usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / kmemleak.c
... / ...
CommitLineData
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched.h>
77#include <linux/jiffies.h>
78#include <linux/delay.h>
79#include <linux/export.h>
80#include <linux/kthread.h>
81#include <linux/rbtree.h>
82#include <linux/fs.h>
83#include <linux/debugfs.h>
84#include <linux/seq_file.h>
85#include <linux/cpumask.h>
86#include <linux/spinlock.h>
87#include <linux/mutex.h>
88#include <linux/rcupdate.h>
89#include <linux/stacktrace.h>
90#include <linux/cache.h>
91#include <linux/percpu.h>
92#include <linux/hardirq.h>
93#include <linux/mmzone.h>
94#include <linux/slab.h>
95#include <linux/thread_info.h>
96#include <linux/err.h>
97#include <linux/uaccess.h>
98#include <linux/string.h>
99#include <linux/nodemask.h>
100#include <linux/mm.h>
101#include <linux/workqueue.h>
102#include <linux/crc32.h>
103
104#include <asm/sections.h>
105#include <asm/processor.h>
106#include <linux/atomic.h>
107
108#include <linux/kasan.h>
109#include <linux/kmemcheck.h>
110#include <linux/kmemleak.h>
111#include <linux/memory_hotplug.h>
112
113/*
114 * Kmemleak configuration and common defines.
115 */
116#define MAX_TRACE 16 /* stack trace length */
117#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
118#define SECS_FIRST_SCAN 60 /* delay before the first scan */
119#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
120#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
121
122#define BYTES_PER_POINTER sizeof(void *)
123
124/* GFP bitmask for kmemleak internal allocations */
125#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
126 __GFP_NOACCOUNT)) | \
127 __GFP_NORETRY | __GFP_NOMEMALLOC | \
128 __GFP_NOWARN)
129
130/* scanning area inside a memory block */
131struct kmemleak_scan_area {
132 struct hlist_node node;
133 unsigned long start;
134 size_t size;
135};
136
137#define KMEMLEAK_GREY 0
138#define KMEMLEAK_BLACK -1
139
140/*
141 * Structure holding the metadata for each allocated memory block.
142 * Modifications to such objects should be made while holding the
143 * object->lock. Insertions or deletions from object_list, gray_list or
144 * rb_node are already protected by the corresponding locks or mutex (see
145 * the notes on locking above). These objects are reference-counted
146 * (use_count) and freed using the RCU mechanism.
147 */
148struct kmemleak_object {
149 spinlock_t lock;
150 unsigned long flags; /* object status flags */
151 struct list_head object_list;
152 struct list_head gray_list;
153 struct rb_node rb_node;
154 struct rcu_head rcu; /* object_list lockless traversal */
155 /* object usage count; object freed when use_count == 0 */
156 atomic_t use_count;
157 unsigned long pointer;
158 size_t size;
159 /* minimum number of a pointers found before it is considered leak */
160 int min_count;
161 /* the total number of pointers found pointing to this object */
162 int count;
163 /* checksum for detecting modified objects */
164 u32 checksum;
165 /* memory ranges to be scanned inside an object (empty for all) */
166 struct hlist_head area_list;
167 unsigned long trace[MAX_TRACE];
168 unsigned int trace_len;
169 unsigned long jiffies; /* creation timestamp */
170 pid_t pid; /* pid of the current task */
171 char comm[TASK_COMM_LEN]; /* executable name */
172};
173
174/* flag representing the memory block allocation status */
175#define OBJECT_ALLOCATED (1 << 0)
176/* flag set after the first reporting of an unreference object */
177#define OBJECT_REPORTED (1 << 1)
178/* flag set to not scan the object */
179#define OBJECT_NO_SCAN (1 << 2)
180
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
194/* search tree for object boundaries */
195static struct rb_root object_tree_root = RB_ROOT;
196/* rw_lock protecting the access to object_list and object_tree_root */
197static DEFINE_RWLOCK(kmemleak_lock);
198
199/* allocation caches for kmemleak internal data */
200static struct kmem_cache *object_cache;
201static struct kmem_cache *scan_area_cache;
202
203/* set if tracing memory operations is enabled */
204static int kmemleak_enabled;
205/* same as above but only for the kmemleak_free() callback */
206static int kmemleak_free_enabled;
207/* set in the late_initcall if there were no errors */
208static int kmemleak_initialized;
209/* enables or disables early logging of the memory operations */
210static int kmemleak_early_log = 1;
211/* set if a kmemleak warning was issued */
212static int kmemleak_warning;
213/* set if a fatal kmemleak error has occurred */
214static int kmemleak_error;
215
216/* minimum and maximum address that may be valid pointers */
217static unsigned long min_addr = ULONG_MAX;
218static unsigned long max_addr;
219
220static struct task_struct *scan_thread;
221/* used to avoid reporting of recently allocated objects */
222static unsigned long jiffies_min_age;
223static unsigned long jiffies_last_scan;
224/* delay between automatic memory scannings */
225static signed long jiffies_scan_wait;
226/* enables or disables the task stacks scanning */
227static int kmemleak_stack_scan = 1;
228/* protects the memory scanning, parameters and debug/kmemleak file access */
229static DEFINE_MUTEX(scan_mutex);
230/* setting kmemleak=on, will set this var, skipping the disable */
231static int kmemleak_skip_disable;
232/* If there are leaks that can be reported */
233static bool kmemleak_found_leaks;
234
235/*
236 * Early object allocation/freeing logging. Kmemleak is initialized after the
237 * kernel allocator. However, both the kernel allocator and kmemleak may
238 * allocate memory blocks which need to be tracked. Kmemleak defines an
239 * arbitrary buffer to hold the allocation/freeing information before it is
240 * fully initialized.
241 */
242
243/* kmemleak operation type for early logging */
244enum {
245 KMEMLEAK_ALLOC,
246 KMEMLEAK_ALLOC_PERCPU,
247 KMEMLEAK_FREE,
248 KMEMLEAK_FREE_PART,
249 KMEMLEAK_FREE_PERCPU,
250 KMEMLEAK_NOT_LEAK,
251 KMEMLEAK_IGNORE,
252 KMEMLEAK_SCAN_AREA,
253 KMEMLEAK_NO_SCAN
254};
255
256/*
257 * Structure holding the information passed to kmemleak callbacks during the
258 * early logging.
259 */
260struct early_log {
261 int op_type; /* kmemleak operation type */
262 const void *ptr; /* allocated/freed memory block */
263 size_t size; /* memory block size */
264 int min_count; /* minimum reference count */
265 unsigned long trace[MAX_TRACE]; /* stack trace */
266 unsigned int trace_len; /* stack trace length */
267};
268
269/* early logging buffer and current position */
270static struct early_log
271 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
272static int crt_early_log __initdata;
273
274static void kmemleak_disable(void);
275
276/*
277 * Print a warning and dump the stack trace.
278 */
279#define kmemleak_warn(x...) do { \
280 pr_warning(x); \
281 dump_stack(); \
282 kmemleak_warning = 1; \
283} while (0)
284
285/*
286 * Macro invoked when a serious kmemleak condition occurred and cannot be
287 * recovered from. Kmemleak will be disabled and further allocation/freeing
288 * tracing no longer available.
289 */
290#define kmemleak_stop(x...) do { \
291 kmemleak_warn(x); \
292 kmemleak_disable(); \
293} while (0)
294
295/*
296 * Printing of the objects hex dump to the seq file. The number of lines to be
297 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
298 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
299 * with the object->lock held.
300 */
301static void hex_dump_object(struct seq_file *seq,
302 struct kmemleak_object *object)
303{
304 const u8 *ptr = (const u8 *)object->pointer;
305 size_t len;
306
307 /* limit the number of lines to HEX_MAX_LINES */
308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309
310 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
311 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
313}
314
315/*
316 * Object colors, encoded with count and min_count:
317 * - white - orphan object, not enough references to it (count < min_count)
318 * - gray - not orphan, not marked as false positive (min_count == 0) or
319 * sufficient references to it (count >= min_count)
320 * - black - ignore, it doesn't contain references (e.g. text section)
321 * (min_count == -1). No function defined for this color.
322 * Newly created objects don't have any color assigned (object->count == -1)
323 * before the next memory scan when they become white.
324 */
325static bool color_white(const struct kmemleak_object *object)
326{
327 return object->count != KMEMLEAK_BLACK &&
328 object->count < object->min_count;
329}
330
331static bool color_gray(const struct kmemleak_object *object)
332{
333 return object->min_count != KMEMLEAK_BLACK &&
334 object->count >= object->min_count;
335}
336
337/*
338 * Objects are considered unreferenced only if their color is white, they have
339 * not be deleted and have a minimum age to avoid false positives caused by
340 * pointers temporarily stored in CPU registers.
341 */
342static bool unreferenced_object(struct kmemleak_object *object)
343{
344 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
345 time_before_eq(object->jiffies + jiffies_min_age,
346 jiffies_last_scan);
347}
348
349/*
350 * Printing of the unreferenced objects information to the seq file. The
351 * print_unreferenced function must be called with the object->lock held.
352 */
353static void print_unreferenced(struct seq_file *seq,
354 struct kmemleak_object *object)
355{
356 int i;
357 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
358
359 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360 object->pointer, object->size);
361 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 object->comm, object->pid, object->jiffies,
363 msecs_age / 1000, msecs_age % 1000);
364 hex_dump_object(seq, object);
365 seq_printf(seq, " backtrace:\n");
366
367 for (i = 0; i < object->trace_len; i++) {
368 void *ptr = (void *)object->trace[i];
369 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
370 }
371}
372
373/*
374 * Print the kmemleak_object information. This function is used mainly for
375 * debugging special cases when kmemleak operations. It must be called with
376 * the object->lock held.
377 */
378static void dump_object_info(struct kmemleak_object *object)
379{
380 struct stack_trace trace;
381
382 trace.nr_entries = object->trace_len;
383 trace.entries = object->trace;
384
385 pr_notice("Object 0x%08lx (size %zu):\n",
386 object->pointer, object->size);
387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
388 object->comm, object->pid, object->jiffies);
389 pr_notice(" min_count = %d\n", object->min_count);
390 pr_notice(" count = %d\n", object->count);
391 pr_notice(" flags = 0x%lx\n", object->flags);
392 pr_notice(" checksum = %u\n", object->checksum);
393 pr_notice(" backtrace:\n");
394 print_stack_trace(&trace, 4);
395}
396
397/*
398 * Look-up a memory block metadata (kmemleak_object) in the object search
399 * tree based on a pointer value. If alias is 0, only values pointing to the
400 * beginning of the memory block are allowed. The kmemleak_lock must be held
401 * when calling this function.
402 */
403static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404{
405 struct rb_node *rb = object_tree_root.rb_node;
406
407 while (rb) {
408 struct kmemleak_object *object =
409 rb_entry(rb, struct kmemleak_object, rb_node);
410 if (ptr < object->pointer)
411 rb = object->rb_node.rb_left;
412 else if (object->pointer + object->size <= ptr)
413 rb = object->rb_node.rb_right;
414 else if (object->pointer == ptr || alias)
415 return object;
416 else {
417 kmemleak_warn("Found object by alias at 0x%08lx\n",
418 ptr);
419 dump_object_info(object);
420 break;
421 }
422 }
423 return NULL;
424}
425
426/*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432static int get_object(struct kmemleak_object *object)
433{
434 return atomic_inc_not_zero(&object->use_count);
435}
436
437/*
438 * RCU callback to free a kmemleak_object.
439 */
440static void free_object_rcu(struct rcu_head *rcu)
441{
442 struct hlist_node *tmp;
443 struct kmemleak_scan_area *area;
444 struct kmemleak_object *object =
445 container_of(rcu, struct kmemleak_object, rcu);
446
447 /*
448 * Once use_count is 0 (guaranteed by put_object), there is no other
449 * code accessing this object, hence no need for locking.
450 */
451 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452 hlist_del(&area->node);
453 kmem_cache_free(scan_area_cache, area);
454 }
455 kmem_cache_free(object_cache, object);
456}
457
458/*
459 * Decrement the object use_count. Once the count is 0, free the object using
460 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461 * delete_object() path, the delayed RCU freeing ensures that there is no
462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463 * is also possible.
464 */
465static void put_object(struct kmemleak_object *object)
466{
467 if (!atomic_dec_and_test(&object->use_count))
468 return;
469
470 /* should only get here after delete_object was called */
471 WARN_ON(object->flags & OBJECT_ALLOCATED);
472
473 call_rcu(&object->rcu, free_object_rcu);
474}
475
476/*
477 * Look up an object in the object search tree and increase its use_count.
478 */
479static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480{
481 unsigned long flags;
482 struct kmemleak_object *object;
483
484 rcu_read_lock();
485 read_lock_irqsave(&kmemleak_lock, flags);
486 object = lookup_object(ptr, alias);
487 read_unlock_irqrestore(&kmemleak_lock, flags);
488
489 /* check whether the object is still available */
490 if (object && !get_object(object))
491 object = NULL;
492 rcu_read_unlock();
493
494 return object;
495}
496
497/*
498 * Look up an object in the object search tree and remove it from both
499 * object_tree_root and object_list. The returned object's use_count should be
500 * at least 1, as initially set by create_object().
501 */
502static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
503{
504 unsigned long flags;
505 struct kmemleak_object *object;
506
507 write_lock_irqsave(&kmemleak_lock, flags);
508 object = lookup_object(ptr, alias);
509 if (object) {
510 rb_erase(&object->rb_node, &object_tree_root);
511 list_del_rcu(&object->object_list);
512 }
513 write_unlock_irqrestore(&kmemleak_lock, flags);
514
515 return object;
516}
517
518/*
519 * Save stack trace to the given array of MAX_TRACE size.
520 */
521static int __save_stack_trace(unsigned long *trace)
522{
523 struct stack_trace stack_trace;
524
525 stack_trace.max_entries = MAX_TRACE;
526 stack_trace.nr_entries = 0;
527 stack_trace.entries = trace;
528 stack_trace.skip = 2;
529 save_stack_trace(&stack_trace);
530
531 return stack_trace.nr_entries;
532}
533
534/*
535 * Create the metadata (struct kmemleak_object) corresponding to an allocated
536 * memory block and add it to the object_list and object_tree_root.
537 */
538static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
539 int min_count, gfp_t gfp)
540{
541 unsigned long flags;
542 struct kmemleak_object *object, *parent;
543 struct rb_node **link, *rb_parent;
544
545 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
546 if (!object) {
547 pr_warning("Cannot allocate a kmemleak_object structure\n");
548 kmemleak_disable();
549 return NULL;
550 }
551
552 INIT_LIST_HEAD(&object->object_list);
553 INIT_LIST_HEAD(&object->gray_list);
554 INIT_HLIST_HEAD(&object->area_list);
555 spin_lock_init(&object->lock);
556 atomic_set(&object->use_count, 1);
557 object->flags = OBJECT_ALLOCATED;
558 object->pointer = ptr;
559 object->size = size;
560 object->min_count = min_count;
561 object->count = 0; /* white color initially */
562 object->jiffies = jiffies;
563 object->checksum = 0;
564
565 /* task information */
566 if (in_irq()) {
567 object->pid = 0;
568 strncpy(object->comm, "hardirq", sizeof(object->comm));
569 } else if (in_softirq()) {
570 object->pid = 0;
571 strncpy(object->comm, "softirq", sizeof(object->comm));
572 } else {
573 object->pid = current->pid;
574 /*
575 * There is a small chance of a race with set_task_comm(),
576 * however using get_task_comm() here may cause locking
577 * dependency issues with current->alloc_lock. In the worst
578 * case, the command line is not correct.
579 */
580 strncpy(object->comm, current->comm, sizeof(object->comm));
581 }
582
583 /* kernel backtrace */
584 object->trace_len = __save_stack_trace(object->trace);
585
586 write_lock_irqsave(&kmemleak_lock, flags);
587
588 min_addr = min(min_addr, ptr);
589 max_addr = max(max_addr, ptr + size);
590 link = &object_tree_root.rb_node;
591 rb_parent = NULL;
592 while (*link) {
593 rb_parent = *link;
594 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
595 if (ptr + size <= parent->pointer)
596 link = &parent->rb_node.rb_left;
597 else if (parent->pointer + parent->size <= ptr)
598 link = &parent->rb_node.rb_right;
599 else {
600 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
601 ptr);
602 /*
603 * No need for parent->lock here since "parent" cannot
604 * be freed while the kmemleak_lock is held.
605 */
606 dump_object_info(parent);
607 kmem_cache_free(object_cache, object);
608 object = NULL;
609 goto out;
610 }
611 }
612 rb_link_node(&object->rb_node, rb_parent, link);
613 rb_insert_color(&object->rb_node, &object_tree_root);
614
615 list_add_tail_rcu(&object->object_list, &object_list);
616out:
617 write_unlock_irqrestore(&kmemleak_lock, flags);
618 return object;
619}
620
621/*
622 * Mark the object as not allocated and schedule RCU freeing via put_object().
623 */
624static void __delete_object(struct kmemleak_object *object)
625{
626 unsigned long flags;
627
628 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
629 WARN_ON(atomic_read(&object->use_count) < 1);
630
631 /*
632 * Locking here also ensures that the corresponding memory block
633 * cannot be freed when it is being scanned.
634 */
635 spin_lock_irqsave(&object->lock, flags);
636 object->flags &= ~OBJECT_ALLOCATED;
637 spin_unlock_irqrestore(&object->lock, flags);
638 put_object(object);
639}
640
641/*
642 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
643 * delete it.
644 */
645static void delete_object_full(unsigned long ptr)
646{
647 struct kmemleak_object *object;
648
649 object = find_and_remove_object(ptr, 0);
650 if (!object) {
651#ifdef DEBUG
652 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
653 ptr);
654#endif
655 return;
656 }
657 __delete_object(object);
658}
659
660/*
661 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
662 * delete it. If the memory block is partially freed, the function may create
663 * additional metadata for the remaining parts of the block.
664 */
665static void delete_object_part(unsigned long ptr, size_t size)
666{
667 struct kmemleak_object *object;
668 unsigned long start, end;
669
670 object = find_and_remove_object(ptr, 1);
671 if (!object) {
672#ifdef DEBUG
673 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
674 ptr, size);
675#endif
676 return;
677 }
678
679 /*
680 * Create one or two objects that may result from the memory block
681 * split. Note that partial freeing is only done by free_bootmem() and
682 * this happens before kmemleak_init() is called. The path below is
683 * only executed during early log recording in kmemleak_init(), so
684 * GFP_KERNEL is enough.
685 */
686 start = object->pointer;
687 end = object->pointer + object->size;
688 if (ptr > start)
689 create_object(start, ptr - start, object->min_count,
690 GFP_KERNEL);
691 if (ptr + size < end)
692 create_object(ptr + size, end - ptr - size, object->min_count,
693 GFP_KERNEL);
694
695 __delete_object(object);
696}
697
698static void __paint_it(struct kmemleak_object *object, int color)
699{
700 object->min_count = color;
701 if (color == KMEMLEAK_BLACK)
702 object->flags |= OBJECT_NO_SCAN;
703}
704
705static void paint_it(struct kmemleak_object *object, int color)
706{
707 unsigned long flags;
708
709 spin_lock_irqsave(&object->lock, flags);
710 __paint_it(object, color);
711 spin_unlock_irqrestore(&object->lock, flags);
712}
713
714static void paint_ptr(unsigned long ptr, int color)
715{
716 struct kmemleak_object *object;
717
718 object = find_and_get_object(ptr, 0);
719 if (!object) {
720 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
721 ptr,
722 (color == KMEMLEAK_GREY) ? "Grey" :
723 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
724 return;
725 }
726 paint_it(object, color);
727 put_object(object);
728}
729
730/*
731 * Mark an object permanently as gray-colored so that it can no longer be
732 * reported as a leak. This is used in general to mark a false positive.
733 */
734static void make_gray_object(unsigned long ptr)
735{
736 paint_ptr(ptr, KMEMLEAK_GREY);
737}
738
739/*
740 * Mark the object as black-colored so that it is ignored from scans and
741 * reporting.
742 */
743static void make_black_object(unsigned long ptr)
744{
745 paint_ptr(ptr, KMEMLEAK_BLACK);
746}
747
748/*
749 * Add a scanning area to the object. If at least one such area is added,
750 * kmemleak will only scan these ranges rather than the whole memory block.
751 */
752static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
753{
754 unsigned long flags;
755 struct kmemleak_object *object;
756 struct kmemleak_scan_area *area;
757
758 object = find_and_get_object(ptr, 1);
759 if (!object) {
760 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
761 ptr);
762 return;
763 }
764
765 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
766 if (!area) {
767 pr_warning("Cannot allocate a scan area\n");
768 goto out;
769 }
770
771 spin_lock_irqsave(&object->lock, flags);
772 if (size == SIZE_MAX) {
773 size = object->pointer + object->size - ptr;
774 } else if (ptr + size > object->pointer + object->size) {
775 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
776 dump_object_info(object);
777 kmem_cache_free(scan_area_cache, area);
778 goto out_unlock;
779 }
780
781 INIT_HLIST_NODE(&area->node);
782 area->start = ptr;
783 area->size = size;
784
785 hlist_add_head(&area->node, &object->area_list);
786out_unlock:
787 spin_unlock_irqrestore(&object->lock, flags);
788out:
789 put_object(object);
790}
791
792/*
793 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
794 * pointer. Such object will not be scanned by kmemleak but references to it
795 * are searched.
796 */
797static void object_no_scan(unsigned long ptr)
798{
799 unsigned long flags;
800 struct kmemleak_object *object;
801
802 object = find_and_get_object(ptr, 0);
803 if (!object) {
804 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
805 return;
806 }
807
808 spin_lock_irqsave(&object->lock, flags);
809 object->flags |= OBJECT_NO_SCAN;
810 spin_unlock_irqrestore(&object->lock, flags);
811 put_object(object);
812}
813
814/*
815 * Log an early kmemleak_* call to the early_log buffer. These calls will be
816 * processed later once kmemleak is fully initialized.
817 */
818static void __init log_early(int op_type, const void *ptr, size_t size,
819 int min_count)
820{
821 unsigned long flags;
822 struct early_log *log;
823
824 if (kmemleak_error) {
825 /* kmemleak stopped recording, just count the requests */
826 crt_early_log++;
827 return;
828 }
829
830 if (crt_early_log >= ARRAY_SIZE(early_log)) {
831 crt_early_log++;
832 kmemleak_disable();
833 return;
834 }
835
836 /*
837 * There is no need for locking since the kernel is still in UP mode
838 * at this stage. Disabling the IRQs is enough.
839 */
840 local_irq_save(flags);
841 log = &early_log[crt_early_log];
842 log->op_type = op_type;
843 log->ptr = ptr;
844 log->size = size;
845 log->min_count = min_count;
846 log->trace_len = __save_stack_trace(log->trace);
847 crt_early_log++;
848 local_irq_restore(flags);
849}
850
851/*
852 * Log an early allocated block and populate the stack trace.
853 */
854static void early_alloc(struct early_log *log)
855{
856 struct kmemleak_object *object;
857 unsigned long flags;
858 int i;
859
860 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
861 return;
862
863 /*
864 * RCU locking needed to ensure object is not freed via put_object().
865 */
866 rcu_read_lock();
867 object = create_object((unsigned long)log->ptr, log->size,
868 log->min_count, GFP_ATOMIC);
869 if (!object)
870 goto out;
871 spin_lock_irqsave(&object->lock, flags);
872 for (i = 0; i < log->trace_len; i++)
873 object->trace[i] = log->trace[i];
874 object->trace_len = log->trace_len;
875 spin_unlock_irqrestore(&object->lock, flags);
876out:
877 rcu_read_unlock();
878}
879
880/*
881 * Log an early allocated block and populate the stack trace.
882 */
883static void early_alloc_percpu(struct early_log *log)
884{
885 unsigned int cpu;
886 const void __percpu *ptr = log->ptr;
887
888 for_each_possible_cpu(cpu) {
889 log->ptr = per_cpu_ptr(ptr, cpu);
890 early_alloc(log);
891 }
892}
893
894/**
895 * kmemleak_alloc - register a newly allocated object
896 * @ptr: pointer to beginning of the object
897 * @size: size of the object
898 * @min_count: minimum number of references to this object. If during memory
899 * scanning a number of references less than @min_count is found,
900 * the object is reported as a memory leak. If @min_count is 0,
901 * the object is never reported as a leak. If @min_count is -1,
902 * the object is ignored (not scanned and not reported as a leak)
903 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
904 *
905 * This function is called from the kernel allocators when a new object
906 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
907 */
908void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
909 gfp_t gfp)
910{
911 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
912
913 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
914 create_object((unsigned long)ptr, size, min_count, gfp);
915 else if (kmemleak_early_log)
916 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
917}
918EXPORT_SYMBOL_GPL(kmemleak_alloc);
919
920/**
921 * kmemleak_alloc_percpu - register a newly allocated __percpu object
922 * @ptr: __percpu pointer to beginning of the object
923 * @size: size of the object
924 * @gfp: flags used for kmemleak internal memory allocations
925 *
926 * This function is called from the kernel percpu allocator when a new object
927 * (memory block) is allocated (alloc_percpu).
928 */
929void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
930 gfp_t gfp)
931{
932 unsigned int cpu;
933
934 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
935
936 /*
937 * Percpu allocations are only scanned and not reported as leaks
938 * (min_count is set to 0).
939 */
940 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
941 for_each_possible_cpu(cpu)
942 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
943 size, 0, gfp);
944 else if (kmemleak_early_log)
945 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
946}
947EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
948
949/**
950 * kmemleak_free - unregister a previously registered object
951 * @ptr: pointer to beginning of the object
952 *
953 * This function is called from the kernel allocators when an object (memory
954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
955 */
956void __ref kmemleak_free(const void *ptr)
957{
958 pr_debug("%s(0x%p)\n", __func__, ptr);
959
960 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 delete_object_full((unsigned long)ptr);
962 else if (kmemleak_early_log)
963 log_early(KMEMLEAK_FREE, ptr, 0, 0);
964}
965EXPORT_SYMBOL_GPL(kmemleak_free);
966
967/**
968 * kmemleak_free_part - partially unregister a previously registered object
969 * @ptr: pointer to the beginning or inside the object. This also
970 * represents the start of the range to be freed
971 * @size: size to be unregistered
972 *
973 * This function is called when only a part of a memory block is freed
974 * (usually from the bootmem allocator).
975 */
976void __ref kmemleak_free_part(const void *ptr, size_t size)
977{
978 pr_debug("%s(0x%p)\n", __func__, ptr);
979
980 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
981 delete_object_part((unsigned long)ptr, size);
982 else if (kmemleak_early_log)
983 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
984}
985EXPORT_SYMBOL_GPL(kmemleak_free_part);
986
987/**
988 * kmemleak_free_percpu - unregister a previously registered __percpu object
989 * @ptr: __percpu pointer to beginning of the object
990 *
991 * This function is called from the kernel percpu allocator when an object
992 * (memory block) is freed (free_percpu).
993 */
994void __ref kmemleak_free_percpu(const void __percpu *ptr)
995{
996 unsigned int cpu;
997
998 pr_debug("%s(0x%p)\n", __func__, ptr);
999
1000 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1001 for_each_possible_cpu(cpu)
1002 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1003 cpu));
1004 else if (kmemleak_early_log)
1005 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1006}
1007EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1008
1009/**
1010 * kmemleak_update_trace - update object allocation stack trace
1011 * @ptr: pointer to beginning of the object
1012 *
1013 * Override the object allocation stack trace for cases where the actual
1014 * allocation place is not always useful.
1015 */
1016void __ref kmemleak_update_trace(const void *ptr)
1017{
1018 struct kmemleak_object *object;
1019 unsigned long flags;
1020
1021 pr_debug("%s(0x%p)\n", __func__, ptr);
1022
1023 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1024 return;
1025
1026 object = find_and_get_object((unsigned long)ptr, 1);
1027 if (!object) {
1028#ifdef DEBUG
1029 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1030 ptr);
1031#endif
1032 return;
1033 }
1034
1035 spin_lock_irqsave(&object->lock, flags);
1036 object->trace_len = __save_stack_trace(object->trace);
1037 spin_unlock_irqrestore(&object->lock, flags);
1038
1039 put_object(object);
1040}
1041EXPORT_SYMBOL(kmemleak_update_trace);
1042
1043/**
1044 * kmemleak_not_leak - mark an allocated object as false positive
1045 * @ptr: pointer to beginning of the object
1046 *
1047 * Calling this function on an object will cause the memory block to no longer
1048 * be reported as leak and always be scanned.
1049 */
1050void __ref kmemleak_not_leak(const void *ptr)
1051{
1052 pr_debug("%s(0x%p)\n", __func__, ptr);
1053
1054 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1055 make_gray_object((unsigned long)ptr);
1056 else if (kmemleak_early_log)
1057 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1058}
1059EXPORT_SYMBOL(kmemleak_not_leak);
1060
1061/**
1062 * kmemleak_ignore - ignore an allocated object
1063 * @ptr: pointer to beginning of the object
1064 *
1065 * Calling this function on an object will cause the memory block to be
1066 * ignored (not scanned and not reported as a leak). This is usually done when
1067 * it is known that the corresponding block is not a leak and does not contain
1068 * any references to other allocated memory blocks.
1069 */
1070void __ref kmemleak_ignore(const void *ptr)
1071{
1072 pr_debug("%s(0x%p)\n", __func__, ptr);
1073
1074 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1075 make_black_object((unsigned long)ptr);
1076 else if (kmemleak_early_log)
1077 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1078}
1079EXPORT_SYMBOL(kmemleak_ignore);
1080
1081/**
1082 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1083 * @ptr: pointer to beginning or inside the object. This also
1084 * represents the start of the scan area
1085 * @size: size of the scan area
1086 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1087 *
1088 * This function is used when it is known that only certain parts of an object
1089 * contain references to other objects. Kmemleak will only scan these areas
1090 * reducing the number false negatives.
1091 */
1092void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1093{
1094 pr_debug("%s(0x%p)\n", __func__, ptr);
1095
1096 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1097 add_scan_area((unsigned long)ptr, size, gfp);
1098 else if (kmemleak_early_log)
1099 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1100}
1101EXPORT_SYMBOL(kmemleak_scan_area);
1102
1103/**
1104 * kmemleak_no_scan - do not scan an allocated object
1105 * @ptr: pointer to beginning of the object
1106 *
1107 * This function notifies kmemleak not to scan the given memory block. Useful
1108 * in situations where it is known that the given object does not contain any
1109 * references to other objects. Kmemleak will not scan such objects reducing
1110 * the number of false negatives.
1111 */
1112void __ref kmemleak_no_scan(const void *ptr)
1113{
1114 pr_debug("%s(0x%p)\n", __func__, ptr);
1115
1116 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1117 object_no_scan((unsigned long)ptr);
1118 else if (kmemleak_early_log)
1119 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1120}
1121EXPORT_SYMBOL(kmemleak_no_scan);
1122
1123/*
1124 * Update an object's checksum and return true if it was modified.
1125 */
1126static bool update_checksum(struct kmemleak_object *object)
1127{
1128 u32 old_csum = object->checksum;
1129
1130 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1131 return false;
1132
1133 kasan_disable_current();
1134 object->checksum = crc32(0, (void *)object->pointer, object->size);
1135 kasan_enable_current();
1136
1137 return object->checksum != old_csum;
1138}
1139
1140/*
1141 * Memory scanning is a long process and it needs to be interruptable. This
1142 * function checks whether such interrupt condition occurred.
1143 */
1144static int scan_should_stop(void)
1145{
1146 if (!kmemleak_enabled)
1147 return 1;
1148
1149 /*
1150 * This function may be called from either process or kthread context,
1151 * hence the need to check for both stop conditions.
1152 */
1153 if (current->mm)
1154 return signal_pending(current);
1155 else
1156 return kthread_should_stop();
1157
1158 return 0;
1159}
1160
1161/*
1162 * Scan a memory block (exclusive range) for valid pointers and add those
1163 * found to the gray list.
1164 */
1165static void scan_block(void *_start, void *_end,
1166 struct kmemleak_object *scanned)
1167{
1168 unsigned long *ptr;
1169 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1170 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1171 unsigned long flags;
1172
1173 read_lock_irqsave(&kmemleak_lock, flags);
1174 for (ptr = start; ptr < end; ptr++) {
1175 struct kmemleak_object *object;
1176 unsigned long pointer;
1177
1178 if (scan_should_stop())
1179 break;
1180
1181 /* don't scan uninitialized memory */
1182 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1183 BYTES_PER_POINTER))
1184 continue;
1185
1186 kasan_disable_current();
1187 pointer = *ptr;
1188 kasan_enable_current();
1189
1190 if (pointer < min_addr || pointer >= max_addr)
1191 continue;
1192
1193 /*
1194 * No need for get_object() here since we hold kmemleak_lock.
1195 * object->use_count cannot be dropped to 0 while the object
1196 * is still present in object_tree_root and object_list
1197 * (with updates protected by kmemleak_lock).
1198 */
1199 object = lookup_object(pointer, 1);
1200 if (!object)
1201 continue;
1202 if (object == scanned)
1203 /* self referenced, ignore */
1204 continue;
1205
1206 /*
1207 * Avoid the lockdep recursive warning on object->lock being
1208 * previously acquired in scan_object(). These locks are
1209 * enclosed by scan_mutex.
1210 */
1211 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1212 if (!color_white(object)) {
1213 /* non-orphan, ignored or new */
1214 spin_unlock(&object->lock);
1215 continue;
1216 }
1217
1218 /*
1219 * Increase the object's reference count (number of pointers
1220 * to the memory block). If this count reaches the required
1221 * minimum, the object's color will become gray and it will be
1222 * added to the gray_list.
1223 */
1224 object->count++;
1225 if (color_gray(object)) {
1226 /* put_object() called when removing from gray_list */
1227 WARN_ON(!get_object(object));
1228 list_add_tail(&object->gray_list, &gray_list);
1229 }
1230 spin_unlock(&object->lock);
1231 }
1232 read_unlock_irqrestore(&kmemleak_lock, flags);
1233}
1234
1235/*
1236 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1237 */
1238static void scan_large_block(void *start, void *end)
1239{
1240 void *next;
1241
1242 while (start < end) {
1243 next = min(start + MAX_SCAN_SIZE, end);
1244 scan_block(start, next, NULL);
1245 start = next;
1246 cond_resched();
1247 }
1248}
1249
1250/*
1251 * Scan a memory block corresponding to a kmemleak_object. A condition is
1252 * that object->use_count >= 1.
1253 */
1254static void scan_object(struct kmemleak_object *object)
1255{
1256 struct kmemleak_scan_area *area;
1257 unsigned long flags;
1258
1259 /*
1260 * Once the object->lock is acquired, the corresponding memory block
1261 * cannot be freed (the same lock is acquired in delete_object).
1262 */
1263 spin_lock_irqsave(&object->lock, flags);
1264 if (object->flags & OBJECT_NO_SCAN)
1265 goto out;
1266 if (!(object->flags & OBJECT_ALLOCATED))
1267 /* already freed object */
1268 goto out;
1269 if (hlist_empty(&object->area_list)) {
1270 void *start = (void *)object->pointer;
1271 void *end = (void *)(object->pointer + object->size);
1272 void *next;
1273
1274 do {
1275 next = min(start + MAX_SCAN_SIZE, end);
1276 scan_block(start, next, object);
1277
1278 start = next;
1279 if (start >= end)
1280 break;
1281
1282 spin_unlock_irqrestore(&object->lock, flags);
1283 cond_resched();
1284 spin_lock_irqsave(&object->lock, flags);
1285 } while (object->flags & OBJECT_ALLOCATED);
1286 } else
1287 hlist_for_each_entry(area, &object->area_list, node)
1288 scan_block((void *)area->start,
1289 (void *)(area->start + area->size),
1290 object);
1291out:
1292 spin_unlock_irqrestore(&object->lock, flags);
1293}
1294
1295/*
1296 * Scan the objects already referenced (gray objects). More objects will be
1297 * referenced and, if there are no memory leaks, all the objects are scanned.
1298 */
1299static void scan_gray_list(void)
1300{
1301 struct kmemleak_object *object, *tmp;
1302
1303 /*
1304 * The list traversal is safe for both tail additions and removals
1305 * from inside the loop. The kmemleak objects cannot be freed from
1306 * outside the loop because their use_count was incremented.
1307 */
1308 object = list_entry(gray_list.next, typeof(*object), gray_list);
1309 while (&object->gray_list != &gray_list) {
1310 cond_resched();
1311
1312 /* may add new objects to the list */
1313 if (!scan_should_stop())
1314 scan_object(object);
1315
1316 tmp = list_entry(object->gray_list.next, typeof(*object),
1317 gray_list);
1318
1319 /* remove the object from the list and release it */
1320 list_del(&object->gray_list);
1321 put_object(object);
1322
1323 object = tmp;
1324 }
1325 WARN_ON(!list_empty(&gray_list));
1326}
1327
1328/*
1329 * Scan data sections and all the referenced memory blocks allocated via the
1330 * kernel's standard allocators. This function must be called with the
1331 * scan_mutex held.
1332 */
1333static void kmemleak_scan(void)
1334{
1335 unsigned long flags;
1336 struct kmemleak_object *object;
1337 int i;
1338 int new_leaks = 0;
1339
1340 jiffies_last_scan = jiffies;
1341
1342 /* prepare the kmemleak_object's */
1343 rcu_read_lock();
1344 list_for_each_entry_rcu(object, &object_list, object_list) {
1345 spin_lock_irqsave(&object->lock, flags);
1346#ifdef DEBUG
1347 /*
1348 * With a few exceptions there should be a maximum of
1349 * 1 reference to any object at this point.
1350 */
1351 if (atomic_read(&object->use_count) > 1) {
1352 pr_debug("object->use_count = %d\n",
1353 atomic_read(&object->use_count));
1354 dump_object_info(object);
1355 }
1356#endif
1357 /* reset the reference count (whiten the object) */
1358 object->count = 0;
1359 if (color_gray(object) && get_object(object))
1360 list_add_tail(&object->gray_list, &gray_list);
1361
1362 spin_unlock_irqrestore(&object->lock, flags);
1363 }
1364 rcu_read_unlock();
1365
1366 /* data/bss scanning */
1367 scan_large_block(_sdata, _edata);
1368 scan_large_block(__bss_start, __bss_stop);
1369
1370#ifdef CONFIG_SMP
1371 /* per-cpu sections scanning */
1372 for_each_possible_cpu(i)
1373 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1374 __per_cpu_end + per_cpu_offset(i));
1375#endif
1376
1377 /*
1378 * Struct page scanning for each node.
1379 */
1380 get_online_mems();
1381 for_each_online_node(i) {
1382 unsigned long start_pfn = node_start_pfn(i);
1383 unsigned long end_pfn = node_end_pfn(i);
1384 unsigned long pfn;
1385
1386 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1387 struct page *page;
1388
1389 if (!pfn_valid(pfn))
1390 continue;
1391 page = pfn_to_page(pfn);
1392 /* only scan if page is in use */
1393 if (page_count(page) == 0)
1394 continue;
1395 scan_block(page, page + 1, NULL);
1396 }
1397 }
1398 put_online_mems();
1399
1400 /*
1401 * Scanning the task stacks (may introduce false negatives).
1402 */
1403 if (kmemleak_stack_scan) {
1404 struct task_struct *p, *g;
1405
1406 read_lock(&tasklist_lock);
1407 do_each_thread(g, p) {
1408 scan_block(task_stack_page(p), task_stack_page(p) +
1409 THREAD_SIZE, NULL);
1410 } while_each_thread(g, p);
1411 read_unlock(&tasklist_lock);
1412 }
1413
1414 /*
1415 * Scan the objects already referenced from the sections scanned
1416 * above.
1417 */
1418 scan_gray_list();
1419
1420 /*
1421 * Check for new or unreferenced objects modified since the previous
1422 * scan and color them gray until the next scan.
1423 */
1424 rcu_read_lock();
1425 list_for_each_entry_rcu(object, &object_list, object_list) {
1426 spin_lock_irqsave(&object->lock, flags);
1427 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1428 && update_checksum(object) && get_object(object)) {
1429 /* color it gray temporarily */
1430 object->count = object->min_count;
1431 list_add_tail(&object->gray_list, &gray_list);
1432 }
1433 spin_unlock_irqrestore(&object->lock, flags);
1434 }
1435 rcu_read_unlock();
1436
1437 /*
1438 * Re-scan the gray list for modified unreferenced objects.
1439 */
1440 scan_gray_list();
1441
1442 /*
1443 * If scanning was stopped do not report any new unreferenced objects.
1444 */
1445 if (scan_should_stop())
1446 return;
1447
1448 /*
1449 * Scanning result reporting.
1450 */
1451 rcu_read_lock();
1452 list_for_each_entry_rcu(object, &object_list, object_list) {
1453 spin_lock_irqsave(&object->lock, flags);
1454 if (unreferenced_object(object) &&
1455 !(object->flags & OBJECT_REPORTED)) {
1456 object->flags |= OBJECT_REPORTED;
1457 new_leaks++;
1458 }
1459 spin_unlock_irqrestore(&object->lock, flags);
1460 }
1461 rcu_read_unlock();
1462
1463 if (new_leaks) {
1464 kmemleak_found_leaks = true;
1465
1466 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1467 new_leaks);
1468 }
1469
1470}
1471
1472/*
1473 * Thread function performing automatic memory scanning. Unreferenced objects
1474 * at the end of a memory scan are reported but only the first time.
1475 */
1476static int kmemleak_scan_thread(void *arg)
1477{
1478 static int first_run = 1;
1479
1480 pr_info("Automatic memory scanning thread started\n");
1481 set_user_nice(current, 10);
1482
1483 /*
1484 * Wait before the first scan to allow the system to fully initialize.
1485 */
1486 if (first_run) {
1487 first_run = 0;
1488 ssleep(SECS_FIRST_SCAN);
1489 }
1490
1491 while (!kthread_should_stop()) {
1492 signed long timeout = jiffies_scan_wait;
1493
1494 mutex_lock(&scan_mutex);
1495 kmemleak_scan();
1496 mutex_unlock(&scan_mutex);
1497
1498 /* wait before the next scan */
1499 while (timeout && !kthread_should_stop())
1500 timeout = schedule_timeout_interruptible(timeout);
1501 }
1502
1503 pr_info("Automatic memory scanning thread ended\n");
1504
1505 return 0;
1506}
1507
1508/*
1509 * Start the automatic memory scanning thread. This function must be called
1510 * with the scan_mutex held.
1511 */
1512static void start_scan_thread(void)
1513{
1514 if (scan_thread)
1515 return;
1516 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1517 if (IS_ERR(scan_thread)) {
1518 pr_warning("Failed to create the scan thread\n");
1519 scan_thread = NULL;
1520 }
1521}
1522
1523/*
1524 * Stop the automatic memory scanning thread. This function must be called
1525 * with the scan_mutex held.
1526 */
1527static void stop_scan_thread(void)
1528{
1529 if (scan_thread) {
1530 kthread_stop(scan_thread);
1531 scan_thread = NULL;
1532 }
1533}
1534
1535/*
1536 * Iterate over the object_list and return the first valid object at or after
1537 * the required position with its use_count incremented. The function triggers
1538 * a memory scanning when the pos argument points to the first position.
1539 */
1540static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1541{
1542 struct kmemleak_object *object;
1543 loff_t n = *pos;
1544 int err;
1545
1546 err = mutex_lock_interruptible(&scan_mutex);
1547 if (err < 0)
1548 return ERR_PTR(err);
1549
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(object, &object_list, object_list) {
1552 if (n-- > 0)
1553 continue;
1554 if (get_object(object))
1555 goto out;
1556 }
1557 object = NULL;
1558out:
1559 return object;
1560}
1561
1562/*
1563 * Return the next object in the object_list. The function decrements the
1564 * use_count of the previous object and increases that of the next one.
1565 */
1566static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1567{
1568 struct kmemleak_object *prev_obj = v;
1569 struct kmemleak_object *next_obj = NULL;
1570 struct kmemleak_object *obj = prev_obj;
1571
1572 ++(*pos);
1573
1574 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1575 if (get_object(obj)) {
1576 next_obj = obj;
1577 break;
1578 }
1579 }
1580
1581 put_object(prev_obj);
1582 return next_obj;
1583}
1584
1585/*
1586 * Decrement the use_count of the last object required, if any.
1587 */
1588static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1589{
1590 if (!IS_ERR(v)) {
1591 /*
1592 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1593 * waiting was interrupted, so only release it if !IS_ERR.
1594 */
1595 rcu_read_unlock();
1596 mutex_unlock(&scan_mutex);
1597 if (v)
1598 put_object(v);
1599 }
1600}
1601
1602/*
1603 * Print the information for an unreferenced object to the seq file.
1604 */
1605static int kmemleak_seq_show(struct seq_file *seq, void *v)
1606{
1607 struct kmemleak_object *object = v;
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&object->lock, flags);
1611 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1612 print_unreferenced(seq, object);
1613 spin_unlock_irqrestore(&object->lock, flags);
1614 return 0;
1615}
1616
1617static const struct seq_operations kmemleak_seq_ops = {
1618 .start = kmemleak_seq_start,
1619 .next = kmemleak_seq_next,
1620 .stop = kmemleak_seq_stop,
1621 .show = kmemleak_seq_show,
1622};
1623
1624static int kmemleak_open(struct inode *inode, struct file *file)
1625{
1626 return seq_open(file, &kmemleak_seq_ops);
1627}
1628
1629static int dump_str_object_info(const char *str)
1630{
1631 unsigned long flags;
1632 struct kmemleak_object *object;
1633 unsigned long addr;
1634
1635 if (kstrtoul(str, 0, &addr))
1636 return -EINVAL;
1637 object = find_and_get_object(addr, 0);
1638 if (!object) {
1639 pr_info("Unknown object at 0x%08lx\n", addr);
1640 return -EINVAL;
1641 }
1642
1643 spin_lock_irqsave(&object->lock, flags);
1644 dump_object_info(object);
1645 spin_unlock_irqrestore(&object->lock, flags);
1646
1647 put_object(object);
1648 return 0;
1649}
1650
1651/*
1652 * We use grey instead of black to ensure we can do future scans on the same
1653 * objects. If we did not do future scans these black objects could
1654 * potentially contain references to newly allocated objects in the future and
1655 * we'd end up with false positives.
1656 */
1657static void kmemleak_clear(void)
1658{
1659 struct kmemleak_object *object;
1660 unsigned long flags;
1661
1662 rcu_read_lock();
1663 list_for_each_entry_rcu(object, &object_list, object_list) {
1664 spin_lock_irqsave(&object->lock, flags);
1665 if ((object->flags & OBJECT_REPORTED) &&
1666 unreferenced_object(object))
1667 __paint_it(object, KMEMLEAK_GREY);
1668 spin_unlock_irqrestore(&object->lock, flags);
1669 }
1670 rcu_read_unlock();
1671
1672 kmemleak_found_leaks = false;
1673}
1674
1675static void __kmemleak_do_cleanup(void);
1676
1677/*
1678 * File write operation to configure kmemleak at run-time. The following
1679 * commands can be written to the /sys/kernel/debug/kmemleak file:
1680 * off - disable kmemleak (irreversible)
1681 * stack=on - enable the task stacks scanning
1682 * stack=off - disable the tasks stacks scanning
1683 * scan=on - start the automatic memory scanning thread
1684 * scan=off - stop the automatic memory scanning thread
1685 * scan=... - set the automatic memory scanning period in seconds (0 to
1686 * disable it)
1687 * scan - trigger a memory scan
1688 * clear - mark all current reported unreferenced kmemleak objects as
1689 * grey to ignore printing them, or free all kmemleak objects
1690 * if kmemleak has been disabled.
1691 * dump=... - dump information about the object found at the given address
1692 */
1693static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1694 size_t size, loff_t *ppos)
1695{
1696 char buf[64];
1697 int buf_size;
1698 int ret;
1699
1700 buf_size = min(size, (sizeof(buf) - 1));
1701 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1702 return -EFAULT;
1703 buf[buf_size] = 0;
1704
1705 ret = mutex_lock_interruptible(&scan_mutex);
1706 if (ret < 0)
1707 return ret;
1708
1709 if (strncmp(buf, "clear", 5) == 0) {
1710 if (kmemleak_enabled)
1711 kmemleak_clear();
1712 else
1713 __kmemleak_do_cleanup();
1714 goto out;
1715 }
1716
1717 if (!kmemleak_enabled) {
1718 ret = -EBUSY;
1719 goto out;
1720 }
1721
1722 if (strncmp(buf, "off", 3) == 0)
1723 kmemleak_disable();
1724 else if (strncmp(buf, "stack=on", 8) == 0)
1725 kmemleak_stack_scan = 1;
1726 else if (strncmp(buf, "stack=off", 9) == 0)
1727 kmemleak_stack_scan = 0;
1728 else if (strncmp(buf, "scan=on", 7) == 0)
1729 start_scan_thread();
1730 else if (strncmp(buf, "scan=off", 8) == 0)
1731 stop_scan_thread();
1732 else if (strncmp(buf, "scan=", 5) == 0) {
1733 unsigned long secs;
1734
1735 ret = kstrtoul(buf + 5, 0, &secs);
1736 if (ret < 0)
1737 goto out;
1738 stop_scan_thread();
1739 if (secs) {
1740 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1741 start_scan_thread();
1742 }
1743 } else if (strncmp(buf, "scan", 4) == 0)
1744 kmemleak_scan();
1745 else if (strncmp(buf, "dump=", 5) == 0)
1746 ret = dump_str_object_info(buf + 5);
1747 else
1748 ret = -EINVAL;
1749
1750out:
1751 mutex_unlock(&scan_mutex);
1752 if (ret < 0)
1753 return ret;
1754
1755 /* ignore the rest of the buffer, only one command at a time */
1756 *ppos += size;
1757 return size;
1758}
1759
1760static const struct file_operations kmemleak_fops = {
1761 .owner = THIS_MODULE,
1762 .open = kmemleak_open,
1763 .read = seq_read,
1764 .write = kmemleak_write,
1765 .llseek = seq_lseek,
1766 .release = seq_release,
1767};
1768
1769static void __kmemleak_do_cleanup(void)
1770{
1771 struct kmemleak_object *object;
1772
1773 rcu_read_lock();
1774 list_for_each_entry_rcu(object, &object_list, object_list)
1775 delete_object_full(object->pointer);
1776 rcu_read_unlock();
1777}
1778
1779/*
1780 * Stop the memory scanning thread and free the kmemleak internal objects if
1781 * no previous scan thread (otherwise, kmemleak may still have some useful
1782 * information on memory leaks).
1783 */
1784static void kmemleak_do_cleanup(struct work_struct *work)
1785{
1786 stop_scan_thread();
1787
1788 /*
1789 * Once the scan thread has stopped, it is safe to no longer track
1790 * object freeing. Ordering of the scan thread stopping and the memory
1791 * accesses below is guaranteed by the kthread_stop() function.
1792 */
1793 kmemleak_free_enabled = 0;
1794
1795 if (!kmemleak_found_leaks)
1796 __kmemleak_do_cleanup();
1797 else
1798 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1799}
1800
1801static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1802
1803/*
1804 * Disable kmemleak. No memory allocation/freeing will be traced once this
1805 * function is called. Disabling kmemleak is an irreversible operation.
1806 */
1807static void kmemleak_disable(void)
1808{
1809 /* atomically check whether it was already invoked */
1810 if (cmpxchg(&kmemleak_error, 0, 1))
1811 return;
1812
1813 /* stop any memory operation tracing */
1814 kmemleak_enabled = 0;
1815
1816 /* check whether it is too early for a kernel thread */
1817 if (kmemleak_initialized)
1818 schedule_work(&cleanup_work);
1819 else
1820 kmemleak_free_enabled = 0;
1821
1822 pr_info("Kernel memory leak detector disabled\n");
1823}
1824
1825/*
1826 * Allow boot-time kmemleak disabling (enabled by default).
1827 */
1828static int kmemleak_boot_config(char *str)
1829{
1830 if (!str)
1831 return -EINVAL;
1832 if (strcmp(str, "off") == 0)
1833 kmemleak_disable();
1834 else if (strcmp(str, "on") == 0)
1835 kmemleak_skip_disable = 1;
1836 else
1837 return -EINVAL;
1838 return 0;
1839}
1840early_param("kmemleak", kmemleak_boot_config);
1841
1842static void __init print_log_trace(struct early_log *log)
1843{
1844 struct stack_trace trace;
1845
1846 trace.nr_entries = log->trace_len;
1847 trace.entries = log->trace;
1848
1849 pr_notice("Early log backtrace:\n");
1850 print_stack_trace(&trace, 2);
1851}
1852
1853/*
1854 * Kmemleak initialization.
1855 */
1856void __init kmemleak_init(void)
1857{
1858 int i;
1859 unsigned long flags;
1860
1861#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1862 if (!kmemleak_skip_disable) {
1863 kmemleak_early_log = 0;
1864 kmemleak_disable();
1865 return;
1866 }
1867#endif
1868
1869 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1870 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1871
1872 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1873 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1874
1875 if (crt_early_log > ARRAY_SIZE(early_log))
1876 pr_warning("Early log buffer exceeded (%d), please increase "
1877 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1878
1879 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1880 local_irq_save(flags);
1881 kmemleak_early_log = 0;
1882 if (kmemleak_error) {
1883 local_irq_restore(flags);
1884 return;
1885 } else {
1886 kmemleak_enabled = 1;
1887 kmemleak_free_enabled = 1;
1888 }
1889 local_irq_restore(flags);
1890
1891 /*
1892 * This is the point where tracking allocations is safe. Automatic
1893 * scanning is started during the late initcall. Add the early logged
1894 * callbacks to the kmemleak infrastructure.
1895 */
1896 for (i = 0; i < crt_early_log; i++) {
1897 struct early_log *log = &early_log[i];
1898
1899 switch (log->op_type) {
1900 case KMEMLEAK_ALLOC:
1901 early_alloc(log);
1902 break;
1903 case KMEMLEAK_ALLOC_PERCPU:
1904 early_alloc_percpu(log);
1905 break;
1906 case KMEMLEAK_FREE:
1907 kmemleak_free(log->ptr);
1908 break;
1909 case KMEMLEAK_FREE_PART:
1910 kmemleak_free_part(log->ptr, log->size);
1911 break;
1912 case KMEMLEAK_FREE_PERCPU:
1913 kmemleak_free_percpu(log->ptr);
1914 break;
1915 case KMEMLEAK_NOT_LEAK:
1916 kmemleak_not_leak(log->ptr);
1917 break;
1918 case KMEMLEAK_IGNORE:
1919 kmemleak_ignore(log->ptr);
1920 break;
1921 case KMEMLEAK_SCAN_AREA:
1922 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1923 break;
1924 case KMEMLEAK_NO_SCAN:
1925 kmemleak_no_scan(log->ptr);
1926 break;
1927 default:
1928 kmemleak_warn("Unknown early log operation: %d\n",
1929 log->op_type);
1930 }
1931
1932 if (kmemleak_warning) {
1933 print_log_trace(log);
1934 kmemleak_warning = 0;
1935 }
1936 }
1937}
1938
1939/*
1940 * Late initialization function.
1941 */
1942static int __init kmemleak_late_init(void)
1943{
1944 struct dentry *dentry;
1945
1946 kmemleak_initialized = 1;
1947
1948 if (kmemleak_error) {
1949 /*
1950 * Some error occurred and kmemleak was disabled. There is a
1951 * small chance that kmemleak_disable() was called immediately
1952 * after setting kmemleak_initialized and we may end up with
1953 * two clean-up threads but serialized by scan_mutex.
1954 */
1955 schedule_work(&cleanup_work);
1956 return -ENOMEM;
1957 }
1958
1959 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1960 &kmemleak_fops);
1961 if (!dentry)
1962 pr_warning("Failed to create the debugfs kmemleak file\n");
1963 mutex_lock(&scan_mutex);
1964 start_scan_thread();
1965 mutex_unlock(&scan_mutex);
1966
1967 pr_info("Kernel memory leak detector initialized\n");
1968
1969 return 0;
1970}
1971late_initcall(kmemleak_late_init);