remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / filemap.c
... / ...
CommitLineData
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/dax.h>
15#include <linux/fs.h>
16#include <linux/sched/signal.h>
17#include <linux/uaccess.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/gfp.h>
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
29#include <linux/backing-dev.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/hugetlb.h>
36#include <linux/memcontrol.h>
37#include <linux/cleancache.h>
38#include <linux/rmap.h>
39#include <linux/delayacct.h>
40#include <linux/psi.h>
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/filemap.h>
45
46/*
47 * FIXME: remove all knowledge of the buffer layer from the core VM
48 */
49#include <linux/buffer_head.h> /* for try_to_free_buffers */
50
51#include <asm/mman.h>
52
53/*
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
56 *
57 * Shared mappings now work. 15.8.1995 Bruno.
58 *
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61 *
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 */
64
65/*
66 * Lock ordering:
67 *
68 * ->i_mmap_rwsem (truncate_pagecache)
69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
70 * ->swap_lock (exclusive_swap_page, others)
71 * ->mapping->tree_lock
72 *
73 * ->i_mutex
74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 *
76 * ->mmap_sem
77 * ->i_mmap_rwsem
78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
79 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 *
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
83 *
84 * ->i_mutex (generic_perform_write)
85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 *
87 * bdi->wb.list_lock
88 * sb_lock (fs/fs-writeback.c)
89 * ->mapping->tree_lock (__sync_single_inode)
90 *
91 * ->i_mmap_rwsem
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 *
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->tree_lock (try_to_unmap_one)
101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->tree_lock (page_remove_rmap->set_page_dirty)
105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 *
112 * ->i_mmap_rwsem
113 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 */
115
116static int page_cache_tree_insert(struct address_space *mapping,
117 struct page *page, void **shadowp)
118{
119 struct radix_tree_node *node;
120 void **slot;
121 int error;
122
123 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
124 &node, &slot);
125 if (error)
126 return error;
127 if (*slot) {
128 void *p;
129
130 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
131 if (!radix_tree_exceptional_entry(p))
132 return -EEXIST;
133
134 mapping->nrexceptional--;
135 if (shadowp)
136 *shadowp = p;
137 }
138 __radix_tree_replace(&mapping->page_tree, node, slot, page,
139 workingset_update_node, mapping);
140 mapping->nrpages++;
141 return 0;
142}
143
144static void page_cache_tree_delete(struct address_space *mapping,
145 struct page *page, void *shadow)
146{
147 int i, nr;
148
149 /* hugetlb pages are represented by one entry in the radix tree */
150 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(PageTail(page), page);
154 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
155
156 for (i = 0; i < nr; i++) {
157 struct radix_tree_node *node;
158 void **slot;
159
160 __radix_tree_lookup(&mapping->page_tree, page->index + i,
161 &node, &slot);
162
163 VM_BUG_ON_PAGE(!node && nr != 1, page);
164
165 radix_tree_clear_tags(&mapping->page_tree, node, slot);
166 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
167 workingset_update_node, mapping);
168 }
169
170 if (shadow) {
171 mapping->nrexceptional += nr;
172 /*
173 * Make sure the nrexceptional update is committed before
174 * the nrpages update so that final truncate racing
175 * with reclaim does not see both counters 0 at the
176 * same time and miss a shadow entry.
177 */
178 smp_wmb();
179 }
180 mapping->nrpages -= nr;
181}
182
183/*
184 * Delete a page from the page cache and free it. Caller has to make
185 * sure the page is locked and that nobody else uses it - or that usage
186 * is safe. The caller must hold the mapping's tree_lock.
187 */
188void __delete_from_page_cache(struct page *page, void *shadow)
189{
190 struct address_space *mapping = page->mapping;
191 int nr = hpage_nr_pages(page);
192
193 trace_mm_filemap_delete_from_page_cache(page);
194 /*
195 * if we're uptodate, flush out into the cleancache, otherwise
196 * invalidate any existing cleancache entries. We can't leave
197 * stale data around in the cleancache once our page is gone
198 */
199 if (PageUptodate(page) && PageMappedToDisk(page))
200 cleancache_put_page(page);
201 else
202 cleancache_invalidate_page(mapping, page);
203
204 VM_BUG_ON_PAGE(PageTail(page), page);
205 VM_BUG_ON_PAGE(page_mapped(page), page);
206 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
207 int mapcount;
208
209 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
210 current->comm, page_to_pfn(page));
211 dump_page(page, "still mapped when deleted");
212 dump_stack();
213 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
214
215 mapcount = page_mapcount(page);
216 if (mapping_exiting(mapping) &&
217 page_count(page) >= mapcount + 2) {
218 /*
219 * All vmas have already been torn down, so it's
220 * a good bet that actually the page is unmapped,
221 * and we'd prefer not to leak it: if we're wrong,
222 * some other bad page check should catch it later.
223 */
224 page_mapcount_reset(page);
225 page_ref_sub(page, mapcount);
226 }
227 }
228
229 page_cache_tree_delete(mapping, page, shadow);
230
231 page->mapping = NULL;
232 /* Leave page->index set: truncation lookup relies upon it */
233
234 /* hugetlb pages do not participate in page cache accounting. */
235 if (PageHuge(page))
236 return;
237
238 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
239 if (PageSwapBacked(page)) {
240 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
241 if (PageTransHuge(page))
242 __dec_node_page_state(page, NR_SHMEM_THPS);
243 } else {
244 VM_BUG_ON_PAGE(PageTransHuge(page), page);
245 }
246
247 /*
248 * At this point page must be either written or cleaned by truncate.
249 * Dirty page here signals a bug and loss of unwritten data.
250 *
251 * This fixes dirty accounting after removing the page entirely but
252 * leaves PageDirty set: it has no effect for truncated page and
253 * anyway will be cleared before returning page into buddy allocator.
254 */
255 if (WARN_ON_ONCE(PageDirty(page)))
256 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
257}
258
259/**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
267void delete_from_page_cache(struct page *page)
268{
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
271 void (*freepage)(struct page *);
272
273 BUG_ON(!PageLocked(page));
274
275 freepage = mapping->a_ops->freepage;
276
277 spin_lock_irqsave(&mapping->tree_lock, flags);
278 __delete_from_page_cache(page, NULL);
279 spin_unlock_irqrestore(&mapping->tree_lock, flags);
280
281 if (freepage)
282 freepage(page);
283
284 if (PageTransHuge(page) && !PageHuge(page)) {
285 page_ref_sub(page, HPAGE_PMD_NR);
286 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
287 } else {
288 put_page(page);
289 }
290}
291EXPORT_SYMBOL(delete_from_page_cache);
292
293int filemap_check_errors(struct address_space *mapping)
294{
295 int ret = 0;
296 /* Check for outstanding write errors */
297 if (test_bit(AS_ENOSPC, &mapping->flags) &&
298 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_bit(AS_EIO, &mapping->flags) &&
301 test_and_clear_bit(AS_EIO, &mapping->flags))
302 ret = -EIO;
303 return ret;
304}
305EXPORT_SYMBOL(filemap_check_errors);
306
307static int filemap_check_and_keep_errors(struct address_space *mapping)
308{
309 /* Check for outstanding write errors */
310 if (test_bit(AS_EIO, &mapping->flags))
311 return -EIO;
312 if (test_bit(AS_ENOSPC, &mapping->flags))
313 return -ENOSPC;
314 return 0;
315}
316
317/**
318 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
319 * @mapping: address space structure to write
320 * @start: offset in bytes where the range starts
321 * @end: offset in bytes where the range ends (inclusive)
322 * @sync_mode: enable synchronous operation
323 *
324 * Start writeback against all of a mapping's dirty pages that lie
325 * within the byte offsets <start, end> inclusive.
326 *
327 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
328 * opposed to a regular memory cleansing writeback. The difference between
329 * these two operations is that if a dirty page/buffer is encountered, it must
330 * be waited upon, and not just skipped over.
331 */
332int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end, int sync_mode)
334{
335 int ret;
336 struct writeback_control wbc = {
337 .sync_mode = sync_mode,
338 .nr_to_write = LONG_MAX,
339 .range_start = start,
340 .range_end = end,
341 };
342
343 if (!mapping_cap_writeback_dirty(mapping))
344 return 0;
345
346 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
347 ret = do_writepages(mapping, &wbc);
348 wbc_detach_inode(&wbc);
349 return ret;
350}
351
352static inline int __filemap_fdatawrite(struct address_space *mapping,
353 int sync_mode)
354{
355 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
356}
357
358int filemap_fdatawrite(struct address_space *mapping)
359{
360 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
361}
362EXPORT_SYMBOL(filemap_fdatawrite);
363
364int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
365 loff_t end)
366{
367 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
368}
369EXPORT_SYMBOL(filemap_fdatawrite_range);
370
371/**
372 * filemap_flush - mostly a non-blocking flush
373 * @mapping: target address_space
374 *
375 * This is a mostly non-blocking flush. Not suitable for data-integrity
376 * purposes - I/O may not be started against all dirty pages.
377 */
378int filemap_flush(struct address_space *mapping)
379{
380 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
381}
382EXPORT_SYMBOL(filemap_flush);
383
384/**
385 * filemap_range_has_page - check if a page exists in range.
386 * @mapping: address space within which to check
387 * @start_byte: offset in bytes where the range starts
388 * @end_byte: offset in bytes where the range ends (inclusive)
389 *
390 * Find at least one page in the range supplied, usually used to check if
391 * direct writing in this range will trigger a writeback.
392 */
393bool filemap_range_has_page(struct address_space *mapping,
394 loff_t start_byte, loff_t end_byte)
395{
396 pgoff_t index = start_byte >> PAGE_SHIFT;
397 pgoff_t end = end_byte >> PAGE_SHIFT;
398 struct page *page;
399
400 if (end_byte < start_byte)
401 return false;
402
403 if (mapping->nrpages == 0)
404 return false;
405
406 if (!find_get_pages_range(mapping, &index, end, 1, &page))
407 return false;
408 put_page(page);
409 return true;
410}
411EXPORT_SYMBOL(filemap_range_has_page);
412
413static void __filemap_fdatawait_range(struct address_space *mapping,
414 loff_t start_byte, loff_t end_byte)
415{
416 pgoff_t index = start_byte >> PAGE_SHIFT;
417 pgoff_t end = end_byte >> PAGE_SHIFT;
418 struct pagevec pvec;
419 int nr_pages;
420
421 if (end_byte < start_byte)
422 return;
423
424 pagevec_init(&pvec, 0);
425 while ((index <= end) &&
426 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
427 PAGECACHE_TAG_WRITEBACK,
428 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
429 unsigned i;
430
431 for (i = 0; i < nr_pages; i++) {
432 struct page *page = pvec.pages[i];
433
434 /* until radix tree lookup accepts end_index */
435 if (page->index > end)
436 continue;
437
438 wait_on_page_writeback(page);
439 ClearPageError(page);
440 }
441 pagevec_release(&pvec);
442 cond_resched();
443 }
444}
445
446/**
447 * filemap_fdatawait_range - wait for writeback to complete
448 * @mapping: address space structure to wait for
449 * @start_byte: offset in bytes where the range starts
450 * @end_byte: offset in bytes where the range ends (inclusive)
451 *
452 * Walk the list of under-writeback pages of the given address space
453 * in the given range and wait for all of them. Check error status of
454 * the address space and return it.
455 *
456 * Since the error status of the address space is cleared by this function,
457 * callers are responsible for checking the return value and handling and/or
458 * reporting the error.
459 */
460int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
461 loff_t end_byte)
462{
463 __filemap_fdatawait_range(mapping, start_byte, end_byte);
464 return filemap_check_errors(mapping);
465}
466EXPORT_SYMBOL(filemap_fdatawait_range);
467
468/**
469 * file_fdatawait_range - wait for writeback to complete
470 * @file: file pointing to address space structure to wait for
471 * @start_byte: offset in bytes where the range starts
472 * @end_byte: offset in bytes where the range ends (inclusive)
473 *
474 * Walk the list of under-writeback pages of the address space that file
475 * refers to, in the given range and wait for all of them. Check error
476 * status of the address space vs. the file->f_wb_err cursor and return it.
477 *
478 * Since the error status of the file is advanced by this function,
479 * callers are responsible for checking the return value and handling and/or
480 * reporting the error.
481 */
482int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
483{
484 struct address_space *mapping = file->f_mapping;
485
486 __filemap_fdatawait_range(mapping, start_byte, end_byte);
487 return file_check_and_advance_wb_err(file);
488}
489EXPORT_SYMBOL(file_fdatawait_range);
490
491/**
492 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
493 * @mapping: address space structure to wait for
494 *
495 * Walk the list of under-writeback pages of the given address space
496 * and wait for all of them. Unlike filemap_fdatawait(), this function
497 * does not clear error status of the address space.
498 *
499 * Use this function if callers don't handle errors themselves. Expected
500 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
501 * fsfreeze(8)
502 */
503int filemap_fdatawait_keep_errors(struct address_space *mapping)
504{
505 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
506 return filemap_check_and_keep_errors(mapping);
507}
508EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
509
510static bool mapping_needs_writeback(struct address_space *mapping)
511{
512 return (!dax_mapping(mapping) && mapping->nrpages) ||
513 (dax_mapping(mapping) && mapping->nrexceptional);
514}
515
516int filemap_write_and_wait(struct address_space *mapping)
517{
518 int err = 0;
519
520 if (mapping_needs_writeback(mapping)) {
521 err = filemap_fdatawrite(mapping);
522 /*
523 * Even if the above returned error, the pages may be
524 * written partially (e.g. -ENOSPC), so we wait for it.
525 * But the -EIO is special case, it may indicate the worst
526 * thing (e.g. bug) happened, so we avoid waiting for it.
527 */
528 if (err != -EIO) {
529 int err2 = filemap_fdatawait(mapping);
530 if (!err)
531 err = err2;
532 } else {
533 /* Clear any previously stored errors */
534 filemap_check_errors(mapping);
535 }
536 } else {
537 err = filemap_check_errors(mapping);
538 }
539 return err;
540}
541EXPORT_SYMBOL(filemap_write_and_wait);
542
543/**
544 * filemap_write_and_wait_range - write out & wait on a file range
545 * @mapping: the address_space for the pages
546 * @lstart: offset in bytes where the range starts
547 * @lend: offset in bytes where the range ends (inclusive)
548 *
549 * Write out and wait upon file offsets lstart->lend, inclusive.
550 *
551 * Note that @lend is inclusive (describes the last byte to be written) so
552 * that this function can be used to write to the very end-of-file (end = -1).
553 */
554int filemap_write_and_wait_range(struct address_space *mapping,
555 loff_t lstart, loff_t lend)
556{
557 int err = 0;
558
559 if (mapping_needs_writeback(mapping)) {
560 err = __filemap_fdatawrite_range(mapping, lstart, lend,
561 WB_SYNC_ALL);
562 /* See comment of filemap_write_and_wait() */
563 if (err != -EIO) {
564 int err2 = filemap_fdatawait_range(mapping,
565 lstart, lend);
566 if (!err)
567 err = err2;
568 } else {
569 /* Clear any previously stored errors */
570 filemap_check_errors(mapping);
571 }
572 } else {
573 err = filemap_check_errors(mapping);
574 }
575 return err;
576}
577EXPORT_SYMBOL(filemap_write_and_wait_range);
578
579void __filemap_set_wb_err(struct address_space *mapping, int err)
580{
581 errseq_t eseq = errseq_set(&mapping->wb_err, err);
582
583 trace_filemap_set_wb_err(mapping, eseq);
584}
585EXPORT_SYMBOL(__filemap_set_wb_err);
586
587/**
588 * file_check_and_advance_wb_err - report wb error (if any) that was previously
589 * and advance wb_err to current one
590 * @file: struct file on which the error is being reported
591 *
592 * When userland calls fsync (or something like nfsd does the equivalent), we
593 * want to report any writeback errors that occurred since the last fsync (or
594 * since the file was opened if there haven't been any).
595 *
596 * Grab the wb_err from the mapping. If it matches what we have in the file,
597 * then just quickly return 0. The file is all caught up.
598 *
599 * If it doesn't match, then take the mapping value, set the "seen" flag in
600 * it and try to swap it into place. If it works, or another task beat us
601 * to it with the new value, then update the f_wb_err and return the error
602 * portion. The error at this point must be reported via proper channels
603 * (a'la fsync, or NFS COMMIT operation, etc.).
604 *
605 * While we handle mapping->wb_err with atomic operations, the f_wb_err
606 * value is protected by the f_lock since we must ensure that it reflects
607 * the latest value swapped in for this file descriptor.
608 */
609int file_check_and_advance_wb_err(struct file *file)
610{
611 int err = 0;
612 errseq_t old = READ_ONCE(file->f_wb_err);
613 struct address_space *mapping = file->f_mapping;
614
615 /* Locklessly handle the common case where nothing has changed */
616 if (errseq_check(&mapping->wb_err, old)) {
617 /* Something changed, must use slow path */
618 spin_lock(&file->f_lock);
619 old = file->f_wb_err;
620 err = errseq_check_and_advance(&mapping->wb_err,
621 &file->f_wb_err);
622 trace_file_check_and_advance_wb_err(file, old);
623 spin_unlock(&file->f_lock);
624 }
625
626 /*
627 * We're mostly using this function as a drop in replacement for
628 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
629 * that the legacy code would have had on these flags.
630 */
631 clear_bit(AS_EIO, &mapping->flags);
632 clear_bit(AS_ENOSPC, &mapping->flags);
633 return err;
634}
635EXPORT_SYMBOL(file_check_and_advance_wb_err);
636
637/**
638 * file_write_and_wait_range - write out & wait on a file range
639 * @file: file pointing to address_space with pages
640 * @lstart: offset in bytes where the range starts
641 * @lend: offset in bytes where the range ends (inclusive)
642 *
643 * Write out and wait upon file offsets lstart->lend, inclusive.
644 *
645 * Note that @lend is inclusive (describes the last byte to be written) so
646 * that this function can be used to write to the very end-of-file (end = -1).
647 *
648 * After writing out and waiting on the data, we check and advance the
649 * f_wb_err cursor to the latest value, and return any errors detected there.
650 */
651int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
652{
653 int err = 0, err2;
654 struct address_space *mapping = file->f_mapping;
655
656 if (mapping_needs_writeback(mapping)) {
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 WB_SYNC_ALL);
659 /* See comment of filemap_write_and_wait() */
660 if (err != -EIO)
661 __filemap_fdatawait_range(mapping, lstart, lend);
662 }
663 err2 = file_check_and_advance_wb_err(file);
664 if (!err)
665 err = err2;
666 return err;
667}
668EXPORT_SYMBOL(file_write_and_wait_range);
669
670/**
671 * replace_page_cache_page - replace a pagecache page with a new one
672 * @old: page to be replaced
673 * @new: page to replace with
674 * @gfp_mask: allocation mode
675 *
676 * This function replaces a page in the pagecache with a new one. On
677 * success it acquires the pagecache reference for the new page and
678 * drops it for the old page. Both the old and new pages must be
679 * locked. This function does not add the new page to the LRU, the
680 * caller must do that.
681 *
682 * The remove + add is atomic. The only way this function can fail is
683 * memory allocation failure.
684 */
685int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
686{
687 int error;
688
689 VM_BUG_ON_PAGE(!PageLocked(old), old);
690 VM_BUG_ON_PAGE(!PageLocked(new), new);
691 VM_BUG_ON_PAGE(new->mapping, new);
692
693 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
694 if (!error) {
695 struct address_space *mapping = old->mapping;
696 void (*freepage)(struct page *);
697 unsigned long flags;
698
699 pgoff_t offset = old->index;
700 freepage = mapping->a_ops->freepage;
701
702 get_page(new);
703 new->mapping = mapping;
704 new->index = offset;
705
706 spin_lock_irqsave(&mapping->tree_lock, flags);
707 __delete_from_page_cache(old, NULL);
708 error = page_cache_tree_insert(mapping, new, NULL);
709 BUG_ON(error);
710
711 /*
712 * hugetlb pages do not participate in page cache accounting.
713 */
714 if (!PageHuge(new))
715 __inc_node_page_state(new, NR_FILE_PAGES);
716 if (PageSwapBacked(new))
717 __inc_node_page_state(new, NR_SHMEM);
718 spin_unlock_irqrestore(&mapping->tree_lock, flags);
719 mem_cgroup_migrate(old, new);
720 radix_tree_preload_end();
721 if (freepage)
722 freepage(old);
723 put_page(old);
724 }
725
726 return error;
727}
728EXPORT_SYMBOL_GPL(replace_page_cache_page);
729
730static int __add_to_page_cache_locked(struct page *page,
731 struct address_space *mapping,
732 pgoff_t offset, gfp_t gfp_mask,
733 void **shadowp)
734{
735 int huge = PageHuge(page);
736 struct mem_cgroup *memcg;
737 int error;
738
739 VM_BUG_ON_PAGE(!PageLocked(page), page);
740 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
741
742 if (!huge) {
743 error = mem_cgroup_try_charge(page, current->mm,
744 gfp_mask, &memcg, false);
745 if (error)
746 return error;
747 }
748
749 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
750 if (error) {
751 if (!huge)
752 mem_cgroup_cancel_charge(page, memcg, false);
753 return error;
754 }
755
756 get_page(page);
757 page->mapping = mapping;
758 page->index = offset;
759
760 spin_lock_irq(&mapping->tree_lock);
761 error = page_cache_tree_insert(mapping, page, shadowp);
762 radix_tree_preload_end();
763 if (unlikely(error))
764 goto err_insert;
765
766 /* hugetlb pages do not participate in page cache accounting. */
767 if (!huge)
768 __inc_node_page_state(page, NR_FILE_PAGES);
769 spin_unlock_irq(&mapping->tree_lock);
770 if (!huge)
771 mem_cgroup_commit_charge(page, memcg, false, false);
772 trace_mm_filemap_add_to_page_cache(page);
773 return 0;
774err_insert:
775 page->mapping = NULL;
776 /* Leave page->index set: truncation relies upon it */
777 spin_unlock_irq(&mapping->tree_lock);
778 if (!huge)
779 mem_cgroup_cancel_charge(page, memcg, false);
780 put_page(page);
781 return error;
782}
783
784/**
785 * add_to_page_cache_locked - add a locked page to the pagecache
786 * @page: page to add
787 * @mapping: the page's address_space
788 * @offset: page index
789 * @gfp_mask: page allocation mode
790 *
791 * This function is used to add a page to the pagecache. It must be locked.
792 * This function does not add the page to the LRU. The caller must do that.
793 */
794int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
795 pgoff_t offset, gfp_t gfp_mask)
796{
797 return __add_to_page_cache_locked(page, mapping, offset,
798 gfp_mask, NULL);
799}
800EXPORT_SYMBOL(add_to_page_cache_locked);
801
802int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
803 pgoff_t offset, gfp_t gfp_mask)
804{
805 void *shadow = NULL;
806 int ret;
807
808 __SetPageLocked(page);
809 ret = __add_to_page_cache_locked(page, mapping, offset,
810 gfp_mask, &shadow);
811 if (unlikely(ret))
812 __ClearPageLocked(page);
813 else {
814 /*
815 * The page might have been evicted from cache only
816 * recently, in which case it should be activated like
817 * any other repeatedly accessed page.
818 * The exception is pages getting rewritten; evicting other
819 * data from the working set, only to cache data that will
820 * get overwritten with something else, is a waste of memory.
821 */
822 WARN_ON_ONCE(PageActive(page));
823 if (!(gfp_mask & __GFP_WRITE) && shadow)
824 workingset_refault(page, shadow);
825 lru_cache_add(page);
826 }
827 return ret;
828}
829EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
830
831#ifdef CONFIG_NUMA
832struct page *__page_cache_alloc(gfp_t gfp)
833{
834 int n;
835 struct page *page;
836
837 if (cpuset_do_page_mem_spread()) {
838 unsigned int cpuset_mems_cookie;
839 do {
840 cpuset_mems_cookie = read_mems_allowed_begin();
841 n = cpuset_mem_spread_node();
842 page = __alloc_pages_node(n, gfp, 0);
843 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
844
845 return page;
846 }
847 return alloc_pages(gfp, 0);
848}
849EXPORT_SYMBOL(__page_cache_alloc);
850#endif
851
852/*
853 * In order to wait for pages to become available there must be
854 * waitqueues associated with pages. By using a hash table of
855 * waitqueues where the bucket discipline is to maintain all
856 * waiters on the same queue and wake all when any of the pages
857 * become available, and for the woken contexts to check to be
858 * sure the appropriate page became available, this saves space
859 * at a cost of "thundering herd" phenomena during rare hash
860 * collisions.
861 */
862#define PAGE_WAIT_TABLE_BITS 8
863#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
864static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
865
866static wait_queue_head_t *page_waitqueue(struct page *page)
867{
868 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
869}
870
871void __init pagecache_init(void)
872{
873 int i;
874
875 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
876 init_waitqueue_head(&page_wait_table[i]);
877
878 page_writeback_init();
879}
880
881/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
882struct wait_page_key {
883 struct page *page;
884 int bit_nr;
885 int page_match;
886};
887
888struct wait_page_queue {
889 struct page *page;
890 int bit_nr;
891 wait_queue_entry_t wait;
892};
893
894static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
895{
896 struct wait_page_key *key = arg;
897 struct wait_page_queue *wait_page
898 = container_of(wait, struct wait_page_queue, wait);
899
900 if (wait_page->page != key->page)
901 return 0;
902 key->page_match = 1;
903
904 if (wait_page->bit_nr != key->bit_nr)
905 return 0;
906
907 /* Stop walking if it's locked */
908 if (test_bit(key->bit_nr, &key->page->flags))
909 return -1;
910
911 return autoremove_wake_function(wait, mode, sync, key);
912}
913
914static void wake_up_page_bit(struct page *page, int bit_nr)
915{
916 wait_queue_head_t *q = page_waitqueue(page);
917 struct wait_page_key key;
918 unsigned long flags;
919 wait_queue_entry_t bookmark;
920
921 key.page = page;
922 key.bit_nr = bit_nr;
923 key.page_match = 0;
924
925 bookmark.flags = 0;
926 bookmark.private = NULL;
927 bookmark.func = NULL;
928 INIT_LIST_HEAD(&bookmark.entry);
929
930 spin_lock_irqsave(&q->lock, flags);
931 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
932
933 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
934 /*
935 * Take a breather from holding the lock,
936 * allow pages that finish wake up asynchronously
937 * to acquire the lock and remove themselves
938 * from wait queue
939 */
940 spin_unlock_irqrestore(&q->lock, flags);
941 cpu_relax();
942 spin_lock_irqsave(&q->lock, flags);
943 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
944 }
945
946 /*
947 * It is possible for other pages to have collided on the waitqueue
948 * hash, so in that case check for a page match. That prevents a long-
949 * term waiter
950 *
951 * It is still possible to miss a case here, when we woke page waiters
952 * and removed them from the waitqueue, but there are still other
953 * page waiters.
954 */
955 if (!waitqueue_active(q) || !key.page_match) {
956 ClearPageWaiters(page);
957 /*
958 * It's possible to miss clearing Waiters here, when we woke
959 * our page waiters, but the hashed waitqueue has waiters for
960 * other pages on it.
961 *
962 * That's okay, it's a rare case. The next waker will clear it.
963 */
964 }
965 spin_unlock_irqrestore(&q->lock, flags);
966}
967
968static void wake_up_page(struct page *page, int bit)
969{
970 if (!PageWaiters(page))
971 return;
972 wake_up_page_bit(page, bit);
973}
974
975static inline int wait_on_page_bit_common(wait_queue_head_t *q,
976 struct page *page, int bit_nr, int state, bool lock)
977{
978 struct wait_page_queue wait_page;
979 wait_queue_entry_t *wait = &wait_page.wait;
980 bool thrashing = false;
981 unsigned long pflags;
982 int ret = 0;
983
984 if (bit_nr == PG_locked &&
985 !PageUptodate(page) && PageWorkingset(page)) {
986 if (!PageSwapBacked(page))
987 delayacct_thrashing_start();
988 psi_memstall_enter(&pflags);
989 thrashing = true;
990 }
991
992 init_wait(wait);
993 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
994 wait->func = wake_page_function;
995 wait_page.page = page;
996 wait_page.bit_nr = bit_nr;
997
998 for (;;) {
999 spin_lock_irq(&q->lock);
1000
1001 if (likely(list_empty(&wait->entry))) {
1002 __add_wait_queue_entry_tail(q, wait);
1003 SetPageWaiters(page);
1004 }
1005
1006 set_current_state(state);
1007
1008 spin_unlock_irq(&q->lock);
1009
1010 if (likely(test_bit(bit_nr, &page->flags))) {
1011 io_schedule();
1012 }
1013
1014 if (lock) {
1015 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1016 break;
1017 } else {
1018 if (!test_bit(bit_nr, &page->flags))
1019 break;
1020 }
1021
1022 if (unlikely(signal_pending_state(state, current))) {
1023 ret = -EINTR;
1024 break;
1025 }
1026 }
1027
1028 finish_wait(q, wait);
1029
1030 if (thrashing) {
1031 if (!PageSwapBacked(page))
1032 delayacct_thrashing_end();
1033 psi_memstall_leave(&pflags);
1034 }
1035
1036 /*
1037 * A signal could leave PageWaiters set. Clearing it here if
1038 * !waitqueue_active would be possible (by open-coding finish_wait),
1039 * but still fail to catch it in the case of wait hash collision. We
1040 * already can fail to clear wait hash collision cases, so don't
1041 * bother with signals either.
1042 */
1043
1044 return ret;
1045}
1046
1047void wait_on_page_bit(struct page *page, int bit_nr)
1048{
1049 wait_queue_head_t *q = page_waitqueue(page);
1050 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1051}
1052EXPORT_SYMBOL(wait_on_page_bit);
1053
1054int wait_on_page_bit_killable(struct page *page, int bit_nr)
1055{
1056 wait_queue_head_t *q = page_waitqueue(page);
1057 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1058}
1059
1060/**
1061 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1062 * @page: Page defining the wait queue of interest
1063 * @waiter: Waiter to add to the queue
1064 *
1065 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1066 */
1067void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1068{
1069 wait_queue_head_t *q = page_waitqueue(page);
1070 unsigned long flags;
1071
1072 spin_lock_irqsave(&q->lock, flags);
1073 __add_wait_queue_entry_tail(q, waiter);
1074 SetPageWaiters(page);
1075 spin_unlock_irqrestore(&q->lock, flags);
1076}
1077EXPORT_SYMBOL_GPL(add_page_wait_queue);
1078
1079#ifndef clear_bit_unlock_is_negative_byte
1080
1081/*
1082 * PG_waiters is the high bit in the same byte as PG_lock.
1083 *
1084 * On x86 (and on many other architectures), we can clear PG_lock and
1085 * test the sign bit at the same time. But if the architecture does
1086 * not support that special operation, we just do this all by hand
1087 * instead.
1088 *
1089 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1090 * being cleared, but a memory barrier should be unneccssary since it is
1091 * in the same byte as PG_locked.
1092 */
1093static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1094{
1095 clear_bit_unlock(nr, mem);
1096 /* smp_mb__after_atomic(); */
1097 return test_bit(PG_waiters, mem);
1098}
1099
1100#endif
1101
1102/**
1103 * unlock_page - unlock a locked page
1104 * @page: the page
1105 *
1106 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1107 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1108 * mechanism between PageLocked pages and PageWriteback pages is shared.
1109 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1110 *
1111 * Note that this depends on PG_waiters being the sign bit in the byte
1112 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1113 * clear the PG_locked bit and test PG_waiters at the same time fairly
1114 * portably (architectures that do LL/SC can test any bit, while x86 can
1115 * test the sign bit).
1116 */
1117void unlock_page(struct page *page)
1118{
1119 BUILD_BUG_ON(PG_waiters != 7);
1120 page = compound_head(page);
1121 VM_BUG_ON_PAGE(!PageLocked(page), page);
1122 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1123 wake_up_page_bit(page, PG_locked);
1124}
1125EXPORT_SYMBOL(unlock_page);
1126
1127/**
1128 * end_page_writeback - end writeback against a page
1129 * @page: the page
1130 */
1131void end_page_writeback(struct page *page)
1132{
1133 /*
1134 * TestClearPageReclaim could be used here but it is an atomic
1135 * operation and overkill in this particular case. Failing to
1136 * shuffle a page marked for immediate reclaim is too mild to
1137 * justify taking an atomic operation penalty at the end of
1138 * ever page writeback.
1139 */
1140 if (PageReclaim(page)) {
1141 ClearPageReclaim(page);
1142 rotate_reclaimable_page(page);
1143 }
1144
1145 if (!test_clear_page_writeback(page))
1146 BUG();
1147
1148 smp_mb__after_atomic();
1149 wake_up_page(page, PG_writeback);
1150}
1151EXPORT_SYMBOL(end_page_writeback);
1152
1153/*
1154 * After completing I/O on a page, call this routine to update the page
1155 * flags appropriately
1156 */
1157void page_endio(struct page *page, bool is_write, int err)
1158{
1159 if (!is_write) {
1160 if (!err) {
1161 SetPageUptodate(page);
1162 } else {
1163 ClearPageUptodate(page);
1164 SetPageError(page);
1165 }
1166 unlock_page(page);
1167 } else {
1168 if (err) {
1169 struct address_space *mapping;
1170
1171 SetPageError(page);
1172 mapping = page_mapping(page);
1173 if (mapping)
1174 mapping_set_error(mapping, err);
1175 }
1176 end_page_writeback(page);
1177 }
1178}
1179EXPORT_SYMBOL_GPL(page_endio);
1180
1181/**
1182 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1183 * @__page: the page to lock
1184 */
1185void __lock_page(struct page *__page)
1186{
1187 struct page *page = compound_head(__page);
1188 wait_queue_head_t *q = page_waitqueue(page);
1189 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1190}
1191EXPORT_SYMBOL(__lock_page);
1192
1193int __lock_page_killable(struct page *__page)
1194{
1195 struct page *page = compound_head(__page);
1196 wait_queue_head_t *q = page_waitqueue(page);
1197 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1198}
1199EXPORT_SYMBOL_GPL(__lock_page_killable);
1200
1201/*
1202 * Return values:
1203 * 1 - page is locked; mmap_sem is still held.
1204 * 0 - page is not locked.
1205 * mmap_sem has been released (up_read()), unless flags had both
1206 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1207 * which case mmap_sem is still held.
1208 *
1209 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1210 * with the page locked and the mmap_sem unperturbed.
1211 */
1212int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1213 unsigned int flags)
1214{
1215 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1216 /*
1217 * CAUTION! In this case, mmap_sem is not released
1218 * even though return 0.
1219 */
1220 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1221 return 0;
1222
1223 up_read(&mm->mmap_sem);
1224 if (flags & FAULT_FLAG_KILLABLE)
1225 wait_on_page_locked_killable(page);
1226 else
1227 wait_on_page_locked(page);
1228 return 0;
1229 } else {
1230 if (flags & FAULT_FLAG_KILLABLE) {
1231 int ret;
1232
1233 ret = __lock_page_killable(page);
1234 if (ret) {
1235 up_read(&mm->mmap_sem);
1236 return 0;
1237 }
1238 } else
1239 __lock_page(page);
1240 return 1;
1241 }
1242}
1243
1244/**
1245 * page_cache_next_hole - find the next hole (not-present entry)
1246 * @mapping: mapping
1247 * @index: index
1248 * @max_scan: maximum range to search
1249 *
1250 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1251 * lowest indexed hole.
1252 *
1253 * Returns: the index of the hole if found, otherwise returns an index
1254 * outside of the set specified (in which case 'return - index >=
1255 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1256 * be returned.
1257 *
1258 * page_cache_next_hole may be called under rcu_read_lock. However,
1259 * like radix_tree_gang_lookup, this will not atomically search a
1260 * snapshot of the tree at a single point in time. For example, if a
1261 * hole is created at index 5, then subsequently a hole is created at
1262 * index 10, page_cache_next_hole covering both indexes may return 10
1263 * if called under rcu_read_lock.
1264 */
1265pgoff_t page_cache_next_hole(struct address_space *mapping,
1266 pgoff_t index, unsigned long max_scan)
1267{
1268 unsigned long i;
1269
1270 for (i = 0; i < max_scan; i++) {
1271 struct page *page;
1272
1273 page = radix_tree_lookup(&mapping->page_tree, index);
1274 if (!page || radix_tree_exceptional_entry(page))
1275 break;
1276 index++;
1277 if (index == 0)
1278 break;
1279 }
1280
1281 return index;
1282}
1283EXPORT_SYMBOL(page_cache_next_hole);
1284
1285/**
1286 * page_cache_prev_hole - find the prev hole (not-present entry)
1287 * @mapping: mapping
1288 * @index: index
1289 * @max_scan: maximum range to search
1290 *
1291 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1292 * the first hole.
1293 *
1294 * Returns: the index of the hole if found, otherwise returns an index
1295 * outside of the set specified (in which case 'index - return >=
1296 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1297 * will be returned.
1298 *
1299 * page_cache_prev_hole may be called under rcu_read_lock. However,
1300 * like radix_tree_gang_lookup, this will not atomically search a
1301 * snapshot of the tree at a single point in time. For example, if a
1302 * hole is created at index 10, then subsequently a hole is created at
1303 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1304 * called under rcu_read_lock.
1305 */
1306pgoff_t page_cache_prev_hole(struct address_space *mapping,
1307 pgoff_t index, unsigned long max_scan)
1308{
1309 unsigned long i;
1310
1311 for (i = 0; i < max_scan; i++) {
1312 struct page *page;
1313
1314 page = radix_tree_lookup(&mapping->page_tree, index);
1315 if (!page || radix_tree_exceptional_entry(page))
1316 break;
1317 index--;
1318 if (index == ULONG_MAX)
1319 break;
1320 }
1321
1322 return index;
1323}
1324EXPORT_SYMBOL(page_cache_prev_hole);
1325
1326/**
1327 * find_get_entry - find and get a page cache entry
1328 * @mapping: the address_space to search
1329 * @offset: the page cache index
1330 *
1331 * Looks up the page cache slot at @mapping & @offset. If there is a
1332 * page cache page, it is returned with an increased refcount.
1333 *
1334 * If the slot holds a shadow entry of a previously evicted page, or a
1335 * swap entry from shmem/tmpfs, it is returned.
1336 *
1337 * Otherwise, %NULL is returned.
1338 */
1339struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1340{
1341 void **pagep;
1342 struct page *head, *page;
1343
1344 rcu_read_lock();
1345repeat:
1346 page = NULL;
1347 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1348 if (pagep) {
1349 page = radix_tree_deref_slot(pagep);
1350 if (unlikely(!page))
1351 goto out;
1352 if (radix_tree_exception(page)) {
1353 if (radix_tree_deref_retry(page))
1354 goto repeat;
1355 /*
1356 * A shadow entry of a recently evicted page,
1357 * or a swap entry from shmem/tmpfs. Return
1358 * it without attempting to raise page count.
1359 */
1360 goto out;
1361 }
1362
1363 head = compound_head(page);
1364 if (!page_cache_get_speculative(head))
1365 goto repeat;
1366
1367 /* The page was split under us? */
1368 if (compound_head(page) != head) {
1369 put_page(head);
1370 goto repeat;
1371 }
1372
1373 /*
1374 * Has the page moved?
1375 * This is part of the lockless pagecache protocol. See
1376 * include/linux/pagemap.h for details.
1377 */
1378 if (unlikely(page != *pagep)) {
1379 put_page(head);
1380 goto repeat;
1381 }
1382 }
1383out:
1384 rcu_read_unlock();
1385
1386 return page;
1387}
1388EXPORT_SYMBOL(find_get_entry);
1389
1390/**
1391 * find_lock_entry - locate, pin and lock a page cache entry
1392 * @mapping: the address_space to search
1393 * @offset: the page cache index
1394 *
1395 * Looks up the page cache slot at @mapping & @offset. If there is a
1396 * page cache page, it is returned locked and with an increased
1397 * refcount.
1398 *
1399 * If the slot holds a shadow entry of a previously evicted page, or a
1400 * swap entry from shmem/tmpfs, it is returned.
1401 *
1402 * Otherwise, %NULL is returned.
1403 *
1404 * find_lock_entry() may sleep.
1405 */
1406struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1407{
1408 struct page *page;
1409
1410repeat:
1411 page = find_get_entry(mapping, offset);
1412 if (page && !radix_tree_exception(page)) {
1413 lock_page(page);
1414 /* Has the page been truncated? */
1415 if (unlikely(page_mapping(page) != mapping)) {
1416 unlock_page(page);
1417 put_page(page);
1418 goto repeat;
1419 }
1420 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1421 }
1422 return page;
1423}
1424EXPORT_SYMBOL(find_lock_entry);
1425
1426/**
1427 * pagecache_get_page - find and get a page reference
1428 * @mapping: the address_space to search
1429 * @offset: the page index
1430 * @fgp_flags: PCG flags
1431 * @gfp_mask: gfp mask to use for the page cache data page allocation
1432 *
1433 * Looks up the page cache slot at @mapping & @offset.
1434 *
1435 * PCG flags modify how the page is returned.
1436 *
1437 * @fgp_flags can be:
1438 *
1439 * - FGP_ACCESSED: the page will be marked accessed
1440 * - FGP_LOCK: Page is return locked
1441 * - FGP_CREAT: If page is not present then a new page is allocated using
1442 * @gfp_mask and added to the page cache and the VM's LRU
1443 * list. The page is returned locked and with an increased
1444 * refcount. Otherwise, NULL is returned.
1445 *
1446 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1447 * if the GFP flags specified for FGP_CREAT are atomic.
1448 *
1449 * If there is a page cache page, it is returned with an increased refcount.
1450 */
1451struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1452 int fgp_flags, gfp_t gfp_mask)
1453{
1454 struct page *page;
1455
1456repeat:
1457 page = find_get_entry(mapping, offset);
1458 if (radix_tree_exceptional_entry(page))
1459 page = NULL;
1460 if (!page)
1461 goto no_page;
1462
1463 if (fgp_flags & FGP_LOCK) {
1464 if (fgp_flags & FGP_NOWAIT) {
1465 if (!trylock_page(page)) {
1466 put_page(page);
1467 return NULL;
1468 }
1469 } else {
1470 lock_page(page);
1471 }
1472
1473 /* Has the page been truncated? */
1474 if (unlikely(page->mapping != mapping)) {
1475 unlock_page(page);
1476 put_page(page);
1477 goto repeat;
1478 }
1479 VM_BUG_ON_PAGE(page->index != offset, page);
1480 }
1481
1482 if (page && (fgp_flags & FGP_ACCESSED))
1483 mark_page_accessed(page);
1484
1485no_page:
1486 if (!page && (fgp_flags & FGP_CREAT)) {
1487 int err;
1488 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1489 gfp_mask |= __GFP_WRITE;
1490 if (fgp_flags & FGP_NOFS)
1491 gfp_mask &= ~__GFP_FS;
1492
1493 page = __page_cache_alloc(gfp_mask);
1494 if (!page)
1495 return NULL;
1496
1497 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1498 fgp_flags |= FGP_LOCK;
1499
1500 /* Init accessed so avoid atomic mark_page_accessed later */
1501 if (fgp_flags & FGP_ACCESSED)
1502 __SetPageReferenced(page);
1503
1504 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1505 if (unlikely(err)) {
1506 put_page(page);
1507 page = NULL;
1508 if (err == -EEXIST)
1509 goto repeat;
1510 }
1511 }
1512
1513 return page;
1514}
1515EXPORT_SYMBOL(pagecache_get_page);
1516
1517/**
1518 * find_get_entries - gang pagecache lookup
1519 * @mapping: The address_space to search
1520 * @start: The starting page cache index
1521 * @nr_entries: The maximum number of entries
1522 * @entries: Where the resulting entries are placed
1523 * @indices: The cache indices corresponding to the entries in @entries
1524 *
1525 * find_get_entries() will search for and return a group of up to
1526 * @nr_entries entries in the mapping. The entries are placed at
1527 * @entries. find_get_entries() takes a reference against any actual
1528 * pages it returns.
1529 *
1530 * The search returns a group of mapping-contiguous page cache entries
1531 * with ascending indexes. There may be holes in the indices due to
1532 * not-present pages.
1533 *
1534 * Any shadow entries of evicted pages, or swap entries from
1535 * shmem/tmpfs, are included in the returned array.
1536 *
1537 * find_get_entries() returns the number of pages and shadow entries
1538 * which were found.
1539 */
1540unsigned find_get_entries(struct address_space *mapping,
1541 pgoff_t start, unsigned int nr_entries,
1542 struct page **entries, pgoff_t *indices)
1543{
1544 void **slot;
1545 unsigned int ret = 0;
1546 struct radix_tree_iter iter;
1547
1548 if (!nr_entries)
1549 return 0;
1550
1551 rcu_read_lock();
1552 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1553 struct page *head, *page;
1554repeat:
1555 page = radix_tree_deref_slot(slot);
1556 if (unlikely(!page))
1557 continue;
1558 if (radix_tree_exception(page)) {
1559 if (radix_tree_deref_retry(page)) {
1560 slot = radix_tree_iter_retry(&iter);
1561 continue;
1562 }
1563 /*
1564 * A shadow entry of a recently evicted page, a swap
1565 * entry from shmem/tmpfs or a DAX entry. Return it
1566 * without attempting to raise page count.
1567 */
1568 goto export;
1569 }
1570
1571 head = compound_head(page);
1572 if (!page_cache_get_speculative(head))
1573 goto repeat;
1574
1575 /* The page was split under us? */
1576 if (compound_head(page) != head) {
1577 put_page(head);
1578 goto repeat;
1579 }
1580
1581 /* Has the page moved? */
1582 if (unlikely(page != *slot)) {
1583 put_page(head);
1584 goto repeat;
1585 }
1586export:
1587 indices[ret] = iter.index;
1588 entries[ret] = page;
1589 if (++ret == nr_entries)
1590 break;
1591 }
1592 rcu_read_unlock();
1593 return ret;
1594}
1595
1596/**
1597 * find_get_pages_range - gang pagecache lookup
1598 * @mapping: The address_space to search
1599 * @start: The starting page index
1600 * @end: The final page index (inclusive)
1601 * @nr_pages: The maximum number of pages
1602 * @pages: Where the resulting pages are placed
1603 *
1604 * find_get_pages_range() will search for and return a group of up to @nr_pages
1605 * pages in the mapping starting at index @start and up to index @end
1606 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1607 * a reference against the returned pages.
1608 *
1609 * The search returns a group of mapping-contiguous pages with ascending
1610 * indexes. There may be holes in the indices due to not-present pages.
1611 * We also update @start to index the next page for the traversal.
1612 *
1613 * find_get_pages_range() returns the number of pages which were found. If this
1614 * number is smaller than @nr_pages, the end of specified range has been
1615 * reached.
1616 */
1617unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1618 pgoff_t end, unsigned int nr_pages,
1619 struct page **pages)
1620{
1621 struct radix_tree_iter iter;
1622 void **slot;
1623 unsigned ret = 0;
1624
1625 if (unlikely(!nr_pages))
1626 return 0;
1627
1628 rcu_read_lock();
1629 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1630 struct page *head, *page;
1631
1632 if (iter.index > end)
1633 break;
1634repeat:
1635 page = radix_tree_deref_slot(slot);
1636 if (unlikely(!page))
1637 continue;
1638
1639 if (radix_tree_exception(page)) {
1640 if (radix_tree_deref_retry(page)) {
1641 slot = radix_tree_iter_retry(&iter);
1642 continue;
1643 }
1644 /*
1645 * A shadow entry of a recently evicted page,
1646 * or a swap entry from shmem/tmpfs. Skip
1647 * over it.
1648 */
1649 continue;
1650 }
1651
1652 head = compound_head(page);
1653 if (!page_cache_get_speculative(head))
1654 goto repeat;
1655
1656 /* The page was split under us? */
1657 if (compound_head(page) != head) {
1658 put_page(head);
1659 goto repeat;
1660 }
1661
1662 /* Has the page moved? */
1663 if (unlikely(page != *slot)) {
1664 put_page(head);
1665 goto repeat;
1666 }
1667
1668 pages[ret] = page;
1669 if (++ret == nr_pages) {
1670 *start = pages[ret - 1]->index + 1;
1671 goto out;
1672 }
1673 }
1674
1675 /*
1676 * We come here when there is no page beyond @end. We take care to not
1677 * overflow the index @start as it confuses some of the callers. This
1678 * breaks the iteration when there is page at index -1 but that is
1679 * already broken anyway.
1680 */
1681 if (end == (pgoff_t)-1)
1682 *start = (pgoff_t)-1;
1683 else
1684 *start = end + 1;
1685out:
1686 rcu_read_unlock();
1687
1688 return ret;
1689}
1690
1691/**
1692 * find_get_pages_contig - gang contiguous pagecache lookup
1693 * @mapping: The address_space to search
1694 * @index: The starting page index
1695 * @nr_pages: The maximum number of pages
1696 * @pages: Where the resulting pages are placed
1697 *
1698 * find_get_pages_contig() works exactly like find_get_pages(), except
1699 * that the returned number of pages are guaranteed to be contiguous.
1700 *
1701 * find_get_pages_contig() returns the number of pages which were found.
1702 */
1703unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1704 unsigned int nr_pages, struct page **pages)
1705{
1706 struct radix_tree_iter iter;
1707 void **slot;
1708 unsigned int ret = 0;
1709
1710 if (unlikely(!nr_pages))
1711 return 0;
1712
1713 rcu_read_lock();
1714 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1715 struct page *head, *page;
1716repeat:
1717 page = radix_tree_deref_slot(slot);
1718 /* The hole, there no reason to continue */
1719 if (unlikely(!page))
1720 break;
1721
1722 if (radix_tree_exception(page)) {
1723 if (radix_tree_deref_retry(page)) {
1724 slot = radix_tree_iter_retry(&iter);
1725 continue;
1726 }
1727 /*
1728 * A shadow entry of a recently evicted page,
1729 * or a swap entry from shmem/tmpfs. Stop
1730 * looking for contiguous pages.
1731 */
1732 break;
1733 }
1734
1735 head = compound_head(page);
1736 if (!page_cache_get_speculative(head))
1737 goto repeat;
1738
1739 /* The page was split under us? */
1740 if (compound_head(page) != head) {
1741 put_page(head);
1742 goto repeat;
1743 }
1744
1745 /* Has the page moved? */
1746 if (unlikely(page != *slot)) {
1747 put_page(head);
1748 goto repeat;
1749 }
1750
1751 /*
1752 * must check mapping and index after taking the ref.
1753 * otherwise we can get both false positives and false
1754 * negatives, which is just confusing to the caller.
1755 */
1756 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1757 put_page(page);
1758 break;
1759 }
1760
1761 pages[ret] = page;
1762 if (++ret == nr_pages)
1763 break;
1764 }
1765 rcu_read_unlock();
1766 return ret;
1767}
1768EXPORT_SYMBOL(find_get_pages_contig);
1769
1770/**
1771 * find_get_pages_tag - find and return pages that match @tag
1772 * @mapping: the address_space to search
1773 * @index: the starting page index
1774 * @tag: the tag index
1775 * @nr_pages: the maximum number of pages
1776 * @pages: where the resulting pages are placed
1777 *
1778 * Like find_get_pages, except we only return pages which are tagged with
1779 * @tag. We update @index to index the next page for the traversal.
1780 */
1781unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1782 int tag, unsigned int nr_pages, struct page **pages)
1783{
1784 struct radix_tree_iter iter;
1785 void **slot;
1786 unsigned ret = 0;
1787
1788 if (unlikely(!nr_pages))
1789 return 0;
1790
1791 rcu_read_lock();
1792 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1793 &iter, *index, tag) {
1794 struct page *head, *page;
1795repeat:
1796 page = radix_tree_deref_slot(slot);
1797 if (unlikely(!page))
1798 continue;
1799
1800 if (radix_tree_exception(page)) {
1801 if (radix_tree_deref_retry(page)) {
1802 slot = radix_tree_iter_retry(&iter);
1803 continue;
1804 }
1805 /*
1806 * A shadow entry of a recently evicted page.
1807 *
1808 * Those entries should never be tagged, but
1809 * this tree walk is lockless and the tags are
1810 * looked up in bulk, one radix tree node at a
1811 * time, so there is a sizable window for page
1812 * reclaim to evict a page we saw tagged.
1813 *
1814 * Skip over it.
1815 */
1816 continue;
1817 }
1818
1819 head = compound_head(page);
1820 if (!page_cache_get_speculative(head))
1821 goto repeat;
1822
1823 /* The page was split under us? */
1824 if (compound_head(page) != head) {
1825 put_page(head);
1826 goto repeat;
1827 }
1828
1829 /* Has the page moved? */
1830 if (unlikely(page != *slot)) {
1831 put_page(head);
1832 goto repeat;
1833 }
1834
1835 pages[ret] = page;
1836 if (++ret == nr_pages)
1837 break;
1838 }
1839
1840 rcu_read_unlock();
1841
1842 if (ret)
1843 *index = pages[ret - 1]->index + 1;
1844
1845 return ret;
1846}
1847EXPORT_SYMBOL(find_get_pages_tag);
1848
1849/**
1850 * find_get_entries_tag - find and return entries that match @tag
1851 * @mapping: the address_space to search
1852 * @start: the starting page cache index
1853 * @tag: the tag index
1854 * @nr_entries: the maximum number of entries
1855 * @entries: where the resulting entries are placed
1856 * @indices: the cache indices corresponding to the entries in @entries
1857 *
1858 * Like find_get_entries, except we only return entries which are tagged with
1859 * @tag.
1860 */
1861unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1862 int tag, unsigned int nr_entries,
1863 struct page **entries, pgoff_t *indices)
1864{
1865 void **slot;
1866 unsigned int ret = 0;
1867 struct radix_tree_iter iter;
1868
1869 if (!nr_entries)
1870 return 0;
1871
1872 rcu_read_lock();
1873 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1874 &iter, start, tag) {
1875 struct page *head, *page;
1876repeat:
1877 page = radix_tree_deref_slot(slot);
1878 if (unlikely(!page))
1879 continue;
1880 if (radix_tree_exception(page)) {
1881 if (radix_tree_deref_retry(page)) {
1882 slot = radix_tree_iter_retry(&iter);
1883 continue;
1884 }
1885
1886 /*
1887 * A shadow entry of a recently evicted page, a swap
1888 * entry from shmem/tmpfs or a DAX entry. Return it
1889 * without attempting to raise page count.
1890 */
1891 goto export;
1892 }
1893
1894 head = compound_head(page);
1895 if (!page_cache_get_speculative(head))
1896 goto repeat;
1897
1898 /* The page was split under us? */
1899 if (compound_head(page) != head) {
1900 put_page(head);
1901 goto repeat;
1902 }
1903
1904 /* Has the page moved? */
1905 if (unlikely(page != *slot)) {
1906 put_page(head);
1907 goto repeat;
1908 }
1909export:
1910 indices[ret] = iter.index;
1911 entries[ret] = page;
1912 if (++ret == nr_entries)
1913 break;
1914 }
1915 rcu_read_unlock();
1916 return ret;
1917}
1918EXPORT_SYMBOL(find_get_entries_tag);
1919
1920/*
1921 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1922 * a _large_ part of the i/o request. Imagine the worst scenario:
1923 *
1924 * ---R__________________________________________B__________
1925 * ^ reading here ^ bad block(assume 4k)
1926 *
1927 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1928 * => failing the whole request => read(R) => read(R+1) =>
1929 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1930 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1931 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1932 *
1933 * It is going insane. Fix it by quickly scaling down the readahead size.
1934 */
1935static void shrink_readahead_size_eio(struct file *filp,
1936 struct file_ra_state *ra)
1937{
1938 ra->ra_pages /= 4;
1939}
1940
1941/**
1942 * generic_file_buffered_read - generic file read routine
1943 * @iocb: the iocb to read
1944 * @iter: data destination
1945 * @written: already copied
1946 *
1947 * This is a generic file read routine, and uses the
1948 * mapping->a_ops->readpage() function for the actual low-level stuff.
1949 *
1950 * This is really ugly. But the goto's actually try to clarify some
1951 * of the logic when it comes to error handling etc.
1952 */
1953static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1954 struct iov_iter *iter, ssize_t written)
1955{
1956 struct file *filp = iocb->ki_filp;
1957 struct address_space *mapping = filp->f_mapping;
1958 struct inode *inode = mapping->host;
1959 struct file_ra_state *ra = &filp->f_ra;
1960 loff_t *ppos = &iocb->ki_pos;
1961 pgoff_t index;
1962 pgoff_t last_index;
1963 pgoff_t prev_index;
1964 unsigned long offset; /* offset into pagecache page */
1965 unsigned int prev_offset;
1966 int error = 0;
1967
1968 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1969 return 0;
1970 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1971
1972 index = *ppos >> PAGE_SHIFT;
1973 prev_index = ra->prev_pos >> PAGE_SHIFT;
1974 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1975 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1976 offset = *ppos & ~PAGE_MASK;
1977
1978 for (;;) {
1979 struct page *page;
1980 pgoff_t end_index;
1981 loff_t isize;
1982 unsigned long nr, ret;
1983 ktime_t event_ts;
1984
1985 event_ts = 0;
1986 cond_resched();
1987find_page:
1988 if (fatal_signal_pending(current)) {
1989 error = -EINTR;
1990 goto out;
1991 }
1992
1993 page = find_get_page(mapping, index);
1994 if (!page) {
1995 if (iocb->ki_flags & IOCB_NOWAIT)
1996 goto would_block;
1997 mm_event_start(&event_ts);
1998 page_cache_sync_readahead(mapping,
1999 ra, filp,
2000 index, last_index - index);
2001 page = find_get_page(mapping, index);
2002 if (unlikely(page == NULL))
2003 goto no_cached_page;
2004 }
2005 if (PageReadahead(page)) {
2006 page_cache_async_readahead(mapping,
2007 ra, filp, page,
2008 index, last_index - index);
2009 }
2010 if (!PageUptodate(page)) {
2011 if (iocb->ki_flags & IOCB_NOWAIT) {
2012 put_page(page);
2013 goto would_block;
2014 }
2015
2016 /*
2017 * See comment in do_read_cache_page on why
2018 * wait_on_page_locked is used to avoid unnecessarily
2019 * serialisations and why it's safe.
2020 */
2021 error = wait_on_page_locked_killable(page);
2022 if (unlikely(error))
2023 goto readpage_error;
2024 if (PageUptodate(page))
2025 goto page_ok;
2026
2027 if (inode->i_blkbits == PAGE_SHIFT ||
2028 !mapping->a_ops->is_partially_uptodate)
2029 goto page_not_up_to_date;
2030 /* pipes can't handle partially uptodate pages */
2031 if (unlikely(iter->type & ITER_PIPE))
2032 goto page_not_up_to_date;
2033 if (!trylock_page(page))
2034 goto page_not_up_to_date;
2035 /* Did it get truncated before we got the lock? */
2036 if (!page->mapping)
2037 goto page_not_up_to_date_locked;
2038 if (!mapping->a_ops->is_partially_uptodate(page,
2039 offset, iter->count))
2040 goto page_not_up_to_date_locked;
2041 unlock_page(page);
2042 }
2043page_ok:
2044 if (event_ts != 0)
2045 mm_event_end(MM_READ_IO, event_ts);
2046 /*
2047 * i_size must be checked after we know the page is Uptodate.
2048 *
2049 * Checking i_size after the check allows us to calculate
2050 * the correct value for "nr", which means the zero-filled
2051 * part of the page is not copied back to userspace (unless
2052 * another truncate extends the file - this is desired though).
2053 */
2054
2055 isize = i_size_read(inode);
2056 end_index = (isize - 1) >> PAGE_SHIFT;
2057 if (unlikely(!isize || index > end_index)) {
2058 put_page(page);
2059 goto out;
2060 }
2061
2062 /* nr is the maximum number of bytes to copy from this page */
2063 nr = PAGE_SIZE;
2064 if (index == end_index) {
2065 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2066 if (nr <= offset) {
2067 put_page(page);
2068 goto out;
2069 }
2070 }
2071 nr = nr - offset;
2072
2073 /* If users can be writing to this page using arbitrary
2074 * virtual addresses, take care about potential aliasing
2075 * before reading the page on the kernel side.
2076 */
2077 if (mapping_writably_mapped(mapping))
2078 flush_dcache_page(page);
2079
2080 /*
2081 * When a sequential read accesses a page several times,
2082 * only mark it as accessed the first time.
2083 */
2084 if (prev_index != index || offset != prev_offset)
2085 mark_page_accessed(page);
2086 prev_index = index;
2087
2088 /*
2089 * Ok, we have the page, and it's up-to-date, so
2090 * now we can copy it to user space...
2091 */
2092
2093 ret = copy_page_to_iter(page, offset, nr, iter);
2094 offset += ret;
2095 index += offset >> PAGE_SHIFT;
2096 offset &= ~PAGE_MASK;
2097 prev_offset = offset;
2098
2099 put_page(page);
2100 written += ret;
2101 if (!iov_iter_count(iter))
2102 goto out;
2103 if (ret < nr) {
2104 error = -EFAULT;
2105 goto out;
2106 }
2107 continue;
2108
2109page_not_up_to_date:
2110 /* Get exclusive access to the page ... */
2111 error = lock_page_killable(page);
2112 if (unlikely(error))
2113 goto readpage_error;
2114
2115page_not_up_to_date_locked:
2116 /* Did it get truncated before we got the lock? */
2117 if (!page->mapping) {
2118 unlock_page(page);
2119 put_page(page);
2120 continue;
2121 }
2122
2123 /* Did somebody else fill it already? */
2124 if (PageUptodate(page)) {
2125 unlock_page(page);
2126 goto page_ok;
2127 }
2128
2129readpage:
2130 /*
2131 * A previous I/O error may have been due to temporary
2132 * failures, eg. multipath errors.
2133 * PG_error will be set again if readpage fails.
2134 */
2135 ClearPageError(page);
2136 /* Start the actual read. The read will unlock the page. */
2137 error = mapping->a_ops->readpage(filp, page);
2138
2139 if (unlikely(error)) {
2140 if (error == AOP_TRUNCATED_PAGE) {
2141 put_page(page);
2142 error = 0;
2143 goto find_page;
2144 }
2145 goto readpage_error;
2146 }
2147
2148 if (!PageUptodate(page)) {
2149 error = lock_page_killable(page);
2150 if (unlikely(error))
2151 goto readpage_error;
2152 if (!PageUptodate(page)) {
2153 if (page->mapping == NULL) {
2154 /*
2155 * invalidate_mapping_pages got it
2156 */
2157 unlock_page(page);
2158 put_page(page);
2159 goto find_page;
2160 }
2161 unlock_page(page);
2162 shrink_readahead_size_eio(filp, ra);
2163 error = -EIO;
2164 goto readpage_error;
2165 }
2166 unlock_page(page);
2167 }
2168
2169 goto page_ok;
2170
2171readpage_error:
2172 /* UHHUH! A synchronous read error occurred. Report it */
2173 put_page(page);
2174 goto out;
2175
2176no_cached_page:
2177 /*
2178 * Ok, it wasn't cached, so we need to create a new
2179 * page..
2180 */
2181 page = page_cache_alloc_cold(mapping);
2182 if (!page) {
2183 error = -ENOMEM;
2184 goto out;
2185 }
2186 error = add_to_page_cache_lru(page, mapping, index,
2187 mapping_gfp_constraint(mapping, GFP_KERNEL));
2188 if (error) {
2189 put_page(page);
2190 if (error == -EEXIST) {
2191 error = 0;
2192 goto find_page;
2193 }
2194 goto out;
2195 }
2196 goto readpage;
2197 }
2198
2199would_block:
2200 error = -EAGAIN;
2201out:
2202 ra->prev_pos = prev_index;
2203 ra->prev_pos <<= PAGE_SHIFT;
2204 ra->prev_pos |= prev_offset;
2205
2206 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2207 file_accessed(filp);
2208 return written ? written : error;
2209}
2210
2211/**
2212 * generic_file_read_iter - generic filesystem read routine
2213 * @iocb: kernel I/O control block
2214 * @iter: destination for the data read
2215 *
2216 * This is the "read_iter()" routine for all filesystems
2217 * that can use the page cache directly.
2218 */
2219ssize_t
2220generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2221{
2222 size_t count = iov_iter_count(iter);
2223 ssize_t retval = 0;
2224
2225 if (!count)
2226 goto out; /* skip atime */
2227
2228 if (iocb->ki_flags & IOCB_DIRECT) {
2229 struct file *file = iocb->ki_filp;
2230 struct address_space *mapping = file->f_mapping;
2231 struct inode *inode = mapping->host;
2232 loff_t size;
2233
2234 size = i_size_read(inode);
2235 if (iocb->ki_flags & IOCB_NOWAIT) {
2236 if (filemap_range_has_page(mapping, iocb->ki_pos,
2237 iocb->ki_pos + count - 1))
2238 return -EAGAIN;
2239 } else {
2240 retval = filemap_write_and_wait_range(mapping,
2241 iocb->ki_pos,
2242 iocb->ki_pos + count - 1);
2243 if (retval < 0)
2244 goto out;
2245 }
2246
2247 file_accessed(file);
2248
2249 retval = mapping->a_ops->direct_IO(iocb, iter);
2250 if (retval >= 0) {
2251 iocb->ki_pos += retval;
2252 count -= retval;
2253 }
2254 iov_iter_revert(iter, count - iov_iter_count(iter));
2255
2256 /*
2257 * Btrfs can have a short DIO read if we encounter
2258 * compressed extents, so if there was an error, or if
2259 * we've already read everything we wanted to, or if
2260 * there was a short read because we hit EOF, go ahead
2261 * and return. Otherwise fallthrough to buffered io for
2262 * the rest of the read. Buffered reads will not work for
2263 * DAX files, so don't bother trying.
2264 */
2265 if (retval < 0 || !count || iocb->ki_pos >= size ||
2266 IS_DAX(inode))
2267 goto out;
2268 }
2269
2270 retval = generic_file_buffered_read(iocb, iter, retval);
2271out:
2272 return retval;
2273}
2274EXPORT_SYMBOL(generic_file_read_iter);
2275
2276#ifdef CONFIG_MMU
2277/**
2278 * page_cache_read - adds requested page to the page cache if not already there
2279 * @file: file to read
2280 * @offset: page index
2281 * @gfp_mask: memory allocation flags
2282 *
2283 * This adds the requested page to the page cache if it isn't already there,
2284 * and schedules an I/O to read in its contents from disk.
2285 */
2286static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2287{
2288 struct address_space *mapping = file->f_mapping;
2289 struct page *page;
2290 int ret;
2291
2292 do {
2293 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2294 if (!page)
2295 return -ENOMEM;
2296
2297 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2298 if (ret == 0)
2299 ret = mapping->a_ops->readpage(file, page);
2300 else if (ret == -EEXIST)
2301 ret = 0; /* losing race to add is OK */
2302
2303 put_page(page);
2304
2305 } while (ret == AOP_TRUNCATED_PAGE);
2306
2307 return ret;
2308}
2309
2310#define MMAP_LOTSAMISS (100)
2311
2312/*
2313 * Synchronous readahead happens when we don't even find
2314 * a page in the page cache at all.
2315 */
2316static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2317 struct file_ra_state *ra,
2318 struct file *file,
2319 pgoff_t offset)
2320{
2321 struct address_space *mapping = file->f_mapping;
2322
2323 /* If we don't want any read-ahead, don't bother */
2324 if (vma->vm_flags & VM_RAND_READ)
2325 return;
2326 if (!ra->ra_pages)
2327 return;
2328
2329 if (vma->vm_flags & VM_SEQ_READ) {
2330 page_cache_sync_readahead(mapping, ra, file, offset,
2331 ra->ra_pages);
2332 return;
2333 }
2334
2335 /* Avoid banging the cache line if not needed */
2336 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2337 ra->mmap_miss++;
2338
2339 /*
2340 * Do we miss much more than hit in this file? If so,
2341 * stop bothering with read-ahead. It will only hurt.
2342 */
2343 if (ra->mmap_miss > MMAP_LOTSAMISS)
2344 return;
2345
2346 /*
2347 * mmap read-around
2348 */
2349 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2350 ra->size = ra->ra_pages;
2351 ra->async_size = ra->ra_pages / 4;
2352 ra_submit(ra, mapping, file);
2353}
2354
2355/*
2356 * Asynchronous readahead happens when we find the page and PG_readahead,
2357 * so we want to possibly extend the readahead further..
2358 */
2359static void do_async_mmap_readahead(struct vm_area_struct *vma,
2360 struct file_ra_state *ra,
2361 struct file *file,
2362 struct page *page,
2363 pgoff_t offset)
2364{
2365 struct address_space *mapping = file->f_mapping;
2366
2367 /* If we don't want any read-ahead, don't bother */
2368 if (vma->vm_flags & VM_RAND_READ)
2369 return;
2370 if (ra->mmap_miss > 0)
2371 ra->mmap_miss--;
2372 if (PageReadahead(page))
2373 page_cache_async_readahead(mapping, ra, file,
2374 page, offset, ra->ra_pages);
2375}
2376
2377/**
2378 * filemap_fault - read in file data for page fault handling
2379 * @vmf: struct vm_fault containing details of the fault
2380 *
2381 * filemap_fault() is invoked via the vma operations vector for a
2382 * mapped memory region to read in file data during a page fault.
2383 *
2384 * The goto's are kind of ugly, but this streamlines the normal case of having
2385 * it in the page cache, and handles the special cases reasonably without
2386 * having a lot of duplicated code.
2387 *
2388 * vma->vm_mm->mmap_sem must be held on entry.
2389 *
2390 * If our return value has VM_FAULT_RETRY set, it's because
2391 * lock_page_or_retry() returned 0.
2392 * The mmap_sem has usually been released in this case.
2393 * See __lock_page_or_retry() for the exception.
2394 *
2395 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2396 * has not been released.
2397 *
2398 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2399 */
2400int filemap_fault(struct vm_fault *vmf)
2401{
2402 int error;
2403 struct file *file = vmf->vma->vm_file;
2404 struct address_space *mapping = file->f_mapping;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct inode *inode = mapping->host;
2407 pgoff_t offset = vmf->pgoff;
2408 pgoff_t max_off;
2409 struct page *page;
2410 int ret = 0;
2411
2412 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2413 if (unlikely(offset >= max_off))
2414 return VM_FAULT_SIGBUS;
2415
2416 /*
2417 * Do we have something in the page cache already?
2418 */
2419 page = find_get_page(mapping, offset);
2420 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2421 /*
2422 * We found the page, so try async readahead before
2423 * waiting for the lock.
2424 */
2425 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2426 } else if (!page) {
2427 /* No page in the page cache at all */
2428 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2429 count_vm_event(PGMAJFAULT);
2430 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2431 ret = VM_FAULT_MAJOR;
2432retry_find:
2433 page = find_get_page(mapping, offset);
2434 if (!page)
2435 goto no_cached_page;
2436 }
2437
2438 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2439 put_page(page);
2440 return ret | VM_FAULT_RETRY;
2441 }
2442
2443 /* Did it get truncated? */
2444 if (unlikely(page->mapping != mapping)) {
2445 unlock_page(page);
2446 put_page(page);
2447 goto retry_find;
2448 }
2449 VM_BUG_ON_PAGE(page->index != offset, page);
2450
2451 /*
2452 * We have a locked page in the page cache, now we need to check
2453 * that it's up-to-date. If not, it is going to be due to an error.
2454 */
2455 if (unlikely(!PageUptodate(page)))
2456 goto page_not_uptodate;
2457
2458 /*
2459 * Found the page and have a reference on it.
2460 * We must recheck i_size under page lock.
2461 */
2462 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2463 if (unlikely(offset >= max_off)) {
2464 unlock_page(page);
2465 put_page(page);
2466 return VM_FAULT_SIGBUS;
2467 }
2468
2469 vmf->page = page;
2470 return ret | VM_FAULT_LOCKED;
2471
2472no_cached_page:
2473 /*
2474 * We're only likely to ever get here if MADV_RANDOM is in
2475 * effect.
2476 */
2477 error = page_cache_read(file, offset, vmf->gfp_mask);
2478
2479 /*
2480 * The page we want has now been added to the page cache.
2481 * In the unlikely event that someone removed it in the
2482 * meantime, we'll just come back here and read it again.
2483 */
2484 if (error >= 0)
2485 goto retry_find;
2486
2487 /*
2488 * An error return from page_cache_read can result if the
2489 * system is low on memory, or a problem occurs while trying
2490 * to schedule I/O.
2491 */
2492 if (error == -ENOMEM)
2493 return VM_FAULT_OOM;
2494 return VM_FAULT_SIGBUS;
2495
2496page_not_uptodate:
2497 /*
2498 * Umm, take care of errors if the page isn't up-to-date.
2499 * Try to re-read it _once_. We do this synchronously,
2500 * because there really aren't any performance issues here
2501 * and we need to check for errors.
2502 */
2503 ClearPageError(page);
2504 error = mapping->a_ops->readpage(file, page);
2505 if (!error) {
2506 wait_on_page_locked(page);
2507 if (!PageUptodate(page))
2508 error = -EIO;
2509 }
2510 put_page(page);
2511
2512 if (!error || error == AOP_TRUNCATED_PAGE)
2513 goto retry_find;
2514
2515 /* Things didn't work out. Return zero to tell the mm layer so. */
2516 shrink_readahead_size_eio(file, ra);
2517 return VM_FAULT_SIGBUS;
2518}
2519EXPORT_SYMBOL(filemap_fault);
2520
2521void filemap_map_pages(struct vm_fault *vmf,
2522 pgoff_t start_pgoff, pgoff_t end_pgoff)
2523{
2524 struct radix_tree_iter iter;
2525 void **slot;
2526 struct file *file = vmf->vma->vm_file;
2527 struct address_space *mapping = file->f_mapping;
2528 pgoff_t last_pgoff = start_pgoff;
2529 unsigned long max_idx;
2530 struct page *head, *page;
2531
2532 rcu_read_lock();
2533 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2534 start_pgoff) {
2535 if (iter.index > end_pgoff)
2536 break;
2537repeat:
2538 page = radix_tree_deref_slot(slot);
2539 if (unlikely(!page))
2540 goto next;
2541 if (radix_tree_exception(page)) {
2542 if (radix_tree_deref_retry(page)) {
2543 slot = radix_tree_iter_retry(&iter);
2544 continue;
2545 }
2546 goto next;
2547 }
2548
2549 head = compound_head(page);
2550 if (!page_cache_get_speculative(head))
2551 goto repeat;
2552
2553 /* The page was split under us? */
2554 if (compound_head(page) != head) {
2555 put_page(head);
2556 goto repeat;
2557 }
2558
2559 /* Has the page moved? */
2560 if (unlikely(page != *slot)) {
2561 put_page(head);
2562 goto repeat;
2563 }
2564
2565 if (!PageUptodate(page) ||
2566 PageReadahead(page) ||
2567 PageHWPoison(page))
2568 goto skip;
2569 if (!trylock_page(page))
2570 goto skip;
2571
2572 if (page->mapping != mapping || !PageUptodate(page))
2573 goto unlock;
2574
2575 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2576 if (page->index >= max_idx)
2577 goto unlock;
2578
2579 if (file->f_ra.mmap_miss > 0)
2580 file->f_ra.mmap_miss--;
2581
2582 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2583 if (vmf->pte)
2584 vmf->pte += iter.index - last_pgoff;
2585 last_pgoff = iter.index;
2586 if (alloc_set_pte(vmf, NULL, page))
2587 goto unlock;
2588 unlock_page(page);
2589 goto next;
2590unlock:
2591 unlock_page(page);
2592skip:
2593 put_page(page);
2594next:
2595 /* Huge page is mapped? No need to proceed. */
2596 if (pmd_trans_huge(*vmf->pmd))
2597 break;
2598 if (iter.index == end_pgoff)
2599 break;
2600 }
2601 rcu_read_unlock();
2602}
2603EXPORT_SYMBOL(filemap_map_pages);
2604
2605int filemap_page_mkwrite(struct vm_fault *vmf)
2606{
2607 struct page *page = vmf->page;
2608 struct inode *inode = file_inode(vmf->vma->vm_file);
2609 int ret = VM_FAULT_LOCKED;
2610
2611 sb_start_pagefault(inode->i_sb);
2612 file_update_time(vmf->vma->vm_file);
2613 lock_page(page);
2614 if (page->mapping != inode->i_mapping) {
2615 unlock_page(page);
2616 ret = VM_FAULT_NOPAGE;
2617 goto out;
2618 }
2619 /*
2620 * We mark the page dirty already here so that when freeze is in
2621 * progress, we are guaranteed that writeback during freezing will
2622 * see the dirty page and writeprotect it again.
2623 */
2624 set_page_dirty(page);
2625 wait_for_stable_page(page);
2626out:
2627 sb_end_pagefault(inode->i_sb);
2628 return ret;
2629}
2630EXPORT_SYMBOL(filemap_page_mkwrite);
2631
2632const struct vm_operations_struct generic_file_vm_ops = {
2633 .fault = filemap_fault,
2634 .map_pages = filemap_map_pages,
2635 .page_mkwrite = filemap_page_mkwrite,
2636};
2637
2638/* This is used for a general mmap of a disk file */
2639
2640int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2641{
2642 struct address_space *mapping = file->f_mapping;
2643
2644 if (!mapping->a_ops->readpage)
2645 return -ENOEXEC;
2646 file_accessed(file);
2647 vma->vm_ops = &generic_file_vm_ops;
2648 return 0;
2649}
2650
2651/*
2652 * This is for filesystems which do not implement ->writepage.
2653 */
2654int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2655{
2656 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2657 return -EINVAL;
2658 return generic_file_mmap(file, vma);
2659}
2660#else
2661int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2662{
2663 return -ENOSYS;
2664}
2665int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2666{
2667 return -ENOSYS;
2668}
2669#endif /* CONFIG_MMU */
2670
2671EXPORT_SYMBOL(generic_file_mmap);
2672EXPORT_SYMBOL(generic_file_readonly_mmap);
2673
2674static struct page *wait_on_page_read(struct page *page)
2675{
2676 if (!IS_ERR(page)) {
2677 wait_on_page_locked(page);
2678 if (!PageUptodate(page)) {
2679 put_page(page);
2680 page = ERR_PTR(-EIO);
2681 }
2682 }
2683 return page;
2684}
2685
2686static struct page *do_read_cache_page(struct address_space *mapping,
2687 pgoff_t index,
2688 int (*filler)(struct file *, struct page *),
2689 void *data,
2690 gfp_t gfp)
2691{
2692 struct page *page;
2693 int err;
2694repeat:
2695 page = find_get_page(mapping, index);
2696 if (!page) {
2697 page = __page_cache_alloc(gfp | __GFP_COLD);
2698 if (!page)
2699 return ERR_PTR(-ENOMEM);
2700 err = add_to_page_cache_lru(page, mapping, index, gfp);
2701 if (unlikely(err)) {
2702 put_page(page);
2703 if (err == -EEXIST)
2704 goto repeat;
2705 /* Presumably ENOMEM for radix tree node */
2706 return ERR_PTR(err);
2707 }
2708
2709filler:
2710 err = filler(data, page);
2711 if (err < 0) {
2712 put_page(page);
2713 return ERR_PTR(err);
2714 }
2715
2716 page = wait_on_page_read(page);
2717 if (IS_ERR(page))
2718 return page;
2719 goto out;
2720 }
2721 if (PageUptodate(page))
2722 goto out;
2723
2724 /*
2725 * Page is not up to date and may be locked due one of the following
2726 * case a: Page is being filled and the page lock is held
2727 * case b: Read/write error clearing the page uptodate status
2728 * case c: Truncation in progress (page locked)
2729 * case d: Reclaim in progress
2730 *
2731 * Case a, the page will be up to date when the page is unlocked.
2732 * There is no need to serialise on the page lock here as the page
2733 * is pinned so the lock gives no additional protection. Even if the
2734 * the page is truncated, the data is still valid if PageUptodate as
2735 * it's a race vs truncate race.
2736 * Case b, the page will not be up to date
2737 * Case c, the page may be truncated but in itself, the data may still
2738 * be valid after IO completes as it's a read vs truncate race. The
2739 * operation must restart if the page is not uptodate on unlock but
2740 * otherwise serialising on page lock to stabilise the mapping gives
2741 * no additional guarantees to the caller as the page lock is
2742 * released before return.
2743 * Case d, similar to truncation. If reclaim holds the page lock, it
2744 * will be a race with remove_mapping that determines if the mapping
2745 * is valid on unlock but otherwise the data is valid and there is
2746 * no need to serialise with page lock.
2747 *
2748 * As the page lock gives no additional guarantee, we optimistically
2749 * wait on the page to be unlocked and check if it's up to date and
2750 * use the page if it is. Otherwise, the page lock is required to
2751 * distinguish between the different cases. The motivation is that we
2752 * avoid spurious serialisations and wakeups when multiple processes
2753 * wait on the same page for IO to complete.
2754 */
2755 wait_on_page_locked(page);
2756 if (PageUptodate(page))
2757 goto out;
2758
2759 /* Distinguish between all the cases under the safety of the lock */
2760 lock_page(page);
2761
2762 /* Case c or d, restart the operation */
2763 if (!page->mapping) {
2764 unlock_page(page);
2765 put_page(page);
2766 goto repeat;
2767 }
2768
2769 /* Someone else locked and filled the page in a very small window */
2770 if (PageUptodate(page)) {
2771 unlock_page(page);
2772 goto out;
2773 }
2774 goto filler;
2775
2776out:
2777 mark_page_accessed(page);
2778 return page;
2779}
2780
2781/**
2782 * read_cache_page - read into page cache, fill it if needed
2783 * @mapping: the page's address_space
2784 * @index: the page index
2785 * @filler: function to perform the read
2786 * @data: first arg to filler(data, page) function, often left as NULL
2787 *
2788 * Read into the page cache. If a page already exists, and PageUptodate() is
2789 * not set, try to fill the page and wait for it to become unlocked.
2790 *
2791 * If the page does not get brought uptodate, return -EIO.
2792 */
2793struct page *read_cache_page(struct address_space *mapping,
2794 pgoff_t index,
2795 int (*filler)(struct file *, struct page *),
2796 void *data)
2797{
2798 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2799}
2800EXPORT_SYMBOL(read_cache_page);
2801
2802/**
2803 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2804 * @mapping: the page's address_space
2805 * @index: the page index
2806 * @gfp: the page allocator flags to use if allocating
2807 *
2808 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2809 * any new page allocations done using the specified allocation flags.
2810 *
2811 * If the page does not get brought uptodate, return -EIO.
2812 */
2813struct page *read_cache_page_gfp(struct address_space *mapping,
2814 pgoff_t index,
2815 gfp_t gfp)
2816{
2817 filler_t *filler = mapping->a_ops->readpage;
2818
2819 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2820}
2821EXPORT_SYMBOL(read_cache_page_gfp);
2822
2823/*
2824 * Performs necessary checks before doing a write
2825 *
2826 * Can adjust writing position or amount of bytes to write.
2827 * Returns appropriate error code that caller should return or
2828 * zero in case that write should be allowed.
2829 */
2830inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2831{
2832 struct file *file = iocb->ki_filp;
2833 struct inode *inode = file->f_mapping->host;
2834 unsigned long limit = rlimit(RLIMIT_FSIZE);
2835 loff_t pos;
2836
2837 if (!iov_iter_count(from))
2838 return 0;
2839
2840 /* FIXME: this is for backwards compatibility with 2.4 */
2841 if (iocb->ki_flags & IOCB_APPEND)
2842 iocb->ki_pos = i_size_read(inode);
2843
2844 pos = iocb->ki_pos;
2845
2846 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2847 return -EINVAL;
2848
2849 if (limit != RLIM_INFINITY) {
2850 if (iocb->ki_pos >= limit) {
2851 send_sig(SIGXFSZ, current, 0);
2852 return -EFBIG;
2853 }
2854 iov_iter_truncate(from, limit - (unsigned long)pos);
2855 }
2856
2857 /*
2858 * LFS rule
2859 */
2860 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2861 !(file->f_flags & O_LARGEFILE))) {
2862 if (pos >= MAX_NON_LFS)
2863 return -EFBIG;
2864 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2865 }
2866
2867 /*
2868 * Are we about to exceed the fs block limit ?
2869 *
2870 * If we have written data it becomes a short write. If we have
2871 * exceeded without writing data we send a signal and return EFBIG.
2872 * Linus frestrict idea will clean these up nicely..
2873 */
2874 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2875 return -EFBIG;
2876
2877 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2878 return iov_iter_count(from);
2879}
2880EXPORT_SYMBOL(generic_write_checks);
2881
2882int pagecache_write_begin(struct file *file, struct address_space *mapping,
2883 loff_t pos, unsigned len, unsigned flags,
2884 struct page **pagep, void **fsdata)
2885{
2886 const struct address_space_operations *aops = mapping->a_ops;
2887
2888 return aops->write_begin(file, mapping, pos, len, flags,
2889 pagep, fsdata);
2890}
2891EXPORT_SYMBOL(pagecache_write_begin);
2892
2893int pagecache_write_end(struct file *file, struct address_space *mapping,
2894 loff_t pos, unsigned len, unsigned copied,
2895 struct page *page, void *fsdata)
2896{
2897 const struct address_space_operations *aops = mapping->a_ops;
2898
2899 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2900}
2901EXPORT_SYMBOL(pagecache_write_end);
2902
2903ssize_t
2904generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2905{
2906 struct file *file = iocb->ki_filp;
2907 struct address_space *mapping = file->f_mapping;
2908 struct inode *inode = mapping->host;
2909 loff_t pos = iocb->ki_pos;
2910 ssize_t written;
2911 size_t write_len;
2912 pgoff_t end;
2913
2914 write_len = iov_iter_count(from);
2915 end = (pos + write_len - 1) >> PAGE_SHIFT;
2916
2917 if (iocb->ki_flags & IOCB_NOWAIT) {
2918 /* If there are pages to writeback, return */
2919 if (filemap_range_has_page(inode->i_mapping, pos,
2920 pos + iov_iter_count(from)))
2921 return -EAGAIN;
2922 } else {
2923 written = filemap_write_and_wait_range(mapping, pos,
2924 pos + write_len - 1);
2925 if (written)
2926 goto out;
2927 }
2928
2929 /*
2930 * After a write we want buffered reads to be sure to go to disk to get
2931 * the new data. We invalidate clean cached page from the region we're
2932 * about to write. We do this *before* the write so that we can return
2933 * without clobbering -EIOCBQUEUED from ->direct_IO().
2934 */
2935 written = invalidate_inode_pages2_range(mapping,
2936 pos >> PAGE_SHIFT, end);
2937 /*
2938 * If a page can not be invalidated, return 0 to fall back
2939 * to buffered write.
2940 */
2941 if (written) {
2942 if (written == -EBUSY)
2943 return 0;
2944 goto out;
2945 }
2946
2947 written = mapping->a_ops->direct_IO(iocb, from);
2948
2949 /*
2950 * Finally, try again to invalidate clean pages which might have been
2951 * cached by non-direct readahead, or faulted in by get_user_pages()
2952 * if the source of the write was an mmap'ed region of the file
2953 * we're writing. Either one is a pretty crazy thing to do,
2954 * so we don't support it 100%. If this invalidation
2955 * fails, tough, the write still worked...
2956 *
2957 * Most of the time we do not need this since dio_complete() will do
2958 * the invalidation for us. However there are some file systems that
2959 * do not end up with dio_complete() being called, so let's not break
2960 * them by removing it completely
2961 */
2962 if (mapping->nrpages)
2963 invalidate_inode_pages2_range(mapping,
2964 pos >> PAGE_SHIFT, end);
2965
2966 if (written > 0) {
2967 pos += written;
2968 write_len -= written;
2969 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2970 i_size_write(inode, pos);
2971 mark_inode_dirty(inode);
2972 }
2973 iocb->ki_pos = pos;
2974 }
2975 iov_iter_revert(from, write_len - iov_iter_count(from));
2976out:
2977 return written;
2978}
2979EXPORT_SYMBOL(generic_file_direct_write);
2980
2981/*
2982 * Find or create a page at the given pagecache position. Return the locked
2983 * page. This function is specifically for buffered writes.
2984 */
2985struct page *grab_cache_page_write_begin(struct address_space *mapping,
2986 pgoff_t index, unsigned flags)
2987{
2988 struct page *page;
2989 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2990
2991 if (flags & AOP_FLAG_NOFS)
2992 fgp_flags |= FGP_NOFS;
2993
2994 page = pagecache_get_page(mapping, index, fgp_flags,
2995 mapping_gfp_mask(mapping));
2996 if (page)
2997 wait_for_stable_page(page);
2998
2999 return page;
3000}
3001EXPORT_SYMBOL(grab_cache_page_write_begin);
3002
3003ssize_t generic_perform_write(struct file *file,
3004 struct iov_iter *i, loff_t pos)
3005{
3006 struct address_space *mapping = file->f_mapping;
3007 const struct address_space_operations *a_ops = mapping->a_ops;
3008 long status = 0;
3009 ssize_t written = 0;
3010 unsigned int flags = 0;
3011
3012 do {
3013 struct page *page;
3014 unsigned long offset; /* Offset into pagecache page */
3015 unsigned long bytes; /* Bytes to write to page */
3016 size_t copied; /* Bytes copied from user */
3017 void *fsdata;
3018
3019 offset = (pos & (PAGE_SIZE - 1));
3020 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3021 iov_iter_count(i));
3022
3023again:
3024 /*
3025 * Bring in the user page that we will copy from _first_.
3026 * Otherwise there's a nasty deadlock on copying from the
3027 * same page as we're writing to, without it being marked
3028 * up-to-date.
3029 *
3030 * Not only is this an optimisation, but it is also required
3031 * to check that the address is actually valid, when atomic
3032 * usercopies are used, below.
3033 */
3034 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3035 status = -EFAULT;
3036 break;
3037 }
3038
3039 if (fatal_signal_pending(current)) {
3040 status = -EINTR;
3041 break;
3042 }
3043
3044 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3045 &page, &fsdata);
3046 if (unlikely(status < 0))
3047 break;
3048
3049 if (mapping_writably_mapped(mapping))
3050 flush_dcache_page(page);
3051
3052 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3053 flush_dcache_page(page);
3054
3055 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3056 page, fsdata);
3057 if (unlikely(status < 0))
3058 break;
3059 copied = status;
3060
3061 cond_resched();
3062
3063 iov_iter_advance(i, copied);
3064 if (unlikely(copied == 0)) {
3065 /*
3066 * If we were unable to copy any data at all, we must
3067 * fall back to a single segment length write.
3068 *
3069 * If we didn't fallback here, we could livelock
3070 * because not all segments in the iov can be copied at
3071 * once without a pagefault.
3072 */
3073 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3074 iov_iter_single_seg_count(i));
3075 goto again;
3076 }
3077 pos += copied;
3078 written += copied;
3079
3080 balance_dirty_pages_ratelimited(mapping);
3081 } while (iov_iter_count(i));
3082
3083 return written ? written : status;
3084}
3085EXPORT_SYMBOL(generic_perform_write);
3086
3087/**
3088 * __generic_file_write_iter - write data to a file
3089 * @iocb: IO state structure (file, offset, etc.)
3090 * @from: iov_iter with data to write
3091 *
3092 * This function does all the work needed for actually writing data to a
3093 * file. It does all basic checks, removes SUID from the file, updates
3094 * modification times and calls proper subroutines depending on whether we
3095 * do direct IO or a standard buffered write.
3096 *
3097 * It expects i_mutex to be grabbed unless we work on a block device or similar
3098 * object which does not need locking at all.
3099 *
3100 * This function does *not* take care of syncing data in case of O_SYNC write.
3101 * A caller has to handle it. This is mainly due to the fact that we want to
3102 * avoid syncing under i_mutex.
3103 */
3104ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3105{
3106 struct file *file = iocb->ki_filp;
3107 struct address_space * mapping = file->f_mapping;
3108 struct inode *inode = mapping->host;
3109 ssize_t written = 0;
3110 ssize_t err;
3111 ssize_t status;
3112
3113 /* We can write back this queue in page reclaim */
3114 current->backing_dev_info = inode_to_bdi(inode);
3115 err = file_remove_privs(file);
3116 if (err)
3117 goto out;
3118
3119 err = file_update_time(file);
3120 if (err)
3121 goto out;
3122
3123 if (iocb->ki_flags & IOCB_DIRECT) {
3124 loff_t pos, endbyte;
3125
3126 written = generic_file_direct_write(iocb, from);
3127 /*
3128 * If the write stopped short of completing, fall back to
3129 * buffered writes. Some filesystems do this for writes to
3130 * holes, for example. For DAX files, a buffered write will
3131 * not succeed (even if it did, DAX does not handle dirty
3132 * page-cache pages correctly).
3133 */
3134 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3135 goto out;
3136
3137 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3138 /*
3139 * If generic_perform_write() returned a synchronous error
3140 * then we want to return the number of bytes which were
3141 * direct-written, or the error code if that was zero. Note
3142 * that this differs from normal direct-io semantics, which
3143 * will return -EFOO even if some bytes were written.
3144 */
3145 if (unlikely(status < 0)) {
3146 err = status;
3147 goto out;
3148 }
3149 /*
3150 * We need to ensure that the page cache pages are written to
3151 * disk and invalidated to preserve the expected O_DIRECT
3152 * semantics.
3153 */
3154 endbyte = pos + status - 1;
3155 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3156 if (err == 0) {
3157 iocb->ki_pos = endbyte + 1;
3158 written += status;
3159 invalidate_mapping_pages(mapping,
3160 pos >> PAGE_SHIFT,
3161 endbyte >> PAGE_SHIFT);
3162 } else {
3163 /*
3164 * We don't know how much we wrote, so just return
3165 * the number of bytes which were direct-written
3166 */
3167 }
3168 } else {
3169 written = generic_perform_write(file, from, iocb->ki_pos);
3170 if (likely(written > 0))
3171 iocb->ki_pos += written;
3172 }
3173out:
3174 current->backing_dev_info = NULL;
3175 return written ? written : err;
3176}
3177EXPORT_SYMBOL(__generic_file_write_iter);
3178
3179/**
3180 * generic_file_write_iter - write data to a file
3181 * @iocb: IO state structure
3182 * @from: iov_iter with data to write
3183 *
3184 * This is a wrapper around __generic_file_write_iter() to be used by most
3185 * filesystems. It takes care of syncing the file in case of O_SYNC file
3186 * and acquires i_mutex as needed.
3187 */
3188ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3189{
3190 struct file *file = iocb->ki_filp;
3191 struct inode *inode = file->f_mapping->host;
3192 ssize_t ret;
3193
3194 inode_lock(inode);
3195 ret = generic_write_checks(iocb, from);
3196 if (ret > 0)
3197 ret = __generic_file_write_iter(iocb, from);
3198 inode_unlock(inode);
3199
3200 if (ret > 0)
3201 ret = generic_write_sync(iocb, ret);
3202 return ret;
3203}
3204EXPORT_SYMBOL(generic_file_write_iter);
3205
3206/**
3207 * try_to_release_page() - release old fs-specific metadata on a page
3208 *
3209 * @page: the page which the kernel is trying to free
3210 * @gfp_mask: memory allocation flags (and I/O mode)
3211 *
3212 * The address_space is to try to release any data against the page
3213 * (presumably at page->private). If the release was successful, return '1'.
3214 * Otherwise return zero.
3215 *
3216 * This may also be called if PG_fscache is set on a page, indicating that the
3217 * page is known to the local caching routines.
3218 *
3219 * The @gfp_mask argument specifies whether I/O may be performed to release
3220 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3221 *
3222 */
3223int try_to_release_page(struct page *page, gfp_t gfp_mask)
3224{
3225 struct address_space * const mapping = page->mapping;
3226
3227 BUG_ON(!PageLocked(page));
3228 if (PageWriteback(page))
3229 return 0;
3230
3231 if (mapping && mapping->a_ops->releasepage)
3232 return mapping->a_ops->releasepage(page, gfp_mask);
3233 return try_to_free_buffers(page);
3234}
3235
3236EXPORT_SYMBOL(try_to_release_page);