry))
1652 goto no_page;
1653 pte_unmap_unlock(ptep, ptl);
1654 migration_entry_wait(mm, pmd, address);
1655 goto split_fallthrough;
1656 }
1657 if ((flags & FOLL_NUMA) && pte_numa(pte))
1658 goto no_page;
1659 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags))
1660 goto unlock;
1661
1662 page = vm_normal_page(vma, address, pte);
1663 if (unlikely(!page)) {
1664 if ((flags & FOLL_DUMP) ||
1665 !is_zero_pfn(pte_pfn(pte)))
1666 goto bad_page;
1667 page = pte_page(pte);
1668 }
1669
1670#ifdef CONFIG_CMA_PINPAGE_MIGRATION
1671 if (__need_migrate_cma_page(page, vma, address, flags)) {
1672 pte_unmap_unlock(ptep, ptl);
1673 if (__migrate_cma_pinpage(page, vma)) {
1674 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1675 } else {
1676 struct page *old_page = page;
1677
1678 migration_entry_wait(mm, pmd, address);
1679 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1680 update_mmu_cache(vma, address, ptep);
1681 pte = *ptep;
1682 set_pte_at_notify(mm, address, ptep, pte);
1683 page = vm_normal_page(vma, address, pte);
1684 BUG_ON(!page);
1685
1686 pr_debug("cma: cma page %p[%#lx] migrated to new "
1687 "page %p[%#lx]\n", old_page,
1688 page_to_pfn(old_page),
1689 page, page_to_pfn(page));
1690 }
1691 }
1692#endif
1693 if (flags & FOLL_GET)
1694 get_page_foll(page);
1695 if (flags & FOLL_TOUCH) {
1696 if ((flags & FOLL_WRITE) &&
1697 !pte_dirty(pte) && !PageDirty(page))
1698 set_page_dirty(page);
1699 /*
1700 * pte_mkyoung() would be more correct here, but atomic care
1701 * is needed to avoid losing the dirty bit: it is easier to use
1702 * mark_page_accessed().
1703 */
1704 mark_page_accessed(page);
1705 }
1706 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1707 /*
1708 * The preliminary mapping check is mainly to avoid the
1709 * pointless overhead of lock_page on the ZERO_PAGE
1710 * which might bounce very badly if there is contention.
1711 *
1712 * If the page is already locked, we don't need to
1713 * handle it now - vmscan will handle it later if and
1714 * when it attempts to reclaim the page.
1715 */
1716 if (page->mapping && trylock_page(page)) {
1717 lru_add_drain(); /* push cached pages to LRU */
1718 /*
1719 * Because we lock page here, and migration is
1720 * blocked by the pte's page reference, and we
1721 * know the page is still mapped, we don't even
1722 * need to check for file-cache page truncation.
1723 */
1724 mlock_vma_page(page);
1725 unlock_page(page);
1726 }
1727 }
1728unlock:
1729 pte_unmap_unlock(ptep, ptl);
1730out:
1731 return page;
1732
1733bad_page:
1734 pte_unmap_unlock(ptep, ptl);
1735 return ERR_PTR(-EFAULT);
1736
1737no_page:
1738 pte_unmap_unlock(ptep, ptl);
1739 if (!pte_none(pte))
1740 return page;
1741
1742no_page_table:
1743 /*
1744 * When core dumping an enormous anonymous area that nobody
1745 * has touched so far, we don't want to allocate unnecessary pages or
1746 * page tables. Return error instead of NULL to skip handle_mm_fault,
1747 * then get_dump_page() will return NULL to leave a hole in the dump.
1748 * But we can only make this optimization where a hole would surely
1749 * be zero-filled if handle_mm_fault() actually did handle it.
1750 */
1751 if ((flags & FOLL_DUMP) &&
1752 (!vma->vm_ops || !vma->vm_ops->fault))
1753 return ERR_PTR(-EFAULT);
1754 return page;
1755}
1756
1757/**
1758 * __get_user_pages() - pin user pages in memory
1759 * @tsk: task_struct of target task
1760 * @mm: mm_struct of target mm
1761 * @start: starting user address
1762 * @nr_pages: number of pages from start to pin
1763 * @gup_flags: flags modifying pin behaviour
1764 * @pages: array that receives pointers to the pages pinned.
1765 * Should be at least nr_pages long. Or NULL, if caller
1766 * only intends to ensure the pages are faulted in.
1767 * @vmas: array of pointers to vmas corresponding to each page.
1768 * Or NULL if the caller does not require them.
1769 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1770 *
1771 * Returns number of pages pinned. This may be fewer than the number
1772 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1773 * were pinned, returns -errno. Each page returned must be released
1774 * with a put_page() call when it is finished with. vmas will only
1775 * remain valid while mmap_sem is held.
1776 *
1777 * Must be called with mmap_sem held for read or write.
1778 *
1779 * __get_user_pages walks a process's page tables and takes a reference to
1780 * each struct page that each user address corresponds to at a given
1781 * instant. That is, it takes the page that would be accessed if a user
1782 * thread accesses the given user virtual address at that instant.
1783 *
1784 * This does not guarantee that the page exists in the user mappings when
1785 * __get_user_pages returns, and there may even be a completely different
1786 * page there in some cases (eg. if mmapped pagecache has been invalidated
1787 * and subsequently re faulted). However it does guarantee that the page
1788 * won't be freed completely. And mostly callers simply care that the page
1789 * contains data that was valid *at some point in time*. Typically, an IO
1790 * or similar operation cannot guarantee anything stronger anyway because
1791 * locks can't be held over the syscall boundary.
1792 *
1793 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1794 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1795 * appropriate) must be called after the page is finished with, and
1796 * before put_page is called.
1797 *
1798 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1799 * or mmap_sem contention, and if waiting is needed to pin all pages,
1800 * *@nonblocking will be set to 0.
1801 *
1802 * In most cases, get_user_pages or get_user_pages_fast should be used
1803 * instead of __get_user_pages. __get_user_pages should be used only if
1804 * you need some special @gup_flags.
1805 */
1806long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1807 unsigned long start, unsigned long nr_pages,
1808 unsigned int gup_flags, struct page **pages,
1809 struct vm_area_struct **vmas, int *nonblocking)
1810{
1811 long i;
1812 unsigned long vm_flags;
1813 unsigned int page_mask;
1814
1815 if (!nr_pages)
1816 return 0;
1817
1818 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1819
1820 /*
1821 * Require read or write permissions.
1822 * If FOLL_FORCE is set, we only require the "MAY" flags.
1823 */
1824 vm_flags = (gup_flags & FOLL_WRITE) ?
1825 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1826 vm_flags &= (gup_flags & FOLL_FORCE) ?
1827 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1828
1829 /*
1830 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1831 * would be called on PROT_NONE ranges. We must never invoke
1832 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1833 * page faults would unprotect the PROT_NONE ranges if
1834 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1835 * bitflag. So to avoid that, don't set FOLL_NUMA if
1836 * FOLL_FORCE is set.
1837 */
1838 if (!(gup_flags & FOLL_FORCE))
1839 gup_flags |= FOLL_NUMA;
1840
1841 i = 0;
1842
1843 do {
1844 struct vm_area_struct *vma;
1845
1846 vma = find_extend_vma(mm, start);
1847 if (!vma && in_gate_area(mm, start)) {
1848 unsigned long pg = start & PAGE_MASK;
1849 pgd_t *pgd;
1850 pud_t *pud;
1851 pmd_t *pmd;
1852 pte_t *pte;
1853
1854 /* user gate pages are read-only */
1855 if (gup_flags & FOLL_WRITE)
1856 return i ? : -EFAULT;
1857 if (pg > TASK_SIZE)
1858 pgd = pgd_offset_k(pg);
1859 else
1860 pgd = pgd_offset_gate(mm, pg);
1861 BUG_ON(pgd_none(*pgd));
1862 pud = pud_offset(pgd, pg);
1863 BUG_ON(pud_none(*pud));
1864 pmd = pmd_offset(pud, pg);
1865 if (pmd_none(*pmd))
1866 return i ? : -EFAULT;
1867 VM_BUG_ON(pmd_trans_huge(*pmd));
1868 pte = pte_offset_map(pmd, pg);
1869 if (pte_none(*pte)) {
1870 pte_unmap(pte);
1871 return i ? : -EFAULT;
1872 }
1873 vma = get_gate_vma(mm);
1874 if (pages) {
1875 struct page *page;
1876
1877 page = vm_normal_page(vma, start, *pte);
1878 if (!page) {
1879 if (!(gup_flags & FOLL_DUMP) &&
1880 is_zero_pfn(pte_pfn(*pte)))
1881 page = pte_page(*pte);
1882 else {
1883 pte_unmap(pte);
1884 return i ? : -EFAULT;
1885 }
1886 }
1887 pages[i] = page;
1888 get_page(page);
1889 }
1890 pte_unmap(pte);
1891 page_mask = 0;
1892 goto next_page;
1893 }
1894
1895 if (!vma ||
1896 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1897 !(vm_flags & vma->vm_flags))
1898 return i ? : -EFAULT;
1899
1900 if (is_vm_hugetlb_page(vma)) {
1901 i = follow_hugetlb_page(mm, vma, pages, vmas,
1902 &start, &nr_pages, i, gup_flags);
1903 continue;
1904 }
1905
1906 do {
1907 struct page *page;
1908 unsigned int foll_flags = gup_flags;
1909 unsigned int page_increm;
1910
1911 /*
1912 * If we have a pending SIGKILL, don't keep faulting
1913 * pages and potentially allocating memory.
1914 */
1915 if (unlikely(fatal_signal_pending(current)))
1916 return i ? i : -ERESTARTSYS;
1917
1918 cond_resched();
1919 while (!(page = follow_page_mask(vma, start,
1920 foll_flags, &page_mask))) {
1921 int ret;
1922 unsigned int fault_flags = 0;
1923
1924 if (foll_flags & FOLL_WRITE)
1925 fault_flags |= FAULT_FLAG_WRITE;
1926 if (nonblocking)
1927 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1928 if (foll_flags & FOLL_NOWAIT)
1929 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1930
1931 ret = handle_mm_fault(mm, vma, start,
1932 fault_flags);
1933
1934 if (ret & VM_FAULT_ERROR) {
1935 if (ret & VM_FAULT_OOM)
1936 return i ? i : -ENOMEM;
1937 if (ret & (VM_FAULT_HWPOISON |
1938 VM_FAULT_HWPOISON_LARGE)) {
1939 if (i)
1940 return i;
1941 else if (gup_flags & FOLL_HWPOISON)
1942 return -EHWPOISON;
1943 else
1944 return -EFAULT;
1945 }
1946 if (ret & (VM_FAULT_SIGBUS |
1947 VM_FAULT_SIGSEGV))
1948 return i ? i : -EFAULT;
1949 BUG();
1950 }
1951
1952 if (tsk) {
1953 if (ret & VM_FAULT_MAJOR)
1954 tsk->maj_flt++;
1955 else
1956 tsk->min_flt++;
1957 }
1958
1959 if (ret & VM_FAULT_RETRY) {
1960 if (nonblocking)
1961 *nonblocking = 0;
1962 return i;
1963 }
1964
1965 /*
1966 * The VM_FAULT_WRITE bit tells us that
1967 * do_wp_page has broken COW when necessary,
1968 * even if maybe_mkwrite decided not to set
1969 * pte_write. We can thus safely do subsequent
1970 * page lookups as if they were reads. But only
1971 * do so when looping for pte_write is futile:
1972 * in some cases userspace may also be wanting
1973 * to write to the gotten user page, which a
1974 * read fault here might prevent (a readonly
1975 * page might get reCOWed by userspace write).
1976 */
1977 if ((ret & VM_FAULT_WRITE) &&
1978 !(vma->vm_flags & VM_WRITE))
1979 foll_flags |= FOLL_COW;
1980
1981 cond_resched();
1982 }
1983 if (IS_ERR(page))
1984 return i ? i : PTR_ERR(page);
1985 if (pages) {
1986 pages[i] = page;
1987
1988 flush_anon_page(vma, page, start);
1989 flush_dcache_page(page);
1990 page_mask = 0;
1991 }
1992next_page:
1993 if (vmas) {
1994 vmas[i] = vma;
1995 page_mask = 0;
1996 }
1997 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1998 if (page_increm > nr_pages)
1999 page_increm = nr_pages;
2000 i += page_increm;
2001 start += page_increm * PAGE_SIZE;
2002 nr_pages -= page_increm;
2003 } while (nr_pages && start < vma->vm_end);
2004 } while (nr_pages);
2005 return i;
2006}
2007EXPORT_SYMBOL(__get_user_pages);
2008
2009/*
2010 * fixup_user_fault() - manually resolve a user page fault
2011 * @tsk: the task_struct to use for page fault accounting, or
2012 * NULL if faults are not to be recorded.
2013 * @mm: mm_struct of target mm
2014 * @address: user address
2015 * @fault_flags:flags to pass down to handle_mm_fault()
2016 *
2017 * This is meant to be called in the specific scenario where for locking reasons
2018 * we try to access user memory in atomic context (within a pagefault_disable()
2019 * section), this returns -EFAULT, and we want to resolve the user fault before
2020 * trying again.
2021 *
2022 * Typically this is meant to be used by the futex code.
2023 *
2024 * The main difference with get_user_pages() is that this function will
2025 * unconditionally call handle_mm_fault() which will in turn perform all the
2026 * necessary SW fixup of the dirty and young bits in the PTE, while
2027 * handle_mm_fault() only guarantees to update these in the struct page.
2028 *
2029 * This is important for some architectures where those bits also gate the
2030 * access permission to the page because they are maintained in software. On
2031 * such architectures, gup() will not be enough to make a subsequent access
2032 * succeed.
2033 *
2034 * This should be called with the mm_sem held for read.
2035 */
2036int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
2037 unsigned long address, unsigned int fault_flags)
2038{
2039 struct vm_area_struct *vma;
2040 vm_flags_t vm_flags;
2041 int ret;
2042
2043 vma = find_extend_vma(mm, address);
2044 if (!vma || address < vma->vm_start)
2045 return -EFAULT;
2046
2047 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
2048 if (!(vm_flags & vma->vm_flags))
2049 return -EFAULT;
2050
2051 ret = handle_mm_fault(mm, vma, address, fault_flags);
2052 if (ret & VM_FAULT_ERROR) {
2053 if (ret & VM_FAULT_OOM)
2054 return -ENOMEM;
2055 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2056 return -EHWPOISON;
2057 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2058 return -EFAULT;
2059 BUG();
2060 }
2061 if (tsk) {
2062 if (ret & VM_FAULT_MAJOR)
2063 tsk->maj_flt++;
2064 else
2065 tsk->min_flt++;
2066 }
2067 return 0;
2068}
2069
2070/*
2071 * get_user_pages() - pin user pages in memory
2072 * @tsk: the task_struct to use for page fault accounting, or
2073 * NULL if faults are not to be recorded.
2074 * @mm: mm_struct of target mm
2075 * @start: starting user address
2076 * @nr_pages: number of pages from start to pin
2077 * @write: whether pages will be written to by the caller
2078 * @force: whether to force write access even if user mapping is
2079 * readonly. This will result in the page being COWed even
2080 * in MAP_SHARED mappings. You do not want this.
2081 * @pages: array that receives pointers to the pages pinned.
2082 * Should be at least nr_pages long. Or NULL, if caller
2083 * only intends to ensure the pages are faulted in.
2084 * @vmas: array of pointers to vmas corresponding to each page.
2085 * Or NULL if the caller does not require them.
2086 *
2087 * Returns number of pages pinned. This may be fewer than the number
2088 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2089 * were pinned, returns -errno. Each page returned must be released
2090 * with a put_page() call when it is finished with. vmas will only
2091 * remain valid while mmap_sem is held.
2092 *
2093 * Must be called with mmap_sem held for read or write.
2094 *
2095 * get_user_pages walks a process's page tables and takes a reference to
2096 * each struct page that each user address corresponds to at a given
2097 * instant. That is, it takes the page that would be accessed if a user
2098 * thread accesses the given user virtual address at that instant.
2099 *
2100 * This does not guarantee that the page exists in the user mappings when
2101 * get_user_pages returns, and there may even be a completely different
2102 * page there in some cases (eg. if mmapped pagecache has been invalidated
2103 * and subsequently re faulted). However it does guarantee that the page
2104 * won't be freed completely. And mostly callers simply care that the page
2105 * contains data that was valid *at some point in time*. Typically, an IO
2106 * or similar operation cannot guarantee anything stronger anyway because
2107 * locks can't be held over the syscall boundary.
2108 *
2109 * If write=0, the page must not be written to. If the page is written to,
2110 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2111 * after the page is finished with, and before put_page is called.
2112 *
2113 * get_user_pages is typically used for fewer-copy IO operations, to get a
2114 * handle on the memory by some means other than accesses via the user virtual
2115 * addresses. The pages may be submitted for DMA to devices or accessed via
2116 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2117 * use the correct cache flushing APIs.
2118 *
2119 * See also get_user_pages_fast, for performance critical applications.
2120 */
2121long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2122 unsigned long start, unsigned long nr_pages, int write,
2123 int force, struct page **pages, struct vm_area_struct **vmas)
2124{
2125 int flags = FOLL_TOUCH;
2126
2127 if (pages)
2128 flags |= FOLL_GET;
2129 if (write)
2130 flags |= FOLL_WRITE;
2131 if (force)
2132 flags |= FOLL_FORCE;
2133
2134 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2135 NULL);
2136}
2137EXPORT_SYMBOL(get_user_pages);
2138
2139/**
2140 * get_dump_page() - pin user page in memory while writing it to core dump
2141 * @addr: user address
2142 *
2143 * Returns struct page pointer of user page pinned for dump,
2144 * to be freed afterwards by page_cache_release() or put_page().
2145 *
2146 * Returns NULL on any kind of failure - a hole must then be inserted into
2147 * the corefile, to preserve alignment with its headers; and also returns
2148 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2149 * allowing a hole to be left in the corefile to save diskspace.
2150 *
2151 * Called without mmap_sem, but after all other threads have been killed.
2152 */
2153#ifdef CONFIG_ELF_CORE
2154struct page *get_dump_page(unsigned long addr)
2155{
2156 struct vm_area_struct *vma;
2157 struct page *page;
2158
2159 if (__get_user_pages(current, current->mm, addr, 1,
2160 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2161 NULL) < 1)
2162 return NULL;
2163 flush_cache_page(vma, addr, page_to_pfn(page));
2164 return page;
2165}
2166#endif /* CONFIG_ELF_CORE */
2167
2168pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2169 spinlock_t **ptl)
2170{
2171 pgd_t * pgd = pgd_offset(mm, addr);
2172 pud_t * pud = pud_alloc(mm, pgd, addr);
2173 if (pud) {
2174 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2175 if (pmd) {
2176 VM_BUG_ON(pmd_trans_huge(*pmd));
2177 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2178 }
2179 }
2180 return NULL;
2181}
2182
2183/*
2184 * This is the old fallback for page remapping.
2185 *
2186 * For historical reasons, it only allows reserved pages. Only
2187 * old drivers should use this, and they needed to mark their
2188 * pages reserved for the old functions anyway.
2189 */
2190static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2191 struct page *page, pgprot_t prot)
2192{
2193 struct mm_struct *mm = vma->vm_mm;
2194 int retval;
2195 pte_t *pte;
2196 spinlock_t *ptl;
2197
2198 retval = -EINVAL;
2199 if (PageAnon(page))
2200 goto out;
2201 retval = -ENOMEM;
2202 flush_dcache_page(page);
2203 pte = get_locked_pte(mm, addr, &ptl);
2204 if (!pte)
2205 goto out;
2206 retval = -EBUSY;
2207 if (!pte_none(*pte))
2208 goto out_unlock;
2209
2210 /* Ok, finally just insert the thing.. */
2211 get_page(page);
2212 inc_mm_counter_fast(mm, MM_FILEPAGES);
2213 page_add_file_rmap(page);
2214 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2215
2216 retval = 0;
2217 pte_unmap_unlock(pte, ptl);
2218 return retval;
2219out_unlock:
2220 pte_unmap_unlock(pte, ptl);
2221out:
2222 return retval;
2223}
2224
2225/**
2226 * vm_insert_page - insert single page into user vma
2227 * @vma: user vma to map to
2228 * @addr: target user address of this page
2229 * @page: source kernel page
2230 *
2231 * This allows drivers to insert individual pages they've allocated
2232 * into a user vma.
2233 *
2234 * The page has to be a nice clean _individual_ kernel allocation.
2235 * If you allocate a compound page, you need to have marked it as
2236 * such (__GFP_COMP), or manually just split the page up yourself
2237 * (see split_page()).
2238 *
2239 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2240 * took an arbitrary page protection parameter. This doesn't allow
2241 * that. Your vma protection will have to be set up correctly, which
2242 * means that if you want a shared writable mapping, you'd better
2243 * ask for a shared writable mapping!
2244 *
2245 * The page does not need to be reserved.
2246 *
2247 * Usually this function is called from f_op->mmap() handler
2248 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2249 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2250 * function from other places, for example from page-fault handler.
2251 */
2252int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2253 struct page *page)
2254{
2255 if (addr < vma->vm_start || addr >= vma->vm_end)
2256 return -EFAULT;
2257 if (!page_count(page))
2258 return -EINVAL;
2259 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2260 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2261 BUG_ON(vma->vm_flags & VM_PFNMAP);
2262 vma->vm_flags |= VM_MIXEDMAP;
2263 }
2264 return insert_page(vma, addr, page, vma->vm_page_prot);
2265}
2266EXPORT_SYMBOL(vm_insert_page);
2267
2268static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2269 unsigned long pfn, pgprot_t prot)
2270{
2271 struct mm_struct *mm = vma->vm_mm;
2272 int retval;
2273 pte_t *pte, entry;
2274 spinlock_t *ptl;
2275
2276 retval = -ENOMEM;
2277 pte = get_locked_pte(mm, addr, &ptl);
2278 if (!pte)
2279 goto out;
2280 retval = -EBUSY;
2281 if (!pte_none(*pte))
2282 goto out_unlock;
2283
2284 /* Ok, finally just insert the thing.. */
2285 entry = pte_mkspecial(pfn_pte(pfn, prot));
2286 set_pte_at(mm, addr, pte, entry);
2287 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2288
2289 retval = 0;
2290out_unlock:
2291 pte_unmap_unlock(pte, ptl);
2292out:
2293 return retval;
2294}
2295
2296/**
2297 * vm_insert_pfn - insert single pfn into user vma
2298 * @vma: user vma to map to
2299 * @addr: target user address of this page
2300 * @pfn: source kernel pfn
2301 *
2302 * Similar to vm_insert_page, this allows drivers to insert individual pages
2303 * they've allocated into a user vma. Same comments apply.
2304 *
2305 * This function should only be called from a vm_ops->fault handler, and
2306 * in that case the handler should return NULL.
2307 *
2308 * vma cannot be a COW mapping.
2309 *
2310 * As this is called only for pages that do not currently exist, we
2311 * do not need to flush old virtual caches or the TLB.
2312 */
2313int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2314 unsigned long pfn)
2315{
2316 int ret;
2317 pgprot_t pgprot = vma->vm_page_prot;
2318 /*
2319 * Technically, architectures with pte_special can avoid all these
2320 * restrictions (same for remap_pfn_range). However we would like
2321 * consistency in testing and feature parity among all, so we should
2322 * try to keep these invariants in place for everybody.
2323 */
2324 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2325 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2326 (VM_PFNMAP|VM_MIXEDMAP));
2327 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2328 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2329
2330 if (addr < vma->vm_start || addr >= vma->vm_end)
2331 return -EFAULT;
2332 if (track_pfn_insert(vma, &pgprot, pfn))
2333 return -EINVAL;
2334
2335 ret = insert_pfn(vma, addr, pfn, pgprot);
2336
2337 return ret;
2338}
2339EXPORT_SYMBOL(vm_insert_pfn);
2340
2341int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2342 unsigned long pfn)
2343{
2344 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2345
2346 if (addr < vma->vm_start || addr >= vma->vm_end)
2347 return -EFAULT;
2348
2349 /*
2350 * If we don't have pte special, then we have to use the pfn_valid()
2351 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2352 * refcount the page if pfn_valid is true (hence insert_page rather
2353 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2354 * without pte special, it would there be refcounted as a normal page.
2355 */
2356 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2357 struct page *page;
2358
2359 page = pfn_to_page(pfn);
2360 return insert_page(vma, addr, page, vma->vm_page_prot);
2361 }
2362 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2363}
2364EXPORT_SYMBOL(vm_insert_mixed);
2365
2366/*
2367 * maps a range of physical memory into the requested pages. the old
2368 * mappings are removed. any references to nonexistent pages results
2369 * in null mappings (currently treated as "copy-on-access")
2370 */
2371static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2372 unsigned long addr, unsigned long end,
2373 unsigned long pfn, pgprot_t prot)
2374{
2375 pte_t *pte;
2376 spinlock_t *ptl;
2377
2378 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2379 if (!pte)
2380 return -ENOMEM;
2381 arch_enter_lazy_mmu_mode();
2382 do {
2383 BUG_ON(!pte_none(*pte));
2384 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2385 pfn++;
2386 } while (pte++, addr += PAGE_SIZE, addr != end);
2387 arch_leave_lazy_mmu_mode();
2388 pte_unmap_unlock(pte - 1, ptl);
2389 return 0;
2390}
2391
2392static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2393 unsigned long addr, unsigned long end,
2394 unsigned long pfn, pgprot_t prot)
2395{
2396 pmd_t *pmd;
2397 unsigned long next;
2398
2399 pfn -= addr >> PAGE_SHIFT;
2400 pmd = pmd_alloc(mm, pud, addr);
2401 if (!pmd)
2402 return -ENOMEM;
2403 VM_BUG_ON(pmd_trans_huge(*pmd));
2404 do {
2405 next = pmd_addr_end(addr, end);
2406 if (remap_pte_range(mm, pmd, addr, next,
2407 pfn + (addr >> PAGE_SHIFT), prot))
2408 return -ENOMEM;
2409 } while (pmd++, addr = next, addr != end);
2410 return 0;
2411}
2412
2413static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2414 unsigned long addr, unsigned long end,
2415 unsigned long pfn, pgprot_t prot)
2416{
2417 pud_t *pud;
2418 unsigned long next;
2419
2420 pfn -= addr >> PAGE_SHIFT;
2421 pud = pud_alloc(mm, pgd, addr);
2422 if (!pud)
2423 return -ENOMEM;
2424 do {
2425 next = pud_addr_end(addr, end);
2426 if (remap_pmd_range(mm, pud, addr, next,
2427 pfn + (addr >> PAGE_SHIFT), prot))
2428 return -ENOMEM;
2429 } while (pud++, addr = next, addr != end);
2430 return 0;
2431}
2432
2433/**
2434 * remap_pfn_range - remap kernel memory to userspace
2435 * @vma: user vma to map to
2436 * @addr: target user address to start at
2437 * @pfn: physical address of kernel memory
2438 * @size: size of map area
2439 * @prot: page protection flags for this mapping
2440 *
2441 * Note: this is only safe if the mm semaphore is held when called.
2442 */
2443int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2444 unsigned long pfn, unsigned long size, pgprot_t prot)
2445{
2446 pgd_t *pgd;
2447 unsigned long next;
2448 unsigned long end = addr + PAGE_ALIGN(size);
2449 struct mm_struct *mm = vma->vm_mm;
2450 int err;
2451
2452 /*
2453 * Physically remapped pages are special. Tell the
2454 * rest of the world about it:
2455 * VM_IO tells people not to look at these pages
2456 * (accesses can have side effects).
2457 * VM_PFNMAP tells the core MM that the base pages are just
2458 * raw PFN mappings, and do not have a "struct page" associated
2459 * with them.
2460 * VM_DONTEXPAND
2461 * Disable vma merging and expanding with mremap().
2462 * VM_DONTDUMP
2463 * Omit vma from core dump, even when VM_IO turned off.
2464 *
2465 * There's a horrible special case to handle copy-on-write
2466 * behaviour that some programs depend on. We mark the "original"
2467 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2468 * See vm_normal_page() for details.
2469 */
2470 if (is_cow_mapping(vma->vm_flags)) {
2471 if (addr != vma->vm_start || end != vma->vm_end)
2472 return -EINVAL;
2473 vma->vm_pgoff = pfn;
2474 }
2475
2476 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2477 if (err)
2478 return -EINVAL;
2479
2480 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2481
2482 BUG_ON(addr >= end);
2483 pfn -= addr >> PAGE_SHIFT;
2484 pgd = pgd_offset(mm, addr);
2485 flush_cache_range(vma, addr, end);
2486 do {
2487 next = pgd_addr_end(addr, end);
2488 err = remap_pud_range(mm, pgd, addr, next,
2489 pfn + (addr >> PAGE_SHIFT), prot);
2490 if (err)
2491 break;
2492 } while (pgd++, addr = next, addr != end);
2493
2494 if (err)
2495 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2496
2497 return err;
2498}
2499EXPORT_SYMBOL(remap_pfn_range);
2500
2501/**
2502 * vm_iomap_memory - remap memory to userspace
2503 * @vma: user vma to map to
2504 * @start: start of area
2505 * @len: size of area
2506 *
2507 * This is a simplified io_remap_pfn_range() for common driver use. The
2508 * driver just needs to give us the physical memory range to be mapped,
2509 * we'll figure out the rest from the vma information.
2510 *
2511 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2512 * whatever write-combining details or similar.
2513 */
2514int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2515{
2516 unsigned long vm_len, pfn, pages;
2517
2518 /* Check that the physical memory area passed in looks valid */
2519 if (start + len < start)
2520 return -EINVAL;
2521 /*
2522 * You *really* shouldn't map things that aren't page-aligned,
2523 * but we've historically allowed it because IO memory might
2524 * just have smaller alignment.
2525 */
2526 len += start & ~PAGE_MASK;
2527 pfn = start >> PAGE_SHIFT;
2528 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2529 if (pfn + pages < pfn)
2530 return -EINVAL;
2531
2532 /* We start the mapping 'vm_pgoff' pages into the area */
2533 if (vma->vm_pgoff > pages)
2534 return -EINVAL;
2535 pfn += vma->vm_pgoff;
2536 pages -= vma->vm_pgoff;
2537
2538 /* Can we fit all of the mapping? */
2539 vm_len = vma->vm_end - vma->vm_start;
2540 if (vm_len >> PAGE_SHIFT > pages)
2541 return -EINVAL;
2542
2543 /* Ok, let it rip */
2544 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2545}
2546EXPORT_SYMBOL(vm_iomap_memory);
2547
2548static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2549 unsigned long addr, unsigned long end,
2550 pte_fn_t fn, void *data)
2551{
2552 pte_t *pte;
2553 int err;
2554 pgtable_t token;
2555 spinlock_t *uninitialized_var(ptl);
2556
2557 pte = (mm == &init_mm) ?
2558 pte_alloc_kernel(pmd, addr) :
2559 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2560 if (!pte)
2561 return -ENOMEM;
2562
2563 BUG_ON(pmd_huge(*pmd));
2564
2565 arch_enter_lazy_mmu_mode();
2566
2567 token = pmd_pgtable(*pmd);
2568
2569 do {
2570 err = fn(pte++, token, addr, data);
2571 if (err)
2572 break;
2573 } while (addr += PAGE_SIZE, addr != end);
2574
2575 arch_leave_lazy_mmu_mode();
2576
2577 if (mm != &init_mm)
2578 pte_unmap_unlock(pte-1, ptl);
2579 return err;
2580}
2581
2582static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2583 unsigned long addr, unsigned long end,
2584 pte_fn_t fn, void *data)
2585{
2586 pmd_t *pmd;
2587 unsigned long next;
2588 int err;
2589
2590 BUG_ON(pud_huge(*pud));
2591
2592 pmd = pmd_alloc(mm, pud, addr);
2593 if (!pmd)
2594 return -ENOMEM;
2595 do {
2596 next = pmd_addr_end(addr, end);
2597 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2598 if (err)
2599 break;
2600 } while (pmd++, addr = next, addr != end);
2601 return err;
2602}
2603
2604static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2605 unsigned long addr, unsigned long end,
2606 pte_fn_t fn, void *data)
2607{
2608 pud_t *pud;
2609 unsigned long next;
2610 int err;
2611
2612 pud = pud_alloc(mm, pgd, addr);
2613 if (!pud)
2614 return -ENOMEM;
2615 do {
2616 next = pud_addr_end(addr, end);
2617 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2618 if (err)
2619 break;
2620 } while (pud++, addr = next, addr != end);
2621 return err;
2622}
2623
2624/*
2625 * Scan a region of virtual memory, filling in page tables as necessary
2626 * and calling a provided function on each leaf page table.
2627 */
2628int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2629 unsigned long size, pte_fn_t fn, void *data)
2630{
2631 pgd_t *pgd;
2632 unsigned long next;
2633 unsigned long end = addr + size;
2634 int err;
2635
2636 BUG_ON(addr >= end);
2637 pgd = pgd_offset(mm, addr);
2638 do {
2639 next = pgd_addr_end(addr, end);
2640 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2641 if (err)
2642 break;
2643 } while (pgd++, addr = next, addr != end);
2644
2645 return err;
2646}
2647EXPORT_SYMBOL_GPL(apply_to_page_range);
2648
2649/*
2650 * handle_pte_fault chooses page fault handler according to an entry
2651 * which was read non-atomically. Before making any commitment, on
2652 * those architectures or configurations (e.g. i386 with PAE) which
2653 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2654 * must check under lock before unmapping the pte and proceeding
2655 * (but do_wp_page is only called after already making such a check;
2656 * and do_anonymous_page can safely check later on).
2657 */
2658static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2659 pte_t *page_table, pte_t orig_pte)
2660{
2661 int same = 1;
2662#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2663 if (sizeof(pte_t) > sizeof(unsigned long)) {
2664 spinlock_t *ptl = pte_lockptr(mm, pmd);
2665 spin_lock(ptl);
2666 same = pte_same(*page_table, orig_pte);
2667 spin_unlock(ptl);
2668 }
2669#endif
2670 pte_unmap(page_table);
2671 return same;
2672}
2673
2674static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2675{
2676 /*
2677 * If the source page was a PFN mapping, we don't have
2678 * a "struct page" for it. We do a best-effort copy by
2679 * just copying from the original user address. If that
2680 * fails, we just zero-fill it. Live with it.
2681 */
2682 if (unlikely(!src)) {
2683 void *kaddr = kmap_atomic(dst);
2684 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2685
2686 /*
2687 * This really shouldn't fail, because the page is there
2688 * in the page tables. But it might just be unreadable,
2689 * in which case we just give up and fill the result with
2690 * zeroes.
2691 */
2692 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2693 clear_page(kaddr);
2694 kunmap_atomic(kaddr);
2695 flush_dcache_page(dst);
2696 } else
2697 copy_user_highpage(dst, src, va, vma);
2698}
2699
2700/*
2701 * This routine handles present pages, when users try to write
2702 * to a shared page. It is done by copying the page to a new address
2703 * and decrementing the shared-page counter for the old page.
2704 *
2705 * Note that this routine assumes that the protection checks have been
2706 * done by the caller (the low-level page fault routine in most cases).
2707 * Thus we can safely just mark it writable once we've done any necessary
2708 * COW.
2709 *
2710 * We also mark the page dirty at this point even though the page will
2711 * change only once the write actually happens. This avoids a few races,
2712 * and potentially makes it more efficient.
2713 *
2714 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2715 * but allow concurrent faults), with pte both mapped and locked.
2716 * We return with mmap_sem still held, but pte unmapped and unlocked.
2717 */
2718static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2719 unsigned long address, pte_t *page_table, pmd_t *pmd,
2720 spinlock_t *ptl, pte_t orig_pte)
2721 __releases(ptl)
2722{
2723 struct page *old_page, *new_page = NULL;
2724 pte_t entry;
2725 int ret = 0;
2726 int page_mkwrite = 0;
2727 struct page *dirty_page = NULL;
2728 unsigned long mmun_start = 0; /* For mmu_notifiers */
2729 unsigned long mmun_end = 0; /* For mmu_notifiers */
2730
2731 old_page = vm_normal_page(vma, address, orig_pte);
2732 if (!old_page) {
2733 /*
2734 * VM_MIXEDMAP !pfn_valid() case
2735 *
2736 * We should not cow pages in a shared writeable mapping.
2737 * Just mark the pages writable as we can't do any dirty
2738 * accounting on raw pfn maps.
2739 */
2740 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741 (VM_WRITE|VM_SHARED))
2742 goto reuse;
2743 goto gotten;
2744 }
2745
2746 /*
2747 * Take out anonymous pages first, anonymous shared vmas are
2748 * not dirty accountable.
2749 */
2750 if (PageAnon(old_page) && !PageKsm(old_page)) {
2751 if (!trylock_page(old_page)) {
2752 page_cache_get(old_page);
2753 pte_unmap_unlock(page_table, ptl);
2754 lock_page(old_page);
2755 page_table = pte_offset_map_lock(mm, pmd, address,
2756 &ptl);
2757 if (!pte_same(*page_table, orig_pte)) {
2758 unlock_page(old_page);
2759 goto unlock;
2760 }
2761 page_cache_release(old_page);
2762 }
2763 if (reuse_swap_page(old_page)) {
2764 /*
2765 * The page is all ours. Move it to our anon_vma so
2766 * the rmap code will not search our parent or siblings.
2767 * Protected against the rmap code by the page lock.
2768 */
2769 page_move_anon_rmap(old_page, vma, address);
2770 unlock_page(old_page);
2771 goto reuse;
2772 }
2773 unlock_page(old_page);
2774 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2775 (VM_WRITE|VM_SHARED))) {
2776 /*
2777 * Only catch write-faults on shared writable pages,
2778 * read-only shared pages can get COWed by
2779 * get_user_pages(.write=1, .force=1).
2780 */
2781 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2782 struct vm_fault vmf;
2783 int tmp;
2784
2785 vmf.virtual_address = (void __user *)(address &
2786 PAGE_MASK);
2787 vmf.pgoff = old_page->index;
2788 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2789 vmf.page = old_page;
2790
2791 /*
2792 * Notify the address space that the page is about to
2793 * become writable so that it can prohibit this or wait
2794 * for the page to get into an appropriate state.
2795 *
2796 * We do this without the lock held, so that it can
2797 * sleep if it needs to.
2798 */
2799 page_cache_get(old_page);
2800 pte_unmap_unlock(page_table, ptl);
2801
2802 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2803 if (unlikely(tmp &
2804 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2805 ret = tmp;
2806 goto unwritable_page;
2807 }
2808 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2809 lock_page(old_page);
2810 if (!old_page->mapping) {
2811 ret = 0; /* retry the fault */
2812 unlock_page(old_page);
2813 goto unwritable_page;
2814 }
2815 } else
2816 VM_BUG_ON(!PageLocked(old_page));
2817
2818 /*
2819 * Since we dropped the lock we need to revalidate
2820 * the PTE as someone else may have changed it. If
2821 * they did, we just return, as we can count on the
2822 * MMU to tell us if they didn't also make it writable.
2823 */
2824 page_table = pte_offset_map_lock(mm, pmd, address,
2825 &ptl);
2826 if (!pte_same(*page_table, orig_pte)) {
2827 unlock_page(old_page);
2828 goto unlock;
2829 }
2830
2831 page_mkwrite = 1;
2832 }
2833 dirty_page = old_page;
2834 get_page(dirty_page);
2835
2836reuse:
2837 flush_cache_page(vma, address, pte_pfn(orig_pte));
2838 entry = pte_mkyoung(orig_pte);
2839 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2840 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2841 update_mmu_cache(vma, address, page_table);
2842 pte_unmap_unlock(page_table, ptl);
2843 ret |= VM_FAULT_WRITE;
2844
2845 if (!dirty_page)
2846 return ret;
2847
2848 /*
2849 * Yes, Virginia, this is actually required to prevent a race
2850 * with clear_page_dirty_for_io() from clearing the page dirty
2851 * bit after it clear all dirty ptes, but before a racing
2852 * do_wp_page installs a dirty pte.
2853 *
2854 * __do_fault is protected similarly.
2855 */
2856 if (!page_mkwrite) {
2857 wait_on_page_locked(dirty_page);
2858 set_page_dirty_balance(dirty_page, page_mkwrite);
2859 /* file_update_time outside page_lock */
2860 if (vma->vm_file)
2861 file_update_time(vma->vm_file);
2862 }
2863 put_page(dirty_page);
2864 if (page_mkwrite) {
2865 struct address_space *mapping = dirty_page->mapping;
2866
2867 set_page_dirty(dirty_page);
2868 unlock_page(dirty_page);
2869 page_cache_release(dirty_page);
2870 if (mapping) {
2871 /*
2872 * Some device drivers do not set page.mapping
2873 * but still dirty their pages
2874 */
2875 balance_dirty_pages_ratelimited(mapping);
2876 }
2877 }
2878
2879 return ret;
2880 }
2881
2882 /*
2883 * Ok, we need to copy. Oh, well..
2884 */
2885 page_cache_get(old_page);
2886gotten:
2887 pte_unmap_unlock(page_table, ptl);
2888
2889 if (unlikely(anon_vma_prepare(vma)))
2890 goto oom;
2891
2892 if (is_zero_pfn(pte_pfn(orig_pte))) {
2893 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2894 if (!new_page)
2895 goto oom;
2896 } else {
2897 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2898 if (!new_page)
2899 goto oom;
2900 cow_user_page(new_page, old_page, address, vma);
2901 }
2902 __SetPageUptodate(new_page);
2903
2904 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2905 goto oom_free_new;
2906
2907 mmun_start = address & PAGE_MASK;
2908 mmun_end = mmun_start + PAGE_SIZE;
2909 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2910
2911 /*
2912 * Re-check the pte - we dropped the lock
2913 */
2914 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2915 if (likely(pte_same(*page_table, orig_pte))) {
2916 if (old_page) {
2917 if (!PageAnon(old_page)) {
2918 dec_mm_counter_fast(mm, MM_FILEPAGES);
2919 inc_mm_counter_fast(mm, MM_ANONPAGES);
2920 }
2921 } else
2922 inc_mm_counter_fast(mm, MM_ANONPAGES);
2923 flush_cache_page(vma, address, pte_pfn(orig_pte));
2924 entry = mk_pte(new_page, vma->vm_page_prot);
2925 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2926 /*
2927 * Clear the pte entry and flush it first, before updating the
2928 * pte with the new entry. This will avoid a race condition
2929 * seen in the presence of one thread doing SMC and another
2930 * thread doing COW.
2931 */
2932 ptep_clear_flush(vma, address, page_table);
2933 page_add_new_anon_rmap(new_page, vma, address);
2934 /*
2935 * We call the notify macro here because, when using secondary
2936 * mmu page tables (such as kvm shadow page tables), we want the
2937 * new page to be mapped directly into the secondary page table.
2938 */
2939 set_pte_at_notify(mm, address, page_table, entry);
2940 update_mmu_cache(vma, address, page_table);
2941 if (old_page) {
2942 /*
2943 * Only after switching the pte to the new page may
2944 * we remove the mapcount here. Otherwise another
2945 * process may come and find the rmap count decremented
2946 * before the pte is switched to the new page, and
2947 * "reuse" the old page writing into it while our pte
2948 * here still points into it and can be read by other
2949 * threads.
2950 *
2951 * The critical issue is to order this
2952 * page_remove_rmap with the ptp_clear_flush above.
2953 * Those stores are ordered by (if nothing else,)
2954 * the barrier present in the atomic_add_negative
2955 * in page_remove_rmap.
2956 *
2957 * Then the TLB flush in ptep_clear_flush ensures that
2958 * no process can access the old page before the
2959 * decremented mapcount is visible. And the old page
2960 * cannot be reused until after the decremented
2961 * mapcount is visible. So transitively, TLBs to
2962 * old page will be flushed before it can be reused.
2963 */
2964 page_remove_rmap(old_page);
2965 }
2966
2967 /* Free the old page.. */
2968 new_page = old_page;
2969 ret |= VM_FAULT_WRITE;
2970 } else
2971 mem_cgroup_uncharge_page(new_page);
2972
2973 if (new_page)
2974 page_cache_release(new_page);
2975unlock:
2976 pte_unmap_unlock(page_table, ptl);
2977 if (mmun_end > mmun_start)
2978 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2979 if (old_page) {
2980 /*
2981 * Don't let another task, with possibly unlocked vma,
2982 * keep the mlocked page.
2983 */
2984 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2985 lock_page(old_page); /* LRU manipulation */
2986 munlock_vma_page(old_page);
2987 unlock_page(old_page);
2988 }
2989 page_cache_release(old_page);
2990 }
2991 return ret;
2992oom_free_new:
2993 page_cache_release(new_page);
2994oom:
2995 if (old_page)
2996 page_cache_release(old_page);
2997 return VM_FAULT_OOM;
2998
2999unwritable_page:
3000 page_cache_release(old_page);
3001 return ret;
3002}
3003
3004static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3005 unsigned long start_addr, unsigned long end_addr,
3006 struct zap_details *details)
3007{
3008 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3009}
3010
3011static inline void unmap_mapping_range_tree(struct rb_root *root,
3012 struct zap_details *details)
3013{
3014 struct vm_area_struct *vma;
3015 pgoff_t vba, vea, zba, zea;
3016
3017 vma_interval_tree_foreach(vma, root,
3018 details->first_index, details->last_index) {
3019
3020 vba = vma->vm_pgoff;
3021 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
3022 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
3023 zba = details->first_index;
3024 if (zba < vba)
3025 zba = vba;
3026 zea = details->last_index;
3027 if (zea > vea)
3028 zea = vea;
3029
3030 unmap_mapping_range_vma(vma,
3031 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3032 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3033 details);
3034 }
3035}
3036
3037static inline void unmap_mapping_range_list(struct list_head *head,
3038 struct zap_details *details)
3039{
3040 struct vm_area_struct *vma;
3041
3042 /*
3043 * In nonlinear VMAs there is no correspondence between virtual address
3044 * offset and file offset. So we must perform an exhaustive search
3045 * across *all* the pages in each nonlinear VMA, not just the pages
3046 * whose virtual address lies outside the file truncation point.
3047 */
3048 list_for_each_entry(vma, head, shared.nonlinear) {
3049 details->nonlinear_vma = vma;
3050 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
3051 }
3052}
3053
3054/**
3055 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3056 * @mapping: the address space containing mmaps to be unmapped.
3057 * @holebegin: byte in first page to unmap, relative to the start of
3058 * the underlying file. This will be rounded down to a PAGE_SIZE
3059 * boundary. Note that this is different from truncate_pagecache(), which
3060 * must keep the partial page. In contrast, we must get rid of
3061 * partial pages.
3062 * @holelen: size of prospective hole in bytes. This will be rounded
3063 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3064 * end of the file.
3065 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3066 * but 0 when invalidating pagecache, don't throw away private data.
3067 */
3068void unmap_mapping_range(struct address_space *mapping,
3069 loff_t const holebegin, loff_t const holelen, int even_cows)
3070{
3071 struct zap_details details;
3072 pgoff_t hba = holebegin >> PAGE_SHIFT;
3073 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3074
3075 /* Check for overflow. */
3076 if (sizeof(holelen) > sizeof(hlen)) {
3077 long long holeend =
3078 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3079 if (holeend & ~(long long)ULONG_MAX)
3080 hlen = ULONG_MAX - hba + 1;
3081 }
3082
3083 details.check_mapping = even_cows? NULL: mapping;
3084 details.nonlinear_vma = NULL;
3085 details.first_index = hba;
3086 details.last_index = hba + hlen - 1;
3087 if (details.last_index < details.first_index)
3088 details.last_index = ULONG_MAX;
3089
3090
3091 mutex_lock(&mapping->i_mmap_mutex);
3092 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3093 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3094 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3095 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3096 mutex_unlock(&mapping->i_mmap_mutex);
3097}
3098EXPORT_SYMBOL(unmap_mapping_range);
3099
3100/*
3101 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3102 * but allow concurrent faults), and pte mapped but not yet locked.
3103 * We return with mmap_sem still held, but pte unmapped and unlocked.
3104 */
3105static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106 unsigned long address, pte_t *page_table, pmd_t *pmd,
3107 unsigned int flags, pte_t orig_pte)
3108{
3109 spinlock_t *ptl;
3110 struct page *page, *swapcache;
3111 swp_entry_t entry;
3112 pte_t pte;
3113 int locked;
3114 struct mem_cgroup *ptr;
3115 int exclusive = 0;
3116 int ret = 0;
3117
3118 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3119 goto out;
3120
3121 entry = pte_to_swp_entry(orig_pte);
3122 if (unlikely(non_swap_entry(entry))) {
3123 if (is_migration_entry(entry)) {
3124#ifdef CONFIG_DMA_CMA
3125 /*
3126 * FIXME: mszyprow: cruel, brute-force method for
3127 * letting cma/migration to finish it's job without
3128 * stealing the lock migration_entry_wait() and creating
3129 * a live-lock on the faulted page
3130 * (page->_count == 2 migration failure issue)
3131 */
3132 mdelay(10);
3133#endif
3134 migration_entry_wait(mm, pmd, address);
3135 } else if (is_hwpoison_entry(entry)) {
3136 ret = VM_FAULT_HWPOISON;
3137 } else {
3138 print_bad_pte(vma, address, orig_pte, NULL);
3139 ret = VM_FAULT_SIGBUS;
3140 }
3141 goto out;
3142 }
3143 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3144 page = lookup_swap_cache(entry);
3145 if (!page) {
3146 page = swapin_readahead(entry,
3147 GFP_HIGHUSER_MOVABLE, vma, address);
3148 if (!page) {
3149 /*
3150 * Back out if somebody else faulted in this pte
3151 * while we released the pte lock.
3152 */
3153 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3154 if (likely(pte_same(*page_table, orig_pte)))
3155 ret = VM_FAULT_OOM;
3156 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3157 goto unlock;
3158 }
3159
3160 /* Had to read the page from swap area: Major fault */
3161 ret = VM_FAULT_MAJOR;
3162 count_vm_event(PGMAJFAULT);
3163 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3164 } else if (PageHWPoison(page)) {
3165 /*
3166 * hwpoisoned dirty swapcache pages are kept for killing
3167 * owner processes (which may be unknown at hwpoison time)
3168 */
3169 ret = VM_FAULT_HWPOISON;
3170 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3171 swapcache = page;
3172 goto out_release;
3173 }
3174
3175 swapcache = page;
3176 locked = lock_page_or_retry(page, mm, flags);
3177
3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179 if (!locked) {
3180 ret |= VM_FAULT_RETRY;
3181 goto out_release;
3182 }
3183
3184 /*
3185 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3186 * release the swapcache from under us. The page pin, and pte_same
3187 * test below, are not enough to exclude that. Even if it is still
3188 * swapcache, we need to check that the page's swap has not changed.
3189 */
3190 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3191 goto out_page;
3192
3193 page = ksm_might_need_to_copy(page, vma, address);
3194 if (unlikely(!page)) {
3195 ret = VM_FAULT_OOM;
3196 page = swapcache;
3197 goto out_page;
3198 }
3199
3200 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3201 ret = VM_FAULT_OOM;
3202 goto out_page;
3203 }
3204
3205 /*
3206 * Back out if somebody else already faulted in this pte.
3207 */
3208 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3209 if (unlikely(!pte_same(*page_table, orig_pte)))
3210 goto out_nomap;
3211
3212 if (unlikely(!PageUptodate(page))) {
3213 ret = VM_FAULT_SIGBUS;
3214 goto out_nomap;
3215 }
3216
3217 /*
3218 * The page isn't present yet, go ahead with the fault.
3219 *
3220 * Be careful about the sequence of operations here.
3221 * To get its accounting right, reuse_swap_page() must be called
3222 * while the page is counted on swap but not yet in mapcount i.e.
3223 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3224 * must be called after the swap_free(), or it will never succeed.
3225 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3226 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3227 * in page->private. In this case, a record in swap_cgroup is silently
3228 * discarded at swap_free().
3229 */
3230
3231 inc_mm_counter_fast(mm, MM_ANONPAGES);
3232 dec_mm_counter_fast(mm, MM_SWAPENTS);
3233 pte = mk_pte(page, vma->vm_page_prot);
3234 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3235 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3236 flags &= ~FAULT_FLAG_WRITE;
3237 ret |= VM_FAULT_WRITE;
3238 exclusive = 1;
3239 }
3240 flush_icache_page(vma, page);
3241 set_pte_at(mm, address, page_table, pte);
3242 if (page == swapcache)
3243 do_page_add_anon_rmap(page, vma, address, exclusive);
3244 else /* ksm created a completely new copy */
3245 page_add_new_anon_rmap(page, vma, address);
3246 /* It's better to call commit-charge after rmap is established */
3247 mem_cgroup_commit_charge_swapin(page, ptr);
3248
3249 swap_free(entry);
3250 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3251 try_to_free_swap(page);
3252 unlock_page(page);
3253 if (page != swapcache) {
3254 /*
3255 * Hold the lock to avoid the swap entry to be reused
3256 * until we take the PT lock for the pte_same() check
3257 * (to avoid false positives from pte_same). For
3258 * further safety release the lock after the swap_free
3259 * so that the swap count won't change under a
3260 * parallel locked swapcache.
3261 */
3262 unlock_page(swapcache);
3263 page_cache_release(swapcache);
3264 }
3265
3266 if (flags & FAULT_FLAG_WRITE) {
3267 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3268 if (ret & VM_FAULT_ERROR)
3269 ret &= VM_FAULT_ERROR;
3270 goto out;
3271 }
3272
3273 /* No need to invalidate - it was non-present before */
3274 update_mmu_cache(vma, address, page_table);
3275unlock:
3276 pte_unmap_unlock(page_table, ptl);
3277out:
3278 return ret;
3279out_nomap:
3280 mem_cgroup_cancel_charge_swapin(ptr);
3281 pte_unmap_unlock(page_table, ptl);
3282out_page:
3283 unlock_page(page);
3284out_release:
3285 page_cache_release(page);
3286 if (page != swapcache) {
3287 unlock_page(swapcache);
3288 page_cache_release(swapcache);
3289 }
3290 return ret;
3291}
3292
3293/*
3294 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3295 * but allow concurrent faults), and pte mapped but not yet locked.
3296 * We return with mmap_sem still held, but pte unmapped and unlocked.
3297 */
3298static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3299 unsigned long address, pte_t *page_table, pmd_t *pmd,
3300 unsigned int flags)
3301{
3302 struct page *page;
3303 spinlock_t *ptl;
3304 pte_t entry;
3305
3306 pte_unmap(page_table);
3307
3308 /* File mapping without ->vm_ops ? */
3309 if (vma->vm_flags & VM_SHARED)
3310 return VM_FAULT_SIGBUS;
3311
3312 /* Use the zero-page for reads */
3313 if (!(flags & FAULT_FLAG_WRITE)) {
3314 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3315 vma->vm_page_prot));
3316 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3317 if (!pte_none(*page_table))
3318 goto unlock;
3319 goto setpte;
3320 }
3321
3322 /* Allocate our own private page. */
3323 if (unlikely(anon_vma_prepare(vma)))
3324 goto oom;
3325 page = alloc_zeroed_user_highpage_movable(vma, address);
3326 if (!page)
3327 goto oom;
3328 /*
3329 * The memory barrier inside __SetPageUptodate makes sure that
3330 * preceeding stores to the page contents become visible before
3331 * the set_pte_at() write.
3332 */
3333 __SetPageUptodate(page);
3334
3335 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3336 goto oom_free_page;
3337
3338 entry = mk_pte(page, vma->vm_page_prot);
3339 if (vma->vm_flags & VM_WRITE)
3340 entry = pte_mkwrite(pte_mkdirty(entry));
3341
3342 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3343 if (!pte_none(*page_table))
3344 goto release;
3345
3346 inc_mm_counter_fast(mm, MM_ANONPAGES);
3347 page_add_new_anon_rmap(page, vma, address);
3348setpte:
3349 set_pte_at(mm, address, page_table, entry);
3350
3351 /* No need to invalidate - it was non-present before */
3352 update_mmu_cache(vma, address, page_table);
3353unlock:
3354 pte_unmap_unlock(page_table, ptl);
3355 return 0;
3356release:
3357 mem_cgroup_uncharge_page(page);
3358 page_cache_release(page);
3359 goto unlock;
3360oom_free_page:
3361 page_cache_release(page);
3362oom:
3363 return VM_FAULT_OOM;
3364}
3365
3366/*
3367 * __do_fault() tries to create a new page mapping. It aggressively
3368 * tries to share with existing pages, but makes a separate copy if
3369 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3370 * the next page fault.
3371 *
3372 * As this is called only for pages that do not currently exist, we
3373 * do not need to flush old virtual caches or the TLB.
3374 *
3375 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3376 * but allow concurrent faults), and pte neither mapped nor locked.
3377 * We return with mmap_sem still held, but pte unmapped and unlocked.
3378 */
3379static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3380 unsigned long address, pmd_t *pmd,
3381 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3382{
3383 pte_t *page_table;
3384 spinlock_t *ptl;
3385 struct page *page;
3386 struct page *cow_page;
3387 pte_t entry;
3388 int anon = 0;
3389 struct page *dirty_page = NULL;
3390 struct vm_fault vmf;
3391 int ret;
3392 int page_mkwrite = 0;
3393
3394 /*
3395 * If we do COW later, allocate page befor taking lock_page()
3396 * on the file cache page. This will reduce lock holding time.
3397 */
3398 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3399
3400 if (unlikely(anon_vma_prepare(vma)))
3401 return VM_FAULT_OOM;
3402
3403 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3404 if (!cow_page)
3405 return VM_FAULT_OOM;
3406
3407 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3408 page_cache_release(cow_page);
3409 return VM_FAULT_OOM;
3410 }
3411 } else
3412 cow_page = NULL;
3413
3414 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3415 vmf.pgoff = pgoff;
3416 vmf.flags = flags;
3417 vmf.page = NULL;
3418
3419 ret = vma->vm_ops->fault(vma, &vmf);
3420 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3421 VM_FAULT_RETRY)))
3422 goto uncharge_out;
3423
3424 if (unlikely(PageHWPoison(vmf.page))) {
3425 if (ret & VM_FAULT_LOCKED)
3426 unlock_page(vmf.page);
3427 ret = VM_FAULT_HWPOISON;
3428 goto uncharge_out;
3429 }
3430
3431 /*
3432 * For consistency in subsequent calls, make the faulted page always
3433 * locked.
3434 */
3435 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3436 lock_page(vmf.page);
3437 else
3438 VM_BUG_ON(!PageLocked(vmf.page));
3439
3440 /*
3441 * Should we do an early C-O-W break?
3442 */
3443 page = vmf.page;
3444 if (flags & FAULT_FLAG_WRITE) {
3445 if (!(vma->vm_flags & VM_SHARED)) {
3446 page = cow_page;
3447 anon = 1;
3448 copy_user_highpage(page, vmf.page, address, vma);
3449 __SetPageUptodate(page);
3450 } else {
3451 /*
3452 * If the page will be shareable, see if the backing
3453 * address space wants to know that the page is about
3454 * to become writable
3455 */
3456 if (vma->vm_ops->page_mkwrite) {
3457 int tmp;
3458
3459 unlock_page(page);
3460 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3461 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3462 if (unlikely(tmp &
3463 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3464 ret = tmp;
3465 goto unwritable_page;
3466 }
3467 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3468 lock_page(page);
3469 if (!page->mapping) {
3470 ret = 0; /* retry the fault */
3471 unlock_page(page);
3472 goto unwritable_page;
3473 }
3474 } else
3475 VM_BUG_ON(!PageLocked(page));
3476 page_mkwrite = 1;
3477 }
3478 }
3479
3480 }
3481
3482 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3483
3484 /*
3485 * This silly early PAGE_DIRTY setting removes a race
3486 * due to the bad i386 page protection. But it's valid
3487 * for other architectures too.
3488 *
3489 * Note that if FAULT_FLAG_WRITE is set, we either now have
3490 * an exclusive copy of the page, or this is a shared mapping,
3491 * so we can make it writable and dirty to avoid having to
3492 * handle that later.
3493 */
3494 /* Only go through if we didn't race with anybody else... */
3495 if (likely(pte_same(*page_table, orig_pte))) {
3496 flush_icache_page(vma, page);
3497 entry = mk_pte(page, vma->vm_page_prot);
3498 if (flags & FAULT_FLAG_WRITE)
3499 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3500 if (anon) {
3501 inc_mm_counter_fast(mm, MM_ANONPAGES);
3502 page_add_new_anon_rmap(page, vma, address);
3503 } else {
3504 inc_mm_counter_fast(mm, MM_FILEPAGES);
3505 page_add_file_rmap(page);
3506 if (flags & FAULT_FLAG_WRITE) {
3507 dirty_page = page;
3508 get_page(dirty_page);
3509 }
3510 }
3511 set_pte_at(mm, address, page_table, entry);
3512
3513 /* no need to invalidate: a not-present page won't be cached */
3514 update_mmu_cache(vma, address, page_table);
3515 } else {
3516 if (cow_page)
3517 mem_cgroup_uncharge_page(cow_page);
3518 if (anon)
3519 page_cache_release(page);
3520 else
3521 anon = 1; /* no anon but release faulted_page */
3522 }
3523
3524 pte_unmap_unlock(page_table, ptl);
3525
3526 if (dirty_page) {
3527 struct address_space *mapping = page->mapping;
3528 int dirtied = 0;
3529
3530 if (set_page_dirty(dirty_page))
3531 dirtied = 1;
3532 unlock_page(dirty_page);
3533 put_page(dirty_page);
3534 if ((dirtied || page_mkwrite) && mapping) {
3535 /*
3536 * Some device drivers do not set page.mapping but still
3537 * dirty their pages
3538 */
3539 balance_dirty_pages_ratelimited(mapping);
3540 }
3541
3542 /* file_update_time outside page_lock */
3543 if (vma->vm_file && !page_mkwrite)
3544 file_update_time(vma->vm_file);
3545 } else {
3546 unlock_page(vmf.page);
3547 if (anon)
3548 page_cache_release(vmf.page);
3549 }
3550
3551 return ret;
3552
3553unwritable_page:
3554 page_cache_release(page);
3555 return ret;
3556uncharge_out:
3557 /* fs's fault handler get error */
3558 if (cow_page) {
3559 mem_cgroup_uncharge_page(cow_page);
3560 page_cache_release(cow_page);
3561 }
3562 return ret;
3563}
3564
3565static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3566 unsigned long address, pte_t *page_table, pmd_t *pmd,
3567 unsigned int flags, pte_t orig_pte)
3568{
3569 pgoff_t pgoff = (((address & PAGE_MASK)
3570 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3571
3572 pte_unmap(page_table);
3573 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3574 if (!vma->vm_ops->fault)
3575 return VM_FAULT_SIGBUS;
3576 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3577}
3578
3579/*
3580 * Fault of a previously existing named mapping. Repopulate the pte
3581 * from the encoded file_pte if possible. This enables swappable
3582 * nonlinear vmas.
3583 *
3584 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3585 * but allow concurrent faults), and pte mapped but not yet locked.
3586 * We return with mmap_sem still held, but pte unmapped and unlocked.
3587 */
3588static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3589 unsigned long address, pte_t *page_table, pmd_t *pmd,
3590 unsigned int flags, pte_t orig_pte)
3591{
3592 pgoff_t pgoff;
3593
3594 flags |= FAULT_FLAG_NONLINEAR;
3595
3596 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3597 return 0;
3598
3599 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3600 /*
3601 * Page table corrupted: show pte and kill process.
3602 */
3603 print_bad_pte(vma, address, orig_pte, NULL);
3604 return VM_FAULT_SIGBUS;
3605 }
3606
3607 pgoff = pte_to_pgoff(orig_pte);
3608 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3609}
3610
3611int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3612 unsigned long addr, int page_nid)
3613{
3614 get_page(page);
3615
3616 count_vm_numa_event(NUMA_HINT_FAULTS);
3617 if (page_nid == numa_node_id())
3618 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3619
3620 return mpol_misplaced(page, vma, addr);
3621}
3622
3623int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3624 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3625{
3626 struct page *page = NULL;
3627 spinlock_t *ptl;
3628 int page_nid = -1;
3629 int target_nid;
3630 bool migrated = false;
3631
3632 /*
3633 * The "pte" at this point cannot be used safely without
3634 * validation through pte_unmap_same(). It's of NUMA type but
3635 * the pfn may be screwed if the read is non atomic.
3636 *
3637 * ptep_modify_prot_start is not called as this is clearing
3638 * the _PAGE_NUMA bit and it is not really expected that there
3639 * would be concurrent hardware modifications to the PTE.
3640 */
3641 ptl = pte_lockptr(mm, pmd);
3642 spin_lock(ptl);
3643 if (unlikely(!pte_same(*ptep, pte))) {
3644 pte_unmap_unlock(ptep, ptl);
3645 goto out;
3646 }
3647
3648 pte = pte_mknonnuma(pte);
3649 set_pte_at(mm, addr, ptep, pte);
3650 update_mmu_cache(vma, addr, ptep);
3651
3652 page = vm_normal_page(vma, addr, pte);
3653 if (!page) {
3654 pte_unmap_unlock(ptep, ptl);
3655 return 0;
3656 }
3657
3658 page_nid = page_to_nid(page);
3659 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3660 pte_unmap_unlock(ptep, ptl);
3661 if (target_nid == -1) {
3662 put_page(page);
3663 goto out;
3664 }
3665
3666 /* Migrate to the requested node */
3667 migrated = migrate_misplaced_page(page, target_nid);
3668 if (migrated)
3669 page_nid = target_nid;
3670
3671out:
3672 if (page_nid != -1)
3673 task_numa_fault(page_nid, 1, migrated);
3674 return 0;
3675}
3676
3677/* NUMA hinting page fault entry point for regular pmds */
3678#ifdef CONFIG_NUMA_BALANCING
3679static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3680 unsigned long addr, pmd_t *pmdp)
3681{
3682 pmd_t pmd;
3683 pte_t *pte, *orig_pte;
3684 unsigned long _addr = addr & PMD_MASK;
3685 unsigned long offset;
3686 spinlock_t *ptl;
3687 bool numa = false;
3688
3689 spin_lock(&mm->page_table_lock);
3690 pmd = *pmdp;
3691 if (pmd_numa(pmd)) {
3692 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3693 numa = true;
3694 }
3695 spin_unlock(&mm->page_table_lock);
3696
3697 if (!numa)
3698 return 0;
3699
3700 /* we're in a page fault so some vma must be in the range */
3701 BUG_ON(!vma);
3702 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3703 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3704 VM_BUG_ON(offset >= PMD_SIZE);
3705 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3706 pte += offset >> PAGE_SHIFT;
3707 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3708 pte_t pteval = *pte;
3709 struct page *page;
3710 int page_nid = -1;
3711 int target_nid;
3712 bool migrated = false;
3713
3714 if (!pte_present(pteval))
3715 continue;
3716 if (!pte_numa(pteval))
3717 continue;
3718 if (addr >= vma->vm_end) {
3719 vma = find_vma(mm, addr);
3720 /* there's a pte present so there must be a vma */
3721 BUG_ON(!vma);
3722 BUG_ON(addr < vma->vm_start);
3723 }
3724 if (pte_numa(pteval)) {
3725 pteval = pte_mknonnuma(pteval);
3726 set_pte_at(mm, addr, pte, pteval);
3727 }
3728 page = vm_normal_page(vma, addr, pteval);
3729 if (unlikely(!page))
3730 continue;
3731 /* only check non-shared pages */
3732 if (unlikely(page_mapcount(page) != 1))
3733 continue;
3734
3735 page_nid = page_to_nid(page);
3736 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3737 pte_unmap_unlock(pte, ptl);
3738 if (target_nid != -1) {
3739 migrated = migrate_misplaced_page(page, target_nid);
3740 if (migrated)
3741 page_nid = target_nid;
3742 } else {
3743 put_page(page);
3744 }
3745
3746 if (page_nid != -1)
3747 task_numa_fault(page_nid, 1, migrated);
3748
3749 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3750 }
3751 pte_unmap_unlock(orig_pte, ptl);
3752
3753 return 0;
3754}
3755#else
3756static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3757 unsigned long addr, pmd_t *pmdp)
3758{
3759 BUG();
3760 return 0;
3761}
3762#endif /* CONFIG_NUMA_BALANCING */
3763
3764/*
3765 * These routines also need to handle stuff like marking pages dirty
3766 * and/or accessed for architectures that don't do it in hardware (most
3767 * RISC architectures). The early dirtying is also good on the i386.
3768 *
3769 * There is also a hook called "update_mmu_cache()" that architectures
3770 * with external mmu caches can use to update those (ie the Sparc or
3771 * PowerPC hashed page tables that act as extended TLBs).
3772 *
3773 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3774 * but allow concurrent faults), and pte mapped but not yet locked.
3775 * We return with mmap_sem still held, but pte unmapped and unlocked.
3776 */
3777int handle_pte_fault(struct mm_struct *mm,
3778 struct vm_area_struct *vma, unsigned long address,
3779 pte_t *pte, pmd_t *pmd, unsigned int flags)
3780{
3781 pte_t entry;
3782 spinlock_t *ptl;
3783
3784 entry = *pte;
3785 if (!pte_present(entry)) {
3786 if (pte_none(entry)) {
3787 if (vma->vm_ops)
3788 return do_linear_fault(mm, vma, address,
3789 pte, pmd, flags, entry);
3790 return do_anonymous_page(mm, vma, address,
3791 pte, pmd, flags);
3792 }
3793 if (pte_file(entry))
3794 return do_nonlinear_fault(mm, vma, address,
3795 pte, pmd, flags, entry);
3796 return do_swap_page(mm, vma, address,
3797 pte, pmd, flags, entry);
3798 }
3799
3800 if (pte_numa(entry))
3801 return do_numa_page(mm, vma, address, entry, pte, pmd);
3802
3803 ptl = pte_lockptr(mm, pmd);
3804 spin_lock(ptl);
3805 if (unlikely(!pte_same(*pte, entry)))
3806 goto unlock;
3807 if (flags & FAULT_FLAG_WRITE) {
3808 if (!pte_write(entry))
3809 return do_wp_page(mm, vma, address,
3810 pte, pmd, ptl, entry);
3811 entry = pte_mkdirty(entry);
3812 }
3813 entry = pte_mkyoung(entry);
3814 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3815 update_mmu_cache(vma, address, pte);
3816 } else {
3817 /*
3818 * This is needed only for protection faults but the arch code
3819 * is not yet telling us if this is a protection fault or not.
3820 * This still avoids useless tlb flushes for .text page faults
3821 * with threads.
3822 */
3823 if (flags & FAULT_FLAG_WRITE)
3824 flush_tlb_fix_spurious_fault(vma, address);
3825 }
3826unlock:
3827 pte_unmap_unlock(pte, ptl);
3828 return 0;
3829}
3830
3831/*
3832 * By the time we get here, we already hold the mm semaphore
3833 */
3834static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3835 unsigned long address, unsigned int flags)
3836{
3837 pgd_t *pgd;
3838 pud_t *pud;
3839 pmd_t *pmd;
3840 pte_t *pte;
3841
3842 if (unlikely(is_vm_hugetlb_page(vma)))
3843 return hugetlb_fault(mm, vma, address, flags);
3844
3845retry:
3846 pgd = pgd_offset(mm, address);
3847 pud = pud_alloc(mm, pgd, address);
3848 if (!pud)
3849 return VM_FAULT_OOM;
3850 pmd = pmd_alloc(mm, pud, address);
3851 if (!pmd)
3852 return VM_FAULT_OOM;
3853 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3854 if (!vma->vm_ops)
3855 return do_huge_pmd_anonymous_page(mm, vma, address,
3856 pmd, flags);
3857 } else {
3858 pmd_t orig_pmd = *pmd;
3859 int ret;
3860
3861 barrier();
3862 if (pmd_trans_huge(orig_pmd)) {
3863 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3864
3865 /*
3866 * If the pmd is splitting, return and retry the
3867 * the fault. Alternative: wait until the split
3868 * is done, and goto retry.
3869 */
3870 if (pmd_trans_splitting(orig_pmd))
3871 return 0;
3872
3873 if (pmd_numa(orig_pmd))
3874 return do_huge_pmd_numa_page(mm, vma, address,
3875 orig_pmd, pmd);
3876
3877 if (dirty && !pmd_write(orig_pmd)) {
3878 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3879 orig_pmd);
3880 /*
3881 * If COW results in an oom, the huge pmd will
3882 * have been split, so retry the fault on the
3883 * pte for a smaller charge.
3884 */
3885 if (unlikely(ret & VM_FAULT_OOM))
3886 goto retry;
3887 return ret;
3888 } else {
3889 huge_pmd_set_accessed(mm, vma, address, pmd,
3890 orig_pmd, dirty);
3891 }
3892
3893 return 0;
3894 }
3895 }
3896
3897 if (pmd_numa(*pmd))
3898 return do_pmd_numa_page(mm, vma, address, pmd);
3899
3900 /*
3901 * Use __pte_alloc instead of pte_alloc_map, because we can't
3902 * run pte_offset_map on the pmd, if an huge pmd could
3903 * materialize from under us from a different thread.
3904 */
3905 if (unlikely(pmd_none(*pmd)) &&
3906 unlikely(__pte_alloc(mm, vma, pmd, address)))
3907 return VM_FAULT_OOM;
3908 /*
3909 * If a huge pmd materialized under us just retry later. Use
3910 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3911 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3912 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3913 * in a different thread of this mm, in turn leading to a misleading
3914 * pmd_trans_huge() retval. All we have to ensure is that it is a
3915 * regular pmd that we can walk with pte_offset_map() and we can do that
3916 * through an atomic read in C, which is what pmd_trans_unstable()
3917 * provides.
3918 */
3919 if (unlikely(pmd_trans_unstable(pmd)))
3920 return 0;
3921 /*
3922 * A regular pmd is established and it can't morph into a huge pmd
3923 * from under us anymore at this point because we hold the mmap_sem
3924 * read mode and khugepaged takes it in write mode. So now it's
3925 * safe to run pte_offset_map().
3926 */
3927 pte = pte_offset_map(pmd, address);
3928
3929 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3930}
3931
3932int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3933 unsigned long address, unsigned int flags)
3934{
3935 int ret;
3936
3937 __set_current_state(TASK_RUNNING);
3938
3939 count_vm_event(PGFAULT);
3940 mem_cgroup_count_vm_event(mm, PGFAULT);
3941
3942 /* do counter updates before entering really critical section. */
3943 check_sync_rss_stat(current);
3944
3945 /*
3946 * Enable the memcg OOM handling for faults triggered in user
3947 * space. Kernel faults are handled more gracefully.
3948 */
3949 if (flags & FAULT_FLAG_USER)
3950 mem_cgroup_oom_enable();
3951
3952 ret = __handle_mm_fault(mm, vma, address, flags);
3953
3954 if (flags & FAULT_FLAG_USER) {
3955 mem_cgroup_oom_disable();
3956 /*
3957 * The task may have entered a memcg OOM situation but
3958 * if the allocation error was handled gracefully (no
3959 * VM_FAULT_OOM), there is no need to kill anything.
3960 * Just clean up the OOM state peacefully.
3961 */
3962 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3963 mem_cgroup_oom_synchronize(false);
3964 }
3965
3966 return ret;
3967}
3968
3969#ifndef __PAGETABLE_PUD_FOLDED
3970/*
3971 * Allocate page upper directory.
3972 * We've already handled the fast-path in-line.
3973 */
3974int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3975{
3976 pud_t *new = pud_alloc_one(mm, address);
3977 if (!new)
3978 return -ENOMEM;
3979
3980 smp_wmb(); /* See comment in __pte_alloc */
3981
3982 spin_lock(&mm->page_table_lock);
3983 if (pgd_present(*pgd)) /* Another has populated it */
3984 pud_free(mm, new);
3985 else
3986 pgd_populate(mm, pgd, new);
3987 spin_unlock(&mm->page_table_lock);
3988 return 0;
3989}
3990#endif /* __PAGETABLE_PUD_FOLDED */
3991
3992#ifndef __PAGETABLE_PMD_FOLDED
3993/*
3994 * Allocate page middle directory.
3995 * We've already handled the fast-path in-line.
3996 */
3997int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3998{
3999 pmd_t *new = pmd_alloc_one(mm, address);
4000 if (!new)
4001 return -ENOMEM;
4002
4003 smp_wmb(); /* See comment in __pte_alloc */
4004
4005 spin_lock(&mm->page_table_lock);
4006#ifndef __ARCH_HAS_4LEVEL_HACK
4007 if (pud_present(*pud)) /* Another has populated it */
4008 pmd_free(mm, new);
4009 else
4010 pud_populate(mm, pud, new);
4011#else
4012 if (pgd_present(*pud)) /* Another has populated it */
4013 pmd_free(mm, new);
4014 else
4015 pgd_populate(mm, pud, new);
4016#endif /* __ARCH_HAS_4LEVEL_HACK */
4017 spin_unlock(&mm->page_table_lock);
4018 return 0;
4019}
4020#endif /* __PAGETABLE_PMD_FOLDED */
4021
4022#if !defined(__HAVE_ARCH_GATE_AREA)
4023
4024#if defined(AT_SYSINFO_EHDR)
4025static struct vm_area_struct gate_vma;
4026
4027static int __init gate_vma_init(void)
4028{
4029 gate_vma.vm_mm = NULL;
4030 gate_vma.vm_start = FIXADDR_USER_START;
4031 gate_vma.vm_end = FIXADDR_USER_END;
4032 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4033 gate_vma.vm_page_prot = __P101;
4034
4035 return 0;
4036}
4037__initcall(gate_vma_init);
4038#endif
4039
4040struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4041{
4042#ifdef AT_SYSINFO_EHDR
4043 return &gate_vma;
4044#else
4045 return NULL;
4046#endif
4047}
4048
4049int in_gate_area_no_mm(unsigned long addr)
4050{
4051#ifdef AT_SYSINFO_EHDR
4052 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4053 return 1;
4054#endif
4055 return 0;
4056}
4057
4058#endif /* __HAVE_ARCH_GATE_AREA */
4059
4060static int __follow_pte(struct mm_struct *mm, unsigned long address,
4061 pte_t **ptepp, spinlock_t **ptlp)
4062{
4063 pgd_t *pgd;
4064 pud_t *pud;
4065 pmd_t *pmd;
4066 pte_t *ptep;
4067
4068 pgd = pgd_offset(mm, address);
4069 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4070 goto out;
4071
4072 pud = pud_offset(pgd, address);
4073 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4074 goto out;
4075
4076 pmd = pmd_offset(pud, address);
4077 VM_BUG_ON(pmd_trans_huge(*pmd));
4078 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4079 goto out;
4080
4081 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4082 if (pmd_huge(*pmd))
4083 goto out;
4084
4085 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4086 if (!ptep)
4087 goto out;
4088 if (!pte_present(*ptep))
4089 goto unlock;
4090 *ptepp = ptep;
4091 return 0;
4092unlock:
4093 pte_unmap_unlock(ptep, *ptlp);
4094out:
4095 return -EINVAL;
4096}
4097
4098static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4099 pte_t **ptepp, spinlock_t **ptlp)
4100{
4101 int res;
4102
4103 /* (void) is needed to make gcc happy */
4104 (void) __cond_lock(*ptlp,
4105 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4106 return res;
4107}
4108
4109/**
4110 * follow_pfn - look up PFN at a user virtual address
4111 * @vma: memory mapping
4112 * @address: user virtual address
4113 * @pfn: location to store found PFN
4114 *
4115 * Only IO mappings and raw PFN mappings are allowed.
4116 *
4117 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4118 */
4119int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4120 unsigned long *pfn)
4121{
4122 int ret = -EINVAL;
4123 spinlock_t *ptl;
4124 pte_t *ptep;
4125
4126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4127 return ret;
4128
4129 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4130 if (ret)
4131 return ret;
4132 *pfn = pte_pfn(*ptep);
4133 pte_unmap_unlock(ptep, ptl);
4134 return 0;
4135}
4136EXPORT_SYMBOL(follow_pfn);
4137
4138#ifdef CONFIG_HAVE_IOREMAP_PROT
4139int follow_phys(struct vm_area_struct *vma,
4140 unsigned long address, unsigned int flags,
4141 unsigned long *prot, resource_size_t *phys)
4142{
4143 int ret = -EINVAL;
4144 pte_t *ptep, pte;
4145 spinlock_t *ptl;
4146
4147 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4148 goto out;
4149
4150 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4151 goto out;
4152 pte = *ptep;
4153
4154 if ((flags & FOLL_WRITE) && !pte_write(pte))
4155 goto unlock;
4156
4157 *prot = pgprot_val(pte_pgprot(pte));
4158 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4159
4160 ret = 0;
4161unlock:
4162 pte_unmap_unlock(ptep, ptl);
4163out:
4164 return ret;
4165}
4166
4167int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4168 void *buf, int len, int write)
4169{
4170 resource_size_t phys_addr;
4171 unsigned long prot = 0;
4172 void __iomem *maddr;
4173 int offset = addr & (PAGE_SIZE-1);
4174
4175 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4176 return -EINVAL;
4177
4178 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4179 if (write)
4180 memcpy_toio(maddr + offset, buf, len);
4181 else
4182 memcpy_fromio(buf, maddr + offset, len);
4183 iounmap(maddr);
4184
4185 return len;
4186}
4187EXPORT_SYMBOL_GPL(generic_access_phys);
4188#endif
4189
4190/*
4191 * Access another process' address space as given in mm. If non-NULL, use the
4192 * given task for page fault accounting.
4193 */
4194static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4195 unsigned long addr, void *buf, int len, int write)
4196{
4197 struct vm_area_struct *vma;
4198 void *old_buf = buf;
4199
4200 down_read(&mm->mmap_sem);
4201 /* ignore errors, just check how much was successfully transferred */
4202 while (len) {
4203 int bytes, ret, offset;
4204 void *maddr;
4205 struct page *page = NULL;
4206
4207 ret = get_user_pages(tsk, mm, addr, 1,
4208 write, 1, &page, &vma);
4209 if (ret <= 0) {
4210 /*
4211 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4212 * we can access using slightly different code.
4213 */
4214#ifdef CONFIG_HAVE_IOREMAP_PROT
4215 vma = find_vma(mm, addr);
4216 if (!vma || vma->vm_start > addr)
4217 break;
4218 if (vma->vm_ops && vma->vm_ops->access)
4219 ret = vma->vm_ops->access(vma, addr, buf,
4220 len, write);
4221 if (ret <= 0)
4222#endif
4223 break;
4224 bytes = ret;
4225 } else {
4226 bytes = len;
4227 offset = addr & (PAGE_SIZE-1);
4228 if (bytes > PAGE_SIZE-offset)
4229 bytes = PAGE_SIZE-offset;
4230
4231 maddr = kmap(page);
4232 if (write) {
4233 copy_to_user_page(vma, page, addr,
4234 maddr + offset, buf, bytes);
4235 set_page_dirty_lock(page);
4236 } else {
4237 copy_from_user_page(vma, page, addr,
4238 buf, maddr + offset, bytes);
4239 }
4240 kunmap(page);
4241 page_cache_release(page);
4242 }
4243 len -= bytes;
4244 buf += bytes;
4245 addr += bytes;
4246 }
4247 up_read(&mm->mmap_sem);
4248
4249 return buf - old_buf;
4250}
4251
4252/**
4253 * access_remote_vm - access another process' address space
4254 * @mm: the mm_struct of the target address space
4255 * @addr: start address to access
4256 * @buf: source or destination buffer
4257 * @len: number of bytes to transfer
4258 * @write: whether the access is a write
4259 *
4260 * The caller must hold a reference on @mm.
4261 */
4262int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4263 void *buf, int len, int write)
4264{
4265 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4266}
4267
4268/*
4269 * Access another process' address space.
4270 * Source/target buffer must be kernel space,
4271 * Do not walk the page table directly, use get_user_pages
4272 */
4273int access_process_vm(struct task_struct *tsk, unsigned long addr,
4274 void *buf, int len, int write)
4275{
4276 struct mm_struct *mm;
4277 int ret;
4278
4279 mm = get_task_mm(tsk);
4280 if (!mm)
4281 return 0;
4282
4283 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4284 mmput(mm);
4285
4286 return ret;
4287}
4288
4289/*
4290 * Print the name of a VMA.
4291 */
4292void print_vma_addr(char *prefix, unsigned long ip)
4293{
4294 struct mm_struct *mm = current->mm;
4295 struct vm_area_struct *vma;
4296
4297 /*
4298 * Do not print if we are in atomic
4299 * contexts (in exception stacks, etc.):
4300 */
4301 if (preempt_count())
4302 return;
4303
4304 down_read(&mm->mmap_sem);
4305 vma = find_vma(mm, ip);
4306 if (vma && vma->vm_file) {
4307 struct file *f = vma->vm_file;
4308 char *buf = (char *)__get_free_page(GFP_KERNEL);
4309 if (buf) {
4310 char *p;
4311
4312 p = d_path(&f->f_path, buf, PAGE_SIZE);
4313 if (IS_ERR(p))
4314 p = "?";
4315 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4316 vma->vm_start,
4317 vma->vm_end - vma->vm_start);
4318 free_page((unsigned long)buf);
4319 }
4320 }
4321 up_read(&mm->mmap_sem);
4322}
4323
4324#ifdef CONFIG_PROVE_LOCKING
4325void might_fault(void)
4326{
4327 /*
4328 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4329 * holding the mmap_sem, this is safe because kernel memory doesn't
4330 * get paged out, therefore we'll never actually fault, and the
4331 * below annotations will generate false positives.
4332 */
4333 if (segment_eq(get_fs(), KERNEL_DS))
4334 return;
4335
4336 might_sleep();
4337 /*
4338 * it would be nicer only to annotate paths which are not under
4339 * pagefault_disable, however that requires a larger audit and
4340 * providing helpers like get_user_atomic.
4341 */
4342 if (!in_atomic() && current->mm)
4343 might_lock_read(&current->mm->mmap_sem);
4344}
4345EXPORT_SYMBOL(might_fault);
4346#endif
4347
4348#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4349static void clear_gigantic_page(struct page *page,
4350 unsigned long addr,
4351 unsigned int pages_per_huge_page)
4352{
4353 int i;
4354 struct page *p = page;
4355
4356 might_sleep();
4357 for (i = 0; i < pages_per_huge_page;
4358 i++, p = mem_map_next(p, page, i)) {
4359 cond_resched();
4360 clear_user_highpage(p, addr + i * PAGE_SIZE);
4361 }
4362}
4363void clear_huge_page(struct page *page,
4364 unsigned long addr, unsigned int pages_per_huge_page)
4365{
4366 int i;
4367
4368 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4369 clear_gigantic_page(page, addr, pages_per_huge_page);
4370 return;
4371 }
4372
4373 might_sleep();
4374 for (i = 0; i < pages_per_huge_page; i++) {
4375 cond_resched();
4376 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4377 }
4378}
4379
4380static void copy_user_gigantic_page(struct page *dst, struct page *src,
4381 unsigned long addr,
4382 struct vm_area_struct *vma,
4383 unsigned int pages_per_huge_page)
4384{
4385 int i;
4386 struct page *dst_base = dst;
4387 struct page *src_base = src;
4388
4389 for (i = 0; i < pages_per_huge_page; ) {
4390 cond_resched();
4391 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4392
4393 i++;
4394 dst = mem_map_next(dst, dst_base, i);
4395 src = mem_map_next(src, src_base, i);
4396 }
4397}
4398
4399void copy_user_huge_page(struct page *dst, struct page *src,
4400 unsigned long addr, struct vm_area_struct *vma,
4401 unsigned int pages_per_huge_page)
4402{
4403 int i;
4404
4405 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4406 copy_user_gigantic_page(dst, src, addr, vma,
4407 pages_per_huge_page);
4408 return;
4409 }
4410
4411 might_sleep();
4412 for (i = 0; i < pages_per_huge_page; i++) {
4413 cond_resched();
4414 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4415 }
4416}
4417#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */