workqueue: relocate pwq_set_max_active()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
... / ...
CommitLineData
1/*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26#include <linux/export.h>
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
37#include <linux/hardirq.h>
38#include <linux/mempolicy.h>
39#include <linux/freezer.h>
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
42#include <linux/lockdep.h>
43#include <linux/idr.h>
44#include <linux/jhash.h>
45#include <linux/hashtable.h>
46#include <linux/rculist.h>
47
48#include "workqueue_internal.h"
49
50enum {
51 /*
52 * worker_pool flags
53 *
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
66 */
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
83
84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
101 HIGHPRI_NICE_LEVEL = -20,
102};
103
104/*
105 * Structure fields follow one of the following exclusion rules.
106 *
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
109 *
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
113 * L: pool->lock protected. Access with pool->lock held.
114 *
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
119 *
120 * F: wq->flush_mutex protected.
121 *
122 * W: workqueue_lock protected.
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
128 */
129
130/* struct worker is defined in workqueue_internal.h */
131
132struct worker_pool {
133 spinlock_t lock; /* the pool lock */
134 int cpu; /* I: the associated cpu */
135 int id; /* I: pool ID */
136 unsigned int flags; /* X: flags */
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
140
141 /* nr_idle includes the ones off idle_list for rebinding */
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
148 /* workers are chained either in busy_hash or idle_list */
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
152 struct mutex manager_arb; /* manager arbitration */
153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
154 struct ida worker_ida; /* L: for worker IDs */
155
156 struct workqueue_attrs *attrs; /* I: worker attributes */
157 struct hlist_node hash_node; /* R: unbound_pool_hash node */
158 int refcnt; /* refcnt for unbound pools */
159
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
172} ____cacheline_aligned_in_smp;
173
174/*
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
179 */
180struct pool_workqueue {
181 struct worker_pool *pool; /* I: the associated pool */
182 struct workqueue_struct *wq; /* I: the owning workqueue */
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
185 int refcnt; /* L: reference count */
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
188 int nr_active; /* L: nr of active works */
189 int max_active; /* L: max active works */
190 struct list_head delayed_works; /* L: delayed works */
191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
192 struct list_head mayday_node; /* W: node on wq->maydays */
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
203
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
213struct wq_device;
214
215/*
216 * The externally visible workqueue abstraction is an array of
217 * per-CPU workqueues:
218 */
219struct workqueue_struct {
220 unsigned int flags; /* W: WQ_* flags */
221 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
222 struct list_head pwqs; /* FR: all pwqs of this wq */
223 struct list_head list; /* W: list of all workqueues */
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
228 atomic_t nr_pwqs_to_flush; /* flush in progress */
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
233 struct list_head maydays; /* W: pwqs requesting rescue */
234 struct worker *rescuer; /* I: rescue worker */
235
236 int nr_drainers; /* W: drain in progress */
237 int saved_max_active; /* W: saved pwq max_active */
238
239#ifdef CONFIG_SYSFS
240 struct wq_device *wq_dev; /* I: for sysfs interface */
241#endif
242#ifdef CONFIG_LOCKDEP
243 struct lockdep_map lockdep_map;
244#endif
245 char name[]; /* I: workqueue name */
246};
247
248static struct kmem_cache *pwq_cache;
249
250/* hash of all unbound pools keyed by pool->attrs */
251static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
252
253static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
254
255struct workqueue_struct *system_wq __read_mostly;
256EXPORT_SYMBOL_GPL(system_wq);
257struct workqueue_struct *system_highpri_wq __read_mostly;
258EXPORT_SYMBOL_GPL(system_highpri_wq);
259struct workqueue_struct *system_long_wq __read_mostly;
260EXPORT_SYMBOL_GPL(system_long_wq);
261struct workqueue_struct *system_unbound_wq __read_mostly;
262EXPORT_SYMBOL_GPL(system_unbound_wq);
263struct workqueue_struct *system_freezable_wq __read_mostly;
264EXPORT_SYMBOL_GPL(system_freezable_wq);
265
266#define CREATE_TRACE_POINTS
267#include <trace/events/workqueue.h>
268
269#define assert_rcu_or_wq_lock() \
270 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
271 lockdep_is_held(&workqueue_lock), \
272 "sched RCU or workqueue lock should be held")
273
274#define for_each_cpu_worker_pool(pool, cpu) \
275 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
276 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
277 (pool)++)
278
279#define for_each_busy_worker(worker, i, pool) \
280 hash_for_each(pool->busy_hash, i, worker, hentry)
281
282/**
283 * for_each_pool - iterate through all worker_pools in the system
284 * @pool: iteration cursor
285 * @id: integer used for iteration
286 *
287 * This must be called either with workqueue_lock held or sched RCU read
288 * locked. If the pool needs to be used beyond the locking in effect, the
289 * caller is responsible for guaranteeing that the pool stays online.
290 *
291 * The if/else clause exists only for the lockdep assertion and can be
292 * ignored.
293 */
294#define for_each_pool(pool, id) \
295 idr_for_each_entry(&worker_pool_idr, pool, id) \
296 if (({ assert_rcu_or_wq_lock(); false; })) { } \
297 else
298
299/**
300 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
301 * @pwq: iteration cursor
302 * @wq: the target workqueue
303 *
304 * This must be called either with workqueue_lock held or sched RCU read
305 * locked. If the pwq needs to be used beyond the locking in effect, the
306 * caller is responsible for guaranteeing that the pwq stays online.
307 *
308 * The if/else clause exists only for the lockdep assertion and can be
309 * ignored.
310 */
311#define for_each_pwq(pwq, wq) \
312 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
313 if (({ assert_rcu_or_wq_lock(); false; })) { } \
314 else
315
316#ifdef CONFIG_DEBUG_OBJECTS_WORK
317
318static struct debug_obj_descr work_debug_descr;
319
320static void *work_debug_hint(void *addr)
321{
322 return ((struct work_struct *) addr)->func;
323}
324
325/*
326 * fixup_init is called when:
327 * - an active object is initialized
328 */
329static int work_fixup_init(void *addr, enum debug_obj_state state)
330{
331 struct work_struct *work = addr;
332
333 switch (state) {
334 case ODEBUG_STATE_ACTIVE:
335 cancel_work_sync(work);
336 debug_object_init(work, &work_debug_descr);
337 return 1;
338 default:
339 return 0;
340 }
341}
342
343/*
344 * fixup_activate is called when:
345 * - an active object is activated
346 * - an unknown object is activated (might be a statically initialized object)
347 */
348static int work_fixup_activate(void *addr, enum debug_obj_state state)
349{
350 struct work_struct *work = addr;
351
352 switch (state) {
353
354 case ODEBUG_STATE_NOTAVAILABLE:
355 /*
356 * This is not really a fixup. The work struct was
357 * statically initialized. We just make sure that it
358 * is tracked in the object tracker.
359 */
360 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
361 debug_object_init(work, &work_debug_descr);
362 debug_object_activate(work, &work_debug_descr);
363 return 0;
364 }
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int work_fixup_free(void *addr, enum debug_obj_state state)
381{
382 struct work_struct *work = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 cancel_work_sync(work);
387 debug_object_free(work, &work_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394static struct debug_obj_descr work_debug_descr = {
395 .name = "work_struct",
396 .debug_hint = work_debug_hint,
397 .fixup_init = work_fixup_init,
398 .fixup_activate = work_fixup_activate,
399 .fixup_free = work_fixup_free,
400};
401
402static inline void debug_work_activate(struct work_struct *work)
403{
404 debug_object_activate(work, &work_debug_descr);
405}
406
407static inline void debug_work_deactivate(struct work_struct *work)
408{
409 debug_object_deactivate(work, &work_debug_descr);
410}
411
412void __init_work(struct work_struct *work, int onstack)
413{
414 if (onstack)
415 debug_object_init_on_stack(work, &work_debug_descr);
416 else
417 debug_object_init(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(__init_work);
420
421void destroy_work_on_stack(struct work_struct *work)
422{
423 debug_object_free(work, &work_debug_descr);
424}
425EXPORT_SYMBOL_GPL(destroy_work_on_stack);
426
427#else
428static inline void debug_work_activate(struct work_struct *work) { }
429static inline void debug_work_deactivate(struct work_struct *work) { }
430#endif
431
432/* Serializes the accesses to the list of workqueues. */
433static DEFINE_SPINLOCK(workqueue_lock);
434static LIST_HEAD(workqueues);
435static bool workqueue_freezing; /* W: have wqs started freezing? */
436
437/*
438 * The CPU and unbound standard worker pools. The unbound ones have
439 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
440 */
441static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
442 cpu_worker_pools);
443
444/*
445 * idr of all pools. Modifications are protected by workqueue_lock. Read
446 * accesses are protected by sched-RCU protected.
447 */
448static DEFINE_IDR(worker_pool_idr);
449
450static int worker_thread(void *__worker);
451static void copy_workqueue_attrs(struct workqueue_attrs *to,
452 const struct workqueue_attrs *from);
453
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
459 do {
460 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
461 return -ENOMEM;
462
463 spin_lock_irq(&workqueue_lock);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 spin_unlock_irq(&workqueue_lock);
466 } while (ret == -EAGAIN);
467
468 return ret;
469}
470
471/**
472 * first_pwq - return the first pool_workqueue of the specified workqueue
473 * @wq: the target workqueue
474 *
475 * This must be called either with workqueue_lock held or sched RCU read
476 * locked. If the pwq needs to be used beyond the locking in effect, the
477 * caller is responsible for guaranteeing that the pwq stays online.
478 */
479static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
480{
481 assert_rcu_or_wq_lock();
482 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
483 pwqs_node);
484}
485
486static unsigned int work_color_to_flags(int color)
487{
488 return color << WORK_STRUCT_COLOR_SHIFT;
489}
490
491static int get_work_color(struct work_struct *work)
492{
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495}
496
497static int work_next_color(int color)
498{
499 return (color + 1) % WORK_NR_COLORS;
500}
501
502/*
503 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
504 * contain the pointer to the queued pwq. Once execution starts, the flag
505 * is cleared and the high bits contain OFFQ flags and pool ID.
506 *
507 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
508 * and clear_work_data() can be used to set the pwq, pool or clear
509 * work->data. These functions should only be called while the work is
510 * owned - ie. while the PENDING bit is set.
511 *
512 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
513 * corresponding to a work. Pool is available once the work has been
514 * queued anywhere after initialization until it is sync canceled. pwq is
515 * available only while the work item is queued.
516 *
517 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
518 * canceled. While being canceled, a work item may have its PENDING set
519 * but stay off timer and worklist for arbitrarily long and nobody should
520 * try to steal the PENDING bit.
521 */
522static inline void set_work_data(struct work_struct *work, unsigned long data,
523 unsigned long flags)
524{
525 WARN_ON_ONCE(!work_pending(work));
526 atomic_long_set(&work->data, data | flags | work_static(work));
527}
528
529static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
530 unsigned long extra_flags)
531{
532 set_work_data(work, (unsigned long)pwq,
533 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
534}
535
536static void set_work_pool_and_keep_pending(struct work_struct *work,
537 int pool_id)
538{
539 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
540 WORK_STRUCT_PENDING);
541}
542
543static void set_work_pool_and_clear_pending(struct work_struct *work,
544 int pool_id)
545{
546 /*
547 * The following wmb is paired with the implied mb in
548 * test_and_set_bit(PENDING) and ensures all updates to @work made
549 * here are visible to and precede any updates by the next PENDING
550 * owner.
551 */
552 smp_wmb();
553 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
554}
555
556static void clear_work_data(struct work_struct *work)
557{
558 smp_wmb(); /* see set_work_pool_and_clear_pending() */
559 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
560}
561
562static struct pool_workqueue *get_work_pwq(struct work_struct *work)
563{
564 unsigned long data = atomic_long_read(&work->data);
565
566 if (data & WORK_STRUCT_PWQ)
567 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
568 else
569 return NULL;
570}
571
572/**
573 * get_work_pool - return the worker_pool a given work was associated with
574 * @work: the work item of interest
575 *
576 * Return the worker_pool @work was last associated with. %NULL if none.
577 *
578 * Pools are created and destroyed under workqueue_lock, and allows read
579 * access under sched-RCU read lock. As such, this function should be
580 * called under workqueue_lock or with preemption disabled.
581 *
582 * All fields of the returned pool are accessible as long as the above
583 * mentioned locking is in effect. If the returned pool needs to be used
584 * beyond the critical section, the caller is responsible for ensuring the
585 * returned pool is and stays online.
586 */
587static struct worker_pool *get_work_pool(struct work_struct *work)
588{
589 unsigned long data = atomic_long_read(&work->data);
590 int pool_id;
591
592 assert_rcu_or_wq_lock();
593
594 if (data & WORK_STRUCT_PWQ)
595 return ((struct pool_workqueue *)
596 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
597
598 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
599 if (pool_id == WORK_OFFQ_POOL_NONE)
600 return NULL;
601
602 return idr_find(&worker_pool_idr, pool_id);
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
614 unsigned long data = atomic_long_read(&work->data);
615
616 if (data & WORK_STRUCT_PWQ)
617 return ((struct pool_workqueue *)
618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619
620 return data >> WORK_OFFQ_POOL_SHIFT;
621}
622
623static void mark_work_canceling(struct work_struct *work)
624{
625 unsigned long pool_id = get_work_pool_id(work);
626
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636}
637
638/*
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
641 * they're being called with pool->lock held.
642 */
643
644static bool __need_more_worker(struct worker_pool *pool)
645{
646 return !atomic_read(&pool->nr_running);
647}
648
649/*
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
654 * function will always return %true for unbound pools as long as the
655 * worklist isn't empty.
656 */
657static bool need_more_worker(struct worker_pool *pool)
658{
659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
660}
661
662/* Can I start working? Called from busy but !running workers. */
663static bool may_start_working(struct worker_pool *pool)
664{
665 return pool->nr_idle;
666}
667
668/* Do I need to keep working? Called from currently running workers. */
669static bool keep_working(struct worker_pool *pool)
670{
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
673}
674
675/* Do we need a new worker? Called from manager. */
676static bool need_to_create_worker(struct worker_pool *pool)
677{
678 return need_more_worker(pool) && !may_start_working(pool);
679}
680
681/* Do I need to be the manager? */
682static bool need_to_manage_workers(struct worker_pool *pool)
683{
684 return need_to_create_worker(pool) ||
685 (pool->flags & POOL_MANAGE_WORKERS);
686}
687
688/* Do we have too many workers and should some go away? */
689static bool too_many_workers(struct worker_pool *pool)
690{
691 bool managing = mutex_is_locked(&pool->manager_arb);
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
694
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703}
704
705/*
706 * Wake up functions.
707 */
708
709/* Return the first worker. Safe with preemption disabled */
710static struct worker *first_worker(struct worker_pool *pool)
711{
712 if (unlikely(list_empty(&pool->idle_list)))
713 return NULL;
714
715 return list_first_entry(&pool->idle_list, struct worker, entry);
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
720 * @pool: worker pool to wake worker from
721 *
722 * Wake up the first idle worker of @pool.
723 *
724 * CONTEXT:
725 * spin_lock_irq(pool->lock).
726 */
727static void wake_up_worker(struct worker_pool *pool)
728{
729 struct worker *worker = first_worker(pool);
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
735/**
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
746void wq_worker_waking_up(struct task_struct *task, int cpu)
747{
748 struct worker *worker = kthread_data(task);
749
750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
751 WARN_ON_ONCE(worker->pool->cpu != cpu);
752 atomic_inc(&worker->pool->nr_running);
753 }
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
771struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
772{
773 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
774 struct worker_pool *pool;
775
776 /*
777 * Rescuers, which may not have all the fields set up like normal
778 * workers, also reach here, let's not access anything before
779 * checking NOT_RUNNING.
780 */
781 if (worker->flags & WORKER_NOT_RUNNING)
782 return NULL;
783
784 pool = worker->pool;
785
786 /* this can only happen on the local cpu */
787 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
788 return NULL;
789
790 /*
791 * The counterpart of the following dec_and_test, implied mb,
792 * worklist not empty test sequence is in insert_work().
793 * Please read comment there.
794 *
795 * NOT_RUNNING is clear. This means that we're bound to and
796 * running on the local cpu w/ rq lock held and preemption
797 * disabled, which in turn means that none else could be
798 * manipulating idle_list, so dereferencing idle_list without pool
799 * lock is safe.
800 */
801 if (atomic_dec_and_test(&pool->nr_running) &&
802 !list_empty(&pool->worklist))
803 to_wakeup = first_worker(pool);
804 return to_wakeup ? to_wakeup->task : NULL;
805}
806
807/**
808 * worker_set_flags - set worker flags and adjust nr_running accordingly
809 * @worker: self
810 * @flags: flags to set
811 * @wakeup: wakeup an idle worker if necessary
812 *
813 * Set @flags in @worker->flags and adjust nr_running accordingly. If
814 * nr_running becomes zero and @wakeup is %true, an idle worker is
815 * woken up.
816 *
817 * CONTEXT:
818 * spin_lock_irq(pool->lock)
819 */
820static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 bool wakeup)
822{
823 struct worker_pool *pool = worker->pool;
824
825 WARN_ON_ONCE(worker->task != current);
826
827 /*
828 * If transitioning into NOT_RUNNING, adjust nr_running and
829 * wake up an idle worker as necessary if requested by
830 * @wakeup.
831 */
832 if ((flags & WORKER_NOT_RUNNING) &&
833 !(worker->flags & WORKER_NOT_RUNNING)) {
834 if (wakeup) {
835 if (atomic_dec_and_test(&pool->nr_running) &&
836 !list_empty(&pool->worklist))
837 wake_up_worker(pool);
838 } else
839 atomic_dec(&pool->nr_running);
840 }
841
842 worker->flags |= flags;
843}
844
845/**
846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847 * @worker: self
848 * @flags: flags to clear
849 *
850 * Clear @flags in @worker->flags and adjust nr_running accordingly.
851 *
852 * CONTEXT:
853 * spin_lock_irq(pool->lock)
854 */
855static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856{
857 struct worker_pool *pool = worker->pool;
858 unsigned int oflags = worker->flags;
859
860 WARN_ON_ONCE(worker->task != current);
861
862 worker->flags &= ~flags;
863
864 /*
865 * If transitioning out of NOT_RUNNING, increment nr_running. Note
866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
867 * of multiple flags, not a single flag.
868 */
869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 if (!(worker->flags & WORKER_NOT_RUNNING))
871 atomic_inc(&pool->nr_running);
872}
873
874/**
875 * find_worker_executing_work - find worker which is executing a work
876 * @pool: pool of interest
877 * @work: work to find worker for
878 *
879 * Find a worker which is executing @work on @pool by searching
880 * @pool->busy_hash which is keyed by the address of @work. For a worker
881 * to match, its current execution should match the address of @work and
882 * its work function. This is to avoid unwanted dependency between
883 * unrelated work executions through a work item being recycled while still
884 * being executed.
885 *
886 * This is a bit tricky. A work item may be freed once its execution
887 * starts and nothing prevents the freed area from being recycled for
888 * another work item. If the same work item address ends up being reused
889 * before the original execution finishes, workqueue will identify the
890 * recycled work item as currently executing and make it wait until the
891 * current execution finishes, introducing an unwanted dependency.
892 *
893 * This function checks the work item address, work function and workqueue
894 * to avoid false positives. Note that this isn't complete as one may
895 * construct a work function which can introduce dependency onto itself
896 * through a recycled work item. Well, if somebody wants to shoot oneself
897 * in the foot that badly, there's only so much we can do, and if such
898 * deadlock actually occurs, it should be easy to locate the culprit work
899 * function.
900 *
901 * CONTEXT:
902 * spin_lock_irq(pool->lock).
903 *
904 * RETURNS:
905 * Pointer to worker which is executing @work if found, NULL
906 * otherwise.
907 */
908static struct worker *find_worker_executing_work(struct worker_pool *pool,
909 struct work_struct *work)
910{
911 struct worker *worker;
912
913 hash_for_each_possible(pool->busy_hash, worker, hentry,
914 (unsigned long)work)
915 if (worker->current_work == work &&
916 worker->current_func == work->func)
917 return worker;
918
919 return NULL;
920}
921
922/**
923 * move_linked_works - move linked works to a list
924 * @work: start of series of works to be scheduled
925 * @head: target list to append @work to
926 * @nextp: out paramter for nested worklist walking
927 *
928 * Schedule linked works starting from @work to @head. Work series to
929 * be scheduled starts at @work and includes any consecutive work with
930 * WORK_STRUCT_LINKED set in its predecessor.
931 *
932 * If @nextp is not NULL, it's updated to point to the next work of
933 * the last scheduled work. This allows move_linked_works() to be
934 * nested inside outer list_for_each_entry_safe().
935 *
936 * CONTEXT:
937 * spin_lock_irq(pool->lock).
938 */
939static void move_linked_works(struct work_struct *work, struct list_head *head,
940 struct work_struct **nextp)
941{
942 struct work_struct *n;
943
944 /*
945 * Linked worklist will always end before the end of the list,
946 * use NULL for list head.
947 */
948 list_for_each_entry_safe_from(work, n, NULL, entry) {
949 list_move_tail(&work->entry, head);
950 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
951 break;
952 }
953
954 /*
955 * If we're already inside safe list traversal and have moved
956 * multiple works to the scheduled queue, the next position
957 * needs to be updated.
958 */
959 if (nextp)
960 *nextp = n;
961}
962
963/**
964 * get_pwq - get an extra reference on the specified pool_workqueue
965 * @pwq: pool_workqueue to get
966 *
967 * Obtain an extra reference on @pwq. The caller should guarantee that
968 * @pwq has positive refcnt and be holding the matching pool->lock.
969 */
970static void get_pwq(struct pool_workqueue *pwq)
971{
972 lockdep_assert_held(&pwq->pool->lock);
973 WARN_ON_ONCE(pwq->refcnt <= 0);
974 pwq->refcnt++;
975}
976
977/**
978 * put_pwq - put a pool_workqueue reference
979 * @pwq: pool_workqueue to put
980 *
981 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
982 * destruction. The caller should be holding the matching pool->lock.
983 */
984static void put_pwq(struct pool_workqueue *pwq)
985{
986 lockdep_assert_held(&pwq->pool->lock);
987 if (likely(--pwq->refcnt))
988 return;
989 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
990 return;
991 /*
992 * @pwq can't be released under pool->lock, bounce to
993 * pwq_unbound_release_workfn(). This never recurses on the same
994 * pool->lock as this path is taken only for unbound workqueues and
995 * the release work item is scheduled on a per-cpu workqueue. To
996 * avoid lockdep warning, unbound pool->locks are given lockdep
997 * subclass of 1 in get_unbound_pool().
998 */
999 schedule_work(&pwq->unbound_release_work);
1000}
1001
1002static void pwq_activate_delayed_work(struct work_struct *work)
1003{
1004 struct pool_workqueue *pwq = get_work_pwq(work);
1005
1006 trace_workqueue_activate_work(work);
1007 move_linked_works(work, &pwq->pool->worklist, NULL);
1008 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1009 pwq->nr_active++;
1010}
1011
1012static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1013{
1014 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1015 struct work_struct, entry);
1016
1017 pwq_activate_delayed_work(work);
1018}
1019
1020/**
1021 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1022 * @pwq: pwq of interest
1023 * @color: color of work which left the queue
1024 *
1025 * A work either has completed or is removed from pending queue,
1026 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1027 *
1028 * CONTEXT:
1029 * spin_lock_irq(pool->lock).
1030 */
1031static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1032{
1033 /* uncolored work items don't participate in flushing or nr_active */
1034 if (color == WORK_NO_COLOR)
1035 goto out_put;
1036
1037 pwq->nr_in_flight[color]--;
1038
1039 pwq->nr_active--;
1040 if (!list_empty(&pwq->delayed_works)) {
1041 /* one down, submit a delayed one */
1042 if (pwq->nr_active < pwq->max_active)
1043 pwq_activate_first_delayed(pwq);
1044 }
1045
1046 /* is flush in progress and are we at the flushing tip? */
1047 if (likely(pwq->flush_color != color))
1048 goto out_put;
1049
1050 /* are there still in-flight works? */
1051 if (pwq->nr_in_flight[color])
1052 goto out_put;
1053
1054 /* this pwq is done, clear flush_color */
1055 pwq->flush_color = -1;
1056
1057 /*
1058 * If this was the last pwq, wake up the first flusher. It
1059 * will handle the rest.
1060 */
1061 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1062 complete(&pwq->wq->first_flusher->done);
1063out_put:
1064 put_pwq(pwq);
1065}
1066
1067/**
1068 * try_to_grab_pending - steal work item from worklist and disable irq
1069 * @work: work item to steal
1070 * @is_dwork: @work is a delayed_work
1071 * @flags: place to store irq state
1072 *
1073 * Try to grab PENDING bit of @work. This function can handle @work in any
1074 * stable state - idle, on timer or on worklist. Return values are
1075 *
1076 * 1 if @work was pending and we successfully stole PENDING
1077 * 0 if @work was idle and we claimed PENDING
1078 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1079 * -ENOENT if someone else is canceling @work, this state may persist
1080 * for arbitrarily long
1081 *
1082 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1083 * interrupted while holding PENDING and @work off queue, irq must be
1084 * disabled on entry. This, combined with delayed_work->timer being
1085 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1086 *
1087 * On successful return, >= 0, irq is disabled and the caller is
1088 * responsible for releasing it using local_irq_restore(*@flags).
1089 *
1090 * This function is safe to call from any context including IRQ handler.
1091 */
1092static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1093 unsigned long *flags)
1094{
1095 struct worker_pool *pool;
1096 struct pool_workqueue *pwq;
1097
1098 local_irq_save(*flags);
1099
1100 /* try to steal the timer if it exists */
1101 if (is_dwork) {
1102 struct delayed_work *dwork = to_delayed_work(work);
1103
1104 /*
1105 * dwork->timer is irqsafe. If del_timer() fails, it's
1106 * guaranteed that the timer is not queued anywhere and not
1107 * running on the local CPU.
1108 */
1109 if (likely(del_timer(&dwork->timer)))
1110 return 1;
1111 }
1112
1113 /* try to claim PENDING the normal way */
1114 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1115 return 0;
1116
1117 /*
1118 * The queueing is in progress, or it is already queued. Try to
1119 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1120 */
1121 pool = get_work_pool(work);
1122 if (!pool)
1123 goto fail;
1124
1125 spin_lock(&pool->lock);
1126 /*
1127 * work->data is guaranteed to point to pwq only while the work
1128 * item is queued on pwq->wq, and both updating work->data to point
1129 * to pwq on queueing and to pool on dequeueing are done under
1130 * pwq->pool->lock. This in turn guarantees that, if work->data
1131 * points to pwq which is associated with a locked pool, the work
1132 * item is currently queued on that pool.
1133 */
1134 pwq = get_work_pwq(work);
1135 if (pwq && pwq->pool == pool) {
1136 debug_work_deactivate(work);
1137
1138 /*
1139 * A delayed work item cannot be grabbed directly because
1140 * it might have linked NO_COLOR work items which, if left
1141 * on the delayed_list, will confuse pwq->nr_active
1142 * management later on and cause stall. Make sure the work
1143 * item is activated before grabbing.
1144 */
1145 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1146 pwq_activate_delayed_work(work);
1147
1148 list_del_init(&work->entry);
1149 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1150
1151 /* work->data points to pwq iff queued, point to pool */
1152 set_work_pool_and_keep_pending(work, pool->id);
1153
1154 spin_unlock(&pool->lock);
1155 return 1;
1156 }
1157 spin_unlock(&pool->lock);
1158fail:
1159 local_irq_restore(*flags);
1160 if (work_is_canceling(work))
1161 return -ENOENT;
1162 cpu_relax();
1163 return -EAGAIN;
1164}
1165
1166/**
1167 * insert_work - insert a work into a pool
1168 * @pwq: pwq @work belongs to
1169 * @work: work to insert
1170 * @head: insertion point
1171 * @extra_flags: extra WORK_STRUCT_* flags to set
1172 *
1173 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1174 * work_struct flags.
1175 *
1176 * CONTEXT:
1177 * spin_lock_irq(pool->lock).
1178 */
1179static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1180 struct list_head *head, unsigned int extra_flags)
1181{
1182 struct worker_pool *pool = pwq->pool;
1183
1184 /* we own @work, set data and link */
1185 set_work_pwq(work, pwq, extra_flags);
1186 list_add_tail(&work->entry, head);
1187 get_pwq(pwq);
1188
1189 /*
1190 * Ensure either worker_sched_deactivated() sees the above
1191 * list_add_tail() or we see zero nr_running to avoid workers
1192 * lying around lazily while there are works to be processed.
1193 */
1194 smp_mb();
1195
1196 if (__need_more_worker(pool))
1197 wake_up_worker(pool);
1198}
1199
1200/*
1201 * Test whether @work is being queued from another work executing on the
1202 * same workqueue.
1203 */
1204static bool is_chained_work(struct workqueue_struct *wq)
1205{
1206 struct worker *worker;
1207
1208 worker = current_wq_worker();
1209 /*
1210 * Return %true iff I'm a worker execuing a work item on @wq. If
1211 * I'm @worker, it's safe to dereference it without locking.
1212 */
1213 return worker && worker->current_pwq->wq == wq;
1214}
1215
1216static void __queue_work(int cpu, struct workqueue_struct *wq,
1217 struct work_struct *work)
1218{
1219 struct pool_workqueue *pwq;
1220 struct worker_pool *last_pool;
1221 struct list_head *worklist;
1222 unsigned int work_flags;
1223 unsigned int req_cpu = cpu;
1224
1225 /*
1226 * While a work item is PENDING && off queue, a task trying to
1227 * steal the PENDING will busy-loop waiting for it to either get
1228 * queued or lose PENDING. Grabbing PENDING and queueing should
1229 * happen with IRQ disabled.
1230 */
1231 WARN_ON_ONCE(!irqs_disabled());
1232
1233 debug_work_activate(work);
1234
1235 /* if dying, only works from the same workqueue are allowed */
1236 if (unlikely(wq->flags & __WQ_DRAINING) &&
1237 WARN_ON_ONCE(!is_chained_work(wq)))
1238 return;
1239retry:
1240 /* pwq which will be used unless @work is executing elsewhere */
1241 if (!(wq->flags & WQ_UNBOUND)) {
1242 if (cpu == WORK_CPU_UNBOUND)
1243 cpu = raw_smp_processor_id();
1244 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1245 } else {
1246 pwq = first_pwq(wq);
1247 }
1248
1249 /*
1250 * If @work was previously on a different pool, it might still be
1251 * running there, in which case the work needs to be queued on that
1252 * pool to guarantee non-reentrancy.
1253 */
1254 last_pool = get_work_pool(work);
1255 if (last_pool && last_pool != pwq->pool) {
1256 struct worker *worker;
1257
1258 spin_lock(&last_pool->lock);
1259
1260 worker = find_worker_executing_work(last_pool, work);
1261
1262 if (worker && worker->current_pwq->wq == wq) {
1263 pwq = worker->current_pwq;
1264 } else {
1265 /* meh... not running there, queue here */
1266 spin_unlock(&last_pool->lock);
1267 spin_lock(&pwq->pool->lock);
1268 }
1269 } else {
1270 spin_lock(&pwq->pool->lock);
1271 }
1272
1273 /*
1274 * pwq is determined and locked. For unbound pools, we could have
1275 * raced with pwq release and it could already be dead. If its
1276 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1277 * without another pwq replacing it as the first pwq or while a
1278 * work item is executing on it, so the retying is guaranteed to
1279 * make forward-progress.
1280 */
1281 if (unlikely(!pwq->refcnt)) {
1282 if (wq->flags & WQ_UNBOUND) {
1283 spin_unlock(&pwq->pool->lock);
1284 cpu_relax();
1285 goto retry;
1286 }
1287 /* oops */
1288 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1289 wq->name, cpu);
1290 }
1291
1292 /* pwq determined, queue */
1293 trace_workqueue_queue_work(req_cpu, pwq, work);
1294
1295 if (WARN_ON(!list_empty(&work->entry))) {
1296 spin_unlock(&pwq->pool->lock);
1297 return;
1298 }
1299
1300 pwq->nr_in_flight[pwq->work_color]++;
1301 work_flags = work_color_to_flags(pwq->work_color);
1302
1303 if (likely(pwq->nr_active < pwq->max_active)) {
1304 trace_workqueue_activate_work(work);
1305 pwq->nr_active++;
1306 worklist = &pwq->pool->worklist;
1307 } else {
1308 work_flags |= WORK_STRUCT_DELAYED;
1309 worklist = &pwq->delayed_works;
1310 }
1311
1312 insert_work(pwq, work, worklist, work_flags);
1313
1314 spin_unlock(&pwq->pool->lock);
1315}
1316
1317/**
1318 * queue_work_on - queue work on specific cpu
1319 * @cpu: CPU number to execute work on
1320 * @wq: workqueue to use
1321 * @work: work to queue
1322 *
1323 * Returns %false if @work was already on a queue, %true otherwise.
1324 *
1325 * We queue the work to a specific CPU, the caller must ensure it
1326 * can't go away.
1327 */
1328bool queue_work_on(int cpu, struct workqueue_struct *wq,
1329 struct work_struct *work)
1330{
1331 bool ret = false;
1332 unsigned long flags;
1333
1334 local_irq_save(flags);
1335
1336 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1337 __queue_work(cpu, wq, work);
1338 ret = true;
1339 }
1340
1341 local_irq_restore(flags);
1342 return ret;
1343}
1344EXPORT_SYMBOL_GPL(queue_work_on);
1345
1346/**
1347 * queue_work - queue work on a workqueue
1348 * @wq: workqueue to use
1349 * @work: work to queue
1350 *
1351 * Returns %false if @work was already on a queue, %true otherwise.
1352 *
1353 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1354 * it can be processed by another CPU.
1355 */
1356bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1357{
1358 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1359}
1360EXPORT_SYMBOL_GPL(queue_work);
1361
1362void delayed_work_timer_fn(unsigned long __data)
1363{
1364 struct delayed_work *dwork = (struct delayed_work *)__data;
1365
1366 /* should have been called from irqsafe timer with irq already off */
1367 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1368}
1369EXPORT_SYMBOL(delayed_work_timer_fn);
1370
1371static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1372 struct delayed_work *dwork, unsigned long delay)
1373{
1374 struct timer_list *timer = &dwork->timer;
1375 struct work_struct *work = &dwork->work;
1376
1377 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1378 timer->data != (unsigned long)dwork);
1379 WARN_ON_ONCE(timer_pending(timer));
1380 WARN_ON_ONCE(!list_empty(&work->entry));
1381
1382 /*
1383 * If @delay is 0, queue @dwork->work immediately. This is for
1384 * both optimization and correctness. The earliest @timer can
1385 * expire is on the closest next tick and delayed_work users depend
1386 * on that there's no such delay when @delay is 0.
1387 */
1388 if (!delay) {
1389 __queue_work(cpu, wq, &dwork->work);
1390 return;
1391 }
1392
1393 timer_stats_timer_set_start_info(&dwork->timer);
1394
1395 dwork->wq = wq;
1396 dwork->cpu = cpu;
1397 timer->expires = jiffies + delay;
1398
1399 if (unlikely(cpu != WORK_CPU_UNBOUND))
1400 add_timer_on(timer, cpu);
1401 else
1402 add_timer(timer);
1403}
1404
1405/**
1406 * queue_delayed_work_on - queue work on specific CPU after delay
1407 * @cpu: CPU number to execute work on
1408 * @wq: workqueue to use
1409 * @dwork: work to queue
1410 * @delay: number of jiffies to wait before queueing
1411 *
1412 * Returns %false if @work was already on a queue, %true otherwise. If
1413 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1414 * execution.
1415 */
1416bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1417 struct delayed_work *dwork, unsigned long delay)
1418{
1419 struct work_struct *work = &dwork->work;
1420 bool ret = false;
1421 unsigned long flags;
1422
1423 /* read the comment in __queue_work() */
1424 local_irq_save(flags);
1425
1426 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1427 __queue_delayed_work(cpu, wq, dwork, delay);
1428 ret = true;
1429 }
1430
1431 local_irq_restore(flags);
1432 return ret;
1433}
1434EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1435
1436/**
1437 * queue_delayed_work - queue work on a workqueue after delay
1438 * @wq: workqueue to use
1439 * @dwork: delayable work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
1442 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1443 */
1444bool queue_delayed_work(struct workqueue_struct *wq,
1445 struct delayed_work *dwork, unsigned long delay)
1446{
1447 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1448}
1449EXPORT_SYMBOL_GPL(queue_delayed_work);
1450
1451/**
1452 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1453 * @cpu: CPU number to execute work on
1454 * @wq: workqueue to use
1455 * @dwork: work to queue
1456 * @delay: number of jiffies to wait before queueing
1457 *
1458 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1459 * modify @dwork's timer so that it expires after @delay. If @delay is
1460 * zero, @work is guaranteed to be scheduled immediately regardless of its
1461 * current state.
1462 *
1463 * Returns %false if @dwork was idle and queued, %true if @dwork was
1464 * pending and its timer was modified.
1465 *
1466 * This function is safe to call from any context including IRQ handler.
1467 * See try_to_grab_pending() for details.
1468 */
1469bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1470 struct delayed_work *dwork, unsigned long delay)
1471{
1472 unsigned long flags;
1473 int ret;
1474
1475 do {
1476 ret = try_to_grab_pending(&dwork->work, true, &flags);
1477 } while (unlikely(ret == -EAGAIN));
1478
1479 if (likely(ret >= 0)) {
1480 __queue_delayed_work(cpu, wq, dwork, delay);
1481 local_irq_restore(flags);
1482 }
1483
1484 /* -ENOENT from try_to_grab_pending() becomes %true */
1485 return ret;
1486}
1487EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1488
1489/**
1490 * mod_delayed_work - modify delay of or queue a delayed work
1491 * @wq: workqueue to use
1492 * @dwork: work to queue
1493 * @delay: number of jiffies to wait before queueing
1494 *
1495 * mod_delayed_work_on() on local CPU.
1496 */
1497bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1498 unsigned long delay)
1499{
1500 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1501}
1502EXPORT_SYMBOL_GPL(mod_delayed_work);
1503
1504/**
1505 * worker_enter_idle - enter idle state
1506 * @worker: worker which is entering idle state
1507 *
1508 * @worker is entering idle state. Update stats and idle timer if
1509 * necessary.
1510 *
1511 * LOCKING:
1512 * spin_lock_irq(pool->lock).
1513 */
1514static void worker_enter_idle(struct worker *worker)
1515{
1516 struct worker_pool *pool = worker->pool;
1517
1518 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1519 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1520 (worker->hentry.next || worker->hentry.pprev)))
1521 return;
1522
1523 /* can't use worker_set_flags(), also called from start_worker() */
1524 worker->flags |= WORKER_IDLE;
1525 pool->nr_idle++;
1526 worker->last_active = jiffies;
1527
1528 /* idle_list is LIFO */
1529 list_add(&worker->entry, &pool->idle_list);
1530
1531 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1532 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1533
1534 /*
1535 * Sanity check nr_running. Because wq_unbind_fn() releases
1536 * pool->lock between setting %WORKER_UNBOUND and zapping
1537 * nr_running, the warning may trigger spuriously. Check iff
1538 * unbind is not in progress.
1539 */
1540 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1541 pool->nr_workers == pool->nr_idle &&
1542 atomic_read(&pool->nr_running));
1543}
1544
1545/**
1546 * worker_leave_idle - leave idle state
1547 * @worker: worker which is leaving idle state
1548 *
1549 * @worker is leaving idle state. Update stats.
1550 *
1551 * LOCKING:
1552 * spin_lock_irq(pool->lock).
1553 */
1554static void worker_leave_idle(struct worker *worker)
1555{
1556 struct worker_pool *pool = worker->pool;
1557
1558 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1559 return;
1560 worker_clr_flags(worker, WORKER_IDLE);
1561 pool->nr_idle--;
1562 list_del_init(&worker->entry);
1563}
1564
1565/**
1566 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1567 * @pool: target worker_pool
1568 *
1569 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1570 *
1571 * Works which are scheduled while the cpu is online must at least be
1572 * scheduled to a worker which is bound to the cpu so that if they are
1573 * flushed from cpu callbacks while cpu is going down, they are
1574 * guaranteed to execute on the cpu.
1575 *
1576 * This function is to be used by unbound workers and rescuers to bind
1577 * themselves to the target cpu and may race with cpu going down or
1578 * coming online. kthread_bind() can't be used because it may put the
1579 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1580 * verbatim as it's best effort and blocking and pool may be
1581 * [dis]associated in the meantime.
1582 *
1583 * This function tries set_cpus_allowed() and locks pool and verifies the
1584 * binding against %POOL_DISASSOCIATED which is set during
1585 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1586 * enters idle state or fetches works without dropping lock, it can
1587 * guarantee the scheduling requirement described in the first paragraph.
1588 *
1589 * CONTEXT:
1590 * Might sleep. Called without any lock but returns with pool->lock
1591 * held.
1592 *
1593 * RETURNS:
1594 * %true if the associated pool is online (@worker is successfully
1595 * bound), %false if offline.
1596 */
1597static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1598__acquires(&pool->lock)
1599{
1600 while (true) {
1601 /*
1602 * The following call may fail, succeed or succeed
1603 * without actually migrating the task to the cpu if
1604 * it races with cpu hotunplug operation. Verify
1605 * against POOL_DISASSOCIATED.
1606 */
1607 if (!(pool->flags & POOL_DISASSOCIATED))
1608 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1609
1610 spin_lock_irq(&pool->lock);
1611 if (pool->flags & POOL_DISASSOCIATED)
1612 return false;
1613 if (task_cpu(current) == pool->cpu &&
1614 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1615 return true;
1616 spin_unlock_irq(&pool->lock);
1617
1618 /*
1619 * We've raced with CPU hot[un]plug. Give it a breather
1620 * and retry migration. cond_resched() is required here;
1621 * otherwise, we might deadlock against cpu_stop trying to
1622 * bring down the CPU on non-preemptive kernel.
1623 */
1624 cpu_relax();
1625 cond_resched();
1626 }
1627}
1628
1629/*
1630 * Rebind an idle @worker to its CPU. worker_thread() will test
1631 * list_empty(@worker->entry) before leaving idle and call this function.
1632 */
1633static void idle_worker_rebind(struct worker *worker)
1634{
1635 /* CPU may go down again inbetween, clear UNBOUND only on success */
1636 if (worker_maybe_bind_and_lock(worker->pool))
1637 worker_clr_flags(worker, WORKER_UNBOUND);
1638
1639 /* rebind complete, become available again */
1640 list_add(&worker->entry, &worker->pool->idle_list);
1641 spin_unlock_irq(&worker->pool->lock);
1642}
1643
1644/*
1645 * Function for @worker->rebind.work used to rebind unbound busy workers to
1646 * the associated cpu which is coming back online. This is scheduled by
1647 * cpu up but can race with other cpu hotplug operations and may be
1648 * executed twice without intervening cpu down.
1649 */
1650static void busy_worker_rebind_fn(struct work_struct *work)
1651{
1652 struct worker *worker = container_of(work, struct worker, rebind_work);
1653
1654 if (worker_maybe_bind_and_lock(worker->pool))
1655 worker_clr_flags(worker, WORKER_UNBOUND);
1656
1657 spin_unlock_irq(&worker->pool->lock);
1658}
1659
1660/**
1661 * rebind_workers - rebind all workers of a pool to the associated CPU
1662 * @pool: pool of interest
1663 *
1664 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1665 * is different for idle and busy ones.
1666 *
1667 * Idle ones will be removed from the idle_list and woken up. They will
1668 * add themselves back after completing rebind. This ensures that the
1669 * idle_list doesn't contain any unbound workers when re-bound busy workers
1670 * try to perform local wake-ups for concurrency management.
1671 *
1672 * Busy workers can rebind after they finish their current work items.
1673 * Queueing the rebind work item at the head of the scheduled list is
1674 * enough. Note that nr_running will be properly bumped as busy workers
1675 * rebind.
1676 *
1677 * On return, all non-manager workers are scheduled for rebind - see
1678 * manage_workers() for the manager special case. Any idle worker
1679 * including the manager will not appear on @idle_list until rebind is
1680 * complete, making local wake-ups safe.
1681 */
1682static void rebind_workers(struct worker_pool *pool)
1683{
1684 struct worker *worker, *n;
1685 int i;
1686
1687 lockdep_assert_held(&pool->assoc_mutex);
1688 lockdep_assert_held(&pool->lock);
1689
1690 /* dequeue and kick idle ones */
1691 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1692 /*
1693 * idle workers should be off @pool->idle_list until rebind
1694 * is complete to avoid receiving premature local wake-ups.
1695 */
1696 list_del_init(&worker->entry);
1697
1698 /*
1699 * worker_thread() will see the above dequeuing and call
1700 * idle_worker_rebind().
1701 */
1702 wake_up_process(worker->task);
1703 }
1704
1705 /* rebind busy workers */
1706 for_each_busy_worker(worker, i, pool) {
1707 struct work_struct *rebind_work = &worker->rebind_work;
1708 struct workqueue_struct *wq;
1709
1710 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1711 work_data_bits(rebind_work)))
1712 continue;
1713
1714 debug_work_activate(rebind_work);
1715
1716 /*
1717 * wq doesn't really matter but let's keep @worker->pool
1718 * and @pwq->pool consistent for sanity.
1719 */
1720 if (worker->pool->attrs->nice < 0)
1721 wq = system_highpri_wq;
1722 else
1723 wq = system_wq;
1724
1725 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1726 worker->scheduled.next,
1727 work_color_to_flags(WORK_NO_COLOR));
1728 }
1729}
1730
1731static struct worker *alloc_worker(void)
1732{
1733 struct worker *worker;
1734
1735 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1736 if (worker) {
1737 INIT_LIST_HEAD(&worker->entry);
1738 INIT_LIST_HEAD(&worker->scheduled);
1739 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1740 /* on creation a worker is in !idle && prep state */
1741 worker->flags = WORKER_PREP;
1742 }
1743 return worker;
1744}
1745
1746/**
1747 * create_worker - create a new workqueue worker
1748 * @pool: pool the new worker will belong to
1749 *
1750 * Create a new worker which is bound to @pool. The returned worker
1751 * can be started by calling start_worker() or destroyed using
1752 * destroy_worker().
1753 *
1754 * CONTEXT:
1755 * Might sleep. Does GFP_KERNEL allocations.
1756 *
1757 * RETURNS:
1758 * Pointer to the newly created worker.
1759 */
1760static struct worker *create_worker(struct worker_pool *pool)
1761{
1762 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1763 struct worker *worker = NULL;
1764 int id = -1;
1765
1766 spin_lock_irq(&pool->lock);
1767 while (ida_get_new(&pool->worker_ida, &id)) {
1768 spin_unlock_irq(&pool->lock);
1769 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1770 goto fail;
1771 spin_lock_irq(&pool->lock);
1772 }
1773 spin_unlock_irq(&pool->lock);
1774
1775 worker = alloc_worker();
1776 if (!worker)
1777 goto fail;
1778
1779 worker->pool = pool;
1780 worker->id = id;
1781
1782 if (pool->cpu >= 0)
1783 worker->task = kthread_create_on_node(worker_thread,
1784 worker, cpu_to_node(pool->cpu),
1785 "kworker/%d:%d%s", pool->cpu, id, pri);
1786 else
1787 worker->task = kthread_create(worker_thread, worker,
1788 "kworker/u%d:%d%s",
1789 pool->id, id, pri);
1790 if (IS_ERR(worker->task))
1791 goto fail;
1792
1793 set_user_nice(worker->task, pool->attrs->nice);
1794 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1795
1796 /*
1797 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1798 * cpumask of workqueue workers. This is an abuse. We need
1799 * %PF_NO_SETAFFINITY.
1800 */
1801 worker->task->flags |= PF_THREAD_BOUND;
1802
1803 /*
1804 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1805 * remains stable across this function. See the comments above the
1806 * flag definition for details.
1807 */
1808 if (pool->flags & POOL_DISASSOCIATED)
1809 worker->flags |= WORKER_UNBOUND;
1810
1811 return worker;
1812fail:
1813 if (id >= 0) {
1814 spin_lock_irq(&pool->lock);
1815 ida_remove(&pool->worker_ida, id);
1816 spin_unlock_irq(&pool->lock);
1817 }
1818 kfree(worker);
1819 return NULL;
1820}
1821
1822/**
1823 * start_worker - start a newly created worker
1824 * @worker: worker to start
1825 *
1826 * Make the pool aware of @worker and start it.
1827 *
1828 * CONTEXT:
1829 * spin_lock_irq(pool->lock).
1830 */
1831static void start_worker(struct worker *worker)
1832{
1833 worker->flags |= WORKER_STARTED;
1834 worker->pool->nr_workers++;
1835 worker_enter_idle(worker);
1836 wake_up_process(worker->task);
1837}
1838
1839/**
1840 * destroy_worker - destroy a workqueue worker
1841 * @worker: worker to be destroyed
1842 *
1843 * Destroy @worker and adjust @pool stats accordingly.
1844 *
1845 * CONTEXT:
1846 * spin_lock_irq(pool->lock) which is released and regrabbed.
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
1850 struct worker_pool *pool = worker->pool;
1851 int id = worker->id;
1852
1853 /* sanity check frenzy */
1854 if (WARN_ON(worker->current_work) ||
1855 WARN_ON(!list_empty(&worker->scheduled)))
1856 return;
1857
1858 if (worker->flags & WORKER_STARTED)
1859 pool->nr_workers--;
1860 if (worker->flags & WORKER_IDLE)
1861 pool->nr_idle--;
1862
1863 list_del_init(&worker->entry);
1864 worker->flags |= WORKER_DIE;
1865
1866 spin_unlock_irq(&pool->lock);
1867
1868 kthread_stop(worker->task);
1869 kfree(worker);
1870
1871 spin_lock_irq(&pool->lock);
1872 ida_remove(&pool->worker_ida, id);
1873}
1874
1875static void idle_worker_timeout(unsigned long __pool)
1876{
1877 struct worker_pool *pool = (void *)__pool;
1878
1879 spin_lock_irq(&pool->lock);
1880
1881 if (too_many_workers(pool)) {
1882 struct worker *worker;
1883 unsigned long expires;
1884
1885 /* idle_list is kept in LIFO order, check the last one */
1886 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1887 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1888
1889 if (time_before(jiffies, expires))
1890 mod_timer(&pool->idle_timer, expires);
1891 else {
1892 /* it's been idle for too long, wake up manager */
1893 pool->flags |= POOL_MANAGE_WORKERS;
1894 wake_up_worker(pool);
1895 }
1896 }
1897
1898 spin_unlock_irq(&pool->lock);
1899}
1900
1901static void send_mayday(struct work_struct *work)
1902{
1903 struct pool_workqueue *pwq = get_work_pwq(work);
1904 struct workqueue_struct *wq = pwq->wq;
1905
1906 lockdep_assert_held(&workqueue_lock);
1907
1908 if (!wq->rescuer)
1909 return;
1910
1911 /* mayday mayday mayday */
1912 if (list_empty(&pwq->mayday_node)) {
1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
1914 wake_up_process(wq->rescuer->task);
1915 }
1916}
1917
1918static void pool_mayday_timeout(unsigned long __pool)
1919{
1920 struct worker_pool *pool = (void *)__pool;
1921 struct work_struct *work;
1922
1923 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1924 spin_lock(&pool->lock);
1925
1926 if (need_to_create_worker(pool)) {
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
1933 list_for_each_entry(work, &pool->worklist, entry)
1934 send_mayday(work);
1935 }
1936
1937 spin_unlock(&pool->lock);
1938 spin_unlock_irq(&workqueue_lock);
1939
1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1941}
1942
1943/**
1944 * maybe_create_worker - create a new worker if necessary
1945 * @pool: pool to create a new worker for
1946 *
1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950 * sent to all rescuers with works scheduled on @pool to resolve
1951 * possible allocation deadlock.
1952 *
1953 * On return, need_to_create_worker() is guaranteed to be false and
1954 * may_start_working() true.
1955 *
1956 * LOCKING:
1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
1960 *
1961 * RETURNS:
1962 * false if no action was taken and pool->lock stayed locked, true
1963 * otherwise.
1964 */
1965static bool maybe_create_worker(struct worker_pool *pool)
1966__releases(&pool->lock)
1967__acquires(&pool->lock)
1968{
1969 if (!need_to_create_worker(pool))
1970 return false;
1971restart:
1972 spin_unlock_irq(&pool->lock);
1973
1974 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1975 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1976
1977 while (true) {
1978 struct worker *worker;
1979
1980 worker = create_worker(pool);
1981 if (worker) {
1982 del_timer_sync(&pool->mayday_timer);
1983 spin_lock_irq(&pool->lock);
1984 start_worker(worker);
1985 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1986 goto restart;
1987 return true;
1988 }
1989
1990 if (!need_to_create_worker(pool))
1991 break;
1992
1993 __set_current_state(TASK_INTERRUPTIBLE);
1994 schedule_timeout(CREATE_COOLDOWN);
1995
1996 if (!need_to_create_worker(pool))
1997 break;
1998 }
1999
2000 del_timer_sync(&pool->mayday_timer);
2001 spin_lock_irq(&pool->lock);
2002 if (need_to_create_worker(pool))
2003 goto restart;
2004 return true;
2005}
2006
2007/**
2008 * maybe_destroy_worker - destroy workers which have been idle for a while
2009 * @pool: pool to destroy workers for
2010 *
2011 * Destroy @pool workers which have been idle for longer than
2012 * IDLE_WORKER_TIMEOUT.
2013 *
2014 * LOCKING:
2015 * spin_lock_irq(pool->lock) which may be released and regrabbed
2016 * multiple times. Called only from manager.
2017 *
2018 * RETURNS:
2019 * false if no action was taken and pool->lock stayed locked, true
2020 * otherwise.
2021 */
2022static bool maybe_destroy_workers(struct worker_pool *pool)
2023{
2024 bool ret = false;
2025
2026 while (too_many_workers(pool)) {
2027 struct worker *worker;
2028 unsigned long expires;
2029
2030 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2031 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2032
2033 if (time_before(jiffies, expires)) {
2034 mod_timer(&pool->idle_timer, expires);
2035 break;
2036 }
2037
2038 destroy_worker(worker);
2039 ret = true;
2040 }
2041
2042 return ret;
2043}
2044
2045/**
2046 * manage_workers - manage worker pool
2047 * @worker: self
2048 *
2049 * Assume the manager role and manage the worker pool @worker belongs
2050 * to. At any given time, there can be only zero or one manager per
2051 * pool. The exclusion is handled automatically by this function.
2052 *
2053 * The caller can safely start processing works on false return. On
2054 * true return, it's guaranteed that need_to_create_worker() is false
2055 * and may_start_working() is true.
2056 *
2057 * CONTEXT:
2058 * spin_lock_irq(pool->lock) which may be released and regrabbed
2059 * multiple times. Does GFP_KERNEL allocations.
2060 *
2061 * RETURNS:
2062 * spin_lock_irq(pool->lock) which may be released and regrabbed
2063 * multiple times. Does GFP_KERNEL allocations.
2064 */
2065static bool manage_workers(struct worker *worker)
2066{
2067 struct worker_pool *pool = worker->pool;
2068 bool ret = false;
2069
2070 if (!mutex_trylock(&pool->manager_arb))
2071 return ret;
2072
2073 /*
2074 * To simplify both worker management and CPU hotplug, hold off
2075 * management while hotplug is in progress. CPU hotplug path can't
2076 * grab @pool->manager_arb to achieve this because that can lead to
2077 * idle worker depletion (all become busy thinking someone else is
2078 * managing) which in turn can result in deadlock under extreme
2079 * circumstances. Use @pool->assoc_mutex to synchronize manager
2080 * against CPU hotplug.
2081 *
2082 * assoc_mutex would always be free unless CPU hotplug is in
2083 * progress. trylock first without dropping @pool->lock.
2084 */
2085 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2086 spin_unlock_irq(&pool->lock);
2087 mutex_lock(&pool->assoc_mutex);
2088 /*
2089 * CPU hotplug could have happened while we were waiting
2090 * for assoc_mutex. Hotplug itself can't handle us
2091 * because manager isn't either on idle or busy list, and
2092 * @pool's state and ours could have deviated.
2093 *
2094 * As hotplug is now excluded via assoc_mutex, we can
2095 * simply try to bind. It will succeed or fail depending
2096 * on @pool's current state. Try it and adjust
2097 * %WORKER_UNBOUND accordingly.
2098 */
2099 if (worker_maybe_bind_and_lock(pool))
2100 worker->flags &= ~WORKER_UNBOUND;
2101 else
2102 worker->flags |= WORKER_UNBOUND;
2103
2104 ret = true;
2105 }
2106
2107 pool->flags &= ~POOL_MANAGE_WORKERS;
2108
2109 /*
2110 * Destroy and then create so that may_start_working() is true
2111 * on return.
2112 */
2113 ret |= maybe_destroy_workers(pool);
2114 ret |= maybe_create_worker(pool);
2115
2116 mutex_unlock(&pool->assoc_mutex);
2117 mutex_unlock(&pool->manager_arb);
2118 return ret;
2119}
2120
2121/**
2122 * process_one_work - process single work
2123 * @worker: self
2124 * @work: work to process
2125 *
2126 * Process @work. This function contains all the logics necessary to
2127 * process a single work including synchronization against and
2128 * interaction with other workers on the same cpu, queueing and
2129 * flushing. As long as context requirement is met, any worker can
2130 * call this function to process a work.
2131 *
2132 * CONTEXT:
2133 * spin_lock_irq(pool->lock) which is released and regrabbed.
2134 */
2135static void process_one_work(struct worker *worker, struct work_struct *work)
2136__releases(&pool->lock)
2137__acquires(&pool->lock)
2138{
2139 struct pool_workqueue *pwq = get_work_pwq(work);
2140 struct worker_pool *pool = worker->pool;
2141 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2142 int work_color;
2143 struct worker *collision;
2144#ifdef CONFIG_LOCKDEP
2145 /*
2146 * It is permissible to free the struct work_struct from
2147 * inside the function that is called from it, this we need to
2148 * take into account for lockdep too. To avoid bogus "held
2149 * lock freed" warnings as well as problems when looking into
2150 * work->lockdep_map, make a copy and use that here.
2151 */
2152 struct lockdep_map lockdep_map;
2153
2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2155#endif
2156 /*
2157 * Ensure we're on the correct CPU. DISASSOCIATED test is
2158 * necessary to avoid spurious warnings from rescuers servicing the
2159 * unbound or a disassociated pool.
2160 */
2161 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2162 !(pool->flags & POOL_DISASSOCIATED) &&
2163 raw_smp_processor_id() != pool->cpu);
2164
2165 /*
2166 * A single work shouldn't be executed concurrently by
2167 * multiple workers on a single cpu. Check whether anyone is
2168 * already processing the work. If so, defer the work to the
2169 * currently executing one.
2170 */
2171 collision = find_worker_executing_work(pool, work);
2172 if (unlikely(collision)) {
2173 move_linked_works(work, &collision->scheduled, NULL);
2174 return;
2175 }
2176
2177 /* claim and dequeue */
2178 debug_work_deactivate(work);
2179 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2180 worker->current_work = work;
2181 worker->current_func = work->func;
2182 worker->current_pwq = pwq;
2183 work_color = get_work_color(work);
2184
2185 list_del_init(&work->entry);
2186
2187 /*
2188 * CPU intensive works don't participate in concurrency
2189 * management. They're the scheduler's responsibility.
2190 */
2191 if (unlikely(cpu_intensive))
2192 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2193
2194 /*
2195 * Unbound pool isn't concurrency managed and work items should be
2196 * executed ASAP. Wake up another worker if necessary.
2197 */
2198 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2199 wake_up_worker(pool);
2200
2201 /*
2202 * Record the last pool and clear PENDING which should be the last
2203 * update to @work. Also, do this inside @pool->lock so that
2204 * PENDING and queued state changes happen together while IRQ is
2205 * disabled.
2206 */
2207 set_work_pool_and_clear_pending(work, pool->id);
2208
2209 spin_unlock_irq(&pool->lock);
2210
2211 lock_map_acquire_read(&pwq->wq->lockdep_map);
2212 lock_map_acquire(&lockdep_map);
2213 trace_workqueue_execute_start(work);
2214 worker->current_func(work);
2215 /*
2216 * While we must be careful to not use "work" after this, the trace
2217 * point will only record its address.
2218 */
2219 trace_workqueue_execute_end(work);
2220 lock_map_release(&lockdep_map);
2221 lock_map_release(&pwq->wq->lockdep_map);
2222
2223 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2224 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2225 " last function: %pf\n",
2226 current->comm, preempt_count(), task_pid_nr(current),
2227 worker->current_func);
2228 debug_show_held_locks(current);
2229 dump_stack();
2230 }
2231
2232 spin_lock_irq(&pool->lock);
2233
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
2238 /* we're done with it, release */
2239 hash_del(&worker->hentry);
2240 worker->current_work = NULL;
2241 worker->current_func = NULL;
2242 worker->current_pwq = NULL;
2243 pwq_dec_nr_in_flight(pwq, work_color);
2244}
2245
2246/**
2247 * process_scheduled_works - process scheduled works
2248 * @worker: self
2249 *
2250 * Process all scheduled works. Please note that the scheduled list
2251 * may change while processing a work, so this function repeatedly
2252 * fetches a work from the top and executes it.
2253 *
2254 * CONTEXT:
2255 * spin_lock_irq(pool->lock) which may be released and regrabbed
2256 * multiple times.
2257 */
2258static void process_scheduled_works(struct worker *worker)
2259{
2260 while (!list_empty(&worker->scheduled)) {
2261 struct work_struct *work = list_first_entry(&worker->scheduled,
2262 struct work_struct, entry);
2263 process_one_work(worker, work);
2264 }
2265}
2266
2267/**
2268 * worker_thread - the worker thread function
2269 * @__worker: self
2270 *
2271 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2272 * of these per each cpu. These workers process all works regardless of
2273 * their specific target workqueue. The only exception is works which
2274 * belong to workqueues with a rescuer which will be explained in
2275 * rescuer_thread().
2276 */
2277static int worker_thread(void *__worker)
2278{
2279 struct worker *worker = __worker;
2280 struct worker_pool *pool = worker->pool;
2281
2282 /* tell the scheduler that this is a workqueue worker */
2283 worker->task->flags |= PF_WQ_WORKER;
2284woke_up:
2285 spin_lock_irq(&pool->lock);
2286
2287 /* we are off idle list if destruction or rebind is requested */
2288 if (unlikely(list_empty(&worker->entry))) {
2289 spin_unlock_irq(&pool->lock);
2290
2291 /* if DIE is set, destruction is requested */
2292 if (worker->flags & WORKER_DIE) {
2293 worker->task->flags &= ~PF_WQ_WORKER;
2294 return 0;
2295 }
2296
2297 /* otherwise, rebind */
2298 idle_worker_rebind(worker);
2299 goto woke_up;
2300 }
2301
2302 worker_leave_idle(worker);
2303recheck:
2304 /* no more worker necessary? */
2305 if (!need_more_worker(pool))
2306 goto sleep;
2307
2308 /* do we need to manage? */
2309 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2310 goto recheck;
2311
2312 /*
2313 * ->scheduled list can only be filled while a worker is
2314 * preparing to process a work or actually processing it.
2315 * Make sure nobody diddled with it while I was sleeping.
2316 */
2317 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2318
2319 /*
2320 * When control reaches this point, we're guaranteed to have
2321 * at least one idle worker or that someone else has already
2322 * assumed the manager role.
2323 */
2324 worker_clr_flags(worker, WORKER_PREP);
2325
2326 do {
2327 struct work_struct *work =
2328 list_first_entry(&pool->worklist,
2329 struct work_struct, entry);
2330
2331 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 /* optimization path, not strictly necessary */
2333 process_one_work(worker, work);
2334 if (unlikely(!list_empty(&worker->scheduled)))
2335 process_scheduled_works(worker);
2336 } else {
2337 move_linked_works(work, &worker->scheduled, NULL);
2338 process_scheduled_works(worker);
2339 }
2340 } while (keep_working(pool));
2341
2342 worker_set_flags(worker, WORKER_PREP, false);
2343sleep:
2344 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345 goto recheck;
2346
2347 /*
2348 * pool->lock is held and there's no work to process and no need to
2349 * manage, sleep. Workers are woken up only while holding
2350 * pool->lock or from local cpu, so setting the current state
2351 * before releasing pool->lock is enough to prevent losing any
2352 * event.
2353 */
2354 worker_enter_idle(worker);
2355 __set_current_state(TASK_INTERRUPTIBLE);
2356 spin_unlock_irq(&pool->lock);
2357 schedule();
2358 goto woke_up;
2359}
2360
2361/**
2362 * rescuer_thread - the rescuer thread function
2363 * @__rescuer: self
2364 *
2365 * Workqueue rescuer thread function. There's one rescuer for each
2366 * workqueue which has WQ_MEM_RECLAIM set.
2367 *
2368 * Regular work processing on a pool may block trying to create a new
2369 * worker which uses GFP_KERNEL allocation which has slight chance of
2370 * developing into deadlock if some works currently on the same queue
2371 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2372 * the problem rescuer solves.
2373 *
2374 * When such condition is possible, the pool summons rescuers of all
2375 * workqueues which have works queued on the pool and let them process
2376 * those works so that forward progress can be guaranteed.
2377 *
2378 * This should happen rarely.
2379 */
2380static int rescuer_thread(void *__rescuer)
2381{
2382 struct worker *rescuer = __rescuer;
2383 struct workqueue_struct *wq = rescuer->rescue_wq;
2384 struct list_head *scheduled = &rescuer->scheduled;
2385
2386 set_user_nice(current, RESCUER_NICE_LEVEL);
2387
2388 /*
2389 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2390 * doesn't participate in concurrency management.
2391 */
2392 rescuer->task->flags |= PF_WQ_WORKER;
2393repeat:
2394 set_current_state(TASK_INTERRUPTIBLE);
2395
2396 if (kthread_should_stop()) {
2397 __set_current_state(TASK_RUNNING);
2398 rescuer->task->flags &= ~PF_WQ_WORKER;
2399 return 0;
2400 }
2401
2402 /* see whether any pwq is asking for help */
2403 spin_lock_irq(&workqueue_lock);
2404
2405 while (!list_empty(&wq->maydays)) {
2406 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2407 struct pool_workqueue, mayday_node);
2408 struct worker_pool *pool = pwq->pool;
2409 struct work_struct *work, *n;
2410
2411 __set_current_state(TASK_RUNNING);
2412 list_del_init(&pwq->mayday_node);
2413
2414 spin_unlock_irq(&workqueue_lock);
2415
2416 /* migrate to the target cpu if possible */
2417 worker_maybe_bind_and_lock(pool);
2418 rescuer->pool = pool;
2419
2420 /*
2421 * Slurp in all works issued via this workqueue and
2422 * process'em.
2423 */
2424 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2425 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2426 if (get_work_pwq(work) == pwq)
2427 move_linked_works(work, scheduled, &n);
2428
2429 process_scheduled_works(rescuer);
2430
2431 /*
2432 * Leave this pool. If keep_working() is %true, notify a
2433 * regular worker; otherwise, we end up with 0 concurrency
2434 * and stalling the execution.
2435 */
2436 if (keep_working(pool))
2437 wake_up_worker(pool);
2438
2439 rescuer->pool = NULL;
2440 spin_unlock(&pool->lock);
2441 spin_lock(&workqueue_lock);
2442 }
2443
2444 spin_unlock_irq(&workqueue_lock);
2445
2446 /* rescuers should never participate in concurrency management */
2447 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2448 schedule();
2449 goto repeat;
2450}
2451
2452struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @pwq: pwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2469 *
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine pwq from @target.
2483 *
2484 * CONTEXT:
2485 * spin_lock_irq(pool->lock).
2486 */
2487static void insert_wq_barrier(struct pool_workqueue *pwq,
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
2490{
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
2494 /*
2495 * debugobject calls are safe here even with pool->lock locked
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502 init_completion(&barr->done);
2503
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
2519 debug_work_activate(&barr->work);
2520 insert_work(pwq, &barr->work, head,
2521 work_color_to_flags(WORK_NO_COLOR) | linked);
2522}
2523
2524/**
2525 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
2530 * Prepare pwqs for workqueue flushing.
2531 *
2532 * If @flush_color is non-negative, flush_color on all pwqs should be
2533 * -1. If no pwq has in-flight commands at the specified color, all
2534 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2535 * has in flight commands, its pwq->flush_color is set to
2536 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
2544 * If @work_color is non-negative, all pwqs should have the same
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
2555static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2556 int flush_color, int work_color)
2557{
2558 bool wait = false;
2559 struct pool_workqueue *pwq;
2560
2561 if (flush_color >= 0) {
2562 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2563 atomic_set(&wq->nr_pwqs_to_flush, 1);
2564 }
2565
2566 local_irq_disable();
2567
2568 for_each_pwq(pwq, wq) {
2569 struct worker_pool *pool = pwq->pool;
2570
2571 spin_lock(&pool->lock);
2572
2573 if (flush_color >= 0) {
2574 WARN_ON_ONCE(pwq->flush_color != -1);
2575
2576 if (pwq->nr_in_flight[flush_color]) {
2577 pwq->flush_color = flush_color;
2578 atomic_inc(&wq->nr_pwqs_to_flush);
2579 wait = true;
2580 }
2581 }
2582
2583 if (work_color >= 0) {
2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585 pwq->work_color = work_color;
2586 }
2587
2588 spin_unlock(&pool->lock);
2589 }
2590
2591 local_irq_enable();
2592
2593 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2594 complete(&wq->first_flusher->done);
2595
2596 return wait;
2597}
2598
2599/**
2600 * flush_workqueue - ensure that any scheduled work has run to completion.
2601 * @wq: workqueue to flush
2602 *
2603 * Forces execution of the workqueue and blocks until its completion.
2604 * This is typically used in driver shutdown handlers.
2605 *
2606 * We sleep until all works which were queued on entry have been handled,
2607 * but we are not livelocked by new incoming ones.
2608 */
2609void flush_workqueue(struct workqueue_struct *wq)
2610{
2611 struct wq_flusher this_flusher = {
2612 .list = LIST_HEAD_INIT(this_flusher.list),
2613 .flush_color = -1,
2614 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2615 };
2616 int next_color;
2617
2618 lock_map_acquire(&wq->lockdep_map);
2619 lock_map_release(&wq->lockdep_map);
2620
2621 mutex_lock(&wq->flush_mutex);
2622
2623 /*
2624 * Start-to-wait phase
2625 */
2626 next_color = work_next_color(wq->work_color);
2627
2628 if (next_color != wq->flush_color) {
2629 /*
2630 * Color space is not full. The current work_color
2631 * becomes our flush_color and work_color is advanced
2632 * by one.
2633 */
2634 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2635 this_flusher.flush_color = wq->work_color;
2636 wq->work_color = next_color;
2637
2638 if (!wq->first_flusher) {
2639 /* no flush in progress, become the first flusher */
2640 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2641
2642 wq->first_flusher = &this_flusher;
2643
2644 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2645 wq->work_color)) {
2646 /* nothing to flush, done */
2647 wq->flush_color = next_color;
2648 wq->first_flusher = NULL;
2649 goto out_unlock;
2650 }
2651 } else {
2652 /* wait in queue */
2653 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2654 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2655 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2656 }
2657 } else {
2658 /*
2659 * Oops, color space is full, wait on overflow queue.
2660 * The next flush completion will assign us
2661 * flush_color and transfer to flusher_queue.
2662 */
2663 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2664 }
2665
2666 mutex_unlock(&wq->flush_mutex);
2667
2668 wait_for_completion(&this_flusher.done);
2669
2670 /*
2671 * Wake-up-and-cascade phase
2672 *
2673 * First flushers are responsible for cascading flushes and
2674 * handling overflow. Non-first flushers can simply return.
2675 */
2676 if (wq->first_flusher != &this_flusher)
2677 return;
2678
2679 mutex_lock(&wq->flush_mutex);
2680
2681 /* we might have raced, check again with mutex held */
2682 if (wq->first_flusher != &this_flusher)
2683 goto out_unlock;
2684
2685 wq->first_flusher = NULL;
2686
2687 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2688 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2689
2690 while (true) {
2691 struct wq_flusher *next, *tmp;
2692
2693 /* complete all the flushers sharing the current flush color */
2694 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2695 if (next->flush_color != wq->flush_color)
2696 break;
2697 list_del_init(&next->list);
2698 complete(&next->done);
2699 }
2700
2701 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2702 wq->flush_color != work_next_color(wq->work_color));
2703
2704 /* this flush_color is finished, advance by one */
2705 wq->flush_color = work_next_color(wq->flush_color);
2706
2707 /* one color has been freed, handle overflow queue */
2708 if (!list_empty(&wq->flusher_overflow)) {
2709 /*
2710 * Assign the same color to all overflowed
2711 * flushers, advance work_color and append to
2712 * flusher_queue. This is the start-to-wait
2713 * phase for these overflowed flushers.
2714 */
2715 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2716 tmp->flush_color = wq->work_color;
2717
2718 wq->work_color = work_next_color(wq->work_color);
2719
2720 list_splice_tail_init(&wq->flusher_overflow,
2721 &wq->flusher_queue);
2722 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2723 }
2724
2725 if (list_empty(&wq->flusher_queue)) {
2726 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2727 break;
2728 }
2729
2730 /*
2731 * Need to flush more colors. Make the next flusher
2732 * the new first flusher and arm pwqs.
2733 */
2734 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2735 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2736
2737 list_del_init(&next->list);
2738 wq->first_flusher = next;
2739
2740 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2741 break;
2742
2743 /*
2744 * Meh... this color is already done, clear first
2745 * flusher and repeat cascading.
2746 */
2747 wq->first_flusher = NULL;
2748 }
2749
2750out_unlock:
2751 mutex_unlock(&wq->flush_mutex);
2752}
2753EXPORT_SYMBOL_GPL(flush_workqueue);
2754
2755/**
2756 * drain_workqueue - drain a workqueue
2757 * @wq: workqueue to drain
2758 *
2759 * Wait until the workqueue becomes empty. While draining is in progress,
2760 * only chain queueing is allowed. IOW, only currently pending or running
2761 * work items on @wq can queue further work items on it. @wq is flushed
2762 * repeatedly until it becomes empty. The number of flushing is detemined
2763 * by the depth of chaining and should be relatively short. Whine if it
2764 * takes too long.
2765 */
2766void drain_workqueue(struct workqueue_struct *wq)
2767{
2768 unsigned int flush_cnt = 0;
2769 struct pool_workqueue *pwq;
2770
2771 /*
2772 * __queue_work() needs to test whether there are drainers, is much
2773 * hotter than drain_workqueue() and already looks at @wq->flags.
2774 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2775 */
2776 spin_lock_irq(&workqueue_lock);
2777 if (!wq->nr_drainers++)
2778 wq->flags |= __WQ_DRAINING;
2779 spin_unlock_irq(&workqueue_lock);
2780reflush:
2781 flush_workqueue(wq);
2782
2783 local_irq_disable();
2784
2785 for_each_pwq(pwq, wq) {
2786 bool drained;
2787
2788 spin_lock(&pwq->pool->lock);
2789 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2790 spin_unlock(&pwq->pool->lock);
2791
2792 if (drained)
2793 continue;
2794
2795 if (++flush_cnt == 10 ||
2796 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2797 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2798 wq->name, flush_cnt);
2799
2800 local_irq_enable();
2801 goto reflush;
2802 }
2803
2804 spin_lock(&workqueue_lock);
2805 if (!--wq->nr_drainers)
2806 wq->flags &= ~__WQ_DRAINING;
2807 spin_unlock(&workqueue_lock);
2808
2809 local_irq_enable();
2810}
2811EXPORT_SYMBOL_GPL(drain_workqueue);
2812
2813static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2814{
2815 struct worker *worker = NULL;
2816 struct worker_pool *pool;
2817 struct pool_workqueue *pwq;
2818
2819 might_sleep();
2820
2821 local_irq_disable();
2822 pool = get_work_pool(work);
2823 if (!pool) {
2824 local_irq_enable();
2825 return false;
2826 }
2827
2828 spin_lock(&pool->lock);
2829 /* see the comment in try_to_grab_pending() with the same code */
2830 pwq = get_work_pwq(work);
2831 if (pwq) {
2832 if (unlikely(pwq->pool != pool))
2833 goto already_gone;
2834 } else {
2835 worker = find_worker_executing_work(pool, work);
2836 if (!worker)
2837 goto already_gone;
2838 pwq = worker->current_pwq;
2839 }
2840
2841 insert_wq_barrier(pwq, barr, work, worker);
2842 spin_unlock_irq(&pool->lock);
2843
2844 /*
2845 * If @max_active is 1 or rescuer is in use, flushing another work
2846 * item on the same workqueue may lead to deadlock. Make sure the
2847 * flusher is not running on the same workqueue by verifying write
2848 * access.
2849 */
2850 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2851 lock_map_acquire(&pwq->wq->lockdep_map);
2852 else
2853 lock_map_acquire_read(&pwq->wq->lockdep_map);
2854 lock_map_release(&pwq->wq->lockdep_map);
2855
2856 return true;
2857already_gone:
2858 spin_unlock_irq(&pool->lock);
2859 return false;
2860}
2861
2862/**
2863 * flush_work - wait for a work to finish executing the last queueing instance
2864 * @work: the work to flush
2865 *
2866 * Wait until @work has finished execution. @work is guaranteed to be idle
2867 * on return if it hasn't been requeued since flush started.
2868 *
2869 * RETURNS:
2870 * %true if flush_work() waited for the work to finish execution,
2871 * %false if it was already idle.
2872 */
2873bool flush_work(struct work_struct *work)
2874{
2875 struct wq_barrier barr;
2876
2877 lock_map_acquire(&work->lockdep_map);
2878 lock_map_release(&work->lockdep_map);
2879
2880 if (start_flush_work(work, &barr)) {
2881 wait_for_completion(&barr.done);
2882 destroy_work_on_stack(&barr.work);
2883 return true;
2884 } else {
2885 return false;
2886 }
2887}
2888EXPORT_SYMBOL_GPL(flush_work);
2889
2890static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2891{
2892 unsigned long flags;
2893 int ret;
2894
2895 do {
2896 ret = try_to_grab_pending(work, is_dwork, &flags);
2897 /*
2898 * If someone else is canceling, wait for the same event it
2899 * would be waiting for before retrying.
2900 */
2901 if (unlikely(ret == -ENOENT))
2902 flush_work(work);
2903 } while (unlikely(ret < 0));
2904
2905 /* tell other tasks trying to grab @work to back off */
2906 mark_work_canceling(work);
2907 local_irq_restore(flags);
2908
2909 flush_work(work);
2910 clear_work_data(work);
2911 return ret;
2912}
2913
2914/**
2915 * cancel_work_sync - cancel a work and wait for it to finish
2916 * @work: the work to cancel
2917 *
2918 * Cancel @work and wait for its execution to finish. This function
2919 * can be used even if the work re-queues itself or migrates to
2920 * another workqueue. On return from this function, @work is
2921 * guaranteed to be not pending or executing on any CPU.
2922 *
2923 * cancel_work_sync(&delayed_work->work) must not be used for
2924 * delayed_work's. Use cancel_delayed_work_sync() instead.
2925 *
2926 * The caller must ensure that the workqueue on which @work was last
2927 * queued can't be destroyed before this function returns.
2928 *
2929 * RETURNS:
2930 * %true if @work was pending, %false otherwise.
2931 */
2932bool cancel_work_sync(struct work_struct *work)
2933{
2934 return __cancel_work_timer(work, false);
2935}
2936EXPORT_SYMBOL_GPL(cancel_work_sync);
2937
2938/**
2939 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2940 * @dwork: the delayed work to flush
2941 *
2942 * Delayed timer is cancelled and the pending work is queued for
2943 * immediate execution. Like flush_work(), this function only
2944 * considers the last queueing instance of @dwork.
2945 *
2946 * RETURNS:
2947 * %true if flush_work() waited for the work to finish execution,
2948 * %false if it was already idle.
2949 */
2950bool flush_delayed_work(struct delayed_work *dwork)
2951{
2952 local_irq_disable();
2953 if (del_timer_sync(&dwork->timer))
2954 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2955 local_irq_enable();
2956 return flush_work(&dwork->work);
2957}
2958EXPORT_SYMBOL(flush_delayed_work);
2959
2960/**
2961 * cancel_delayed_work - cancel a delayed work
2962 * @dwork: delayed_work to cancel
2963 *
2964 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2965 * and canceled; %false if wasn't pending. Note that the work callback
2966 * function may still be running on return, unless it returns %true and the
2967 * work doesn't re-arm itself. Explicitly flush or use
2968 * cancel_delayed_work_sync() to wait on it.
2969 *
2970 * This function is safe to call from any context including IRQ handler.
2971 */
2972bool cancel_delayed_work(struct delayed_work *dwork)
2973{
2974 unsigned long flags;
2975 int ret;
2976
2977 do {
2978 ret = try_to_grab_pending(&dwork->work, true, &flags);
2979 } while (unlikely(ret == -EAGAIN));
2980
2981 if (unlikely(ret < 0))
2982 return false;
2983
2984 set_work_pool_and_clear_pending(&dwork->work,
2985 get_work_pool_id(&dwork->work));
2986 local_irq_restore(flags);
2987 return ret;
2988}
2989EXPORT_SYMBOL(cancel_delayed_work);
2990
2991/**
2992 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2993 * @dwork: the delayed work cancel
2994 *
2995 * This is cancel_work_sync() for delayed works.
2996 *
2997 * RETURNS:
2998 * %true if @dwork was pending, %false otherwise.
2999 */
3000bool cancel_delayed_work_sync(struct delayed_work *dwork)
3001{
3002 return __cancel_work_timer(&dwork->work, true);
3003}
3004EXPORT_SYMBOL(cancel_delayed_work_sync);
3005
3006/**
3007 * schedule_work_on - put work task on a specific cpu
3008 * @cpu: cpu to put the work task on
3009 * @work: job to be done
3010 *
3011 * This puts a job on a specific cpu
3012 */
3013bool schedule_work_on(int cpu, struct work_struct *work)
3014{
3015 return queue_work_on(cpu, system_wq, work);
3016}
3017EXPORT_SYMBOL(schedule_work_on);
3018
3019/**
3020 * schedule_work - put work task in global workqueue
3021 * @work: job to be done
3022 *
3023 * Returns %false if @work was already on the kernel-global workqueue and
3024 * %true otherwise.
3025 *
3026 * This puts a job in the kernel-global workqueue if it was not already
3027 * queued and leaves it in the same position on the kernel-global
3028 * workqueue otherwise.
3029 */
3030bool schedule_work(struct work_struct *work)
3031{
3032 return queue_work(system_wq, work);
3033}
3034EXPORT_SYMBOL(schedule_work);
3035
3036/**
3037 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3038 * @cpu: cpu to use
3039 * @dwork: job to be done
3040 * @delay: number of jiffies to wait
3041 *
3042 * After waiting for a given time this puts a job in the kernel-global
3043 * workqueue on the specified CPU.
3044 */
3045bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3046 unsigned long delay)
3047{
3048 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3049}
3050EXPORT_SYMBOL(schedule_delayed_work_on);
3051
3052/**
3053 * schedule_delayed_work - put work task in global workqueue after delay
3054 * @dwork: job to be done
3055 * @delay: number of jiffies to wait or 0 for immediate execution
3056 *
3057 * After waiting for a given time this puts a job in the kernel-global
3058 * workqueue.
3059 */
3060bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3061{
3062 return queue_delayed_work(system_wq, dwork, delay);
3063}
3064EXPORT_SYMBOL(schedule_delayed_work);
3065
3066/**
3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068 * @func: the function to call
3069 *
3070 * schedule_on_each_cpu() executes @func on each online CPU using the
3071 * system workqueue and blocks until all CPUs have completed.
3072 * schedule_on_each_cpu() is very slow.
3073 *
3074 * RETURNS:
3075 * 0 on success, -errno on failure.
3076 */
3077int schedule_on_each_cpu(work_func_t func)
3078{
3079 int cpu;
3080 struct work_struct __percpu *works;
3081
3082 works = alloc_percpu(struct work_struct);
3083 if (!works)
3084 return -ENOMEM;
3085
3086 get_online_cpus();
3087
3088 for_each_online_cpu(cpu) {
3089 struct work_struct *work = per_cpu_ptr(works, cpu);
3090
3091 INIT_WORK(work, func);
3092 schedule_work_on(cpu, work);
3093 }
3094
3095 for_each_online_cpu(cpu)
3096 flush_work(per_cpu_ptr(works, cpu));
3097
3098 put_online_cpus();
3099 free_percpu(works);
3100 return 0;
3101}
3102
3103/**
3104 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3105 *
3106 * Forces execution of the kernel-global workqueue and blocks until its
3107 * completion.
3108 *
3109 * Think twice before calling this function! It's very easy to get into
3110 * trouble if you don't take great care. Either of the following situations
3111 * will lead to deadlock:
3112 *
3113 * One of the work items currently on the workqueue needs to acquire
3114 * a lock held by your code or its caller.
3115 *
3116 * Your code is running in the context of a work routine.
3117 *
3118 * They will be detected by lockdep when they occur, but the first might not
3119 * occur very often. It depends on what work items are on the workqueue and
3120 * what locks they need, which you have no control over.
3121 *
3122 * In most situations flushing the entire workqueue is overkill; you merely
3123 * need to know that a particular work item isn't queued and isn't running.
3124 * In such cases you should use cancel_delayed_work_sync() or
3125 * cancel_work_sync() instead.
3126 */
3127void flush_scheduled_work(void)
3128{
3129 flush_workqueue(system_wq);
3130}
3131EXPORT_SYMBOL(flush_scheduled_work);
3132
3133/**
3134 * execute_in_process_context - reliably execute the routine with user context
3135 * @fn: the function to execute
3136 * @ew: guaranteed storage for the execute work structure (must
3137 * be available when the work executes)
3138 *
3139 * Executes the function immediately if process context is available,
3140 * otherwise schedules the function for delayed execution.
3141 *
3142 * Returns: 0 - function was executed
3143 * 1 - function was scheduled for execution
3144 */
3145int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3146{
3147 if (!in_interrupt()) {
3148 fn(&ew->work);
3149 return 0;
3150 }
3151
3152 INIT_WORK(&ew->work, fn);
3153 schedule_work(&ew->work);
3154
3155 return 1;
3156}
3157EXPORT_SYMBOL_GPL(execute_in_process_context);
3158
3159int keventd_up(void)
3160{
3161 return system_wq != NULL;
3162}
3163
3164#ifdef CONFIG_SYSFS
3165/*
3166 * Workqueues with WQ_SYSFS flag set is visible to userland via
3167 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3168 * following attributes.
3169 *
3170 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3171 * max_active RW int : maximum number of in-flight work items
3172 *
3173 * Unbound workqueues have the following extra attributes.
3174 *
3175 * id RO int : the associated pool ID
3176 * nice RW int : nice value of the workers
3177 * cpumask RW mask : bitmask of allowed CPUs for the workers
3178 */
3179struct wq_device {
3180 struct workqueue_struct *wq;
3181 struct device dev;
3182};
3183
3184static struct workqueue_struct *dev_to_wq(struct device *dev)
3185{
3186 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3187
3188 return wq_dev->wq;
3189}
3190
3191static ssize_t wq_per_cpu_show(struct device *dev,
3192 struct device_attribute *attr, char *buf)
3193{
3194 struct workqueue_struct *wq = dev_to_wq(dev);
3195
3196 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3197}
3198
3199static ssize_t wq_max_active_show(struct device *dev,
3200 struct device_attribute *attr, char *buf)
3201{
3202 struct workqueue_struct *wq = dev_to_wq(dev);
3203
3204 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3205}
3206
3207static ssize_t wq_max_active_store(struct device *dev,
3208 struct device_attribute *attr,
3209 const char *buf, size_t count)
3210{
3211 struct workqueue_struct *wq = dev_to_wq(dev);
3212 int val;
3213
3214 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3215 return -EINVAL;
3216
3217 workqueue_set_max_active(wq, val);
3218 return count;
3219}
3220
3221static struct device_attribute wq_sysfs_attrs[] = {
3222 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3223 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3224 __ATTR_NULL,
3225};
3226
3227static ssize_t wq_pool_id_show(struct device *dev,
3228 struct device_attribute *attr, char *buf)
3229{
3230 struct workqueue_struct *wq = dev_to_wq(dev);
3231 struct worker_pool *pool;
3232 int written;
3233
3234 rcu_read_lock_sched();
3235 pool = first_pwq(wq)->pool;
3236 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3237 rcu_read_unlock_sched();
3238
3239 return written;
3240}
3241
3242static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3243 char *buf)
3244{
3245 struct workqueue_struct *wq = dev_to_wq(dev);
3246 int written;
3247
3248 rcu_read_lock_sched();
3249 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3250 first_pwq(wq)->pool->attrs->nice);
3251 rcu_read_unlock_sched();
3252
3253 return written;
3254}
3255
3256/* prepare workqueue_attrs for sysfs store operations */
3257static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3258{
3259 struct workqueue_attrs *attrs;
3260
3261 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3262 if (!attrs)
3263 return NULL;
3264
3265 rcu_read_lock_sched();
3266 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3267 rcu_read_unlock_sched();
3268 return attrs;
3269}
3270
3271static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3272 const char *buf, size_t count)
3273{
3274 struct workqueue_struct *wq = dev_to_wq(dev);
3275 struct workqueue_attrs *attrs;
3276 int ret;
3277
3278 attrs = wq_sysfs_prep_attrs(wq);
3279 if (!attrs)
3280 return -ENOMEM;
3281
3282 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3283 attrs->nice >= -20 && attrs->nice <= 19)
3284 ret = apply_workqueue_attrs(wq, attrs);
3285 else
3286 ret = -EINVAL;
3287
3288 free_workqueue_attrs(attrs);
3289 return ret ?: count;
3290}
3291
3292static ssize_t wq_cpumask_show(struct device *dev,
3293 struct device_attribute *attr, char *buf)
3294{
3295 struct workqueue_struct *wq = dev_to_wq(dev);
3296 int written;
3297
3298 rcu_read_lock_sched();
3299 written = cpumask_scnprintf(buf, PAGE_SIZE,
3300 first_pwq(wq)->pool->attrs->cpumask);
3301 rcu_read_unlock_sched();
3302
3303 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3304 return written;
3305}
3306
3307static ssize_t wq_cpumask_store(struct device *dev,
3308 struct device_attribute *attr,
3309 const char *buf, size_t count)
3310{
3311 struct workqueue_struct *wq = dev_to_wq(dev);
3312 struct workqueue_attrs *attrs;
3313 int ret;
3314
3315 attrs = wq_sysfs_prep_attrs(wq);
3316 if (!attrs)
3317 return -ENOMEM;
3318
3319 ret = cpumask_parse(buf, attrs->cpumask);
3320 if (!ret)
3321 ret = apply_workqueue_attrs(wq, attrs);
3322
3323 free_workqueue_attrs(attrs);
3324 return ret ?: count;
3325}
3326
3327static struct device_attribute wq_sysfs_unbound_attrs[] = {
3328 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3329 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3330 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3331 __ATTR_NULL,
3332};
3333
3334static struct bus_type wq_subsys = {
3335 .name = "workqueue",
3336 .dev_attrs = wq_sysfs_attrs,
3337};
3338
3339static int __init wq_sysfs_init(void)
3340{
3341 return subsys_virtual_register(&wq_subsys, NULL);
3342}
3343core_initcall(wq_sysfs_init);
3344
3345static void wq_device_release(struct device *dev)
3346{
3347 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3348
3349 kfree(wq_dev);
3350}
3351
3352/**
3353 * workqueue_sysfs_register - make a workqueue visible in sysfs
3354 * @wq: the workqueue to register
3355 *
3356 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3357 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3358 * which is the preferred method.
3359 *
3360 * Workqueue user should use this function directly iff it wants to apply
3361 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3362 * apply_workqueue_attrs() may race against userland updating the
3363 * attributes.
3364 *
3365 * Returns 0 on success, -errno on failure.
3366 */
3367int workqueue_sysfs_register(struct workqueue_struct *wq)
3368{
3369 struct wq_device *wq_dev;
3370 int ret;
3371
3372 /*
3373 * Adjusting max_active or creating new pwqs by applyting
3374 * attributes breaks ordering guarantee. Disallow exposing ordered
3375 * workqueues.
3376 */
3377 if (WARN_ON(wq->flags & __WQ_ORDERED))
3378 return -EINVAL;
3379
3380 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3381 if (!wq_dev)
3382 return -ENOMEM;
3383
3384 wq_dev->wq = wq;
3385 wq_dev->dev.bus = &wq_subsys;
3386 wq_dev->dev.init_name = wq->name;
3387 wq_dev->dev.release = wq_device_release;
3388
3389 /*
3390 * unbound_attrs are created separately. Suppress uevent until
3391 * everything is ready.
3392 */
3393 dev_set_uevent_suppress(&wq_dev->dev, true);
3394
3395 ret = device_register(&wq_dev->dev);
3396 if (ret) {
3397 kfree(wq_dev);
3398 wq->wq_dev = NULL;
3399 return ret;
3400 }
3401
3402 if (wq->flags & WQ_UNBOUND) {
3403 struct device_attribute *attr;
3404
3405 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3406 ret = device_create_file(&wq_dev->dev, attr);
3407 if (ret) {
3408 device_unregister(&wq_dev->dev);
3409 wq->wq_dev = NULL;
3410 return ret;
3411 }
3412 }
3413 }
3414
3415 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3416 return 0;
3417}
3418
3419/**
3420 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3421 * @wq: the workqueue to unregister
3422 *
3423 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3424 */
3425static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3426{
3427 struct wq_device *wq_dev = wq->wq_dev;
3428
3429 if (!wq->wq_dev)
3430 return;
3431
3432 wq->wq_dev = NULL;
3433 device_unregister(&wq_dev->dev);
3434}
3435#else /* CONFIG_SYSFS */
3436static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3437#endif /* CONFIG_SYSFS */
3438
3439/**
3440 * free_workqueue_attrs - free a workqueue_attrs
3441 * @attrs: workqueue_attrs to free
3442 *
3443 * Undo alloc_workqueue_attrs().
3444 */
3445void free_workqueue_attrs(struct workqueue_attrs *attrs)
3446{
3447 if (attrs) {
3448 free_cpumask_var(attrs->cpumask);
3449 kfree(attrs);
3450 }
3451}
3452
3453/**
3454 * alloc_workqueue_attrs - allocate a workqueue_attrs
3455 * @gfp_mask: allocation mask to use
3456 *
3457 * Allocate a new workqueue_attrs, initialize with default settings and
3458 * return it. Returns NULL on failure.
3459 */
3460struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3461{
3462 struct workqueue_attrs *attrs;
3463
3464 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3465 if (!attrs)
3466 goto fail;
3467 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3468 goto fail;
3469
3470 cpumask_setall(attrs->cpumask);
3471 return attrs;
3472fail:
3473 free_workqueue_attrs(attrs);
3474 return NULL;
3475}
3476
3477static void copy_workqueue_attrs(struct workqueue_attrs *to,
3478 const struct workqueue_attrs *from)
3479{
3480 to->nice = from->nice;
3481 cpumask_copy(to->cpumask, from->cpumask);
3482}
3483
3484/*
3485 * Hacky implementation of jhash of bitmaps which only considers the
3486 * specified number of bits. We probably want a proper implementation in
3487 * include/linux/jhash.h.
3488 */
3489static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3490{
3491 int nr_longs = bits / BITS_PER_LONG;
3492 int nr_leftover = bits % BITS_PER_LONG;
3493 unsigned long leftover = 0;
3494
3495 if (nr_longs)
3496 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3497 if (nr_leftover) {
3498 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3499 hash = jhash(&leftover, sizeof(long), hash);
3500 }
3501 return hash;
3502}
3503
3504/* hash value of the content of @attr */
3505static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3506{
3507 u32 hash = 0;
3508
3509 hash = jhash_1word(attrs->nice, hash);
3510 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3511 return hash;
3512}
3513
3514/* content equality test */
3515static bool wqattrs_equal(const struct workqueue_attrs *a,
3516 const struct workqueue_attrs *b)
3517{
3518 if (a->nice != b->nice)
3519 return false;
3520 if (!cpumask_equal(a->cpumask, b->cpumask))
3521 return false;
3522 return true;
3523}
3524
3525/**
3526 * init_worker_pool - initialize a newly zalloc'd worker_pool
3527 * @pool: worker_pool to initialize
3528 *
3529 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3530 * Returns 0 on success, -errno on failure. Even on failure, all fields
3531 * inside @pool proper are initialized and put_unbound_pool() can be called
3532 * on @pool safely to release it.
3533 */
3534static int init_worker_pool(struct worker_pool *pool)
3535{
3536 spin_lock_init(&pool->lock);
3537 pool->id = -1;
3538 pool->cpu = -1;
3539 pool->flags |= POOL_DISASSOCIATED;
3540 INIT_LIST_HEAD(&pool->worklist);
3541 INIT_LIST_HEAD(&pool->idle_list);
3542 hash_init(pool->busy_hash);
3543
3544 init_timer_deferrable(&pool->idle_timer);
3545 pool->idle_timer.function = idle_worker_timeout;
3546 pool->idle_timer.data = (unsigned long)pool;
3547
3548 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3549 (unsigned long)pool);
3550
3551 mutex_init(&pool->manager_arb);
3552 mutex_init(&pool->assoc_mutex);
3553 ida_init(&pool->worker_ida);
3554
3555 INIT_HLIST_NODE(&pool->hash_node);
3556 pool->refcnt = 1;
3557
3558 /* shouldn't fail above this point */
3559 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3560 if (!pool->attrs)
3561 return -ENOMEM;
3562 return 0;
3563}
3564
3565static void rcu_free_pool(struct rcu_head *rcu)
3566{
3567 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3568
3569 ida_destroy(&pool->worker_ida);
3570 free_workqueue_attrs(pool->attrs);
3571 kfree(pool);
3572}
3573
3574/**
3575 * put_unbound_pool - put a worker_pool
3576 * @pool: worker_pool to put
3577 *
3578 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3579 * safe manner.
3580 */
3581static void put_unbound_pool(struct worker_pool *pool)
3582{
3583 struct worker *worker;
3584
3585 spin_lock_irq(&workqueue_lock);
3586 if (--pool->refcnt) {
3587 spin_unlock_irq(&workqueue_lock);
3588 return;
3589 }
3590
3591 /* sanity checks */
3592 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3593 WARN_ON(!list_empty(&pool->worklist))) {
3594 spin_unlock_irq(&workqueue_lock);
3595 return;
3596 }
3597
3598 /* release id and unhash */
3599 if (pool->id >= 0)
3600 idr_remove(&worker_pool_idr, pool->id);
3601 hash_del(&pool->hash_node);
3602
3603 spin_unlock_irq(&workqueue_lock);
3604
3605 /* lock out manager and destroy all workers */
3606 mutex_lock(&pool->manager_arb);
3607 spin_lock_irq(&pool->lock);
3608
3609 while ((worker = first_worker(pool)))
3610 destroy_worker(worker);
3611 WARN_ON(pool->nr_workers || pool->nr_idle);
3612
3613 spin_unlock_irq(&pool->lock);
3614 mutex_unlock(&pool->manager_arb);
3615
3616 /* shut down the timers */
3617 del_timer_sync(&pool->idle_timer);
3618 del_timer_sync(&pool->mayday_timer);
3619
3620 /* sched-RCU protected to allow dereferences from get_work_pool() */
3621 call_rcu_sched(&pool->rcu, rcu_free_pool);
3622}
3623
3624/**
3625 * get_unbound_pool - get a worker_pool with the specified attributes
3626 * @attrs: the attributes of the worker_pool to get
3627 *
3628 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3629 * reference count and return it. If there already is a matching
3630 * worker_pool, it will be used; otherwise, this function attempts to
3631 * create a new one. On failure, returns NULL.
3632 */
3633static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3634{
3635 static DEFINE_MUTEX(create_mutex);
3636 u32 hash = wqattrs_hash(attrs);
3637 struct worker_pool *pool;
3638 struct worker *worker;
3639
3640 mutex_lock(&create_mutex);
3641
3642 /* do we already have a matching pool? */
3643 spin_lock_irq(&workqueue_lock);
3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645 if (wqattrs_equal(pool->attrs, attrs)) {
3646 pool->refcnt++;
3647 goto out_unlock;
3648 }
3649 }
3650 spin_unlock_irq(&workqueue_lock);
3651
3652 /* nope, create a new one */
3653 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3654 if (!pool || init_worker_pool(pool) < 0)
3655 goto fail;
3656
3657 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3658 copy_workqueue_attrs(pool->attrs, attrs);
3659
3660 if (worker_pool_assign_id(pool) < 0)
3661 goto fail;
3662
3663 /* create and start the initial worker */
3664 worker = create_worker(pool);
3665 if (!worker)
3666 goto fail;
3667
3668 spin_lock_irq(&pool->lock);
3669 start_worker(worker);
3670 spin_unlock_irq(&pool->lock);
3671
3672 /* install */
3673 spin_lock_irq(&workqueue_lock);
3674 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3675out_unlock:
3676 spin_unlock_irq(&workqueue_lock);
3677 mutex_unlock(&create_mutex);
3678 return pool;
3679fail:
3680 mutex_unlock(&create_mutex);
3681 if (pool)
3682 put_unbound_pool(pool);
3683 return NULL;
3684}
3685
3686static void rcu_free_pwq(struct rcu_head *rcu)
3687{
3688 kmem_cache_free(pwq_cache,
3689 container_of(rcu, struct pool_workqueue, rcu));
3690}
3691
3692/*
3693 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3694 * and needs to be destroyed.
3695 */
3696static void pwq_unbound_release_workfn(struct work_struct *work)
3697{
3698 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3699 unbound_release_work);
3700 struct workqueue_struct *wq = pwq->wq;
3701 struct worker_pool *pool = pwq->pool;
3702
3703 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3704 return;
3705
3706 /*
3707 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3708 * necessary on release but do it anyway. It's easier to verify
3709 * and consistent with the linking path.
3710 */
3711 mutex_lock(&wq->flush_mutex);
3712 spin_lock_irq(&workqueue_lock);
3713 list_del_rcu(&pwq->pwqs_node);
3714 spin_unlock_irq(&workqueue_lock);
3715 mutex_unlock(&wq->flush_mutex);
3716
3717 put_unbound_pool(pool);
3718 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3719
3720 /*
3721 * If we're the last pwq going away, @wq is already dead and no one
3722 * is gonna access it anymore. Free it.
3723 */
3724 if (list_empty(&wq->pwqs))
3725 kfree(wq);
3726}
3727
3728/**
3729 * pwq_set_max_active - adjust max_active of a pwq
3730 * @pwq: target pool_workqueue
3731 * @max_active: new max_active value.
3732 *
3733 * Set @pwq->max_active to @max_active and activate delayed works if
3734 * increased.
3735 *
3736 * CONTEXT:
3737 * spin_lock_irq(pool->lock).
3738 */
3739static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3740{
3741 pwq->max_active = max_active;
3742
3743 while (!list_empty(&pwq->delayed_works) &&
3744 pwq->nr_active < pwq->max_active)
3745 pwq_activate_first_delayed(pwq);
3746}
3747
3748static void init_and_link_pwq(struct pool_workqueue *pwq,
3749 struct workqueue_struct *wq,
3750 struct worker_pool *pool,
3751 struct pool_workqueue **p_last_pwq)
3752{
3753 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3754
3755 pwq->pool = pool;
3756 pwq->wq = wq;
3757 pwq->flush_color = -1;
3758 pwq->refcnt = 1;
3759 pwq->max_active = wq->saved_max_active;
3760 INIT_LIST_HEAD(&pwq->delayed_works);
3761 INIT_LIST_HEAD(&pwq->mayday_node);
3762 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3763
3764 /*
3765 * Link @pwq and set the matching work_color. This is synchronized
3766 * with flush_mutex to avoid confusing flush_workqueue().
3767 */
3768 mutex_lock(&wq->flush_mutex);
3769 spin_lock_irq(&workqueue_lock);
3770
3771 if (p_last_pwq)
3772 *p_last_pwq = first_pwq(wq);
3773 pwq->work_color = wq->work_color;
3774 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3775
3776 spin_unlock_irq(&workqueue_lock);
3777 mutex_unlock(&wq->flush_mutex);
3778}
3779
3780/**
3781 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3782 * @wq: the target workqueue
3783 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3784 *
3785 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3786 * current attributes, a new pwq is created and made the first pwq which
3787 * will serve all new work items. Older pwqs are released as in-flight
3788 * work items finish. Note that a work item which repeatedly requeues
3789 * itself back-to-back will stay on its current pwq.
3790 *
3791 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3792 * failure.
3793 */
3794int apply_workqueue_attrs(struct workqueue_struct *wq,
3795 const struct workqueue_attrs *attrs)
3796{
3797 struct pool_workqueue *pwq, *last_pwq;
3798 struct worker_pool *pool;
3799
3800 /* only unbound workqueues can change attributes */
3801 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3802 return -EINVAL;
3803
3804 /* creating multiple pwqs breaks ordering guarantee */
3805 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3806 return -EINVAL;
3807
3808 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3809 if (!pwq)
3810 return -ENOMEM;
3811
3812 pool = get_unbound_pool(attrs);
3813 if (!pool) {
3814 kmem_cache_free(pwq_cache, pwq);
3815 return -ENOMEM;
3816 }
3817
3818 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3819 if (last_pwq) {
3820 spin_lock_irq(&last_pwq->pool->lock);
3821 put_pwq(last_pwq);
3822 spin_unlock_irq(&last_pwq->pool->lock);
3823 }
3824
3825 return 0;
3826}
3827
3828static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3829{
3830 bool highpri = wq->flags & WQ_HIGHPRI;
3831 int cpu;
3832
3833 if (!(wq->flags & WQ_UNBOUND)) {
3834 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3835 if (!wq->cpu_pwqs)
3836 return -ENOMEM;
3837
3838 for_each_possible_cpu(cpu) {
3839 struct pool_workqueue *pwq =
3840 per_cpu_ptr(wq->cpu_pwqs, cpu);
3841 struct worker_pool *cpu_pools =
3842 per_cpu(cpu_worker_pools, cpu);
3843
3844 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3845 }
3846 return 0;
3847 } else {
3848 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3849 }
3850}
3851
3852static int wq_clamp_max_active(int max_active, unsigned int flags,
3853 const char *name)
3854{
3855 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3856
3857 if (max_active < 1 || max_active > lim)
3858 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3859 max_active, name, 1, lim);
3860
3861 return clamp_val(max_active, 1, lim);
3862}
3863
3864struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3865 unsigned int flags,
3866 int max_active,
3867 struct lock_class_key *key,
3868 const char *lock_name, ...)
3869{
3870 va_list args, args1;
3871 struct workqueue_struct *wq;
3872 struct pool_workqueue *pwq;
3873 size_t namelen;
3874
3875 /* determine namelen, allocate wq and format name */
3876 va_start(args, lock_name);
3877 va_copy(args1, args);
3878 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3879
3880 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3881 if (!wq)
3882 return NULL;
3883
3884 vsnprintf(wq->name, namelen, fmt, args1);
3885 va_end(args);
3886 va_end(args1);
3887
3888 max_active = max_active ?: WQ_DFL_ACTIVE;
3889 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3890
3891 /* init wq */
3892 wq->flags = flags;
3893 wq->saved_max_active = max_active;
3894 mutex_init(&wq->flush_mutex);
3895 atomic_set(&wq->nr_pwqs_to_flush, 0);
3896 INIT_LIST_HEAD(&wq->pwqs);
3897 INIT_LIST_HEAD(&wq->flusher_queue);
3898 INIT_LIST_HEAD(&wq->flusher_overflow);
3899 INIT_LIST_HEAD(&wq->maydays);
3900
3901 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3902 INIT_LIST_HEAD(&wq->list);
3903
3904 if (alloc_and_link_pwqs(wq) < 0)
3905 goto err_free_wq;
3906
3907 /*
3908 * Workqueues which may be used during memory reclaim should
3909 * have a rescuer to guarantee forward progress.
3910 */
3911 if (flags & WQ_MEM_RECLAIM) {
3912 struct worker *rescuer;
3913
3914 rescuer = alloc_worker();
3915 if (!rescuer)
3916 goto err_destroy;
3917
3918 rescuer->rescue_wq = wq;
3919 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3920 wq->name);
3921 if (IS_ERR(rescuer->task)) {
3922 kfree(rescuer);
3923 goto err_destroy;
3924 }
3925
3926 wq->rescuer = rescuer;
3927 rescuer->task->flags |= PF_THREAD_BOUND;
3928 wake_up_process(rescuer->task);
3929 }
3930
3931 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3932 goto err_destroy;
3933
3934 /*
3935 * workqueue_lock protects global freeze state and workqueues
3936 * list. Grab it, set max_active accordingly and add the new
3937 * workqueue to workqueues list.
3938 */
3939 spin_lock_irq(&workqueue_lock);
3940
3941 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3942 for_each_pwq(pwq, wq)
3943 pwq->max_active = 0;
3944
3945 list_add(&wq->list, &workqueues);
3946
3947 spin_unlock_irq(&workqueue_lock);
3948
3949 return wq;
3950
3951err_free_wq:
3952 kfree(wq);
3953 return NULL;
3954err_destroy:
3955 destroy_workqueue(wq);
3956 return NULL;
3957}
3958EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3959
3960/**
3961 * destroy_workqueue - safely terminate a workqueue
3962 * @wq: target workqueue
3963 *
3964 * Safely destroy a workqueue. All work currently pending will be done first.
3965 */
3966void destroy_workqueue(struct workqueue_struct *wq)
3967{
3968 struct pool_workqueue *pwq;
3969
3970 /* drain it before proceeding with destruction */
3971 drain_workqueue(wq);
3972
3973 spin_lock_irq(&workqueue_lock);
3974
3975 /* sanity checks */
3976 for_each_pwq(pwq, wq) {
3977 int i;
3978
3979 for (i = 0; i < WORK_NR_COLORS; i++) {
3980 if (WARN_ON(pwq->nr_in_flight[i])) {
3981 spin_unlock_irq(&workqueue_lock);
3982 return;
3983 }
3984 }
3985
3986 if (WARN_ON(pwq->refcnt > 1) ||
3987 WARN_ON(pwq->nr_active) ||
3988 WARN_ON(!list_empty(&pwq->delayed_works))) {
3989 spin_unlock_irq(&workqueue_lock);
3990 return;
3991 }
3992 }
3993
3994 /*
3995 * wq list is used to freeze wq, remove from list after
3996 * flushing is complete in case freeze races us.
3997 */
3998 list_del_init(&wq->list);
3999
4000 spin_unlock_irq(&workqueue_lock);
4001
4002 workqueue_sysfs_unregister(wq);
4003
4004 if (wq->rescuer) {
4005 kthread_stop(wq->rescuer->task);
4006 kfree(wq->rescuer);
4007 wq->rescuer = NULL;
4008 }
4009
4010 if (!(wq->flags & WQ_UNBOUND)) {
4011 /*
4012 * The base ref is never dropped on per-cpu pwqs. Directly
4013 * free the pwqs and wq.
4014 */
4015 free_percpu(wq->cpu_pwqs);
4016 kfree(wq);
4017 } else {
4018 /*
4019 * We're the sole accessor of @wq at this point. Directly
4020 * access the first pwq and put the base ref. As both pwqs
4021 * and pools are sched-RCU protected, the lock operations
4022 * are safe. @wq will be freed when the last pwq is
4023 * released.
4024 */
4025 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
4026 pwqs_node);
4027 spin_lock_irq(&pwq->pool->lock);
4028 put_pwq(pwq);
4029 spin_unlock_irq(&pwq->pool->lock);
4030 }
4031}
4032EXPORT_SYMBOL_GPL(destroy_workqueue);
4033
4034/**
4035 * workqueue_set_max_active - adjust max_active of a workqueue
4036 * @wq: target workqueue
4037 * @max_active: new max_active value.
4038 *
4039 * Set max_active of @wq to @max_active.
4040 *
4041 * CONTEXT:
4042 * Don't call from IRQ context.
4043 */
4044void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4045{
4046 struct pool_workqueue *pwq;
4047
4048 /* disallow meddling with max_active for ordered workqueues */
4049 if (WARN_ON(wq->flags & __WQ_ORDERED))
4050 return;
4051
4052 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4053
4054 spin_lock_irq(&workqueue_lock);
4055
4056 wq->saved_max_active = max_active;
4057
4058 for_each_pwq(pwq, wq) {
4059 struct worker_pool *pool = pwq->pool;
4060
4061 spin_lock(&pool->lock);
4062
4063 if (!(wq->flags & WQ_FREEZABLE) ||
4064 !(pool->flags & POOL_FREEZING))
4065 pwq_set_max_active(pwq, max_active);
4066
4067 spin_unlock(&pool->lock);
4068 }
4069
4070 spin_unlock_irq(&workqueue_lock);
4071}
4072EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4073
4074/**
4075 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4076 *
4077 * Determine whether %current is a workqueue rescuer. Can be used from
4078 * work functions to determine whether it's being run off the rescuer task.
4079 */
4080bool current_is_workqueue_rescuer(void)
4081{
4082 struct worker *worker = current_wq_worker();
4083
4084 return worker && worker == worker->current_pwq->wq->rescuer;
4085}
4086
4087/**
4088 * workqueue_congested - test whether a workqueue is congested
4089 * @cpu: CPU in question
4090 * @wq: target workqueue
4091 *
4092 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4093 * no synchronization around this function and the test result is
4094 * unreliable and only useful as advisory hints or for debugging.
4095 *
4096 * RETURNS:
4097 * %true if congested, %false otherwise.
4098 */
4099bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4100{
4101 struct pool_workqueue *pwq;
4102 bool ret;
4103
4104 preempt_disable();
4105
4106 if (!(wq->flags & WQ_UNBOUND))
4107 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4108 else
4109 pwq = first_pwq(wq);
4110
4111 ret = !list_empty(&pwq->delayed_works);
4112 preempt_enable();
4113
4114 return ret;
4115}
4116EXPORT_SYMBOL_GPL(workqueue_congested);
4117
4118/**
4119 * work_busy - test whether a work is currently pending or running
4120 * @work: the work to be tested
4121 *
4122 * Test whether @work is currently pending or running. There is no
4123 * synchronization around this function and the test result is
4124 * unreliable and only useful as advisory hints or for debugging.
4125 *
4126 * RETURNS:
4127 * OR'd bitmask of WORK_BUSY_* bits.
4128 */
4129unsigned int work_busy(struct work_struct *work)
4130{
4131 struct worker_pool *pool;
4132 unsigned long flags;
4133 unsigned int ret = 0;
4134
4135 if (work_pending(work))
4136 ret |= WORK_BUSY_PENDING;
4137
4138 local_irq_save(flags);
4139 pool = get_work_pool(work);
4140 if (pool) {
4141 spin_lock(&pool->lock);
4142 if (find_worker_executing_work(pool, work))
4143 ret |= WORK_BUSY_RUNNING;
4144 spin_unlock(&pool->lock);
4145 }
4146 local_irq_restore(flags);
4147
4148 return ret;
4149}
4150EXPORT_SYMBOL_GPL(work_busy);
4151
4152/*
4153 * CPU hotplug.
4154 *
4155 * There are two challenges in supporting CPU hotplug. Firstly, there
4156 * are a lot of assumptions on strong associations among work, pwq and
4157 * pool which make migrating pending and scheduled works very
4158 * difficult to implement without impacting hot paths. Secondly,
4159 * worker pools serve mix of short, long and very long running works making
4160 * blocked draining impractical.
4161 *
4162 * This is solved by allowing the pools to be disassociated from the CPU
4163 * running as an unbound one and allowing it to be reattached later if the
4164 * cpu comes back online.
4165 */
4166
4167static void wq_unbind_fn(struct work_struct *work)
4168{
4169 int cpu = smp_processor_id();
4170 struct worker_pool *pool;
4171 struct worker *worker;
4172 int i;
4173
4174 for_each_cpu_worker_pool(pool, cpu) {
4175 WARN_ON_ONCE(cpu != smp_processor_id());
4176
4177 mutex_lock(&pool->assoc_mutex);
4178 spin_lock_irq(&pool->lock);
4179
4180 /*
4181 * We've claimed all manager positions. Make all workers
4182 * unbound and set DISASSOCIATED. Before this, all workers
4183 * except for the ones which are still executing works from
4184 * before the last CPU down must be on the cpu. After
4185 * this, they may become diasporas.
4186 */
4187 list_for_each_entry(worker, &pool->idle_list, entry)
4188 worker->flags |= WORKER_UNBOUND;
4189
4190 for_each_busy_worker(worker, i, pool)
4191 worker->flags |= WORKER_UNBOUND;
4192
4193 pool->flags |= POOL_DISASSOCIATED;
4194
4195 spin_unlock_irq(&pool->lock);
4196 mutex_unlock(&pool->assoc_mutex);
4197 }
4198
4199 /*
4200 * Call schedule() so that we cross rq->lock and thus can guarantee
4201 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4202 * as scheduler callbacks may be invoked from other cpus.
4203 */
4204 schedule();
4205
4206 /*
4207 * Sched callbacks are disabled now. Zap nr_running. After this,
4208 * nr_running stays zero and need_more_worker() and keep_working()
4209 * are always true as long as the worklist is not empty. Pools on
4210 * @cpu now behave as unbound (in terms of concurrency management)
4211 * pools which are served by workers tied to the CPU.
4212 *
4213 * On return from this function, the current worker would trigger
4214 * unbound chain execution of pending work items if other workers
4215 * didn't already.
4216 */
4217 for_each_cpu_worker_pool(pool, cpu)
4218 atomic_set(&pool->nr_running, 0);
4219}
4220
4221/*
4222 * Workqueues should be brought up before normal priority CPU notifiers.
4223 * This will be registered high priority CPU notifier.
4224 */
4225static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4226 unsigned long action,
4227 void *hcpu)
4228{
4229 int cpu = (unsigned long)hcpu;
4230 struct worker_pool *pool;
4231
4232 switch (action & ~CPU_TASKS_FROZEN) {
4233 case CPU_UP_PREPARE:
4234 for_each_cpu_worker_pool(pool, cpu) {
4235 struct worker *worker;
4236
4237 if (pool->nr_workers)
4238 continue;
4239
4240 worker = create_worker(pool);
4241 if (!worker)
4242 return NOTIFY_BAD;
4243
4244 spin_lock_irq(&pool->lock);
4245 start_worker(worker);
4246 spin_unlock_irq(&pool->lock);
4247 }
4248 break;
4249
4250 case CPU_DOWN_FAILED:
4251 case CPU_ONLINE:
4252 for_each_cpu_worker_pool(pool, cpu) {
4253 mutex_lock(&pool->assoc_mutex);
4254 spin_lock_irq(&pool->lock);
4255
4256 pool->flags &= ~POOL_DISASSOCIATED;
4257 rebind_workers(pool);
4258
4259 spin_unlock_irq(&pool->lock);
4260 mutex_unlock(&pool->assoc_mutex);
4261 }
4262 break;
4263 }
4264 return NOTIFY_OK;
4265}
4266
4267/*
4268 * Workqueues should be brought down after normal priority CPU notifiers.
4269 * This will be registered as low priority CPU notifier.
4270 */
4271static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4272 unsigned long action,
4273 void *hcpu)
4274{
4275 int cpu = (unsigned long)hcpu;
4276 struct work_struct unbind_work;
4277
4278 switch (action & ~CPU_TASKS_FROZEN) {
4279 case CPU_DOWN_PREPARE:
4280 /* unbinding should happen on the local CPU */
4281 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4282 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4283 flush_work(&unbind_work);
4284 break;
4285 }
4286 return NOTIFY_OK;
4287}
4288
4289#ifdef CONFIG_SMP
4290
4291struct work_for_cpu {
4292 struct work_struct work;
4293 long (*fn)(void *);
4294 void *arg;
4295 long ret;
4296};
4297
4298static void work_for_cpu_fn(struct work_struct *work)
4299{
4300 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4301
4302 wfc->ret = wfc->fn(wfc->arg);
4303}
4304
4305/**
4306 * work_on_cpu - run a function in user context on a particular cpu
4307 * @cpu: the cpu to run on
4308 * @fn: the function to run
4309 * @arg: the function arg
4310 *
4311 * This will return the value @fn returns.
4312 * It is up to the caller to ensure that the cpu doesn't go offline.
4313 * The caller must not hold any locks which would prevent @fn from completing.
4314 */
4315long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4316{
4317 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4318
4319 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4320 schedule_work_on(cpu, &wfc.work);
4321 flush_work(&wfc.work);
4322 return wfc.ret;
4323}
4324EXPORT_SYMBOL_GPL(work_on_cpu);
4325#endif /* CONFIG_SMP */
4326
4327#ifdef CONFIG_FREEZER
4328
4329/**
4330 * freeze_workqueues_begin - begin freezing workqueues
4331 *
4332 * Start freezing workqueues. After this function returns, all freezable
4333 * workqueues will queue new works to their frozen_works list instead of
4334 * pool->worklist.
4335 *
4336 * CONTEXT:
4337 * Grabs and releases workqueue_lock and pool->lock's.
4338 */
4339void freeze_workqueues_begin(void)
4340{
4341 struct worker_pool *pool;
4342 struct workqueue_struct *wq;
4343 struct pool_workqueue *pwq;
4344 int id;
4345
4346 spin_lock_irq(&workqueue_lock);
4347
4348 WARN_ON_ONCE(workqueue_freezing);
4349 workqueue_freezing = true;
4350
4351 /* set FREEZING */
4352 for_each_pool(pool, id) {
4353 spin_lock(&pool->lock);
4354 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4355 pool->flags |= POOL_FREEZING;
4356 spin_unlock(&pool->lock);
4357 }
4358
4359 /* suppress further executions by setting max_active to zero */
4360 list_for_each_entry(wq, &workqueues, list) {
4361 if (!(wq->flags & WQ_FREEZABLE))
4362 continue;
4363
4364 for_each_pwq(pwq, wq) {
4365 spin_lock(&pwq->pool->lock);
4366 pwq->max_active = 0;
4367 spin_unlock(&pwq->pool->lock);
4368 }
4369 }
4370
4371 spin_unlock_irq(&workqueue_lock);
4372}
4373
4374/**
4375 * freeze_workqueues_busy - are freezable workqueues still busy?
4376 *
4377 * Check whether freezing is complete. This function must be called
4378 * between freeze_workqueues_begin() and thaw_workqueues().
4379 *
4380 * CONTEXT:
4381 * Grabs and releases workqueue_lock.
4382 *
4383 * RETURNS:
4384 * %true if some freezable workqueues are still busy. %false if freezing
4385 * is complete.
4386 */
4387bool freeze_workqueues_busy(void)
4388{
4389 bool busy = false;
4390 struct workqueue_struct *wq;
4391 struct pool_workqueue *pwq;
4392
4393 spin_lock_irq(&workqueue_lock);
4394
4395 WARN_ON_ONCE(!workqueue_freezing);
4396
4397 list_for_each_entry(wq, &workqueues, list) {
4398 if (!(wq->flags & WQ_FREEZABLE))
4399 continue;
4400 /*
4401 * nr_active is monotonically decreasing. It's safe
4402 * to peek without lock.
4403 */
4404 for_each_pwq(pwq, wq) {
4405 WARN_ON_ONCE(pwq->nr_active < 0);
4406 if (pwq->nr_active) {
4407 busy = true;
4408 goto out_unlock;
4409 }
4410 }
4411 }
4412out_unlock:
4413 spin_unlock_irq(&workqueue_lock);
4414 return busy;
4415}
4416
4417/**
4418 * thaw_workqueues - thaw workqueues
4419 *
4420 * Thaw workqueues. Normal queueing is restored and all collected
4421 * frozen works are transferred to their respective pool worklists.
4422 *
4423 * CONTEXT:
4424 * Grabs and releases workqueue_lock and pool->lock's.
4425 */
4426void thaw_workqueues(void)
4427{
4428 struct workqueue_struct *wq;
4429 struct pool_workqueue *pwq;
4430 struct worker_pool *pool;
4431 int id;
4432
4433 spin_lock_irq(&workqueue_lock);
4434
4435 if (!workqueue_freezing)
4436 goto out_unlock;
4437
4438 /* clear FREEZING */
4439 for_each_pool(pool, id) {
4440 spin_lock(&pool->lock);
4441 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4442 pool->flags &= ~POOL_FREEZING;
4443 spin_unlock(&pool->lock);
4444 }
4445
4446 /* restore max_active and repopulate worklist */
4447 list_for_each_entry(wq, &workqueues, list) {
4448 if (!(wq->flags & WQ_FREEZABLE))
4449 continue;
4450
4451 for_each_pwq(pwq, wq) {
4452 spin_lock(&pwq->pool->lock);
4453 pwq_set_max_active(pwq, wq->saved_max_active);
4454 spin_unlock(&pwq->pool->lock);
4455 }
4456 }
4457
4458 /* kick workers */
4459 for_each_pool(pool, id) {
4460 spin_lock(&pool->lock);
4461 wake_up_worker(pool);
4462 spin_unlock(&pool->lock);
4463 }
4464
4465 workqueue_freezing = false;
4466out_unlock:
4467 spin_unlock_irq(&workqueue_lock);
4468}
4469#endif /* CONFIG_FREEZER */
4470
4471static int __init init_workqueues(void)
4472{
4473 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4474 int i, cpu;
4475
4476 /* make sure we have enough bits for OFFQ pool ID */
4477 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4478 WORK_CPU_END * NR_STD_WORKER_POOLS);
4479
4480 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4481
4482 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4483
4484 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4485 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4486
4487 /* initialize CPU pools */
4488 for_each_possible_cpu(cpu) {
4489 struct worker_pool *pool;
4490
4491 i = 0;
4492 for_each_cpu_worker_pool(pool, cpu) {
4493 BUG_ON(init_worker_pool(pool));
4494 pool->cpu = cpu;
4495 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4496 pool->attrs->nice = std_nice[i++];
4497
4498 /* alloc pool ID */
4499 BUG_ON(worker_pool_assign_id(pool));
4500 }
4501 }
4502
4503 /* create the initial worker */
4504 for_each_online_cpu(cpu) {
4505 struct worker_pool *pool;
4506
4507 for_each_cpu_worker_pool(pool, cpu) {
4508 struct worker *worker;
4509
4510 pool->flags &= ~POOL_DISASSOCIATED;
4511
4512 worker = create_worker(pool);
4513 BUG_ON(!worker);
4514 spin_lock_irq(&pool->lock);
4515 start_worker(worker);
4516 spin_unlock_irq(&pool->lock);
4517 }
4518 }
4519
4520 /* create default unbound wq attrs */
4521 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4522 struct workqueue_attrs *attrs;
4523
4524 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4525
4526 attrs->nice = std_nice[i];
4527 cpumask_setall(attrs->cpumask);
4528
4529 unbound_std_wq_attrs[i] = attrs;
4530 }
4531
4532 system_wq = alloc_workqueue("events", 0, 0);
4533 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4534 system_long_wq = alloc_workqueue("events_long", 0, 0);
4535 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4536 WQ_UNBOUND_MAX_ACTIVE);
4537 system_freezable_wq = alloc_workqueue("events_freezable",
4538 WQ_FREEZABLE, 0);
4539 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4540 !system_unbound_wq || !system_freezable_wq);
4541 return 0;
4542}
4543early_initcall(init_workqueues);