mb86a20s: fix demod settings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include <net/tcp_memcontrol.h>
70#include "slab.h"
71
72#include <asm/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79#define MEM_CGROUP_RECLAIM_RETRIES 5
80static struct mem_cgroup *root_mem_cgroup __read_mostly;
81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83/* Whether the swap controller is active */
84#ifdef CONFIG_MEMCG_SWAP
85int do_swap_account __read_mostly;
86#else
87#define do_swap_account 0
88#endif
89
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98};
99
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
118
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
144
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
148struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188/* Stuffs for move charges at task migration. */
189/*
190 * Types of charges to be moved.
191 */
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mm_struct *mm;
200 struct mem_cgroup *from;
201 struct mem_cgroup *to;
202 unsigned long flags;
203 unsigned long precharge;
204 unsigned long moved_charge;
205 unsigned long moved_swap;
206 struct task_struct *moving_task; /* a task moving charges */
207 wait_queue_head_t waitq; /* a waitq for other context */
208} mc = {
209 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211};
212
213/*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
217#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
219
220enum charge_type {
221 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
225 NR_CHARGE_TYPE,
226};
227
228/* for encoding cft->private value on file */
229enum res_type {
230 _MEM,
231 _MEMSWAP,
232 _OOM_TYPE,
233 _KMEM,
234};
235
236#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238#define MEMFILE_ATTR(val) ((val) & 0xffff)
239/* Used for OOM nofiier */
240#define OOM_CONTROL (0)
241
242/*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247static DEFINE_MUTEX(memcg_create_mutex);
248
249/* Some nice accessors for the vmpressure. */
250struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251{
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255}
256
257struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258{
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260}
261
262static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263{
264 return (memcg == root_mem_cgroup);
265}
266
267/*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271#define MEM_CGROUP_ID_MAX USHRT_MAX
272
273static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274{
275 return memcg->id.id;
276}
277
278/* Writing them here to avoid exposing memcg's inner layout */
279#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
280
281void sock_update_memcg(struct sock *sk)
282{
283 if (mem_cgroup_sockets_enabled) {
284 struct mem_cgroup *memcg;
285 struct cg_proto *cg_proto;
286
287 BUG_ON(!sk->sk_prot->proto_cgroup);
288
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
293 *
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
296 */
297 if (sk->sk_cgrp) {
298 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
299 css_get(&sk->sk_cgrp->memcg->css);
300 return;
301 }
302
303 rcu_read_lock();
304 memcg = mem_cgroup_from_task(current);
305 cg_proto = sk->sk_prot->proto_cgroup(memcg);
306 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
307 css_tryget_online(&memcg->css)) {
308 sk->sk_cgrp = cg_proto;
309 }
310 rcu_read_unlock();
311 }
312}
313EXPORT_SYMBOL(sock_update_memcg);
314
315void sock_release_memcg(struct sock *sk)
316{
317 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
318 struct mem_cgroup *memcg;
319 WARN_ON(!sk->sk_cgrp->memcg);
320 memcg = sk->sk_cgrp->memcg;
321 css_put(&sk->sk_cgrp->memcg->css);
322 }
323}
324
325struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
326{
327 if (!memcg || mem_cgroup_is_root(memcg))
328 return NULL;
329
330 return &memcg->tcp_mem;
331}
332EXPORT_SYMBOL(tcp_proto_cgroup);
333
334#endif
335
336#ifdef CONFIG_MEMCG_KMEM
337/*
338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
344 *
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
347 */
348static DEFINE_IDA(memcg_cache_ida);
349int memcg_nr_cache_ids;
350
351/* Protects memcg_nr_cache_ids */
352static DECLARE_RWSEM(memcg_cache_ids_sem);
353
354void memcg_get_cache_ids(void)
355{
356 down_read(&memcg_cache_ids_sem);
357}
358
359void memcg_put_cache_ids(void)
360{
361 up_read(&memcg_cache_ids_sem);
362}
363
364/*
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
369 *
370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
374 * increase ours as well if it increases.
375 */
376#define MEMCG_CACHES_MIN_SIZE 4
377#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
378
379/*
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
384 */
385struct static_key memcg_kmem_enabled_key;
386EXPORT_SYMBOL(memcg_kmem_enabled_key);
387
388#endif /* CONFIG_MEMCG_KMEM */
389
390static struct mem_cgroup_per_zone *
391mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
392{
393 int nid = zone_to_nid(zone);
394 int zid = zone_idx(zone);
395
396 return &memcg->nodeinfo[nid]->zoneinfo[zid];
397}
398
399/**
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
402 *
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
406 *
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
408 * is returned.
409 *
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
415 * actually true.
416 */
417struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418{
419 struct mem_cgroup *memcg;
420
421 rcu_read_lock();
422
423 memcg = page->mem_cgroup;
424
425 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
426 memcg = root_mem_cgroup;
427
428 rcu_read_unlock();
429 return &memcg->css;
430}
431
432/**
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
434 * @page: the page
435 *
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
439 *
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
444 */
445ino_t page_cgroup_ino(struct page *page)
446{
447 struct mem_cgroup *memcg;
448 unsigned long ino = 0;
449
450 rcu_read_lock();
451 memcg = READ_ONCE(page->mem_cgroup);
452 while (memcg && !(memcg->css.flags & CSS_ONLINE))
453 memcg = parent_mem_cgroup(memcg);
454 if (memcg)
455 ino = cgroup_ino(memcg->css.cgroup);
456 rcu_read_unlock();
457 return ino;
458}
459
460static struct mem_cgroup_per_zone *
461mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
462{
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465
466 return &memcg->nodeinfo[nid]->zoneinfo[zid];
467}
468
469static struct mem_cgroup_tree_per_zone *
470soft_limit_tree_node_zone(int nid, int zid)
471{
472 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
473}
474
475static struct mem_cgroup_tree_per_zone *
476soft_limit_tree_from_page(struct page *page)
477{
478 int nid = page_to_nid(page);
479 int zid = page_zonenum(page);
480
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
484static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
485 struct mem_cgroup_tree_per_zone *mctz,
486 unsigned long new_usage_in_excess)
487{
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
490 struct mem_cgroup_per_zone *mz_node;
491
492 if (mz->on_tree)
493 return;
494
495 mz->usage_in_excess = new_usage_in_excess;
496 if (!mz->usage_in_excess)
497 return;
498 while (*p) {
499 parent = *p;
500 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
501 tree_node);
502 if (mz->usage_in_excess < mz_node->usage_in_excess)
503 p = &(*p)->rb_left;
504 /*
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
507 */
508 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
509 p = &(*p)->rb_right;
510 }
511 rb_link_node(&mz->tree_node, parent, p);
512 rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = true;
514}
515
516static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
517 struct mem_cgroup_tree_per_zone *mctz)
518{
519 if (!mz->on_tree)
520 return;
521 rb_erase(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = false;
523}
524
525static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
527{
528 unsigned long flags;
529
530 spin_lock_irqsave(&mctz->lock, flags);
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 spin_unlock_irqrestore(&mctz->lock, flags);
533}
534
535static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536{
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 unsigned long excess = 0;
540
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
543
544 return excess;
545}
546
547static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548{
549 unsigned long excess;
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
552
553 mctz = soft_limit_tree_from_page(page);
554 /*
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
557 */
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 mz = mem_cgroup_page_zoneinfo(memcg, page);
560 excess = soft_limit_excess(memcg);
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
565 if (excess || mz->on_tree) {
566 unsigned long flags;
567
568 spin_lock_irqsave(&mctz->lock, flags);
569 /* if on-tree, remove it */
570 if (mz->on_tree)
571 __mem_cgroup_remove_exceeded(mz, mctz);
572 /*
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
575 */
576 __mem_cgroup_insert_exceeded(mz, mctz, excess);
577 spin_unlock_irqrestore(&mctz->lock, flags);
578 }
579 }
580}
581
582static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
583{
584 struct mem_cgroup_tree_per_zone *mctz;
585 struct mem_cgroup_per_zone *mz;
586 int nid, zid;
587
588 for_each_node(nid) {
589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
590 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
591 mctz = soft_limit_tree_node_zone(nid, zid);
592 mem_cgroup_remove_exceeded(mz, mctz);
593 }
594 }
595}
596
597static struct mem_cgroup_per_zone *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599{
600 struct rb_node *rightmost = NULL;
601 struct mem_cgroup_per_zone *mz;
602
603retry:
604 mz = NULL;
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
608
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 if (!soft_limit_excess(mz->memcg) ||
617 !css_tryget_online(&mz->memcg->css))
618 goto retry;
619done:
620 return mz;
621}
622
623static struct mem_cgroup_per_zone *
624mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625{
626 struct mem_cgroup_per_zone *mz;
627
628 spin_lock_irq(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock_irq(&mctz->lock);
631 return mz;
632}
633
634/*
635 * Return page count for single (non recursive) @memcg.
636 *
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronization of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threshold and synchronization as vmstat[] should be
653 * implemented.
654 */
655static unsigned long
656mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
657{
658 long val = 0;
659 int cpu;
660
661 /* Per-cpu values can be negative, use a signed accumulator */
662 for_each_possible_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 /*
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
667 */
668 if (val < 0)
669 val = 0;
670 return val;
671}
672
673static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
674 enum mem_cgroup_events_index idx)
675{
676 unsigned long val = 0;
677 int cpu;
678
679 for_each_possible_cpu(cpu)
680 val += per_cpu(memcg->stat->events[idx], cpu);
681 return val;
682}
683
684static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 struct page *page,
686 int nr_pages)
687{
688 /*
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
691 */
692 if (PageAnon(page))
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 nr_pages);
695 else
696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
697 nr_pages);
698
699 if (PageTransHuge(page))
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
701 nr_pages);
702
703 /* pagein of a big page is an event. So, ignore page size */
704 if (nr_pages > 0)
705 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
706 else {
707 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
708 nr_pages = -nr_pages; /* for event */
709 }
710
711 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
712}
713
714static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
715 int nid,
716 unsigned int lru_mask)
717{
718 unsigned long nr = 0;
719 int zid;
720
721 VM_BUG_ON((unsigned)nid >= nr_node_ids);
722
723 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
724 struct mem_cgroup_per_zone *mz;
725 enum lru_list lru;
726
727 for_each_lru(lru) {
728 if (!(BIT(lru) & lru_mask))
729 continue;
730 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
731 nr += mz->lru_size[lru];
732 }
733 }
734 return nr;
735}
736
737static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
738 unsigned int lru_mask)
739{
740 unsigned long nr = 0;
741 int nid;
742
743 for_each_node_state(nid, N_MEMORY)
744 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
745 return nr;
746}
747
748static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
749 enum mem_cgroup_events_target target)
750{
751 unsigned long val, next;
752
753 val = __this_cpu_read(memcg->stat->nr_page_events);
754 next = __this_cpu_read(memcg->stat->targets[target]);
755 /* from time_after() in jiffies.h */
756 if ((long)next - (long)val < 0) {
757 switch (target) {
758 case MEM_CGROUP_TARGET_THRESH:
759 next = val + THRESHOLDS_EVENTS_TARGET;
760 break;
761 case MEM_CGROUP_TARGET_SOFTLIMIT:
762 next = val + SOFTLIMIT_EVENTS_TARGET;
763 break;
764 case MEM_CGROUP_TARGET_NUMAINFO:
765 next = val + NUMAINFO_EVENTS_TARGET;
766 break;
767 default:
768 break;
769 }
770 __this_cpu_write(memcg->stat->targets[target], next);
771 return true;
772 }
773 return false;
774}
775
776/*
777 * Check events in order.
778 *
779 */
780static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781{
782 /* threshold event is triggered in finer grain than soft limit */
783 if (unlikely(mem_cgroup_event_ratelimit(memcg,
784 MEM_CGROUP_TARGET_THRESH))) {
785 bool do_softlimit;
786 bool do_numainfo __maybe_unused;
787
788 do_softlimit = mem_cgroup_event_ratelimit(memcg,
789 MEM_CGROUP_TARGET_SOFTLIMIT);
790#if MAX_NUMNODES > 1
791 do_numainfo = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_NUMAINFO);
793#endif
794 mem_cgroup_threshold(memcg);
795 if (unlikely(do_softlimit))
796 mem_cgroup_update_tree(memcg, page);
797#if MAX_NUMNODES > 1
798 if (unlikely(do_numainfo))
799 atomic_inc(&memcg->numainfo_events);
800#endif
801 }
802}
803
804struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
805{
806 /*
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
810 */
811 if (unlikely(!p))
812 return NULL;
813
814 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
815}
816EXPORT_SYMBOL(mem_cgroup_from_task);
817
818static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
819{
820 struct mem_cgroup *memcg = NULL;
821
822 rcu_read_lock();
823 do {
824 /*
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
828 */
829 if (unlikely(!mm))
830 memcg = root_mem_cgroup;
831 else {
832 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
833 if (unlikely(!memcg))
834 memcg = root_mem_cgroup;
835 }
836 } while (!css_tryget_online(&memcg->css));
837 rcu_read_unlock();
838 return memcg;
839}
840
841/**
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
846 *
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
849 *
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
853 *
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
857 */
858struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
859 struct mem_cgroup *prev,
860 struct mem_cgroup_reclaim_cookie *reclaim)
861{
862 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
863 struct cgroup_subsys_state *css = NULL;
864 struct mem_cgroup *memcg = NULL;
865 struct mem_cgroup *pos = NULL;
866
867 if (mem_cgroup_disabled())
868 return NULL;
869
870 if (!root)
871 root = root_mem_cgroup;
872
873 if (prev && !reclaim)
874 pos = prev;
875
876 if (!root->use_hierarchy && root != root_mem_cgroup) {
877 if (prev)
878 goto out;
879 return root;
880 }
881
882 rcu_read_lock();
883
884 if (reclaim) {
885 struct mem_cgroup_per_zone *mz;
886
887 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
888 iter = &mz->iter[reclaim->priority];
889
890 if (prev && reclaim->generation != iter->generation)
891 goto out_unlock;
892
893 while (1) {
894 pos = READ_ONCE(iter->position);
895 if (!pos || css_tryget(&pos->css))
896 break;
897 /*
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
903 * away.
904 */
905 (void)cmpxchg(&iter->position, pos, NULL);
906 }
907 }
908
909 if (pos)
910 css = &pos->css;
911
912 for (;;) {
913 css = css_next_descendant_pre(css, &root->css);
914 if (!css) {
915 /*
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
920 */
921 if (!prev)
922 continue;
923 break;
924 }
925
926 /*
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
930 */
931 memcg = mem_cgroup_from_css(css);
932
933 if (css == &root->css)
934 break;
935
936 if (css_tryget(css)) {
937 /*
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
941 */
942 if (smp_load_acquire(&memcg->initialized))
943 break;
944
945 css_put(css);
946 }
947
948 memcg = NULL;
949 }
950
951 if (reclaim) {
952 /*
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
956 */
957 (void)cmpxchg(&iter->position, pos, memcg);
958
959 if (pos)
960 css_put(&pos->css);
961
962 if (!memcg)
963 iter->generation++;
964 else if (!prev)
965 reclaim->generation = iter->generation;
966 }
967
968out_unlock:
969 rcu_read_unlock();
970out:
971 if (prev && prev != root)
972 css_put(&prev->css);
973
974 return memcg;
975}
976
977/**
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
981 */
982void mem_cgroup_iter_break(struct mem_cgroup *root,
983 struct mem_cgroup *prev)
984{
985 if (!root)
986 root = root_mem_cgroup;
987 if (prev && prev != root)
988 css_put(&prev->css);
989}
990
991static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
992{
993 struct mem_cgroup *memcg = dead_memcg;
994 struct mem_cgroup_reclaim_iter *iter;
995 struct mem_cgroup_per_zone *mz;
996 int nid, zid;
997 int i;
998
999 while ((memcg = parent_mem_cgroup(memcg))) {
1000 for_each_node(nid) {
1001 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1002 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1003 for (i = 0; i <= DEF_PRIORITY; i++) {
1004 iter = &mz->iter[i];
1005 cmpxchg(&iter->position,
1006 dead_memcg, NULL);
1007 }
1008 }
1009 }
1010 }
1011}
1012
1013/*
1014 * Iteration constructs for visiting all cgroups (under a tree). If
1015 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1016 * be used for reference counting.
1017 */
1018#define for_each_mem_cgroup_tree(iter, root) \
1019 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1020 iter != NULL; \
1021 iter = mem_cgroup_iter(root, iter, NULL))
1022
1023#define for_each_mem_cgroup(iter) \
1024 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1025 iter != NULL; \
1026 iter = mem_cgroup_iter(NULL, iter, NULL))
1027
1028/**
1029 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1030 * @zone: zone of the wanted lruvec
1031 * @memcg: memcg of the wanted lruvec
1032 *
1033 * Returns the lru list vector holding pages for the given @zone and
1034 * @mem. This can be the global zone lruvec, if the memory controller
1035 * is disabled.
1036 */
1037struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1038 struct mem_cgroup *memcg)
1039{
1040 struct mem_cgroup_per_zone *mz;
1041 struct lruvec *lruvec;
1042
1043 if (mem_cgroup_disabled()) {
1044 lruvec = &zone->lruvec;
1045 goto out;
1046 }
1047
1048 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1049 lruvec = &mz->lruvec;
1050out:
1051 /*
1052 * Since a node can be onlined after the mem_cgroup was created,
1053 * we have to be prepared to initialize lruvec->zone here;
1054 * and if offlined then reonlined, we need to reinitialize it.
1055 */
1056 if (unlikely(lruvec->zone != zone))
1057 lruvec->zone = zone;
1058 return lruvec;
1059}
1060
1061/**
1062 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1063 * @page: the page
1064 * @zone: zone of the page
1065 *
1066 * This function is only safe when following the LRU page isolation
1067 * and putback protocol: the LRU lock must be held, and the page must
1068 * either be PageLRU() or the caller must have isolated/allocated it.
1069 */
1070struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1071{
1072 struct mem_cgroup_per_zone *mz;
1073 struct mem_cgroup *memcg;
1074 struct lruvec *lruvec;
1075
1076 if (mem_cgroup_disabled()) {
1077 lruvec = &zone->lruvec;
1078 goto out;
1079 }
1080
1081 memcg = page->mem_cgroup;
1082 /*
1083 * Swapcache readahead pages are added to the LRU - and
1084 * possibly migrated - before they are charged.
1085 */
1086 if (!memcg)
1087 memcg = root_mem_cgroup;
1088
1089 mz = mem_cgroup_page_zoneinfo(memcg, page);
1090 lruvec = &mz->lruvec;
1091out:
1092 /*
1093 * Since a node can be onlined after the mem_cgroup was created,
1094 * we have to be prepared to initialize lruvec->zone here;
1095 * and if offlined then reonlined, we need to reinitialize it.
1096 */
1097 if (unlikely(lruvec->zone != zone))
1098 lruvec->zone = zone;
1099 return lruvec;
1100}
1101
1102/**
1103 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1104 * @lruvec: mem_cgroup per zone lru vector
1105 * @lru: index of lru list the page is sitting on
1106 * @nr_pages: positive when adding or negative when removing
1107 *
1108 * This function must be called when a page is added to or removed from an
1109 * lru list.
1110 */
1111void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1112 int nr_pages)
1113{
1114 struct mem_cgroup_per_zone *mz;
1115 unsigned long *lru_size;
1116
1117 if (mem_cgroup_disabled())
1118 return;
1119
1120 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1121 lru_size = mz->lru_size + lru;
1122 *lru_size += nr_pages;
1123 VM_BUG_ON((long)(*lru_size) < 0);
1124}
1125
1126bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1127{
1128 struct mem_cgroup *task_memcg;
1129 struct task_struct *p;
1130 bool ret;
1131
1132 p = find_lock_task_mm(task);
1133 if (p) {
1134 task_memcg = get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
1136 } else {
1137 /*
1138 * All threads may have already detached their mm's, but the oom
1139 * killer still needs to detect if they have already been oom
1140 * killed to prevent needlessly killing additional tasks.
1141 */
1142 rcu_read_lock();
1143 task_memcg = mem_cgroup_from_task(task);
1144 css_get(&task_memcg->css);
1145 rcu_read_unlock();
1146 }
1147 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1148 css_put(&task_memcg->css);
1149 return ret;
1150}
1151
1152#define mem_cgroup_from_counter(counter, member) \
1153 container_of(counter, struct mem_cgroup, member)
1154
1155/**
1156 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1157 * @memcg: the memory cgroup
1158 *
1159 * Returns the maximum amount of memory @mem can be charged with, in
1160 * pages.
1161 */
1162static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1163{
1164 unsigned long margin = 0;
1165 unsigned long count;
1166 unsigned long limit;
1167
1168 count = page_counter_read(&memcg->memory);
1169 limit = READ_ONCE(memcg->memory.limit);
1170 if (count < limit)
1171 margin = limit - count;
1172
1173 if (do_swap_account) {
1174 count = page_counter_read(&memcg->memsw);
1175 limit = READ_ONCE(memcg->memsw.limit);
1176 if (count <= limit)
1177 margin = min(margin, limit - count);
1178 }
1179
1180 return margin;
1181}
1182
1183/*
1184 * A routine for checking "mem" is under move_account() or not.
1185 *
1186 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1187 * moving cgroups. This is for waiting at high-memory pressure
1188 * caused by "move".
1189 */
1190static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1191{
1192 struct mem_cgroup *from;
1193 struct mem_cgroup *to;
1194 bool ret = false;
1195 /*
1196 * Unlike task_move routines, we access mc.to, mc.from not under
1197 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1198 */
1199 spin_lock(&mc.lock);
1200 from = mc.from;
1201 to = mc.to;
1202 if (!from)
1203 goto unlock;
1204
1205 ret = mem_cgroup_is_descendant(from, memcg) ||
1206 mem_cgroup_is_descendant(to, memcg);
1207unlock:
1208 spin_unlock(&mc.lock);
1209 return ret;
1210}
1211
1212static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1213{
1214 if (mc.moving_task && current != mc.moving_task) {
1215 if (mem_cgroup_under_move(memcg)) {
1216 DEFINE_WAIT(wait);
1217 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1218 /* moving charge context might have finished. */
1219 if (mc.moving_task)
1220 schedule();
1221 finish_wait(&mc.waitq, &wait);
1222 return true;
1223 }
1224 }
1225 return false;
1226}
1227
1228#define K(x) ((x) << (PAGE_SHIFT-10))
1229/**
1230 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1231 * @memcg: The memory cgroup that went over limit
1232 * @p: Task that is going to be killed
1233 *
1234 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1235 * enabled
1236 */
1237void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1238{
1239 /* oom_info_lock ensures that parallel ooms do not interleave */
1240 static DEFINE_MUTEX(oom_info_lock);
1241 struct mem_cgroup *iter;
1242 unsigned int i;
1243
1244 mutex_lock(&oom_info_lock);
1245 rcu_read_lock();
1246
1247 if (p) {
1248 pr_info("Task in ");
1249 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1250 pr_cont(" killed as a result of limit of ");
1251 } else {
1252 pr_info("Memory limit reached of cgroup ");
1253 }
1254
1255 pr_cont_cgroup_path(memcg->css.cgroup);
1256 pr_cont("\n");
1257
1258 rcu_read_unlock();
1259
1260 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1261 K((u64)page_counter_read(&memcg->memory)),
1262 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1263 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1264 K((u64)page_counter_read(&memcg->memsw)),
1265 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1266 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1267 K((u64)page_counter_read(&memcg->kmem)),
1268 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1269
1270 for_each_mem_cgroup_tree(iter, memcg) {
1271 pr_info("Memory cgroup stats for ");
1272 pr_cont_cgroup_path(iter->css.cgroup);
1273 pr_cont(":");
1274
1275 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1276 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1277 continue;
1278 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1279 K(mem_cgroup_read_stat(iter, i)));
1280 }
1281
1282 for (i = 0; i < NR_LRU_LISTS; i++)
1283 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1284 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1285
1286 pr_cont("\n");
1287 }
1288 mutex_unlock(&oom_info_lock);
1289}
1290
1291/*
1292 * This function returns the number of memcg under hierarchy tree. Returns
1293 * 1(self count) if no children.
1294 */
1295static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1296{
1297 int num = 0;
1298 struct mem_cgroup *iter;
1299
1300 for_each_mem_cgroup_tree(iter, memcg)
1301 num++;
1302 return num;
1303}
1304
1305/*
1306 * Return the memory (and swap, if configured) limit for a memcg.
1307 */
1308static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309{
1310 unsigned long limit;
1311
1312 limit = memcg->memory.limit;
1313 if (mem_cgroup_swappiness(memcg)) {
1314 unsigned long memsw_limit;
1315
1316 memsw_limit = memcg->memsw.limit;
1317 limit = min(limit + total_swap_pages, memsw_limit);
1318 }
1319 return limit;
1320}
1321
1322static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1323 int order)
1324{
1325 struct oom_control oc = {
1326 .zonelist = NULL,
1327 .nodemask = NULL,
1328 .gfp_mask = gfp_mask,
1329 .order = order,
1330 };
1331 struct mem_cgroup *iter;
1332 unsigned long chosen_points = 0;
1333 unsigned long totalpages;
1334 unsigned int points = 0;
1335 struct task_struct *chosen = NULL;
1336
1337 mutex_lock(&oom_lock);
1338
1339 /*
1340 * If current has a pending SIGKILL or is exiting, then automatically
1341 * select it. The goal is to allow it to allocate so that it may
1342 * quickly exit and free its memory.
1343 */
1344 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1345 mark_oom_victim(current);
1346 goto unlock;
1347 }
1348
1349 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1350 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1351 for_each_mem_cgroup_tree(iter, memcg) {
1352 struct css_task_iter it;
1353 struct task_struct *task;
1354
1355 css_task_iter_start(&iter->css, &it);
1356 while ((task = css_task_iter_next(&it))) {
1357 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1358 case OOM_SCAN_SELECT:
1359 if (chosen)
1360 put_task_struct(chosen);
1361 chosen = task;
1362 chosen_points = ULONG_MAX;
1363 get_task_struct(chosen);
1364 /* fall through */
1365 case OOM_SCAN_CONTINUE:
1366 continue;
1367 case OOM_SCAN_ABORT:
1368 css_task_iter_end(&it);
1369 mem_cgroup_iter_break(memcg, iter);
1370 if (chosen)
1371 put_task_struct(chosen);
1372 goto unlock;
1373 case OOM_SCAN_OK:
1374 break;
1375 };
1376 points = oom_badness(task, memcg, NULL, totalpages);
1377 if (!points || points < chosen_points)
1378 continue;
1379 /* Prefer thread group leaders for display purposes */
1380 if (points == chosen_points &&
1381 thread_group_leader(chosen))
1382 continue;
1383
1384 if (chosen)
1385 put_task_struct(chosen);
1386 chosen = task;
1387 chosen_points = points;
1388 get_task_struct(chosen);
1389 }
1390 css_task_iter_end(&it);
1391 }
1392
1393 if (chosen) {
1394 points = chosen_points * 1000 / totalpages;
1395 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1396 "Memory cgroup out of memory");
1397 }
1398unlock:
1399 mutex_unlock(&oom_lock);
1400 return chosen;
1401}
1402
1403#if MAX_NUMNODES > 1
1404
1405/**
1406 * test_mem_cgroup_node_reclaimable
1407 * @memcg: the target memcg
1408 * @nid: the node ID to be checked.
1409 * @noswap : specify true here if the user wants flle only information.
1410 *
1411 * This function returns whether the specified memcg contains any
1412 * reclaimable pages on a node. Returns true if there are any reclaimable
1413 * pages in the node.
1414 */
1415static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1416 int nid, bool noswap)
1417{
1418 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1419 return true;
1420 if (noswap || !total_swap_pages)
1421 return false;
1422 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1423 return true;
1424 return false;
1425
1426}
1427
1428/*
1429 * Always updating the nodemask is not very good - even if we have an empty
1430 * list or the wrong list here, we can start from some node and traverse all
1431 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1432 *
1433 */
1434static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1435{
1436 int nid;
1437 /*
1438 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1439 * pagein/pageout changes since the last update.
1440 */
1441 if (!atomic_read(&memcg->numainfo_events))
1442 return;
1443 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1444 return;
1445
1446 /* make a nodemask where this memcg uses memory from */
1447 memcg->scan_nodes = node_states[N_MEMORY];
1448
1449 for_each_node_mask(nid, node_states[N_MEMORY]) {
1450
1451 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1452 node_clear(nid, memcg->scan_nodes);
1453 }
1454
1455 atomic_set(&memcg->numainfo_events, 0);
1456 atomic_set(&memcg->numainfo_updating, 0);
1457}
1458
1459/*
1460 * Selecting a node where we start reclaim from. Because what we need is just
1461 * reducing usage counter, start from anywhere is O,K. Considering
1462 * memory reclaim from current node, there are pros. and cons.
1463 *
1464 * Freeing memory from current node means freeing memory from a node which
1465 * we'll use or we've used. So, it may make LRU bad. And if several threads
1466 * hit limits, it will see a contention on a node. But freeing from remote
1467 * node means more costs for memory reclaim because of memory latency.
1468 *
1469 * Now, we use round-robin. Better algorithm is welcomed.
1470 */
1471int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1472{
1473 int node;
1474
1475 mem_cgroup_may_update_nodemask(memcg);
1476 node = memcg->last_scanned_node;
1477
1478 node = next_node(node, memcg->scan_nodes);
1479 if (node == MAX_NUMNODES)
1480 node = first_node(memcg->scan_nodes);
1481 /*
1482 * We call this when we hit limit, not when pages are added to LRU.
1483 * No LRU may hold pages because all pages are UNEVICTABLE or
1484 * memcg is too small and all pages are not on LRU. In that case,
1485 * we use curret node.
1486 */
1487 if (unlikely(node == MAX_NUMNODES))
1488 node = numa_node_id();
1489
1490 memcg->last_scanned_node = node;
1491 return node;
1492}
1493#else
1494int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1495{
1496 return 0;
1497}
1498#endif
1499
1500static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1501 struct zone *zone,
1502 gfp_t gfp_mask,
1503 unsigned long *total_scanned)
1504{
1505 struct mem_cgroup *victim = NULL;
1506 int total = 0;
1507 int loop = 0;
1508 unsigned long excess;
1509 unsigned long nr_scanned;
1510 struct mem_cgroup_reclaim_cookie reclaim = {
1511 .zone = zone,
1512 .priority = 0,
1513 };
1514
1515 excess = soft_limit_excess(root_memcg);
1516
1517 while (1) {
1518 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1519 if (!victim) {
1520 loop++;
1521 if (loop >= 2) {
1522 /*
1523 * If we have not been able to reclaim
1524 * anything, it might because there are
1525 * no reclaimable pages under this hierarchy
1526 */
1527 if (!total)
1528 break;
1529 /*
1530 * We want to do more targeted reclaim.
1531 * excess >> 2 is not to excessive so as to
1532 * reclaim too much, nor too less that we keep
1533 * coming back to reclaim from this cgroup
1534 */
1535 if (total >= (excess >> 2) ||
1536 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1537 break;
1538 }
1539 continue;
1540 }
1541 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1542 zone, &nr_scanned);
1543 *total_scanned += nr_scanned;
1544 if (!soft_limit_excess(root_memcg))
1545 break;
1546 }
1547 mem_cgroup_iter_break(root_memcg, victim);
1548 return total;
1549}
1550
1551#ifdef CONFIG_LOCKDEP
1552static struct lockdep_map memcg_oom_lock_dep_map = {
1553 .name = "memcg_oom_lock",
1554};
1555#endif
1556
1557static DEFINE_SPINLOCK(memcg_oom_lock);
1558
1559/*
1560 * Check OOM-Killer is already running under our hierarchy.
1561 * If someone is running, return false.
1562 */
1563static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1564{
1565 struct mem_cgroup *iter, *failed = NULL;
1566
1567 spin_lock(&memcg_oom_lock);
1568
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 if (iter->oom_lock) {
1571 /*
1572 * this subtree of our hierarchy is already locked
1573 * so we cannot give a lock.
1574 */
1575 failed = iter;
1576 mem_cgroup_iter_break(memcg, iter);
1577 break;
1578 } else
1579 iter->oom_lock = true;
1580 }
1581
1582 if (failed) {
1583 /*
1584 * OK, we failed to lock the whole subtree so we have
1585 * to clean up what we set up to the failing subtree
1586 */
1587 for_each_mem_cgroup_tree(iter, memcg) {
1588 if (iter == failed) {
1589 mem_cgroup_iter_break(memcg, iter);
1590 break;
1591 }
1592 iter->oom_lock = false;
1593 }
1594 } else
1595 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1596
1597 spin_unlock(&memcg_oom_lock);
1598
1599 return !failed;
1600}
1601
1602static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1603{
1604 struct mem_cgroup *iter;
1605
1606 spin_lock(&memcg_oom_lock);
1607 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1608 for_each_mem_cgroup_tree(iter, memcg)
1609 iter->oom_lock = false;
1610 spin_unlock(&memcg_oom_lock);
1611}
1612
1613static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1614{
1615 struct mem_cgroup *iter;
1616
1617 spin_lock(&memcg_oom_lock);
1618 for_each_mem_cgroup_tree(iter, memcg)
1619 iter->under_oom++;
1620 spin_unlock(&memcg_oom_lock);
1621}
1622
1623static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1624{
1625 struct mem_cgroup *iter;
1626
1627 /*
1628 * When a new child is created while the hierarchy is under oom,
1629 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1630 */
1631 spin_lock(&memcg_oom_lock);
1632 for_each_mem_cgroup_tree(iter, memcg)
1633 if (iter->under_oom > 0)
1634 iter->under_oom--;
1635 spin_unlock(&memcg_oom_lock);
1636}
1637
1638static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1639
1640struct oom_wait_info {
1641 struct mem_cgroup *memcg;
1642 wait_queue_t wait;
1643};
1644
1645static int memcg_oom_wake_function(wait_queue_t *wait,
1646 unsigned mode, int sync, void *arg)
1647{
1648 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1649 struct mem_cgroup *oom_wait_memcg;
1650 struct oom_wait_info *oom_wait_info;
1651
1652 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1653 oom_wait_memcg = oom_wait_info->memcg;
1654
1655 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1656 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1657 return 0;
1658 return autoremove_wake_function(wait, mode, sync, arg);
1659}
1660
1661static void memcg_oom_recover(struct mem_cgroup *memcg)
1662{
1663 /*
1664 * For the following lockless ->under_oom test, the only required
1665 * guarantee is that it must see the state asserted by an OOM when
1666 * this function is called as a result of userland actions
1667 * triggered by the notification of the OOM. This is trivially
1668 * achieved by invoking mem_cgroup_mark_under_oom() before
1669 * triggering notification.
1670 */
1671 if (memcg && memcg->under_oom)
1672 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1673}
1674
1675static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1676{
1677 if (!current->memcg_may_oom)
1678 return;
1679 /*
1680 * We are in the middle of the charge context here, so we
1681 * don't want to block when potentially sitting on a callstack
1682 * that holds all kinds of filesystem and mm locks.
1683 *
1684 * Also, the caller may handle a failed allocation gracefully
1685 * (like optional page cache readahead) and so an OOM killer
1686 * invocation might not even be necessary.
1687 *
1688 * That's why we don't do anything here except remember the
1689 * OOM context and then deal with it at the end of the page
1690 * fault when the stack is unwound, the locks are released,
1691 * and when we know whether the fault was overall successful.
1692 */
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1697}
1698
1699/**
1700 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1701 * @handle: actually kill/wait or just clean up the OOM state
1702 *
1703 * This has to be called at the end of a page fault if the memcg OOM
1704 * handler was enabled.
1705 *
1706 * Memcg supports userspace OOM handling where failed allocations must
1707 * sleep on a waitqueue until the userspace task resolves the
1708 * situation. Sleeping directly in the charge context with all kinds
1709 * of locks held is not a good idea, instead we remember an OOM state
1710 * in the task and mem_cgroup_oom_synchronize() has to be called at
1711 * the end of the page fault to complete the OOM handling.
1712 *
1713 * Returns %true if an ongoing memcg OOM situation was detected and
1714 * completed, %false otherwise.
1715 */
1716bool mem_cgroup_oom_synchronize(bool handle)
1717{
1718 struct mem_cgroup *memcg = current->memcg_in_oom;
1719 struct oom_wait_info owait;
1720 bool locked;
1721
1722 /* OOM is global, do not handle */
1723 if (!memcg)
1724 return false;
1725
1726 if (!handle || oom_killer_disabled)
1727 goto cleanup;
1728
1729 owait.memcg = memcg;
1730 owait.wait.flags = 0;
1731 owait.wait.func = memcg_oom_wake_function;
1732 owait.wait.private = current;
1733 INIT_LIST_HEAD(&owait.wait.task_list);
1734
1735 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1736 mem_cgroup_mark_under_oom(memcg);
1737
1738 locked = mem_cgroup_oom_trylock(memcg);
1739
1740 if (locked)
1741 mem_cgroup_oom_notify(memcg);
1742
1743 if (locked && !memcg->oom_kill_disable) {
1744 mem_cgroup_unmark_under_oom(memcg);
1745 finish_wait(&memcg_oom_waitq, &owait.wait);
1746 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1747 current->memcg_oom_order);
1748 } else {
1749 schedule();
1750 mem_cgroup_unmark_under_oom(memcg);
1751 finish_wait(&memcg_oom_waitq, &owait.wait);
1752 }
1753
1754 if (locked) {
1755 mem_cgroup_oom_unlock(memcg);
1756 /*
1757 * There is no guarantee that an OOM-lock contender
1758 * sees the wakeups triggered by the OOM kill
1759 * uncharges. Wake any sleepers explicitely.
1760 */
1761 memcg_oom_recover(memcg);
1762 }
1763cleanup:
1764 current->memcg_in_oom = NULL;
1765 css_put(&memcg->css);
1766 return true;
1767}
1768
1769/**
1770 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1771 * @page: page that is going to change accounted state
1772 *
1773 * This function must mark the beginning of an accounted page state
1774 * change to prevent double accounting when the page is concurrently
1775 * being moved to another memcg:
1776 *
1777 * memcg = mem_cgroup_begin_page_stat(page);
1778 * if (TestClearPageState(page))
1779 * mem_cgroup_update_page_stat(memcg, state, -1);
1780 * mem_cgroup_end_page_stat(memcg);
1781 */
1782struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1783{
1784 struct mem_cgroup *memcg;
1785 unsigned long flags;
1786
1787 /*
1788 * The RCU lock is held throughout the transaction. The fast
1789 * path can get away without acquiring the memcg->move_lock
1790 * because page moving starts with an RCU grace period.
1791 *
1792 * The RCU lock also protects the memcg from being freed when
1793 * the page state that is going to change is the only thing
1794 * preventing the page from being uncharged.
1795 * E.g. end-writeback clearing PageWriteback(), which allows
1796 * migration to go ahead and uncharge the page before the
1797 * account transaction might be complete.
1798 */
1799 rcu_read_lock();
1800
1801 if (mem_cgroup_disabled())
1802 return NULL;
1803again:
1804 memcg = page->mem_cgroup;
1805 if (unlikely(!memcg))
1806 return NULL;
1807
1808 if (atomic_read(&memcg->moving_account) <= 0)
1809 return memcg;
1810
1811 spin_lock_irqsave(&memcg->move_lock, flags);
1812 if (memcg != page->mem_cgroup) {
1813 spin_unlock_irqrestore(&memcg->move_lock, flags);
1814 goto again;
1815 }
1816
1817 /*
1818 * When charge migration first begins, we can have locked and
1819 * unlocked page stat updates happening concurrently. Track
1820 * the task who has the lock for mem_cgroup_end_page_stat().
1821 */
1822 memcg->move_lock_task = current;
1823 memcg->move_lock_flags = flags;
1824
1825 return memcg;
1826}
1827EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1828
1829/**
1830 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1831 * @memcg: the memcg that was accounted against
1832 */
1833void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1834{
1835 if (memcg && memcg->move_lock_task == current) {
1836 unsigned long flags = memcg->move_lock_flags;
1837
1838 memcg->move_lock_task = NULL;
1839 memcg->move_lock_flags = 0;
1840
1841 spin_unlock_irqrestore(&memcg->move_lock, flags);
1842 }
1843
1844 rcu_read_unlock();
1845}
1846EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1847
1848/*
1849 * size of first charge trial. "32" comes from vmscan.c's magic value.
1850 * TODO: maybe necessary to use big numbers in big irons.
1851 */
1852#define CHARGE_BATCH 32U
1853struct memcg_stock_pcp {
1854 struct mem_cgroup *cached; /* this never be root cgroup */
1855 unsigned int nr_pages;
1856 struct work_struct work;
1857 unsigned long flags;
1858#define FLUSHING_CACHED_CHARGE 0
1859};
1860static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1861static DEFINE_MUTEX(percpu_charge_mutex);
1862
1863/**
1864 * consume_stock: Try to consume stocked charge on this cpu.
1865 * @memcg: memcg to consume from.
1866 * @nr_pages: how many pages to charge.
1867 *
1868 * The charges will only happen if @memcg matches the current cpu's memcg
1869 * stock, and at least @nr_pages are available in that stock. Failure to
1870 * service an allocation will refill the stock.
1871 *
1872 * returns true if successful, false otherwise.
1873 */
1874static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1875{
1876 struct memcg_stock_pcp *stock;
1877 bool ret = false;
1878
1879 if (nr_pages > CHARGE_BATCH)
1880 return ret;
1881
1882 stock = &get_cpu_var(memcg_stock);
1883 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1884 stock->nr_pages -= nr_pages;
1885 ret = true;
1886 }
1887 put_cpu_var(memcg_stock);
1888 return ret;
1889}
1890
1891/*
1892 * Returns stocks cached in percpu and reset cached information.
1893 */
1894static void drain_stock(struct memcg_stock_pcp *stock)
1895{
1896 struct mem_cgroup *old = stock->cached;
1897
1898 if (stock->nr_pages) {
1899 page_counter_uncharge(&old->memory, stock->nr_pages);
1900 if (do_swap_account)
1901 page_counter_uncharge(&old->memsw, stock->nr_pages);
1902 css_put_many(&old->css, stock->nr_pages);
1903 stock->nr_pages = 0;
1904 }
1905 stock->cached = NULL;
1906}
1907
1908/*
1909 * This must be called under preempt disabled or must be called by
1910 * a thread which is pinned to local cpu.
1911 */
1912static void drain_local_stock(struct work_struct *dummy)
1913{
1914 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1915 drain_stock(stock);
1916 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1917}
1918
1919/*
1920 * Cache charges(val) to local per_cpu area.
1921 * This will be consumed by consume_stock() function, later.
1922 */
1923static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1924{
1925 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1926
1927 if (stock->cached != memcg) { /* reset if necessary */
1928 drain_stock(stock);
1929 stock->cached = memcg;
1930 }
1931 stock->nr_pages += nr_pages;
1932 put_cpu_var(memcg_stock);
1933}
1934
1935/*
1936 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1937 * of the hierarchy under it.
1938 */
1939static void drain_all_stock(struct mem_cgroup *root_memcg)
1940{
1941 int cpu, curcpu;
1942
1943 /* If someone's already draining, avoid adding running more workers. */
1944 if (!mutex_trylock(&percpu_charge_mutex))
1945 return;
1946 /* Notify other cpus that system-wide "drain" is running */
1947 get_online_cpus();
1948 curcpu = get_cpu();
1949 for_each_online_cpu(cpu) {
1950 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1951 struct mem_cgroup *memcg;
1952
1953 memcg = stock->cached;
1954 if (!memcg || !stock->nr_pages)
1955 continue;
1956 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1957 continue;
1958 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1959 if (cpu == curcpu)
1960 drain_local_stock(&stock->work);
1961 else
1962 schedule_work_on(cpu, &stock->work);
1963 }
1964 }
1965 put_cpu();
1966 put_online_cpus();
1967 mutex_unlock(&percpu_charge_mutex);
1968}
1969
1970static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1971 unsigned long action,
1972 void *hcpu)
1973{
1974 int cpu = (unsigned long)hcpu;
1975 struct memcg_stock_pcp *stock;
1976
1977 if (action == CPU_ONLINE)
1978 return NOTIFY_OK;
1979
1980 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1981 return NOTIFY_OK;
1982
1983 stock = &per_cpu(memcg_stock, cpu);
1984 drain_stock(stock);
1985 return NOTIFY_OK;
1986}
1987
1988/*
1989 * Scheduled by try_charge() to be executed from the userland return path
1990 * and reclaims memory over the high limit.
1991 */
1992void mem_cgroup_handle_over_high(void)
1993{
1994 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1995 struct mem_cgroup *memcg, *pos;
1996
1997 if (likely(!nr_pages))
1998 return;
1999
2000 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2001
2002 do {
2003 if (page_counter_read(&pos->memory) <= pos->high)
2004 continue;
2005 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2006 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2007 } while ((pos = parent_mem_cgroup(pos)));
2008
2009 css_put(&memcg->css);
2010 current->memcg_nr_pages_over_high = 0;
2011}
2012
2013static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2014 unsigned int nr_pages)
2015{
2016 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2017 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2018 struct mem_cgroup *mem_over_limit;
2019 struct page_counter *counter;
2020 unsigned long nr_reclaimed;
2021 bool may_swap = true;
2022 bool drained = false;
2023
2024 if (mem_cgroup_is_root(memcg))
2025 return 0;
2026retry:
2027 if (consume_stock(memcg, nr_pages))
2028 return 0;
2029
2030 if (!do_swap_account ||
2031 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2032 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2033 goto done_restock;
2034 if (do_swap_account)
2035 page_counter_uncharge(&memcg->memsw, batch);
2036 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2037 } else {
2038 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2039 may_swap = false;
2040 }
2041
2042 if (batch > nr_pages) {
2043 batch = nr_pages;
2044 goto retry;
2045 }
2046
2047 /*
2048 * Unlike in global OOM situations, memcg is not in a physical
2049 * memory shortage. Allow dying and OOM-killed tasks to
2050 * bypass the last charges so that they can exit quickly and
2051 * free their memory.
2052 */
2053 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2054 fatal_signal_pending(current) ||
2055 current->flags & PF_EXITING))
2056 goto force;
2057
2058 if (unlikely(task_in_memcg_oom(current)))
2059 goto nomem;
2060
2061 if (!gfpflags_allow_blocking(gfp_mask))
2062 goto nomem;
2063
2064 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2065
2066 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2067 gfp_mask, may_swap);
2068
2069 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2070 goto retry;
2071
2072 if (!drained) {
2073 drain_all_stock(mem_over_limit);
2074 drained = true;
2075 goto retry;
2076 }
2077
2078 if (gfp_mask & __GFP_NORETRY)
2079 goto nomem;
2080 /*
2081 * Even though the limit is exceeded at this point, reclaim
2082 * may have been able to free some pages. Retry the charge
2083 * before killing the task.
2084 *
2085 * Only for regular pages, though: huge pages are rather
2086 * unlikely to succeed so close to the limit, and we fall back
2087 * to regular pages anyway in case of failure.
2088 */
2089 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2090 goto retry;
2091 /*
2092 * At task move, charge accounts can be doubly counted. So, it's
2093 * better to wait until the end of task_move if something is going on.
2094 */
2095 if (mem_cgroup_wait_acct_move(mem_over_limit))
2096 goto retry;
2097
2098 if (nr_retries--)
2099 goto retry;
2100
2101 if (gfp_mask & __GFP_NOFAIL)
2102 goto force;
2103
2104 if (fatal_signal_pending(current))
2105 goto force;
2106
2107 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2108
2109 mem_cgroup_oom(mem_over_limit, gfp_mask,
2110 get_order(nr_pages * PAGE_SIZE));
2111nomem:
2112 if (!(gfp_mask & __GFP_NOFAIL))
2113 return -ENOMEM;
2114force:
2115 /*
2116 * The allocation either can't fail or will lead to more memory
2117 * being freed very soon. Allow memory usage go over the limit
2118 * temporarily by force charging it.
2119 */
2120 page_counter_charge(&memcg->memory, nr_pages);
2121 if (do_swap_account)
2122 page_counter_charge(&memcg->memsw, nr_pages);
2123 css_get_many(&memcg->css, nr_pages);
2124
2125 return 0;
2126
2127done_restock:
2128 css_get_many(&memcg->css, batch);
2129 if (batch > nr_pages)
2130 refill_stock(memcg, batch - nr_pages);
2131
2132 /*
2133 * If the hierarchy is above the normal consumption range, schedule
2134 * reclaim on returning to userland. We can perform reclaim here
2135 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2136 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2137 * not recorded as it most likely matches current's and won't
2138 * change in the meantime. As high limit is checked again before
2139 * reclaim, the cost of mismatch is negligible.
2140 */
2141 do {
2142 if (page_counter_read(&memcg->memory) > memcg->high) {
2143 current->memcg_nr_pages_over_high += batch;
2144 set_notify_resume(current);
2145 break;
2146 }
2147 } while ((memcg = parent_mem_cgroup(memcg)));
2148
2149 return 0;
2150}
2151
2152static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2153{
2154 if (mem_cgroup_is_root(memcg))
2155 return;
2156
2157 page_counter_uncharge(&memcg->memory, nr_pages);
2158 if (do_swap_account)
2159 page_counter_uncharge(&memcg->memsw, nr_pages);
2160
2161 css_put_many(&memcg->css, nr_pages);
2162}
2163
2164static void lock_page_lru(struct page *page, int *isolated)
2165{
2166 struct zone *zone = page_zone(page);
2167
2168 spin_lock_irq(&zone->lru_lock);
2169 if (PageLRU(page)) {
2170 struct lruvec *lruvec;
2171
2172 lruvec = mem_cgroup_page_lruvec(page, zone);
2173 ClearPageLRU(page);
2174 del_page_from_lru_list(page, lruvec, page_lru(page));
2175 *isolated = 1;
2176 } else
2177 *isolated = 0;
2178}
2179
2180static void unlock_page_lru(struct page *page, int isolated)
2181{
2182 struct zone *zone = page_zone(page);
2183
2184 if (isolated) {
2185 struct lruvec *lruvec;
2186
2187 lruvec = mem_cgroup_page_lruvec(page, zone);
2188 VM_BUG_ON_PAGE(PageLRU(page), page);
2189 SetPageLRU(page);
2190 add_page_to_lru_list(page, lruvec, page_lru(page));
2191 }
2192 spin_unlock_irq(&zone->lru_lock);
2193}
2194
2195static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2196 bool lrucare)
2197{
2198 int isolated;
2199
2200 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2201
2202 /*
2203 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2204 * may already be on some other mem_cgroup's LRU. Take care of it.
2205 */
2206 if (lrucare)
2207 lock_page_lru(page, &isolated);
2208
2209 /*
2210 * Nobody should be changing or seriously looking at
2211 * page->mem_cgroup at this point:
2212 *
2213 * - the page is uncharged
2214 *
2215 * - the page is off-LRU
2216 *
2217 * - an anonymous fault has exclusive page access, except for
2218 * a locked page table
2219 *
2220 * - a page cache insertion, a swapin fault, or a migration
2221 * have the page locked
2222 */
2223 page->mem_cgroup = memcg;
2224
2225 if (lrucare)
2226 unlock_page_lru(page, isolated);
2227}
2228
2229#ifdef CONFIG_MEMCG_KMEM
2230static int memcg_alloc_cache_id(void)
2231{
2232 int id, size;
2233 int err;
2234
2235 id = ida_simple_get(&memcg_cache_ida,
2236 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2237 if (id < 0)
2238 return id;
2239
2240 if (id < memcg_nr_cache_ids)
2241 return id;
2242
2243 /*
2244 * There's no space for the new id in memcg_caches arrays,
2245 * so we have to grow them.
2246 */
2247 down_write(&memcg_cache_ids_sem);
2248
2249 size = 2 * (id + 1);
2250 if (size < MEMCG_CACHES_MIN_SIZE)
2251 size = MEMCG_CACHES_MIN_SIZE;
2252 else if (size > MEMCG_CACHES_MAX_SIZE)
2253 size = MEMCG_CACHES_MAX_SIZE;
2254
2255 err = memcg_update_all_caches(size);
2256 if (!err)
2257 err = memcg_update_all_list_lrus(size);
2258 if (!err)
2259 memcg_nr_cache_ids = size;
2260
2261 up_write(&memcg_cache_ids_sem);
2262
2263 if (err) {
2264 ida_simple_remove(&memcg_cache_ida, id);
2265 return err;
2266 }
2267 return id;
2268}
2269
2270static void memcg_free_cache_id(int id)
2271{
2272 ida_simple_remove(&memcg_cache_ida, id);
2273}
2274
2275struct memcg_kmem_cache_create_work {
2276 struct mem_cgroup *memcg;
2277 struct kmem_cache *cachep;
2278 struct work_struct work;
2279};
2280
2281static void memcg_kmem_cache_create_func(struct work_struct *w)
2282{
2283 struct memcg_kmem_cache_create_work *cw =
2284 container_of(w, struct memcg_kmem_cache_create_work, work);
2285 struct mem_cgroup *memcg = cw->memcg;
2286 struct kmem_cache *cachep = cw->cachep;
2287
2288 memcg_create_kmem_cache(memcg, cachep);
2289
2290 css_put(&memcg->css);
2291 kfree(cw);
2292}
2293
2294/*
2295 * Enqueue the creation of a per-memcg kmem_cache.
2296 */
2297static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2298 struct kmem_cache *cachep)
2299{
2300 struct memcg_kmem_cache_create_work *cw;
2301
2302 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2303 if (!cw)
2304 return;
2305
2306 css_get(&memcg->css);
2307
2308 cw->memcg = memcg;
2309 cw->cachep = cachep;
2310 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2311
2312 schedule_work(&cw->work);
2313}
2314
2315static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2316 struct kmem_cache *cachep)
2317{
2318 /*
2319 * We need to stop accounting when we kmalloc, because if the
2320 * corresponding kmalloc cache is not yet created, the first allocation
2321 * in __memcg_schedule_kmem_cache_create will recurse.
2322 *
2323 * However, it is better to enclose the whole function. Depending on
2324 * the debugging options enabled, INIT_WORK(), for instance, can
2325 * trigger an allocation. This too, will make us recurse. Because at
2326 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2327 * the safest choice is to do it like this, wrapping the whole function.
2328 */
2329 current->memcg_kmem_skip_account = 1;
2330 __memcg_schedule_kmem_cache_create(memcg, cachep);
2331 current->memcg_kmem_skip_account = 0;
2332}
2333
2334/*
2335 * Return the kmem_cache we're supposed to use for a slab allocation.
2336 * We try to use the current memcg's version of the cache.
2337 *
2338 * If the cache does not exist yet, if we are the first user of it,
2339 * we either create it immediately, if possible, or create it asynchronously
2340 * in a workqueue.
2341 * In the latter case, we will let the current allocation go through with
2342 * the original cache.
2343 *
2344 * Can't be called in interrupt context or from kernel threads.
2345 * This function needs to be called with rcu_read_lock() held.
2346 */
2347struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2348{
2349 struct mem_cgroup *memcg;
2350 struct kmem_cache *memcg_cachep;
2351 int kmemcg_id;
2352
2353 VM_BUG_ON(!is_root_cache(cachep));
2354
2355 if (current->memcg_kmem_skip_account)
2356 return cachep;
2357
2358 memcg = get_mem_cgroup_from_mm(current->mm);
2359 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2360 if (kmemcg_id < 0)
2361 goto out;
2362
2363 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2364 if (likely(memcg_cachep))
2365 return memcg_cachep;
2366
2367 /*
2368 * If we are in a safe context (can wait, and not in interrupt
2369 * context), we could be be predictable and return right away.
2370 * This would guarantee that the allocation being performed
2371 * already belongs in the new cache.
2372 *
2373 * However, there are some clashes that can arrive from locking.
2374 * For instance, because we acquire the slab_mutex while doing
2375 * memcg_create_kmem_cache, this means no further allocation
2376 * could happen with the slab_mutex held. So it's better to
2377 * defer everything.
2378 */
2379 memcg_schedule_kmem_cache_create(memcg, cachep);
2380out:
2381 css_put(&memcg->css);
2382 return cachep;
2383}
2384
2385void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2386{
2387 if (!is_root_cache(cachep))
2388 css_put(&cachep->memcg_params.memcg->css);
2389}
2390
2391int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2392 struct mem_cgroup *memcg)
2393{
2394 unsigned int nr_pages = 1 << order;
2395 struct page_counter *counter;
2396 int ret;
2397
2398 if (!memcg_kmem_is_active(memcg))
2399 return 0;
2400
2401 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2402 return -ENOMEM;
2403
2404 ret = try_charge(memcg, gfp, nr_pages);
2405 if (ret) {
2406 page_counter_uncharge(&memcg->kmem, nr_pages);
2407 return ret;
2408 }
2409
2410 page->mem_cgroup = memcg;
2411
2412 return 0;
2413}
2414
2415int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2416{
2417 struct mem_cgroup *memcg;
2418 int ret;
2419
2420 memcg = get_mem_cgroup_from_mm(current->mm);
2421 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2422 css_put(&memcg->css);
2423 return ret;
2424}
2425
2426void __memcg_kmem_uncharge(struct page *page, int order)
2427{
2428 struct mem_cgroup *memcg = page->mem_cgroup;
2429 unsigned int nr_pages = 1 << order;
2430
2431 if (!memcg)
2432 return;
2433
2434 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2435
2436 page_counter_uncharge(&memcg->kmem, nr_pages);
2437 page_counter_uncharge(&memcg->memory, nr_pages);
2438 if (do_swap_account)
2439 page_counter_uncharge(&memcg->memsw, nr_pages);
2440
2441 page->mem_cgroup = NULL;
2442 css_put_many(&memcg->css, nr_pages);
2443}
2444#endif /* CONFIG_MEMCG_KMEM */
2445
2446#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2447
2448/*
2449 * Because tail pages are not marked as "used", set it. We're under
2450 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2451 * charge/uncharge will be never happen and move_account() is done under
2452 * compound_lock(), so we don't have to take care of races.
2453 */
2454void mem_cgroup_split_huge_fixup(struct page *head)
2455{
2456 int i;
2457
2458 if (mem_cgroup_disabled())
2459 return;
2460
2461 for (i = 1; i < HPAGE_PMD_NR; i++)
2462 head[i].mem_cgroup = head->mem_cgroup;
2463
2464 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2465 HPAGE_PMD_NR);
2466}
2467#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2468
2469#ifdef CONFIG_MEMCG_SWAP
2470static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2471 bool charge)
2472{
2473 int val = (charge) ? 1 : -1;
2474 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2475}
2476
2477/**
2478 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2479 * @entry: swap entry to be moved
2480 * @from: mem_cgroup which the entry is moved from
2481 * @to: mem_cgroup which the entry is moved to
2482 *
2483 * It succeeds only when the swap_cgroup's record for this entry is the same
2484 * as the mem_cgroup's id of @from.
2485 *
2486 * Returns 0 on success, -EINVAL on failure.
2487 *
2488 * The caller must have charged to @to, IOW, called page_counter_charge() about
2489 * both res and memsw, and called css_get().
2490 */
2491static int mem_cgroup_move_swap_account(swp_entry_t entry,
2492 struct mem_cgroup *from, struct mem_cgroup *to)
2493{
2494 unsigned short old_id, new_id;
2495
2496 old_id = mem_cgroup_id(from);
2497 new_id = mem_cgroup_id(to);
2498
2499 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2500 mem_cgroup_swap_statistics(from, false);
2501 mem_cgroup_swap_statistics(to, true);
2502 return 0;
2503 }
2504 return -EINVAL;
2505}
2506#else
2507static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2508 struct mem_cgroup *from, struct mem_cgroup *to)
2509{
2510 return -EINVAL;
2511}
2512#endif
2513
2514static DEFINE_MUTEX(memcg_limit_mutex);
2515
2516static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2517 unsigned long limit)
2518{
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
2522 int retry_count;
2523 int ret;
2524
2525 /*
2526 * For keeping hierarchical_reclaim simple, how long we should retry
2527 * is depends on callers. We set our retry-count to be function
2528 * of # of children which we should visit in this loop.
2529 */
2530 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2531 mem_cgroup_count_children(memcg);
2532
2533 oldusage = page_counter_read(&memcg->memory);
2534
2535 do {
2536 if (signal_pending(current)) {
2537 ret = -EINTR;
2538 break;
2539 }
2540
2541 mutex_lock(&memcg_limit_mutex);
2542 if (limit > memcg->memsw.limit) {
2543 mutex_unlock(&memcg_limit_mutex);
2544 ret = -EINVAL;
2545 break;
2546 }
2547 if (limit > memcg->memory.limit)
2548 enlarge = true;
2549 ret = page_counter_limit(&memcg->memory, limit);
2550 mutex_unlock(&memcg_limit_mutex);
2551
2552 if (!ret)
2553 break;
2554
2555 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2556
2557 curusage = page_counter_read(&memcg->memory);
2558 /* Usage is reduced ? */
2559 if (curusage >= oldusage)
2560 retry_count--;
2561 else
2562 oldusage = curusage;
2563 } while (retry_count);
2564
2565 if (!ret && enlarge)
2566 memcg_oom_recover(memcg);
2567
2568 return ret;
2569}
2570
2571static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2572 unsigned long limit)
2573{
2574 unsigned long curusage;
2575 unsigned long oldusage;
2576 bool enlarge = false;
2577 int retry_count;
2578 int ret;
2579
2580 /* see mem_cgroup_resize_res_limit */
2581 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2582 mem_cgroup_count_children(memcg);
2583
2584 oldusage = page_counter_read(&memcg->memsw);
2585
2586 do {
2587 if (signal_pending(current)) {
2588 ret = -EINTR;
2589 break;
2590 }
2591
2592 mutex_lock(&memcg_limit_mutex);
2593 if (limit < memcg->memory.limit) {
2594 mutex_unlock(&memcg_limit_mutex);
2595 ret = -EINVAL;
2596 break;
2597 }
2598 if (limit > memcg->memsw.limit)
2599 enlarge = true;
2600 ret = page_counter_limit(&memcg->memsw, limit);
2601 mutex_unlock(&memcg_limit_mutex);
2602
2603 if (!ret)
2604 break;
2605
2606 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2607
2608 curusage = page_counter_read(&memcg->memsw);
2609 /* Usage is reduced ? */
2610 if (curusage >= oldusage)
2611 retry_count--;
2612 else
2613 oldusage = curusage;
2614 } while (retry_count);
2615
2616 if (!ret && enlarge)
2617 memcg_oom_recover(memcg);
2618
2619 return ret;
2620}
2621
2622unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2623 gfp_t gfp_mask,
2624 unsigned long *total_scanned)
2625{
2626 unsigned long nr_reclaimed = 0;
2627 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2628 unsigned long reclaimed;
2629 int loop = 0;
2630 struct mem_cgroup_tree_per_zone *mctz;
2631 unsigned long excess;
2632 unsigned long nr_scanned;
2633
2634 if (order > 0)
2635 return 0;
2636
2637 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2638 /*
2639 * This loop can run a while, specially if mem_cgroup's continuously
2640 * keep exceeding their soft limit and putting the system under
2641 * pressure
2642 */
2643 do {
2644 if (next_mz)
2645 mz = next_mz;
2646 else
2647 mz = mem_cgroup_largest_soft_limit_node(mctz);
2648 if (!mz)
2649 break;
2650
2651 nr_scanned = 0;
2652 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2653 gfp_mask, &nr_scanned);
2654 nr_reclaimed += reclaimed;
2655 *total_scanned += nr_scanned;
2656 spin_lock_irq(&mctz->lock);
2657 __mem_cgroup_remove_exceeded(mz, mctz);
2658
2659 /*
2660 * If we failed to reclaim anything from this memory cgroup
2661 * it is time to move on to the next cgroup
2662 */
2663 next_mz = NULL;
2664 if (!reclaimed)
2665 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2666
2667 excess = soft_limit_excess(mz->memcg);
2668 /*
2669 * One school of thought says that we should not add
2670 * back the node to the tree if reclaim returns 0.
2671 * But our reclaim could return 0, simply because due
2672 * to priority we are exposing a smaller subset of
2673 * memory to reclaim from. Consider this as a longer
2674 * term TODO.
2675 */
2676 /* If excess == 0, no tree ops */
2677 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2678 spin_unlock_irq(&mctz->lock);
2679 css_put(&mz->memcg->css);
2680 loop++;
2681 /*
2682 * Could not reclaim anything and there are no more
2683 * mem cgroups to try or we seem to be looping without
2684 * reclaiming anything.
2685 */
2686 if (!nr_reclaimed &&
2687 (next_mz == NULL ||
2688 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2689 break;
2690 } while (!nr_reclaimed);
2691 if (next_mz)
2692 css_put(&next_mz->memcg->css);
2693 return nr_reclaimed;
2694}
2695
2696/*
2697 * Test whether @memcg has children, dead or alive. Note that this
2698 * function doesn't care whether @memcg has use_hierarchy enabled and
2699 * returns %true if there are child csses according to the cgroup
2700 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2701 */
2702static inline bool memcg_has_children(struct mem_cgroup *memcg)
2703{
2704 bool ret;
2705
2706 /*
2707 * The lock does not prevent addition or deletion of children, but
2708 * it prevents a new child from being initialized based on this
2709 * parent in css_online(), so it's enough to decide whether
2710 * hierarchically inherited attributes can still be changed or not.
2711 */
2712 lockdep_assert_held(&memcg_create_mutex);
2713
2714 rcu_read_lock();
2715 ret = css_next_child(NULL, &memcg->css);
2716 rcu_read_unlock();
2717 return ret;
2718}
2719
2720/*
2721 * Reclaims as many pages from the given memcg as possible and moves
2722 * the rest to the parent.
2723 *
2724 * Caller is responsible for holding css reference for memcg.
2725 */
2726static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2727{
2728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2729
2730 /* we call try-to-free pages for make this cgroup empty */
2731 lru_add_drain_all();
2732 /* try to free all pages in this cgroup */
2733 while (nr_retries && page_counter_read(&memcg->memory)) {
2734 int progress;
2735
2736 if (signal_pending(current))
2737 return -EINTR;
2738
2739 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2740 GFP_KERNEL, true);
2741 if (!progress) {
2742 nr_retries--;
2743 /* maybe some writeback is necessary */
2744 congestion_wait(BLK_RW_ASYNC, HZ/10);
2745 }
2746
2747 }
2748
2749 return 0;
2750}
2751
2752static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2753 char *buf, size_t nbytes,
2754 loff_t off)
2755{
2756 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2757
2758 if (mem_cgroup_is_root(memcg))
2759 return -EINVAL;
2760 return mem_cgroup_force_empty(memcg) ?: nbytes;
2761}
2762
2763static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2764 struct cftype *cft)
2765{
2766 return mem_cgroup_from_css(css)->use_hierarchy;
2767}
2768
2769static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2770 struct cftype *cft, u64 val)
2771{
2772 int retval = 0;
2773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2774 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2775
2776 mutex_lock(&memcg_create_mutex);
2777
2778 if (memcg->use_hierarchy == val)
2779 goto out;
2780
2781 /*
2782 * If parent's use_hierarchy is set, we can't make any modifications
2783 * in the child subtrees. If it is unset, then the change can
2784 * occur, provided the current cgroup has no children.
2785 *
2786 * For the root cgroup, parent_mem is NULL, we allow value to be
2787 * set if there are no children.
2788 */
2789 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2790 (val == 1 || val == 0)) {
2791 if (!memcg_has_children(memcg))
2792 memcg->use_hierarchy = val;
2793 else
2794 retval = -EBUSY;
2795 } else
2796 retval = -EINVAL;
2797
2798out:
2799 mutex_unlock(&memcg_create_mutex);
2800
2801 return retval;
2802}
2803
2804static unsigned long tree_stat(struct mem_cgroup *memcg,
2805 enum mem_cgroup_stat_index idx)
2806{
2807 struct mem_cgroup *iter;
2808 unsigned long val = 0;
2809
2810 for_each_mem_cgroup_tree(iter, memcg)
2811 val += mem_cgroup_read_stat(iter, idx);
2812
2813 return val;
2814}
2815
2816static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2817{
2818 unsigned long val;
2819
2820 if (mem_cgroup_is_root(memcg)) {
2821 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2822 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2823 if (swap)
2824 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2825 } else {
2826 if (!swap)
2827 val = page_counter_read(&memcg->memory);
2828 else
2829 val = page_counter_read(&memcg->memsw);
2830 }
2831 return val;
2832}
2833
2834enum {
2835 RES_USAGE,
2836 RES_LIMIT,
2837 RES_MAX_USAGE,
2838 RES_FAILCNT,
2839 RES_SOFT_LIMIT,
2840};
2841
2842static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2843 struct cftype *cft)
2844{
2845 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2846 struct page_counter *counter;
2847
2848 switch (MEMFILE_TYPE(cft->private)) {
2849 case _MEM:
2850 counter = &memcg->memory;
2851 break;
2852 case _MEMSWAP:
2853 counter = &memcg->memsw;
2854 break;
2855 case _KMEM:
2856 counter = &memcg->kmem;
2857 break;
2858 default:
2859 BUG();
2860 }
2861
2862 switch (MEMFILE_ATTR(cft->private)) {
2863 case RES_USAGE:
2864 if (counter == &memcg->memory)
2865 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2866 if (counter == &memcg->memsw)
2867 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2868 return (u64)page_counter_read(counter) * PAGE_SIZE;
2869 case RES_LIMIT:
2870 return (u64)counter->limit * PAGE_SIZE;
2871 case RES_MAX_USAGE:
2872 return (u64)counter->watermark * PAGE_SIZE;
2873 case RES_FAILCNT:
2874 return counter->failcnt;
2875 case RES_SOFT_LIMIT:
2876 return (u64)memcg->soft_limit * PAGE_SIZE;
2877 default:
2878 BUG();
2879 }
2880}
2881
2882#ifdef CONFIG_MEMCG_KMEM
2883static int memcg_activate_kmem(struct mem_cgroup *memcg,
2884 unsigned long nr_pages)
2885{
2886 int err = 0;
2887 int memcg_id;
2888
2889 BUG_ON(memcg->kmemcg_id >= 0);
2890 BUG_ON(memcg->kmem_acct_activated);
2891 BUG_ON(memcg->kmem_acct_active);
2892
2893 /*
2894 * For simplicity, we won't allow this to be disabled. It also can't
2895 * be changed if the cgroup has children already, or if tasks had
2896 * already joined.
2897 *
2898 * If tasks join before we set the limit, a person looking at
2899 * kmem.usage_in_bytes will have no way to determine when it took
2900 * place, which makes the value quite meaningless.
2901 *
2902 * After it first became limited, changes in the value of the limit are
2903 * of course permitted.
2904 */
2905 mutex_lock(&memcg_create_mutex);
2906 if (cgroup_is_populated(memcg->css.cgroup) ||
2907 (memcg->use_hierarchy && memcg_has_children(memcg)))
2908 err = -EBUSY;
2909 mutex_unlock(&memcg_create_mutex);
2910 if (err)
2911 goto out;
2912
2913 memcg_id = memcg_alloc_cache_id();
2914 if (memcg_id < 0) {
2915 err = memcg_id;
2916 goto out;
2917 }
2918
2919 /*
2920 * We couldn't have accounted to this cgroup, because it hasn't got
2921 * activated yet, so this should succeed.
2922 */
2923 err = page_counter_limit(&memcg->kmem, nr_pages);
2924 VM_BUG_ON(err);
2925
2926 static_key_slow_inc(&memcg_kmem_enabled_key);
2927 /*
2928 * A memory cgroup is considered kmem-active as soon as it gets
2929 * kmemcg_id. Setting the id after enabling static branching will
2930 * guarantee no one starts accounting before all call sites are
2931 * patched.
2932 */
2933 memcg->kmemcg_id = memcg_id;
2934 memcg->kmem_acct_activated = true;
2935 memcg->kmem_acct_active = true;
2936out:
2937 return err;
2938}
2939
2940static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2941 unsigned long limit)
2942{
2943 int ret;
2944
2945 mutex_lock(&memcg_limit_mutex);
2946 if (!memcg_kmem_is_active(memcg))
2947 ret = memcg_activate_kmem(memcg, limit);
2948 else
2949 ret = page_counter_limit(&memcg->kmem, limit);
2950 mutex_unlock(&memcg_limit_mutex);
2951 return ret;
2952}
2953
2954static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2955{
2956 int ret = 0;
2957 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2958
2959 if (!parent)
2960 return 0;
2961
2962 mutex_lock(&memcg_limit_mutex);
2963 /*
2964 * If the parent cgroup is not kmem-active now, it cannot be activated
2965 * after this point, because it has at least one child already.
2966 */
2967 if (memcg_kmem_is_active(parent))
2968 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2969 mutex_unlock(&memcg_limit_mutex);
2970 return ret;
2971}
2972#else
2973static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2974 unsigned long limit)
2975{
2976 return -EINVAL;
2977}
2978#endif /* CONFIG_MEMCG_KMEM */
2979
2980/*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
2984static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
2986{
2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988 unsigned long nr_pages;
2989 int ret;
2990
2991 buf = strstrip(buf);
2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 if (ret)
2994 return ret;
2995
2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997 case RES_LIMIT:
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005 break;
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008 break;
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
3012 }
3013 break;
3014 case RES_SOFT_LIMIT:
3015 memcg->soft_limit = nr_pages;
3016 ret = 0;
3017 break;
3018 }
3019 return ret ?: nbytes;
3020}
3021
3022static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3023 size_t nbytes, loff_t off)
3024{
3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3026 struct page_counter *counter;
3027
3028 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3029 case _MEM:
3030 counter = &memcg->memory;
3031 break;
3032 case _MEMSWAP:
3033 counter = &memcg->memsw;
3034 break;
3035 case _KMEM:
3036 counter = &memcg->kmem;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043 case RES_MAX_USAGE:
3044 page_counter_reset_watermark(counter);
3045 break;
3046 case RES_FAILCNT:
3047 counter->failcnt = 0;
3048 break;
3049 default:
3050 BUG();
3051 }
3052
3053 return nbytes;
3054}
3055
3056static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3057 struct cftype *cft)
3058{
3059 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3060}
3061
3062#ifdef CONFIG_MMU
3063static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3064 struct cftype *cft, u64 val)
3065{
3066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3067
3068 if (val & ~MOVE_MASK)
3069 return -EINVAL;
3070
3071 /*
3072 * No kind of locking is needed in here, because ->can_attach() will
3073 * check this value once in the beginning of the process, and then carry
3074 * on with stale data. This means that changes to this value will only
3075 * affect task migrations starting after the change.
3076 */
3077 memcg->move_charge_at_immigrate = val;
3078 return 0;
3079}
3080#else
3081static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 struct cftype *cft, u64 val)
3083{
3084 return -ENOSYS;
3085}
3086#endif
3087
3088#ifdef CONFIG_NUMA
3089static int memcg_numa_stat_show(struct seq_file *m, void *v)
3090{
3091 struct numa_stat {
3092 const char *name;
3093 unsigned int lru_mask;
3094 };
3095
3096 static const struct numa_stat stats[] = {
3097 { "total", LRU_ALL },
3098 { "file", LRU_ALL_FILE },
3099 { "anon", LRU_ALL_ANON },
3100 { "unevictable", BIT(LRU_UNEVICTABLE) },
3101 };
3102 const struct numa_stat *stat;
3103 int nid;
3104 unsigned long nr;
3105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3109 seq_printf(m, "%s=%lu", stat->name, nr);
3110 for_each_node_state(nid, N_MEMORY) {
3111 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3112 stat->lru_mask);
3113 seq_printf(m, " N%d=%lu", nid, nr);
3114 }
3115 seq_putc(m, '\n');
3116 }
3117
3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119 struct mem_cgroup *iter;
3120
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3124 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3125 for_each_node_state(nid, N_MEMORY) {
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_node_nr_lru_pages(
3129 iter, nid, stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3131 }
3132 seq_putc(m, '\n');
3133 }
3134
3135 return 0;
3136}
3137#endif /* CONFIG_NUMA */
3138
3139static int memcg_stat_show(struct seq_file *m, void *v)
3140{
3141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3142 unsigned long memory, memsw;
3143 struct mem_cgroup *mi;
3144 unsigned int i;
3145
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3147 MEM_CGROUP_STAT_NSTATS);
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3149 MEM_CGROUP_EVENTS_NSTATS);
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3151
3152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3154 continue;
3155 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3156 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3157 }
3158
3159 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3160 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3161 mem_cgroup_read_events(memcg, i));
3162
3163 for (i = 0; i < NR_LRU_LISTS; i++)
3164 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3165 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3166
3167 /* Hierarchical information */
3168 memory = memsw = PAGE_COUNTER_MAX;
3169 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3170 memory = min(memory, mi->memory.limit);
3171 memsw = min(memsw, mi->memsw.limit);
3172 }
3173 seq_printf(m, "hierarchical_memory_limit %llu\n",
3174 (u64)memory * PAGE_SIZE);
3175 if (do_swap_account)
3176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3177 (u64)memsw * PAGE_SIZE);
3178
3179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3180 unsigned long long val = 0;
3181
3182 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3183 continue;
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3186 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3187 }
3188
3189 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_read_events(mi, i);
3194 seq_printf(m, "total_%s %llu\n",
3195 mem_cgroup_events_names[i], val);
3196 }
3197
3198 for (i = 0; i < NR_LRU_LISTS; i++) {
3199 unsigned long long val = 0;
3200
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3203 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3204 }
3205
3206#ifdef CONFIG_DEBUG_VM
3207 {
3208 int nid, zid;
3209 struct mem_cgroup_per_zone *mz;
3210 struct zone_reclaim_stat *rstat;
3211 unsigned long recent_rotated[2] = {0, 0};
3212 unsigned long recent_scanned[2] = {0, 0};
3213
3214 for_each_online_node(nid)
3215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3216 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3217 rstat = &mz->lruvec.reclaim_stat;
3218
3219 recent_rotated[0] += rstat->recent_rotated[0];
3220 recent_rotated[1] += rstat->recent_rotated[1];
3221 recent_scanned[0] += rstat->recent_scanned[0];
3222 recent_scanned[1] += rstat->recent_scanned[1];
3223 }
3224 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3225 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3226 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3227 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3228 }
3229#endif
3230
3231 return 0;
3232}
3233
3234static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3235 struct cftype *cft)
3236{
3237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238
3239 return mem_cgroup_swappiness(memcg);
3240}
3241
3242static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3243 struct cftype *cft, u64 val)
3244{
3245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246
3247 if (val > 100)
3248 return -EINVAL;
3249
3250 if (css->parent)
3251 memcg->swappiness = val;
3252 else
3253 vm_swappiness = val;
3254
3255 return 0;
3256}
3257
3258static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3259{
3260 struct mem_cgroup_threshold_ary *t;
3261 unsigned long usage;
3262 int i;
3263
3264 rcu_read_lock();
3265 if (!swap)
3266 t = rcu_dereference(memcg->thresholds.primary);
3267 else
3268 t = rcu_dereference(memcg->memsw_thresholds.primary);
3269
3270 if (!t)
3271 goto unlock;
3272
3273 usage = mem_cgroup_usage(memcg, swap);
3274
3275 /*
3276 * current_threshold points to threshold just below or equal to usage.
3277 * If it's not true, a threshold was crossed after last
3278 * call of __mem_cgroup_threshold().
3279 */
3280 i = t->current_threshold;
3281
3282 /*
3283 * Iterate backward over array of thresholds starting from
3284 * current_threshold and check if a threshold is crossed.
3285 * If none of thresholds below usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* i = current_threshold + 1 */
3292 i++;
3293
3294 /*
3295 * Iterate forward over array of thresholds starting from
3296 * current_threshold+1 and check if a threshold is crossed.
3297 * If none of thresholds above usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* Update current_threshold */
3304 t->current_threshold = i - 1;
3305unlock:
3306 rcu_read_unlock();
3307}
3308
3309static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3310{
3311 while (memcg) {
3312 __mem_cgroup_threshold(memcg, false);
3313 if (do_swap_account)
3314 __mem_cgroup_threshold(memcg, true);
3315
3316 memcg = parent_mem_cgroup(memcg);
3317 }
3318}
3319
3320static int compare_thresholds(const void *a, const void *b)
3321{
3322 const struct mem_cgroup_threshold *_a = a;
3323 const struct mem_cgroup_threshold *_b = b;
3324
3325 if (_a->threshold > _b->threshold)
3326 return 1;
3327
3328 if (_a->threshold < _b->threshold)
3329 return -1;
3330
3331 return 0;
3332}
3333
3334static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3335{
3336 struct mem_cgroup_eventfd_list *ev;
3337
3338 spin_lock(&memcg_oom_lock);
3339
3340 list_for_each_entry(ev, &memcg->oom_notify, list)
3341 eventfd_signal(ev->eventfd, 1);
3342
3343 spin_unlock(&memcg_oom_lock);
3344 return 0;
3345}
3346
3347static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3348{
3349 struct mem_cgroup *iter;
3350
3351 for_each_mem_cgroup_tree(iter, memcg)
3352 mem_cgroup_oom_notify_cb(iter);
3353}
3354
3355static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3356 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3357{
3358 struct mem_cgroup_thresholds *thresholds;
3359 struct mem_cgroup_threshold_ary *new;
3360 unsigned long threshold;
3361 unsigned long usage;
3362 int i, size, ret;
3363
3364 ret = page_counter_memparse(args, "-1", &threshold);
3365 if (ret)
3366 return ret;
3367
3368 mutex_lock(&memcg->thresholds_lock);
3369
3370 if (type == _MEM) {
3371 thresholds = &memcg->thresholds;
3372 usage = mem_cgroup_usage(memcg, false);
3373 } else if (type == _MEMSWAP) {
3374 thresholds = &memcg->memsw_thresholds;
3375 usage = mem_cgroup_usage(memcg, true);
3376 } else
3377 BUG();
3378
3379 /* Check if a threshold crossed before adding a new one */
3380 if (thresholds->primary)
3381 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3382
3383 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3384
3385 /* Allocate memory for new array of thresholds */
3386 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3387 GFP_KERNEL);
3388 if (!new) {
3389 ret = -ENOMEM;
3390 goto unlock;
3391 }
3392 new->size = size;
3393
3394 /* Copy thresholds (if any) to new array */
3395 if (thresholds->primary) {
3396 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3397 sizeof(struct mem_cgroup_threshold));
3398 }
3399
3400 /* Add new threshold */
3401 new->entries[size - 1].eventfd = eventfd;
3402 new->entries[size - 1].threshold = threshold;
3403
3404 /* Sort thresholds. Registering of new threshold isn't time-critical */
3405 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3406 compare_thresholds, NULL);
3407
3408 /* Find current threshold */
3409 new->current_threshold = -1;
3410 for (i = 0; i < size; i++) {
3411 if (new->entries[i].threshold <= usage) {
3412 /*
3413 * new->current_threshold will not be used until
3414 * rcu_assign_pointer(), so it's safe to increment
3415 * it here.
3416 */
3417 ++new->current_threshold;
3418 } else
3419 break;
3420 }
3421
3422 /* Free old spare buffer and save old primary buffer as spare */
3423 kfree(thresholds->spare);
3424 thresholds->spare = thresholds->primary;
3425
3426 rcu_assign_pointer(thresholds->primary, new);
3427
3428 /* To be sure that nobody uses thresholds */
3429 synchronize_rcu();
3430
3431unlock:
3432 mutex_unlock(&memcg->thresholds_lock);
3433
3434 return ret;
3435}
3436
3437static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3438 struct eventfd_ctx *eventfd, const char *args)
3439{
3440 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3441}
3442
3443static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3444 struct eventfd_ctx *eventfd, const char *args)
3445{
3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3447}
3448
3449static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3450 struct eventfd_ctx *eventfd, enum res_type type)
3451{
3452 struct mem_cgroup_thresholds *thresholds;
3453 struct mem_cgroup_threshold_ary *new;
3454 unsigned long usage;
3455 int i, j, size;
3456
3457 mutex_lock(&memcg->thresholds_lock);
3458
3459 if (type == _MEM) {
3460 thresholds = &memcg->thresholds;
3461 usage = mem_cgroup_usage(memcg, false);
3462 } else if (type == _MEMSWAP) {
3463 thresholds = &memcg->memsw_thresholds;
3464 usage = mem_cgroup_usage(memcg, true);
3465 } else
3466 BUG();
3467
3468 if (!thresholds->primary)
3469 goto unlock;
3470
3471 /* Check if a threshold crossed before removing */
3472 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3473
3474 /* Calculate new number of threshold */
3475 size = 0;
3476 for (i = 0; i < thresholds->primary->size; i++) {
3477 if (thresholds->primary->entries[i].eventfd != eventfd)
3478 size++;
3479 }
3480
3481 new = thresholds->spare;
3482
3483 /* Set thresholds array to NULL if we don't have thresholds */
3484 if (!size) {
3485 kfree(new);
3486 new = NULL;
3487 goto swap_buffers;
3488 }
3489
3490 new->size = size;
3491
3492 /* Copy thresholds and find current threshold */
3493 new->current_threshold = -1;
3494 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd == eventfd)
3496 continue;
3497
3498 new->entries[j] = thresholds->primary->entries[i];
3499 if (new->entries[j].threshold <= usage) {
3500 /*
3501 * new->current_threshold will not be used
3502 * until rcu_assign_pointer(), so it's safe to increment
3503 * it here.
3504 */
3505 ++new->current_threshold;
3506 }
3507 j++;
3508 }
3509
3510swap_buffers:
3511 /* Swap primary and spare array */
3512 thresholds->spare = thresholds->primary;
3513
3514 rcu_assign_pointer(thresholds->primary, new);
3515
3516 /* To be sure that nobody uses thresholds */
3517 synchronize_rcu();
3518
3519 /* If all events are unregistered, free the spare array */
3520 if (!new) {
3521 kfree(thresholds->spare);
3522 thresholds->spare = NULL;
3523 }
3524unlock:
3525 mutex_unlock(&memcg->thresholds_lock);
3526}
3527
3528static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3529 struct eventfd_ctx *eventfd)
3530{
3531 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3532}
3533
3534static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3535 struct eventfd_ctx *eventfd)
3536{
3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3538}
3539
3540static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3541 struct eventfd_ctx *eventfd, const char *args)
3542{
3543 struct mem_cgroup_eventfd_list *event;
3544
3545 event = kmalloc(sizeof(*event), GFP_KERNEL);
3546 if (!event)
3547 return -ENOMEM;
3548
3549 spin_lock(&memcg_oom_lock);
3550
3551 event->eventfd = eventfd;
3552 list_add(&event->list, &memcg->oom_notify);
3553
3554 /* already in OOM ? */
3555 if (memcg->under_oom)
3556 eventfd_signal(eventfd, 1);
3557 spin_unlock(&memcg_oom_lock);
3558
3559 return 0;
3560}
3561
3562static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3563 struct eventfd_ctx *eventfd)
3564{
3565 struct mem_cgroup_eventfd_list *ev, *tmp;
3566
3567 spin_lock(&memcg_oom_lock);
3568
3569 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3570 if (ev->eventfd == eventfd) {
3571 list_del(&ev->list);
3572 kfree(ev);
3573 }
3574 }
3575
3576 spin_unlock(&memcg_oom_lock);
3577}
3578
3579static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3580{
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3582
3583 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3584 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3585 return 0;
3586}
3587
3588static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3589 struct cftype *cft, u64 val)
3590{
3591 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3592
3593 /* cannot set to root cgroup and only 0 and 1 are allowed */
3594 if (!css->parent || !((val == 0) || (val == 1)))
3595 return -EINVAL;
3596
3597 memcg->oom_kill_disable = val;
3598 if (!val)
3599 memcg_oom_recover(memcg);
3600
3601 return 0;
3602}
3603
3604#ifdef CONFIG_MEMCG_KMEM
3605static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3606{
3607 int ret;
3608
3609 ret = memcg_propagate_kmem(memcg);
3610 if (ret)
3611 return ret;
3612
3613 return mem_cgroup_sockets_init(memcg, ss);
3614}
3615
3616static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3617{
3618 struct cgroup_subsys_state *css;
3619 struct mem_cgroup *parent, *child;
3620 int kmemcg_id;
3621
3622 if (!memcg->kmem_acct_active)
3623 return;
3624
3625 /*
3626 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3627 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3628 * guarantees no cache will be created for this cgroup after we are
3629 * done (see memcg_create_kmem_cache()).
3630 */
3631 memcg->kmem_acct_active = false;
3632
3633 memcg_deactivate_kmem_caches(memcg);
3634
3635 kmemcg_id = memcg->kmemcg_id;
3636 BUG_ON(kmemcg_id < 0);
3637
3638 parent = parent_mem_cgroup(memcg);
3639 if (!parent)
3640 parent = root_mem_cgroup;
3641
3642 /*
3643 * Change kmemcg_id of this cgroup and all its descendants to the
3644 * parent's id, and then move all entries from this cgroup's list_lrus
3645 * to ones of the parent. After we have finished, all list_lrus
3646 * corresponding to this cgroup are guaranteed to remain empty. The
3647 * ordering is imposed by list_lru_node->lock taken by
3648 * memcg_drain_all_list_lrus().
3649 */
3650 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3651 css_for_each_descendant_pre(css, &memcg->css) {
3652 child = mem_cgroup_from_css(css);
3653 BUG_ON(child->kmemcg_id != kmemcg_id);
3654 child->kmemcg_id = parent->kmemcg_id;
3655 if (!memcg->use_hierarchy)
3656 break;
3657 }
3658 rcu_read_unlock();
3659
3660 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3661
3662 memcg_free_cache_id(kmemcg_id);
3663}
3664
3665static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3666{
3667 if (memcg->kmem_acct_activated) {
3668 memcg_destroy_kmem_caches(memcg);
3669 static_key_slow_dec(&memcg_kmem_enabled_key);
3670 WARN_ON(page_counter_read(&memcg->kmem));
3671 }
3672 mem_cgroup_sockets_destroy(memcg);
3673}
3674#else
3675static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3676{
3677 return 0;
3678}
3679
3680static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3681{
3682}
3683
3684static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3685{
3686}
3687#endif
3688
3689#ifdef CONFIG_CGROUP_WRITEBACK
3690
3691struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3692{
3693 return &memcg->cgwb_list;
3694}
3695
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return wb_domain_init(&memcg->cgwb_domain, gfp);
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703 wb_domain_exit(&memcg->cgwb_domain);
3704}
3705
3706static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3707{
3708 wb_domain_size_changed(&memcg->cgwb_domain);
3709}
3710
3711struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3712{
3713 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3714
3715 if (!memcg->css.parent)
3716 return NULL;
3717
3718 return &memcg->cgwb_domain;
3719}
3720
3721/**
3722 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3723 * @wb: bdi_writeback in question
3724 * @pfilepages: out parameter for number of file pages
3725 * @pheadroom: out parameter for number of allocatable pages according to memcg
3726 * @pdirty: out parameter for number of dirty pages
3727 * @pwriteback: out parameter for number of pages under writeback
3728 *
3729 * Determine the numbers of file, headroom, dirty, and writeback pages in
3730 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3731 * is a bit more involved.
3732 *
3733 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3734 * headroom is calculated as the lowest headroom of itself and the
3735 * ancestors. Note that this doesn't consider the actual amount of
3736 * available memory in the system. The caller should further cap
3737 * *@pheadroom accordingly.
3738 */
3739void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3740 unsigned long *pheadroom, unsigned long *pdirty,
3741 unsigned long *pwriteback)
3742{
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3744 struct mem_cgroup *parent;
3745
3746 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3747
3748 /* this should eventually include NR_UNSTABLE_NFS */
3749 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3750 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3751 (1 << LRU_ACTIVE_FILE));
3752 *pheadroom = PAGE_COUNTER_MAX;
3753
3754 while ((parent = parent_mem_cgroup(memcg))) {
3755 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3756 unsigned long used = page_counter_read(&memcg->memory);
3757
3758 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3759 memcg = parent;
3760 }
3761}
3762
3763#else /* CONFIG_CGROUP_WRITEBACK */
3764
3765static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3766{
3767 return 0;
3768}
3769
3770static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3771{
3772}
3773
3774static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3775{
3776}
3777
3778#endif /* CONFIG_CGROUP_WRITEBACK */
3779
3780/*
3781 * DO NOT USE IN NEW FILES.
3782 *
3783 * "cgroup.event_control" implementation.
3784 *
3785 * This is way over-engineered. It tries to support fully configurable
3786 * events for each user. Such level of flexibility is completely
3787 * unnecessary especially in the light of the planned unified hierarchy.
3788 *
3789 * Please deprecate this and replace with something simpler if at all
3790 * possible.
3791 */
3792
3793/*
3794 * Unregister event and free resources.
3795 *
3796 * Gets called from workqueue.
3797 */
3798static void memcg_event_remove(struct work_struct *work)
3799{
3800 struct mem_cgroup_event *event =
3801 container_of(work, struct mem_cgroup_event, remove);
3802 struct mem_cgroup *memcg = event->memcg;
3803
3804 remove_wait_queue(event->wqh, &event->wait);
3805
3806 event->unregister_event(memcg, event->eventfd);
3807
3808 /* Notify userspace the event is going away. */
3809 eventfd_signal(event->eventfd, 1);
3810
3811 eventfd_ctx_put(event->eventfd);
3812 kfree(event);
3813 css_put(&memcg->css);
3814}
3815
3816/*
3817 * Gets called on POLLHUP on eventfd when user closes it.
3818 *
3819 * Called with wqh->lock held and interrupts disabled.
3820 */
3821static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3822 int sync, void *key)
3823{
3824 struct mem_cgroup_event *event =
3825 container_of(wait, struct mem_cgroup_event, wait);
3826 struct mem_cgroup *memcg = event->memcg;
3827 unsigned long flags = (unsigned long)key;
3828
3829 if (flags & POLLHUP) {
3830 /*
3831 * If the event has been detached at cgroup removal, we
3832 * can simply return knowing the other side will cleanup
3833 * for us.
3834 *
3835 * We can't race against event freeing since the other
3836 * side will require wqh->lock via remove_wait_queue(),
3837 * which we hold.
3838 */
3839 spin_lock(&memcg->event_list_lock);
3840 if (!list_empty(&event->list)) {
3841 list_del_init(&event->list);
3842 /*
3843 * We are in atomic context, but cgroup_event_remove()
3844 * may sleep, so we have to call it in workqueue.
3845 */
3846 schedule_work(&event->remove);
3847 }
3848 spin_unlock(&memcg->event_list_lock);
3849 }
3850
3851 return 0;
3852}
3853
3854static void memcg_event_ptable_queue_proc(struct file *file,
3855 wait_queue_head_t *wqh, poll_table *pt)
3856{
3857 struct mem_cgroup_event *event =
3858 container_of(pt, struct mem_cgroup_event, pt);
3859
3860 event->wqh = wqh;
3861 add_wait_queue(wqh, &event->wait);
3862}
3863
3864/*
3865 * DO NOT USE IN NEW FILES.
3866 *
3867 * Parse input and register new cgroup event handler.
3868 *
3869 * Input must be in format '<event_fd> <control_fd> <args>'.
3870 * Interpretation of args is defined by control file implementation.
3871 */
3872static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3873 char *buf, size_t nbytes, loff_t off)
3874{
3875 struct cgroup_subsys_state *css = of_css(of);
3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3877 struct mem_cgroup_event *event;
3878 struct cgroup_subsys_state *cfile_css;
3879 unsigned int efd, cfd;
3880 struct fd efile;
3881 struct fd cfile;
3882 const char *name;
3883 char *endp;
3884 int ret;
3885
3886 buf = strstrip(buf);
3887
3888 efd = simple_strtoul(buf, &endp, 10);
3889 if (*endp != ' ')
3890 return -EINVAL;
3891 buf = endp + 1;
3892
3893 cfd = simple_strtoul(buf, &endp, 10);
3894 if ((*endp != ' ') && (*endp != '\0'))
3895 return -EINVAL;
3896 buf = endp + 1;
3897
3898 event = kzalloc(sizeof(*event), GFP_KERNEL);
3899 if (!event)
3900 return -ENOMEM;
3901
3902 event->memcg = memcg;
3903 INIT_LIST_HEAD(&event->list);
3904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3905 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3906 INIT_WORK(&event->remove, memcg_event_remove);
3907
3908 efile = fdget(efd);
3909 if (!efile.file) {
3910 ret = -EBADF;
3911 goto out_kfree;
3912 }
3913
3914 event->eventfd = eventfd_ctx_fileget(efile.file);
3915 if (IS_ERR(event->eventfd)) {
3916 ret = PTR_ERR(event->eventfd);
3917 goto out_put_efile;
3918 }
3919
3920 cfile = fdget(cfd);
3921 if (!cfile.file) {
3922 ret = -EBADF;
3923 goto out_put_eventfd;
3924 }
3925
3926 /* the process need read permission on control file */
3927 /* AV: shouldn't we check that it's been opened for read instead? */
3928 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3929 if (ret < 0)
3930 goto out_put_cfile;
3931
3932 /*
3933 * Determine the event callbacks and set them in @event. This used
3934 * to be done via struct cftype but cgroup core no longer knows
3935 * about these events. The following is crude but the whole thing
3936 * is for compatibility anyway.
3937 *
3938 * DO NOT ADD NEW FILES.
3939 */
3940 name = cfile.file->f_path.dentry->d_name.name;
3941
3942 if (!strcmp(name, "memory.usage_in_bytes")) {
3943 event->register_event = mem_cgroup_usage_register_event;
3944 event->unregister_event = mem_cgroup_usage_unregister_event;
3945 } else if (!strcmp(name, "memory.oom_control")) {
3946 event->register_event = mem_cgroup_oom_register_event;
3947 event->unregister_event = mem_cgroup_oom_unregister_event;
3948 } else if (!strcmp(name, "memory.pressure_level")) {
3949 event->register_event = vmpressure_register_event;
3950 event->unregister_event = vmpressure_unregister_event;
3951 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3952 event->register_event = memsw_cgroup_usage_register_event;
3953 event->unregister_event = memsw_cgroup_usage_unregister_event;
3954 } else {
3955 ret = -EINVAL;
3956 goto out_put_cfile;
3957 }
3958
3959 /*
3960 * Verify @cfile should belong to @css. Also, remaining events are
3961 * automatically removed on cgroup destruction but the removal is
3962 * asynchronous, so take an extra ref on @css.
3963 */
3964 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3965 &memory_cgrp_subsys);
3966 ret = -EINVAL;
3967 if (IS_ERR(cfile_css))
3968 goto out_put_cfile;
3969 if (cfile_css != css) {
3970 css_put(cfile_css);
3971 goto out_put_cfile;
3972 }
3973
3974 ret = event->register_event(memcg, event->eventfd, buf);
3975 if (ret)
3976 goto out_put_css;
3977
3978 efile.file->f_op->poll(efile.file, &event->pt);
3979
3980 spin_lock(&memcg->event_list_lock);
3981 list_add(&event->list, &memcg->event_list);
3982 spin_unlock(&memcg->event_list_lock);
3983
3984 fdput(cfile);
3985 fdput(efile);
3986
3987 return nbytes;
3988
3989out_put_css:
3990 css_put(css);
3991out_put_cfile:
3992 fdput(cfile);
3993out_put_eventfd:
3994 eventfd_ctx_put(event->eventfd);
3995out_put_efile:
3996 fdput(efile);
3997out_kfree:
3998 kfree(event);
3999
4000 return ret;
4001}
4002
4003static struct cftype mem_cgroup_legacy_files[] = {
4004 {
4005 .name = "usage_in_bytes",
4006 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "max_usage_in_bytes",
4011 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4012 .write = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4018 .write = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "soft_limit_in_bytes",
4023 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4024 .write = mem_cgroup_write,
4025 .read_u64 = mem_cgroup_read_u64,
4026 },
4027 {
4028 .name = "failcnt",
4029 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4030 .write = mem_cgroup_reset,
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
4033 {
4034 .name = "stat",
4035 .seq_show = memcg_stat_show,
4036 },
4037 {
4038 .name = "force_empty",
4039 .write = mem_cgroup_force_empty_write,
4040 },
4041 {
4042 .name = "use_hierarchy",
4043 .write_u64 = mem_cgroup_hierarchy_write,
4044 .read_u64 = mem_cgroup_hierarchy_read,
4045 },
4046 {
4047 .name = "cgroup.event_control", /* XXX: for compat */
4048 .write = memcg_write_event_control,
4049 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4050 },
4051 {
4052 .name = "swappiness",
4053 .read_u64 = mem_cgroup_swappiness_read,
4054 .write_u64 = mem_cgroup_swappiness_write,
4055 },
4056 {
4057 .name = "move_charge_at_immigrate",
4058 .read_u64 = mem_cgroup_move_charge_read,
4059 .write_u64 = mem_cgroup_move_charge_write,
4060 },
4061 {
4062 .name = "oom_control",
4063 .seq_show = mem_cgroup_oom_control_read,
4064 .write_u64 = mem_cgroup_oom_control_write,
4065 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4066 },
4067 {
4068 .name = "pressure_level",
4069 },
4070#ifdef CONFIG_NUMA
4071 {
4072 .name = "numa_stat",
4073 .seq_show = memcg_numa_stat_show,
4074 },
4075#endif
4076#ifdef CONFIG_MEMCG_KMEM
4077 {
4078 .name = "kmem.limit_in_bytes",
4079 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4080 .write = mem_cgroup_write,
4081 .read_u64 = mem_cgroup_read_u64,
4082 },
4083 {
4084 .name = "kmem.usage_in_bytes",
4085 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4086 .read_u64 = mem_cgroup_read_u64,
4087 },
4088 {
4089 .name = "kmem.failcnt",
4090 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4091 .write = mem_cgroup_reset,
4092 .read_u64 = mem_cgroup_read_u64,
4093 },
4094 {
4095 .name = "kmem.max_usage_in_bytes",
4096 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4097 .write = mem_cgroup_reset,
4098 .read_u64 = mem_cgroup_read_u64,
4099 },
4100#ifdef CONFIG_SLABINFO
4101 {
4102 .name = "kmem.slabinfo",
4103 .seq_start = slab_start,
4104 .seq_next = slab_next,
4105 .seq_stop = slab_stop,
4106 .seq_show = memcg_slab_show,
4107 },
4108#endif
4109#endif
4110 { }, /* terminate */
4111};
4112
4113/*
4114 * Private memory cgroup IDR
4115 *
4116 * Swap-out records and page cache shadow entries need to store memcg
4117 * references in constrained space, so we maintain an ID space that is
4118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4119 * memory-controlled cgroups to 64k.
4120 *
4121 * However, there usually are many references to the oflline CSS after
4122 * the cgroup has been destroyed, such as page cache or reclaimable
4123 * slab objects, that don't need to hang on to the ID. We want to keep
4124 * those dead CSS from occupying IDs, or we might quickly exhaust the
4125 * relatively small ID space and prevent the creation of new cgroups
4126 * even when there are much fewer than 64k cgroups - possibly none.
4127 *
4128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4129 * be freed and recycled when it's no longer needed, which is usually
4130 * when the CSS is offlined.
4131 *
4132 * The only exception to that are records of swapped out tmpfs/shmem
4133 * pages that need to be attributed to live ancestors on swapin. But
4134 * those references are manageable from userspace.
4135 */
4136
4137static DEFINE_IDR(mem_cgroup_idr);
4138
4139static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4140{
4141 atomic_add(n, &memcg->id.ref);
4142}
4143
4144static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4145{
4146 while (!atomic_inc_not_zero(&memcg->id.ref)) {
4147 /*
4148 * The root cgroup cannot be destroyed, so it's refcount must
4149 * always be >= 1.
4150 */
4151 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
4152 VM_BUG_ON(1);
4153 break;
4154 }
4155 memcg = parent_mem_cgroup(memcg);
4156 if (!memcg)
4157 memcg = root_mem_cgroup;
4158 }
4159 return memcg;
4160}
4161
4162static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4163{
4164 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4165 idr_remove(&mem_cgroup_idr, memcg->id.id);
4166 memcg->id.id = 0;
4167
4168 /* Memcg ID pins CSS */
4169 css_put(&memcg->css);
4170 }
4171}
4172
4173static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4174{
4175 mem_cgroup_id_get_many(memcg, 1);
4176}
4177
4178static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4179{
4180 mem_cgroup_id_put_many(memcg, 1);
4181}
4182
4183/**
4184 * mem_cgroup_from_id - look up a memcg from a memcg id
4185 * @id: the memcg id to look up
4186 *
4187 * Caller must hold rcu_read_lock().
4188 */
4189struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4190{
4191 WARN_ON_ONCE(!rcu_read_lock_held());
4192 return idr_find(&mem_cgroup_idr, id);
4193}
4194
4195static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4196{
4197 struct mem_cgroup_per_node *pn;
4198 struct mem_cgroup_per_zone *mz;
4199 int zone, tmp = node;
4200 /*
4201 * This routine is called against possible nodes.
4202 * But it's BUG to call kmalloc() against offline node.
4203 *
4204 * TODO: this routine can waste much memory for nodes which will
4205 * never be onlined. It's better to use memory hotplug callback
4206 * function.
4207 */
4208 if (!node_state(node, N_NORMAL_MEMORY))
4209 tmp = -1;
4210 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4211 if (!pn)
4212 return 1;
4213
4214 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4215 mz = &pn->zoneinfo[zone];
4216 lruvec_init(&mz->lruvec);
4217 mz->usage_in_excess = 0;
4218 mz->on_tree = false;
4219 mz->memcg = memcg;
4220 }
4221 memcg->nodeinfo[node] = pn;
4222 return 0;
4223}
4224
4225static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4226{
4227 kfree(memcg->nodeinfo[node]);
4228}
4229
4230static struct mem_cgroup *mem_cgroup_alloc(void)
4231{
4232 struct mem_cgroup *memcg;
4233 size_t size;
4234
4235 size = sizeof(struct mem_cgroup);
4236 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4237
4238 memcg = kzalloc(size, GFP_KERNEL);
4239 if (!memcg)
4240 return NULL;
4241
4242 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4243 if (!memcg->stat)
4244 goto out_free;
4245
4246 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4247 goto out_free_stat;
4248
4249 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4250 1, MEM_CGROUP_ID_MAX,
4251 GFP_KERNEL);
4252 if (memcg->id.id < 0)
4253 goto out_free_stat;
4254
4255 return memcg;
4256
4257out_free_stat:
4258 free_percpu(memcg->stat);
4259out_free:
4260 kfree(memcg);
4261 return NULL;
4262}
4263
4264/*
4265 * At destroying mem_cgroup, references from swap_cgroup can remain.
4266 * (scanning all at force_empty is too costly...)
4267 *
4268 * Instead of clearing all references at force_empty, we remember
4269 * the number of reference from swap_cgroup and free mem_cgroup when
4270 * it goes down to 0.
4271 *
4272 * Removal of cgroup itself succeeds regardless of refs from swap.
4273 */
4274
4275static void __mem_cgroup_free(struct mem_cgroup *memcg)
4276{
4277 int node;
4278
4279 mem_cgroup_remove_from_trees(memcg);
4280
4281 for_each_node(node)
4282 free_mem_cgroup_per_zone_info(memcg, node);
4283
4284 free_percpu(memcg->stat);
4285 memcg_wb_domain_exit(memcg);
4286 kfree(memcg);
4287}
4288
4289/*
4290 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4291 */
4292struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4293{
4294 if (!memcg->memory.parent)
4295 return NULL;
4296 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4297}
4298EXPORT_SYMBOL(parent_mem_cgroup);
4299
4300static struct cgroup_subsys_state * __ref
4301mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4302{
4303 struct mem_cgroup *memcg;
4304 long error = -ENOMEM;
4305 int node;
4306
4307 memcg = mem_cgroup_alloc();
4308 if (!memcg)
4309 return ERR_PTR(error);
4310
4311 for_each_node(node)
4312 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4313 goto free_out;
4314
4315 /* root ? */
4316 if (parent_css == NULL) {
4317 root_mem_cgroup = memcg;
4318 mem_cgroup_root_css = &memcg->css;
4319 page_counter_init(&memcg->memory, NULL);
4320 memcg->high = PAGE_COUNTER_MAX;
4321 memcg->soft_limit = PAGE_COUNTER_MAX;
4322 page_counter_init(&memcg->memsw, NULL);
4323 page_counter_init(&memcg->kmem, NULL);
4324 }
4325
4326 memcg->last_scanned_node = MAX_NUMNODES;
4327 INIT_LIST_HEAD(&memcg->oom_notify);
4328 memcg->move_charge_at_immigrate = 0;
4329 mutex_init(&memcg->thresholds_lock);
4330 spin_lock_init(&memcg->move_lock);
4331 vmpressure_init(&memcg->vmpressure);
4332 INIT_LIST_HEAD(&memcg->event_list);
4333 spin_lock_init(&memcg->event_list_lock);
4334#ifdef CONFIG_MEMCG_KMEM
4335 memcg->kmemcg_id = -1;
4336#endif
4337#ifdef CONFIG_CGROUP_WRITEBACK
4338 INIT_LIST_HEAD(&memcg->cgwb_list);
4339#endif
4340 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4341 return &memcg->css;
4342
4343free_out:
4344 idr_remove(&mem_cgroup_idr, memcg->id.id);
4345 __mem_cgroup_free(memcg);
4346 return ERR_PTR(error);
4347}
4348
4349static int
4350mem_cgroup_css_online(struct cgroup_subsys_state *css)
4351{
4352 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4353 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4354 int ret;
4355
4356 /* Online state pins memcg ID, memcg ID pins CSS */
4357 mem_cgroup_id_get(mem_cgroup_from_css(css));
4358 css_get(css);
4359
4360 if (!parent)
4361 return 0;
4362
4363 mutex_lock(&memcg_create_mutex);
4364
4365 memcg->use_hierarchy = parent->use_hierarchy;
4366 memcg->oom_kill_disable = parent->oom_kill_disable;
4367 memcg->swappiness = mem_cgroup_swappiness(parent);
4368
4369 if (parent->use_hierarchy) {
4370 page_counter_init(&memcg->memory, &parent->memory);
4371 memcg->high = PAGE_COUNTER_MAX;
4372 memcg->soft_limit = PAGE_COUNTER_MAX;
4373 page_counter_init(&memcg->memsw, &parent->memsw);
4374 page_counter_init(&memcg->kmem, &parent->kmem);
4375
4376 /*
4377 * No need to take a reference to the parent because cgroup
4378 * core guarantees its existence.
4379 */
4380 } else {
4381 page_counter_init(&memcg->memory, NULL);
4382 memcg->high = PAGE_COUNTER_MAX;
4383 memcg->soft_limit = PAGE_COUNTER_MAX;
4384 page_counter_init(&memcg->memsw, NULL);
4385 page_counter_init(&memcg->kmem, NULL);
4386 /*
4387 * Deeper hierachy with use_hierarchy == false doesn't make
4388 * much sense so let cgroup subsystem know about this
4389 * unfortunate state in our controller.
4390 */
4391 if (parent != root_mem_cgroup)
4392 memory_cgrp_subsys.broken_hierarchy = true;
4393 }
4394 mutex_unlock(&memcg_create_mutex);
4395
4396 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4397 if (ret)
4398 return ret;
4399
4400 /*
4401 * Make sure the memcg is initialized: mem_cgroup_iter()
4402 * orders reading memcg->initialized against its callers
4403 * reading the memcg members.
4404 */
4405 smp_store_release(&memcg->initialized, 1);
4406
4407 return 0;
4408}
4409
4410static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4411{
4412 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4413 struct mem_cgroup_event *event, *tmp;
4414
4415 /*
4416 * Unregister events and notify userspace.
4417 * Notify userspace about cgroup removing only after rmdir of cgroup
4418 * directory to avoid race between userspace and kernelspace.
4419 */
4420 spin_lock(&memcg->event_list_lock);
4421 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4422 list_del_init(&event->list);
4423 schedule_work(&event->remove);
4424 }
4425 spin_unlock(&memcg->event_list_lock);
4426
4427 vmpressure_cleanup(&memcg->vmpressure);
4428
4429 memcg_deactivate_kmem(memcg);
4430
4431 wb_memcg_offline(memcg);
4432
4433 mem_cgroup_id_put(memcg);
4434}
4435
4436static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4437{
4438 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4439
4440 invalidate_reclaim_iterators(memcg);
4441}
4442
4443static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4444{
4445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4446
4447 memcg_destroy_kmem(memcg);
4448 __mem_cgroup_free(memcg);
4449}
4450
4451/**
4452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4453 * @css: the target css
4454 *
4455 * Reset the states of the mem_cgroup associated with @css. This is
4456 * invoked when the userland requests disabling on the default hierarchy
4457 * but the memcg is pinned through dependency. The memcg should stop
4458 * applying policies and should revert to the vanilla state as it may be
4459 * made visible again.
4460 *
4461 * The current implementation only resets the essential configurations.
4462 * This needs to be expanded to cover all the visible parts.
4463 */
4464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4465{
4466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4467
4468 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4469 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4470 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4471 memcg->low = 0;
4472 memcg->high = PAGE_COUNTER_MAX;
4473 memcg->soft_limit = PAGE_COUNTER_MAX;
4474 memcg_wb_domain_size_changed(memcg);
4475}
4476
4477#ifdef CONFIG_MMU
4478/* Handlers for move charge at task migration. */
4479static int mem_cgroup_do_precharge(unsigned long count)
4480{
4481 int ret;
4482
4483 /* Try a single bulk charge without reclaim first, kswapd may wake */
4484 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4485 if (!ret) {
4486 mc.precharge += count;
4487 return ret;
4488 }
4489
4490 /* Try charges one by one with reclaim */
4491 while (count--) {
4492 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4493 if (ret)
4494 return ret;
4495 mc.precharge++;
4496 cond_resched();
4497 }
4498 return 0;
4499}
4500
4501/**
4502 * get_mctgt_type - get target type of moving charge
4503 * @vma: the vma the pte to be checked belongs
4504 * @addr: the address corresponding to the pte to be checked
4505 * @ptent: the pte to be checked
4506 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4507 *
4508 * Returns
4509 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4510 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4511 * move charge. if @target is not NULL, the page is stored in target->page
4512 * with extra refcnt got(Callers should handle it).
4513 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4514 * target for charge migration. if @target is not NULL, the entry is stored
4515 * in target->ent.
4516 *
4517 * Called with pte lock held.
4518 */
4519union mc_target {
4520 struct page *page;
4521 swp_entry_t ent;
4522};
4523
4524enum mc_target_type {
4525 MC_TARGET_NONE = 0,
4526 MC_TARGET_PAGE,
4527 MC_TARGET_SWAP,
4528};
4529
4530static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4531 unsigned long addr, pte_t ptent)
4532{
4533 struct page *page = vm_normal_page(vma, addr, ptent);
4534
4535 if (!page || !page_mapped(page))
4536 return NULL;
4537 if (PageAnon(page)) {
4538 if (!(mc.flags & MOVE_ANON))
4539 return NULL;
4540 } else {
4541 if (!(mc.flags & MOVE_FILE))
4542 return NULL;
4543 }
4544 if (!get_page_unless_zero(page))
4545 return NULL;
4546
4547 return page;
4548}
4549
4550#ifdef CONFIG_SWAP
4551static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4552 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4553{
4554 struct page *page = NULL;
4555 swp_entry_t ent = pte_to_swp_entry(ptent);
4556
4557 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4558 return NULL;
4559 /*
4560 * Because lookup_swap_cache() updates some statistics counter,
4561 * we call find_get_page() with swapper_space directly.
4562 */
4563 page = find_get_page(swap_address_space(ent), ent.val);
4564 if (do_swap_account)
4565 entry->val = ent.val;
4566
4567 return page;
4568}
4569#else
4570static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4571 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4572{
4573 return NULL;
4574}
4575#endif
4576
4577static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4578 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4579{
4580 struct page *page = NULL;
4581 struct address_space *mapping;
4582 pgoff_t pgoff;
4583
4584 if (!vma->vm_file) /* anonymous vma */
4585 return NULL;
4586 if (!(mc.flags & MOVE_FILE))
4587 return NULL;
4588
4589 mapping = vma->vm_file->f_mapping;
4590 pgoff = linear_page_index(vma, addr);
4591
4592 /* page is moved even if it's not RSS of this task(page-faulted). */
4593#ifdef CONFIG_SWAP
4594 /* shmem/tmpfs may report page out on swap: account for that too. */
4595 if (shmem_mapping(mapping)) {
4596 page = find_get_entry(mapping, pgoff);
4597 if (radix_tree_exceptional_entry(page)) {
4598 swp_entry_t swp = radix_to_swp_entry(page);
4599 if (do_swap_account)
4600 *entry = swp;
4601 page = find_get_page(swap_address_space(swp), swp.val);
4602 }
4603 } else
4604 page = find_get_page(mapping, pgoff);
4605#else
4606 page = find_get_page(mapping, pgoff);
4607#endif
4608 return page;
4609}
4610
4611/**
4612 * mem_cgroup_move_account - move account of the page
4613 * @page: the page
4614 * @nr_pages: number of regular pages (>1 for huge pages)
4615 * @from: mem_cgroup which the page is moved from.
4616 * @to: mem_cgroup which the page is moved to. @from != @to.
4617 *
4618 * The caller must confirm following.
4619 * - page is not on LRU (isolate_page() is useful.)
4620 * - compound_lock is held when nr_pages > 1
4621 *
4622 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4623 * from old cgroup.
4624 */
4625static int mem_cgroup_move_account(struct page *page,
4626 unsigned int nr_pages,
4627 struct mem_cgroup *from,
4628 struct mem_cgroup *to)
4629{
4630 unsigned long flags;
4631 int ret;
4632 bool anon;
4633
4634 VM_BUG_ON(from == to);
4635 VM_BUG_ON_PAGE(PageLRU(page), page);
4636 /*
4637 * The page is isolated from LRU. So, collapse function
4638 * will not handle this page. But page splitting can happen.
4639 * Do this check under compound_page_lock(). The caller should
4640 * hold it.
4641 */
4642 ret = -EBUSY;
4643 if (nr_pages > 1 && !PageTransHuge(page))
4644 goto out;
4645
4646 /*
4647 * Prevent mem_cgroup_replace_page() from looking at
4648 * page->mem_cgroup of its source page while we change it.
4649 */
4650 if (!trylock_page(page))
4651 goto out;
4652
4653 ret = -EINVAL;
4654 if (page->mem_cgroup != from)
4655 goto out_unlock;
4656
4657 anon = PageAnon(page);
4658
4659 spin_lock_irqsave(&from->move_lock, flags);
4660
4661 if (!anon && page_mapped(page)) {
4662 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4663 nr_pages);
4664 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4665 nr_pages);
4666 }
4667
4668 /*
4669 * move_lock grabbed above and caller set from->moving_account, so
4670 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4671 * So mapping should be stable for dirty pages.
4672 */
4673 if (!anon && PageDirty(page)) {
4674 struct address_space *mapping = page_mapping(page);
4675
4676 if (mapping_cap_account_dirty(mapping)) {
4677 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4678 nr_pages);
4679 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4680 nr_pages);
4681 }
4682 }
4683
4684 if (PageWriteback(page)) {
4685 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4686 nr_pages);
4687 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4688 nr_pages);
4689 }
4690
4691 /*
4692 * It is safe to change page->mem_cgroup here because the page
4693 * is referenced, charged, and isolated - we can't race with
4694 * uncharging, charging, migration, or LRU putback.
4695 */
4696
4697 /* caller should have done css_get */
4698 page->mem_cgroup = to;
4699 spin_unlock_irqrestore(&from->move_lock, flags);
4700
4701 ret = 0;
4702
4703 local_irq_disable();
4704 mem_cgroup_charge_statistics(to, page, nr_pages);
4705 memcg_check_events(to, page);
4706 mem_cgroup_charge_statistics(from, page, -nr_pages);
4707 memcg_check_events(from, page);
4708 local_irq_enable();
4709out_unlock:
4710 unlock_page(page);
4711out:
4712 return ret;
4713}
4714
4715static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4716 unsigned long addr, pte_t ptent, union mc_target *target)
4717{
4718 struct page *page = NULL;
4719 enum mc_target_type ret = MC_TARGET_NONE;
4720 swp_entry_t ent = { .val = 0 };
4721
4722 if (pte_present(ptent))
4723 page = mc_handle_present_pte(vma, addr, ptent);
4724 else if (is_swap_pte(ptent))
4725 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4726 else if (pte_none(ptent))
4727 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4728
4729 if (!page && !ent.val)
4730 return ret;
4731 if (page) {
4732 /*
4733 * Do only loose check w/o serialization.
4734 * mem_cgroup_move_account() checks the page is valid or
4735 * not under LRU exclusion.
4736 */
4737 if (page->mem_cgroup == mc.from) {
4738 ret = MC_TARGET_PAGE;
4739 if (target)
4740 target->page = page;
4741 }
4742 if (!ret || !target)
4743 put_page(page);
4744 }
4745 /* There is a swap entry and a page doesn't exist or isn't charged */
4746 if (ent.val && !ret &&
4747 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4748 ret = MC_TARGET_SWAP;
4749 if (target)
4750 target->ent = ent;
4751 }
4752 return ret;
4753}
4754
4755#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4756/*
4757 * We don't consider swapping or file mapped pages because THP does not
4758 * support them for now.
4759 * Caller should make sure that pmd_trans_huge(pmd) is true.
4760 */
4761static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4762 unsigned long addr, pmd_t pmd, union mc_target *target)
4763{
4764 struct page *page = NULL;
4765 enum mc_target_type ret = MC_TARGET_NONE;
4766
4767 page = pmd_page(pmd);
4768 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4769 if (!(mc.flags & MOVE_ANON))
4770 return ret;
4771 if (page->mem_cgroup == mc.from) {
4772 ret = MC_TARGET_PAGE;
4773 if (target) {
4774 get_page(page);
4775 target->page = page;
4776 }
4777 }
4778 return ret;
4779}
4780#else
4781static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4782 unsigned long addr, pmd_t pmd, union mc_target *target)
4783{
4784 return MC_TARGET_NONE;
4785}
4786#endif
4787
4788static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4789 unsigned long addr, unsigned long end,
4790 struct mm_walk *walk)
4791{
4792 struct vm_area_struct *vma = walk->vma;
4793 pte_t *pte;
4794 spinlock_t *ptl;
4795
4796 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4797 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4798 mc.precharge += HPAGE_PMD_NR;
4799 spin_unlock(ptl);
4800 return 0;
4801 }
4802
4803 if (pmd_trans_unstable(pmd))
4804 return 0;
4805 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4806 for (; addr != end; pte++, addr += PAGE_SIZE)
4807 if (get_mctgt_type(vma, addr, *pte, NULL))
4808 mc.precharge++; /* increment precharge temporarily */
4809 pte_unmap_unlock(pte - 1, ptl);
4810 cond_resched();
4811
4812 return 0;
4813}
4814
4815static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4816{
4817 unsigned long precharge;
4818
4819 struct mm_walk mem_cgroup_count_precharge_walk = {
4820 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4821 .mm = mm,
4822 };
4823 down_read(&mm->mmap_sem);
4824 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4825 up_read(&mm->mmap_sem);
4826
4827 precharge = mc.precharge;
4828 mc.precharge = 0;
4829
4830 return precharge;
4831}
4832
4833static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4834{
4835 unsigned long precharge = mem_cgroup_count_precharge(mm);
4836
4837 VM_BUG_ON(mc.moving_task);
4838 mc.moving_task = current;
4839 return mem_cgroup_do_precharge(precharge);
4840}
4841
4842/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4843static void __mem_cgroup_clear_mc(void)
4844{
4845 struct mem_cgroup *from = mc.from;
4846 struct mem_cgroup *to = mc.to;
4847
4848 /* we must uncharge all the leftover precharges from mc.to */
4849 if (mc.precharge) {
4850 cancel_charge(mc.to, mc.precharge);
4851 mc.precharge = 0;
4852 }
4853 /*
4854 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4855 * we must uncharge here.
4856 */
4857 if (mc.moved_charge) {
4858 cancel_charge(mc.from, mc.moved_charge);
4859 mc.moved_charge = 0;
4860 }
4861 /* we must fixup refcnts and charges */
4862 if (mc.moved_swap) {
4863 /* uncharge swap account from the old cgroup */
4864 if (!mem_cgroup_is_root(mc.from))
4865 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4866
4867 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4868
4869 /*
4870 * we charged both to->memory and to->memsw, so we
4871 * should uncharge to->memory.
4872 */
4873 if (!mem_cgroup_is_root(mc.to))
4874 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4875
4876 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4877 css_put_many(&mc.to->css, mc.moved_swap);
4878
4879 mc.moved_swap = 0;
4880 }
4881 memcg_oom_recover(from);
4882 memcg_oom_recover(to);
4883 wake_up_all(&mc.waitq);
4884}
4885
4886static void mem_cgroup_clear_mc(void)
4887{
4888 struct mm_struct *mm = mc.mm;
4889
4890 /*
4891 * we must clear moving_task before waking up waiters at the end of
4892 * task migration.
4893 */
4894 mc.moving_task = NULL;
4895 __mem_cgroup_clear_mc();
4896 spin_lock(&mc.lock);
4897 mc.from = NULL;
4898 mc.to = NULL;
4899 mc.mm = NULL;
4900 spin_unlock(&mc.lock);
4901
4902 mmput(mm);
4903}
4904
4905static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4906{
4907 struct cgroup_subsys_state *css;
4908 struct mem_cgroup *memcg;
4909 struct mem_cgroup *from;
4910 struct task_struct *leader, *p;
4911 struct mm_struct *mm;
4912 unsigned long move_flags;
4913 int ret = 0;
4914
4915 /* charge immigration isn't supported on the default hierarchy */
4916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4917 return 0;
4918
4919 /*
4920 * Multi-process migrations only happen on the default hierarchy
4921 * where charge immigration is not used. Perform charge
4922 * immigration if @tset contains a leader and whine if there are
4923 * multiple.
4924 */
4925 p = NULL;
4926 cgroup_taskset_for_each_leader(leader, css, tset) {
4927 WARN_ON_ONCE(p);
4928 p = leader;
4929 memcg = mem_cgroup_from_css(css);
4930 }
4931 if (!p)
4932 return 0;
4933
4934 /*
4935 * We are now commited to this value whatever it is. Changes in this
4936 * tunable will only affect upcoming migrations, not the current one.
4937 * So we need to save it, and keep it going.
4938 */
4939 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4940 if (!move_flags)
4941 return 0;
4942
4943 from = mem_cgroup_from_task(p);
4944
4945 VM_BUG_ON(from == memcg);
4946
4947 mm = get_task_mm(p);
4948 if (!mm)
4949 return 0;
4950 /* We move charges only when we move a owner of the mm */
4951 if (mm->owner == p) {
4952 VM_BUG_ON(mc.from);
4953 VM_BUG_ON(mc.to);
4954 VM_BUG_ON(mc.precharge);
4955 VM_BUG_ON(mc.moved_charge);
4956 VM_BUG_ON(mc.moved_swap);
4957
4958 spin_lock(&mc.lock);
4959 mc.mm = mm;
4960 mc.from = from;
4961 mc.to = memcg;
4962 mc.flags = move_flags;
4963 spin_unlock(&mc.lock);
4964 /* We set mc.moving_task later */
4965
4966 ret = mem_cgroup_precharge_mc(mm);
4967 if (ret)
4968 mem_cgroup_clear_mc();
4969 } else {
4970 mmput(mm);
4971 }
4972 return ret;
4973}
4974
4975static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4976{
4977 if (mc.to)
4978 mem_cgroup_clear_mc();
4979}
4980
4981static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4982 unsigned long addr, unsigned long end,
4983 struct mm_walk *walk)
4984{
4985 int ret = 0;
4986 struct vm_area_struct *vma = walk->vma;
4987 pte_t *pte;
4988 spinlock_t *ptl;
4989 enum mc_target_type target_type;
4990 union mc_target target;
4991 struct page *page;
4992
4993 /*
4994 * We don't take compound_lock() here but no race with splitting thp
4995 * happens because:
4996 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4997 * under splitting, which means there's no concurrent thp split,
4998 * - if another thread runs into split_huge_page() just after we
4999 * entered this if-block, the thread must wait for page table lock
5000 * to be unlocked in __split_huge_page_splitting(), where the main
5001 * part of thp split is not executed yet.
5002 */
5003 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5004 if (mc.precharge < HPAGE_PMD_NR) {
5005 spin_unlock(ptl);
5006 return 0;
5007 }
5008 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5009 if (target_type == MC_TARGET_PAGE) {
5010 page = target.page;
5011 if (!isolate_lru_page(page)) {
5012 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5013 mc.from, mc.to)) {
5014 mc.precharge -= HPAGE_PMD_NR;
5015 mc.moved_charge += HPAGE_PMD_NR;
5016 }
5017 putback_lru_page(page);
5018 }
5019 put_page(page);
5020 }
5021 spin_unlock(ptl);
5022 return 0;
5023 }
5024
5025 if (pmd_trans_unstable(pmd))
5026 return 0;
5027retry:
5028 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5029 for (; addr != end; addr += PAGE_SIZE) {
5030 pte_t ptent = *(pte++);
5031 swp_entry_t ent;
5032
5033 if (!mc.precharge)
5034 break;
5035
5036 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5037 case MC_TARGET_PAGE:
5038 page = target.page;
5039 if (isolate_lru_page(page))
5040 goto put;
5041 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5042 mc.precharge--;
5043 /* we uncharge from mc.from later. */
5044 mc.moved_charge++;
5045 }
5046 putback_lru_page(page);
5047put: /* get_mctgt_type() gets the page */
5048 put_page(page);
5049 break;
5050 case MC_TARGET_SWAP:
5051 ent = target.ent;
5052 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5053 mc.precharge--;
5054 /* we fixup refcnts and charges later. */
5055 mc.moved_swap++;
5056 }
5057 break;
5058 default:
5059 break;
5060 }
5061 }
5062 pte_unmap_unlock(pte - 1, ptl);
5063 cond_resched();
5064
5065 if (addr != end) {
5066 /*
5067 * We have consumed all precharges we got in can_attach().
5068 * We try charge one by one, but don't do any additional
5069 * charges to mc.to if we have failed in charge once in attach()
5070 * phase.
5071 */
5072 ret = mem_cgroup_do_precharge(1);
5073 if (!ret)
5074 goto retry;
5075 }
5076
5077 return ret;
5078}
5079
5080static void mem_cgroup_move_charge(void)
5081{
5082 struct mm_walk mem_cgroup_move_charge_walk = {
5083 .pmd_entry = mem_cgroup_move_charge_pte_range,
5084 .mm = mc.mm,
5085 };
5086
5087 lru_add_drain_all();
5088 /*
5089 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5090 * move_lock while we're moving its pages to another memcg.
5091 * Then wait for already started RCU-only updates to finish.
5092 */
5093 atomic_inc(&mc.from->moving_account);
5094 synchronize_rcu();
5095retry:
5096 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5097 /*
5098 * Someone who are holding the mmap_sem might be waiting in
5099 * waitq. So we cancel all extra charges, wake up all waiters,
5100 * and retry. Because we cancel precharges, we might not be able
5101 * to move enough charges, but moving charge is a best-effort
5102 * feature anyway, so it wouldn't be a big problem.
5103 */
5104 __mem_cgroup_clear_mc();
5105 cond_resched();
5106 goto retry;
5107 }
5108 /*
5109 * When we have consumed all precharges and failed in doing
5110 * additional charge, the page walk just aborts.
5111 */
5112 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5113 up_read(&mc.mm->mmap_sem);
5114 atomic_dec(&mc.from->moving_account);
5115}
5116
5117static void mem_cgroup_move_task(void)
5118{
5119 if (mc.to) {
5120 mem_cgroup_move_charge();
5121 mem_cgroup_clear_mc();
5122 }
5123}
5124#else /* !CONFIG_MMU */
5125static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5126{
5127 return 0;
5128}
5129static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5130{
5131}
5132static void mem_cgroup_move_task(void)
5133{
5134}
5135#endif
5136
5137/*
5138 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5139 * to verify whether we're attached to the default hierarchy on each mount
5140 * attempt.
5141 */
5142static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5143{
5144 /*
5145 * use_hierarchy is forced on the default hierarchy. cgroup core
5146 * guarantees that @root doesn't have any children, so turning it
5147 * on for the root memcg is enough.
5148 */
5149 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5150 root_mem_cgroup->use_hierarchy = true;
5151 else
5152 root_mem_cgroup->use_hierarchy = false;
5153}
5154
5155static u64 memory_current_read(struct cgroup_subsys_state *css,
5156 struct cftype *cft)
5157{
5158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5159
5160 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5161}
5162
5163static int memory_low_show(struct seq_file *m, void *v)
5164{
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5166 unsigned long low = READ_ONCE(memcg->low);
5167
5168 if (low == PAGE_COUNTER_MAX)
5169 seq_puts(m, "max\n");
5170 else
5171 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5172
5173 return 0;
5174}
5175
5176static ssize_t memory_low_write(struct kernfs_open_file *of,
5177 char *buf, size_t nbytes, loff_t off)
5178{
5179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5180 unsigned long low;
5181 int err;
5182
5183 buf = strstrip(buf);
5184 err = page_counter_memparse(buf, "max", &low);
5185 if (err)
5186 return err;
5187
5188 memcg->low = low;
5189
5190 return nbytes;
5191}
5192
5193static int memory_high_show(struct seq_file *m, void *v)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196 unsigned long high = READ_ONCE(memcg->high);
5197
5198 if (high == PAGE_COUNTER_MAX)
5199 seq_puts(m, "max\n");
5200 else
5201 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5202
5203 return 0;
5204}
5205
5206static ssize_t memory_high_write(struct kernfs_open_file *of,
5207 char *buf, size_t nbytes, loff_t off)
5208{
5209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5210 unsigned long nr_pages;
5211 unsigned long high;
5212 int err;
5213
5214 buf = strstrip(buf);
5215 err = page_counter_memparse(buf, "max", &high);
5216 if (err)
5217 return err;
5218
5219 memcg->high = high;
5220
5221 nr_pages = page_counter_read(&memcg->memory);
5222 if (nr_pages > high)
5223 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5224 GFP_KERNEL, true);
5225
5226 memcg_wb_domain_size_changed(memcg);
5227 return nbytes;
5228}
5229
5230static int memory_max_show(struct seq_file *m, void *v)
5231{
5232 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5233 unsigned long max = READ_ONCE(memcg->memory.limit);
5234
5235 if (max == PAGE_COUNTER_MAX)
5236 seq_puts(m, "max\n");
5237 else
5238 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5239
5240 return 0;
5241}
5242
5243static ssize_t memory_max_write(struct kernfs_open_file *of,
5244 char *buf, size_t nbytes, loff_t off)
5245{
5246 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5247 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5248 bool drained = false;
5249 unsigned long max;
5250 int err;
5251
5252 buf = strstrip(buf);
5253 err = page_counter_memparse(buf, "max", &max);
5254 if (err)
5255 return err;
5256
5257 xchg(&memcg->memory.limit, max);
5258
5259 for (;;) {
5260 unsigned long nr_pages = page_counter_read(&memcg->memory);
5261
5262 if (nr_pages <= max)
5263 break;
5264
5265 if (signal_pending(current)) {
5266 err = -EINTR;
5267 break;
5268 }
5269
5270 if (!drained) {
5271 drain_all_stock(memcg);
5272 drained = true;
5273 continue;
5274 }
5275
5276 if (nr_reclaims) {
5277 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5278 GFP_KERNEL, true))
5279 nr_reclaims--;
5280 continue;
5281 }
5282
5283 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5284 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5285 break;
5286 }
5287
5288 memcg_wb_domain_size_changed(memcg);
5289 return nbytes;
5290}
5291
5292static int memory_events_show(struct seq_file *m, void *v)
5293{
5294 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5295
5296 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5297 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5298 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5299 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5300
5301 return 0;
5302}
5303
5304static struct cftype memory_files[] = {
5305 {
5306 .name = "current",
5307 .flags = CFTYPE_NOT_ON_ROOT,
5308 .read_u64 = memory_current_read,
5309 },
5310 {
5311 .name = "low",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .seq_show = memory_low_show,
5314 .write = memory_low_write,
5315 },
5316 {
5317 .name = "high",
5318 .flags = CFTYPE_NOT_ON_ROOT,
5319 .seq_show = memory_high_show,
5320 .write = memory_high_write,
5321 },
5322 {
5323 .name = "max",
5324 .flags = CFTYPE_NOT_ON_ROOT,
5325 .seq_show = memory_max_show,
5326 .write = memory_max_write,
5327 },
5328 {
5329 .name = "events",
5330 .flags = CFTYPE_NOT_ON_ROOT,
5331 .file_offset = offsetof(struct mem_cgroup, events_file),
5332 .seq_show = memory_events_show,
5333 },
5334 { } /* terminate */
5335};
5336
5337struct cgroup_subsys memory_cgrp_subsys = {
5338 .css_alloc = mem_cgroup_css_alloc,
5339 .css_online = mem_cgroup_css_online,
5340 .css_offline = mem_cgroup_css_offline,
5341 .css_released = mem_cgroup_css_released,
5342 .css_free = mem_cgroup_css_free,
5343 .css_reset = mem_cgroup_css_reset,
5344 .can_attach = mem_cgroup_can_attach,
5345 .cancel_attach = mem_cgroup_cancel_attach,
5346 .post_attach = mem_cgroup_move_task,
5347 .bind = mem_cgroup_bind,
5348 .dfl_cftypes = memory_files,
5349 .legacy_cftypes = mem_cgroup_legacy_files,
5350 .early_init = 0,
5351};
5352
5353/**
5354 * mem_cgroup_low - check if memory consumption is below the normal range
5355 * @root: the highest ancestor to consider
5356 * @memcg: the memory cgroup to check
5357 *
5358 * Returns %true if memory consumption of @memcg, and that of all
5359 * configurable ancestors up to @root, is below the normal range.
5360 */
5361bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5362{
5363 if (mem_cgroup_disabled())
5364 return false;
5365
5366 /*
5367 * The toplevel group doesn't have a configurable range, so
5368 * it's never low when looked at directly, and it is not
5369 * considered an ancestor when assessing the hierarchy.
5370 */
5371
5372 if (memcg == root_mem_cgroup)
5373 return false;
5374
5375 if (page_counter_read(&memcg->memory) >= memcg->low)
5376 return false;
5377
5378 while (memcg != root) {
5379 memcg = parent_mem_cgroup(memcg);
5380
5381 if (memcg == root_mem_cgroup)
5382 break;
5383
5384 if (page_counter_read(&memcg->memory) >= memcg->low)
5385 return false;
5386 }
5387 return true;
5388}
5389
5390/**
5391 * mem_cgroup_try_charge - try charging a page
5392 * @page: page to charge
5393 * @mm: mm context of the victim
5394 * @gfp_mask: reclaim mode
5395 * @memcgp: charged memcg return
5396 *
5397 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5398 * pages according to @gfp_mask if necessary.
5399 *
5400 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5401 * Otherwise, an error code is returned.
5402 *
5403 * After page->mapping has been set up, the caller must finalize the
5404 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5405 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5406 */
5407int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5408 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5409{
5410 struct mem_cgroup *memcg = NULL;
5411 unsigned int nr_pages = 1;
5412 int ret = 0;
5413
5414 if (mem_cgroup_disabled())
5415 goto out;
5416
5417 if (PageSwapCache(page)) {
5418 /*
5419 * Every swap fault against a single page tries to charge the
5420 * page, bail as early as possible. shmem_unuse() encounters
5421 * already charged pages, too. The USED bit is protected by
5422 * the page lock, which serializes swap cache removal, which
5423 * in turn serializes uncharging.
5424 */
5425 VM_BUG_ON_PAGE(!PageLocked(page), page);
5426 if (page->mem_cgroup)
5427 goto out;
5428
5429 if (do_swap_account) {
5430 swp_entry_t ent = { .val = page_private(page), };
5431 unsigned short id = lookup_swap_cgroup_id(ent);
5432
5433 rcu_read_lock();
5434 memcg = mem_cgroup_from_id(id);
5435 if (memcg && !css_tryget_online(&memcg->css))
5436 memcg = NULL;
5437 rcu_read_unlock();
5438 }
5439 }
5440
5441 if (PageTransHuge(page)) {
5442 nr_pages <<= compound_order(page);
5443 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5444 }
5445
5446 if (!memcg)
5447 memcg = get_mem_cgroup_from_mm(mm);
5448
5449 ret = try_charge(memcg, gfp_mask, nr_pages);
5450
5451 css_put(&memcg->css);
5452out:
5453 *memcgp = memcg;
5454 return ret;
5455}
5456
5457/**
5458 * mem_cgroup_commit_charge - commit a page charge
5459 * @page: page to charge
5460 * @memcg: memcg to charge the page to
5461 * @lrucare: page might be on LRU already
5462 *
5463 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5464 * after page->mapping has been set up. This must happen atomically
5465 * as part of the page instantiation, i.e. under the page table lock
5466 * for anonymous pages, under the page lock for page and swap cache.
5467 *
5468 * In addition, the page must not be on the LRU during the commit, to
5469 * prevent racing with task migration. If it might be, use @lrucare.
5470 *
5471 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5472 */
5473void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5474 bool lrucare)
5475{
5476 unsigned int nr_pages = 1;
5477
5478 VM_BUG_ON_PAGE(!page->mapping, page);
5479 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5480
5481 if (mem_cgroup_disabled())
5482 return;
5483 /*
5484 * Swap faults will attempt to charge the same page multiple
5485 * times. But reuse_swap_page() might have removed the page
5486 * from swapcache already, so we can't check PageSwapCache().
5487 */
5488 if (!memcg)
5489 return;
5490
5491 commit_charge(page, memcg, lrucare);
5492
5493 if (PageTransHuge(page)) {
5494 nr_pages <<= compound_order(page);
5495 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5496 }
5497
5498 local_irq_disable();
5499 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5500 memcg_check_events(memcg, page);
5501 local_irq_enable();
5502
5503 if (do_swap_account && PageSwapCache(page)) {
5504 swp_entry_t entry = { .val = page_private(page) };
5505 /*
5506 * The swap entry might not get freed for a long time,
5507 * let's not wait for it. The page already received a
5508 * memory+swap charge, drop the swap entry duplicate.
5509 */
5510 mem_cgroup_uncharge_swap(entry);
5511 }
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 *
5519 * Cancel a charge transaction started by mem_cgroup_try_charge().
5520 */
5521void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5522{
5523 unsigned int nr_pages = 1;
5524
5525 if (mem_cgroup_disabled())
5526 return;
5527 /*
5528 * Swap faults will attempt to charge the same page multiple
5529 * times. But reuse_swap_page() might have removed the page
5530 * from swapcache already, so we can't check PageSwapCache().
5531 */
5532 if (!memcg)
5533 return;
5534
5535 if (PageTransHuge(page)) {
5536 nr_pages <<= compound_order(page);
5537 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5538 }
5539
5540 cancel_charge(memcg, nr_pages);
5541}
5542
5543static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5544 unsigned long nr_anon, unsigned long nr_file,
5545 unsigned long nr_huge, struct page *dummy_page)
5546{
5547 unsigned long nr_pages = nr_anon + nr_file;
5548 unsigned long flags;
5549
5550 if (!mem_cgroup_is_root(memcg)) {
5551 page_counter_uncharge(&memcg->memory, nr_pages);
5552 if (do_swap_account)
5553 page_counter_uncharge(&memcg->memsw, nr_pages);
5554 memcg_oom_recover(memcg);
5555 }
5556
5557 local_irq_save(flags);
5558 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5559 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5560 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5561 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5562 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5563 memcg_check_events(memcg, dummy_page);
5564 local_irq_restore(flags);
5565
5566 if (!mem_cgroup_is_root(memcg))
5567 css_put_many(&memcg->css, nr_pages);
5568}
5569
5570static void uncharge_list(struct list_head *page_list)
5571{
5572 struct mem_cgroup *memcg = NULL;
5573 unsigned long nr_anon = 0;
5574 unsigned long nr_file = 0;
5575 unsigned long nr_huge = 0;
5576 unsigned long pgpgout = 0;
5577 struct list_head *next;
5578 struct page *page;
5579
5580 next = page_list->next;
5581 do {
5582 unsigned int nr_pages = 1;
5583
5584 page = list_entry(next, struct page, lru);
5585 next = page->lru.next;
5586
5587 VM_BUG_ON_PAGE(PageLRU(page), page);
5588 VM_BUG_ON_PAGE(page_count(page), page);
5589
5590 if (!page->mem_cgroup)
5591 continue;
5592
5593 /*
5594 * Nobody should be changing or seriously looking at
5595 * page->mem_cgroup at this point, we have fully
5596 * exclusive access to the page.
5597 */
5598
5599 if (memcg != page->mem_cgroup) {
5600 if (memcg) {
5601 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5602 nr_huge, page);
5603 pgpgout = nr_anon = nr_file = nr_huge = 0;
5604 }
5605 memcg = page->mem_cgroup;
5606 }
5607
5608 if (PageTransHuge(page)) {
5609 nr_pages <<= compound_order(page);
5610 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5611 nr_huge += nr_pages;
5612 }
5613
5614 if (PageAnon(page))
5615 nr_anon += nr_pages;
5616 else
5617 nr_file += nr_pages;
5618
5619 page->mem_cgroup = NULL;
5620
5621 pgpgout++;
5622 } while (next != page_list);
5623
5624 if (memcg)
5625 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5626 nr_huge, page);
5627}
5628
5629/**
5630 * mem_cgroup_uncharge - uncharge a page
5631 * @page: page to uncharge
5632 *
5633 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5634 * mem_cgroup_commit_charge().
5635 */
5636void mem_cgroup_uncharge(struct page *page)
5637{
5638 if (mem_cgroup_disabled())
5639 return;
5640
5641 /* Don't touch page->lru of any random page, pre-check: */
5642 if (!page->mem_cgroup)
5643 return;
5644
5645 INIT_LIST_HEAD(&page->lru);
5646 uncharge_list(&page->lru);
5647}
5648
5649/**
5650 * mem_cgroup_uncharge_list - uncharge a list of page
5651 * @page_list: list of pages to uncharge
5652 *
5653 * Uncharge a list of pages previously charged with
5654 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5655 */
5656void mem_cgroup_uncharge_list(struct list_head *page_list)
5657{
5658 if (mem_cgroup_disabled())
5659 return;
5660
5661 if (!list_empty(page_list))
5662 uncharge_list(page_list);
5663}
5664
5665/**
5666 * mem_cgroup_replace_page - migrate a charge to another page
5667 * @oldpage: currently charged page
5668 * @newpage: page to transfer the charge to
5669 *
5670 * Migrate the charge from @oldpage to @newpage.
5671 *
5672 * Both pages must be locked, @newpage->mapping must be set up.
5673 * Either or both pages might be on the LRU already.
5674 */
5675void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5676{
5677 struct mem_cgroup *memcg;
5678 int isolated;
5679
5680 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5681 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5682 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5683 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5684 newpage);
5685
5686 if (mem_cgroup_disabled())
5687 return;
5688
5689 /* Page cache replacement: new page already charged? */
5690 if (newpage->mem_cgroup)
5691 return;
5692
5693 /* Swapcache readahead pages can get replaced before being charged */
5694 memcg = oldpage->mem_cgroup;
5695 if (!memcg)
5696 return;
5697
5698 lock_page_lru(oldpage, &isolated);
5699 oldpage->mem_cgroup = NULL;
5700 unlock_page_lru(oldpage, isolated);
5701
5702 commit_charge(newpage, memcg, true);
5703}
5704
5705/*
5706 * subsys_initcall() for memory controller.
5707 *
5708 * Some parts like hotcpu_notifier() have to be initialized from this context
5709 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5710 * everything that doesn't depend on a specific mem_cgroup structure should
5711 * be initialized from here.
5712 */
5713static int __init mem_cgroup_init(void)
5714{
5715 int cpu, node;
5716
5717 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5718
5719 for_each_possible_cpu(cpu)
5720 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5721 drain_local_stock);
5722
5723 for_each_node(node) {
5724 struct mem_cgroup_tree_per_node *rtpn;
5725 int zone;
5726
5727 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5728 node_online(node) ? node : NUMA_NO_NODE);
5729
5730 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5731 struct mem_cgroup_tree_per_zone *rtpz;
5732
5733 rtpz = &rtpn->rb_tree_per_zone[zone];
5734 rtpz->rb_root = RB_ROOT;
5735 spin_lock_init(&rtpz->lock);
5736 }
5737 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5738 }
5739
5740 return 0;
5741}
5742subsys_initcall(mem_cgroup_init);
5743
5744#ifdef CONFIG_MEMCG_SWAP
5745/**
5746 * mem_cgroup_swapout - transfer a memsw charge to swap
5747 * @page: page whose memsw charge to transfer
5748 * @entry: swap entry to move the charge to
5749 *
5750 * Transfer the memsw charge of @page to @entry.
5751 */
5752void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5753{
5754 struct mem_cgroup *memcg, *swap_memcg;
5755 unsigned short oldid;
5756
5757 VM_BUG_ON_PAGE(PageLRU(page), page);
5758 VM_BUG_ON_PAGE(page_count(page), page);
5759
5760 if (!do_swap_account)
5761 return;
5762
5763 memcg = page->mem_cgroup;
5764
5765 /* Readahead page, never charged */
5766 if (!memcg)
5767 return;
5768
5769 /*
5770 * In case the memcg owning these pages has been offlined and doesn't
5771 * have an ID allocated to it anymore, charge the closest online
5772 * ancestor for the swap instead and transfer the memory+swap charge.
5773 */
5774 swap_memcg = mem_cgroup_id_get_online(memcg);
5775 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5776 VM_BUG_ON_PAGE(oldid, page);
5777 mem_cgroup_swap_statistics(swap_memcg, true);
5778
5779 page->mem_cgroup = NULL;
5780
5781 if (!mem_cgroup_is_root(memcg))
5782 page_counter_uncharge(&memcg->memory, 1);
5783
5784 if (memcg != swap_memcg) {
5785 if (!mem_cgroup_is_root(swap_memcg))
5786 page_counter_charge(&swap_memcg->memsw, 1);
5787 page_counter_uncharge(&memcg->memsw, 1);
5788 }
5789
5790 /*
5791 * Interrupts should be disabled here because the caller holds the
5792 * mapping->tree_lock lock which is taken with interrupts-off. It is
5793 * important here to have the interrupts disabled because it is the
5794 * only synchronisation we have for udpating the per-CPU variables.
5795 */
5796 VM_BUG_ON(!irqs_disabled());
5797 mem_cgroup_charge_statistics(memcg, page, -1);
5798 memcg_check_events(memcg, page);
5799
5800 if (!mem_cgroup_is_root(memcg))
5801 css_put(&memcg->css);
5802}
5803
5804/**
5805 * mem_cgroup_uncharge_swap - uncharge a swap entry
5806 * @entry: swap entry to uncharge
5807 *
5808 * Drop the memsw charge associated with @entry.
5809 */
5810void mem_cgroup_uncharge_swap(swp_entry_t entry)
5811{
5812 struct mem_cgroup *memcg;
5813 unsigned short id;
5814
5815 if (!do_swap_account)
5816 return;
5817
5818 id = swap_cgroup_record(entry, 0);
5819 rcu_read_lock();
5820 memcg = mem_cgroup_from_id(id);
5821 if (memcg) {
5822 if (!mem_cgroup_is_root(memcg))
5823 page_counter_uncharge(&memcg->memsw, 1);
5824 mem_cgroup_swap_statistics(memcg, false);
5825 mem_cgroup_id_put(memcg);
5826 }
5827 rcu_read_unlock();
5828}
5829
5830/* for remember boot option*/
5831#ifdef CONFIG_MEMCG_SWAP_ENABLED
5832static int really_do_swap_account __initdata = 1;
5833#else
5834static int really_do_swap_account __initdata;
5835#endif
5836
5837static int __init enable_swap_account(char *s)
5838{
5839 if (!strcmp(s, "1"))
5840 really_do_swap_account = 1;
5841 else if (!strcmp(s, "0"))
5842 really_do_swap_account = 0;
5843 return 1;
5844}
5845__setup("swapaccount=", enable_swap_account);
5846
5847static struct cftype memsw_cgroup_files[] = {
5848 {
5849 .name = "memsw.usage_in_bytes",
5850 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5851 .read_u64 = mem_cgroup_read_u64,
5852 },
5853 {
5854 .name = "memsw.max_usage_in_bytes",
5855 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5856 .write = mem_cgroup_reset,
5857 .read_u64 = mem_cgroup_read_u64,
5858 },
5859 {
5860 .name = "memsw.limit_in_bytes",
5861 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5862 .write = mem_cgroup_write,
5863 .read_u64 = mem_cgroup_read_u64,
5864 },
5865 {
5866 .name = "memsw.failcnt",
5867 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5868 .write = mem_cgroup_reset,
5869 .read_u64 = mem_cgroup_read_u64,
5870 },
5871 { }, /* terminate */
5872};
5873
5874static int __init mem_cgroup_swap_init(void)
5875{
5876 if (!mem_cgroup_disabled() && really_do_swap_account) {
5877 do_swap_account = 1;
5878 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5879 memsw_cgroup_files));
5880 }
5881 return 0;
5882}
5883subsys_initcall(mem_cgroup_swap_init);
5884
5885#endif /* CONFIG_MEMCG_SWAP */