sched: uniform tunings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23/*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;
38
39/*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 2 msec, units: nanoseconds)
42 */
43unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
44
45/*
46 * sys_sched_yield() compat mode
47 *
48 * This option switches the agressive yield implementation of the
49 * old scheduler back on.
50 */
51unsigned int __read_mostly sysctl_sched_compat_yield;
52
53/*
54 * SCHED_BATCH wake-up granularity.
55 * (default: 25 msec, units: nanoseconds)
56 *
57 * This option delays the preemption effects of decoupled workloads
58 * and reduces their over-scheduling. Synchronous workloads will still
59 * have immediate wakeup/sleep latencies.
60 */
61unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
62
63/*
64 * SCHED_OTHER wake-up granularity.
65 * (default: 1 msec, units: nanoseconds)
66 *
67 * This option delays the preemption effects of decoupled workloads
68 * and reduces their over-scheduling. Synchronous workloads will still
69 * have immediate wakeup/sleep latencies.
70 */
71unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
72
73unsigned int sysctl_sched_stat_granularity __read_mostly;
74
75/*
76 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
77 */
78unsigned int sysctl_sched_runtime_limit __read_mostly;
79
80/*
81 * Debugging: various feature bits
82 */
83enum {
84 SCHED_FEAT_FAIR_SLEEPERS = 1,
85 SCHED_FEAT_SLEEPER_AVG = 2,
86 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
87 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
88 SCHED_FEAT_START_DEBIT = 16,
89 SCHED_FEAT_SKIP_INITIAL = 32,
90};
91
92unsigned int sysctl_sched_features __read_mostly =
93 SCHED_FEAT_FAIR_SLEEPERS *1 |
94 SCHED_FEAT_SLEEPER_AVG *0 |
95 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
96 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
97 SCHED_FEAT_START_DEBIT *1 |
98 SCHED_FEAT_SKIP_INITIAL *0;
99
100extern struct sched_class fair_sched_class;
101
102/**************************************************************
103 * CFS operations on generic schedulable entities:
104 */
105
106#ifdef CONFIG_FAIR_GROUP_SCHED
107
108/* cpu runqueue to which this cfs_rq is attached */
109static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
110{
111 return cfs_rq->rq;
112}
113
114/* currently running entity (if any) on this cfs_rq */
115static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
116{
117 return cfs_rq->curr;
118}
119
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
122
123static inline void
124set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
125{
126 cfs_rq->curr = se;
127}
128
129#else /* CONFIG_FAIR_GROUP_SCHED */
130
131static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
132{
133 return container_of(cfs_rq, struct rq, cfs);
134}
135
136static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
137{
138 struct rq *rq = rq_of(cfs_rq);
139
140 if (unlikely(rq->curr->sched_class != &fair_sched_class))
141 return NULL;
142
143 return &rq->curr->se;
144}
145
146#define entity_is_task(se) 1
147
148static inline void
149set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
150
151#endif /* CONFIG_FAIR_GROUP_SCHED */
152
153static inline struct task_struct *task_of(struct sched_entity *se)
154{
155 return container_of(se, struct task_struct, se);
156}
157
158
159/**************************************************************
160 * Scheduling class tree data structure manipulation methods:
161 */
162
163/*
164 * Enqueue an entity into the rb-tree:
165 */
166static inline void
167__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
168{
169 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
170 struct rb_node *parent = NULL;
171 struct sched_entity *entry;
172 s64 key = se->fair_key;
173 int leftmost = 1;
174
175 /*
176 * Find the right place in the rbtree:
177 */
178 while (*link) {
179 parent = *link;
180 entry = rb_entry(parent, struct sched_entity, run_node);
181 /*
182 * We dont care about collisions. Nodes with
183 * the same key stay together.
184 */
185 if (key - entry->fair_key < 0) {
186 link = &parent->rb_left;
187 } else {
188 link = &parent->rb_right;
189 leftmost = 0;
190 }
191 }
192
193 /*
194 * Maintain a cache of leftmost tree entries (it is frequently
195 * used):
196 */
197 if (leftmost)
198 cfs_rq->rb_leftmost = &se->run_node;
199
200 rb_link_node(&se->run_node, parent, link);
201 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
202 update_load_add(&cfs_rq->load, se->load.weight);
203 cfs_rq->nr_running++;
204 se->on_rq = 1;
205
206 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
207}
208
209static inline void
210__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
211{
212 if (cfs_rq->rb_leftmost == &se->run_node)
213 cfs_rq->rb_leftmost = rb_next(&se->run_node);
214 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
215 update_load_sub(&cfs_rq->load, se->load.weight);
216 cfs_rq->nr_running--;
217 se->on_rq = 0;
218
219 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
220}
221
222static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
223{
224 return cfs_rq->rb_leftmost;
225}
226
227static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
228{
229 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
230}
231
232/**************************************************************
233 * Scheduling class statistics methods:
234 */
235
236/*
237 * Calculate the preemption granularity needed to schedule every
238 * runnable task once per sysctl_sched_latency amount of time.
239 * (down to a sensible low limit on granularity)
240 *
241 * For example, if there are 2 tasks running and latency is 10 msecs,
242 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
243 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
244 * for each task. We do finer and finer scheduling up to until we
245 * reach the minimum granularity value.
246 *
247 * To achieve this we use the following dynamic-granularity rule:
248 *
249 * gran = lat/nr - lat/nr/nr
250 *
251 * This comes out of the following equations:
252 *
253 * kA1 + gran = kB1
254 * kB2 + gran = kA2
255 * kA2 = kA1
256 * kB2 = kB1 - d + d/nr
257 * lat = d * nr
258 *
259 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
260 * '1' is start of time, '2' is end of time, 'd' is delay between
261 * 1 and 2 (during which task B was running), 'nr' is number of tasks
262 * running, 'lat' is the the period of each task. ('lat' is the
263 * sched_latency that we aim for.)
264 */
265static long
266sched_granularity(struct cfs_rq *cfs_rq)
267{
268 unsigned int gran = sysctl_sched_latency;
269 unsigned int nr = cfs_rq->nr_running;
270
271 if (nr > 1) {
272 gran = gran/nr - gran/nr/nr;
273 gran = max(gran, sysctl_sched_min_granularity);
274 }
275
276 return gran;
277}
278
279/*
280 * We rescale the rescheduling granularity of tasks according to their
281 * nice level, but only linearly, not exponentially:
282 */
283static long
284niced_granularity(struct sched_entity *curr, unsigned long granularity)
285{
286 u64 tmp;
287
288 if (likely(curr->load.weight == NICE_0_LOAD))
289 return granularity;
290 /*
291 * Positive nice levels get the same granularity as nice-0:
292 */
293 if (likely(curr->load.weight < NICE_0_LOAD)) {
294 tmp = curr->load.weight * (u64)granularity;
295 return (long) (tmp >> NICE_0_SHIFT);
296 }
297 /*
298 * Negative nice level tasks get linearly finer
299 * granularity:
300 */
301 tmp = curr->load.inv_weight * (u64)granularity;
302
303 /*
304 * It will always fit into 'long':
305 */
306 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
307}
308
309static inline void
310limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
311{
312 long limit = sysctl_sched_runtime_limit;
313
314 /*
315 * Niced tasks have the same history dynamic range as
316 * non-niced tasks:
317 */
318 if (unlikely(se->wait_runtime > limit)) {
319 se->wait_runtime = limit;
320 schedstat_inc(se, wait_runtime_overruns);
321 schedstat_inc(cfs_rq, wait_runtime_overruns);
322 }
323 if (unlikely(se->wait_runtime < -limit)) {
324 se->wait_runtime = -limit;
325 schedstat_inc(se, wait_runtime_underruns);
326 schedstat_inc(cfs_rq, wait_runtime_underruns);
327 }
328}
329
330static inline void
331__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
332{
333 se->wait_runtime += delta;
334 schedstat_add(se, sum_wait_runtime, delta);
335 limit_wait_runtime(cfs_rq, se);
336}
337
338static void
339add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
340{
341 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
342 __add_wait_runtime(cfs_rq, se, delta);
343 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
344}
345
346/*
347 * Update the current task's runtime statistics. Skip current tasks that
348 * are not in our scheduling class.
349 */
350static inline void
351__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
352{
353 unsigned long delta, delta_exec, delta_fair, delta_mine;
354 struct load_weight *lw = &cfs_rq->load;
355 unsigned long load = lw->weight;
356
357 delta_exec = curr->delta_exec;
358 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
359
360 curr->sum_exec_runtime += delta_exec;
361 cfs_rq->exec_clock += delta_exec;
362
363 if (unlikely(!load))
364 return;
365
366 delta_fair = calc_delta_fair(delta_exec, lw);
367 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
368
369 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
370 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
371 delta = min(delta, (unsigned long)(
372 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
373 cfs_rq->sleeper_bonus -= delta;
374 delta_mine -= delta;
375 }
376
377 cfs_rq->fair_clock += delta_fair;
378 /*
379 * We executed delta_exec amount of time on the CPU,
380 * but we were only entitled to delta_mine amount of
381 * time during that period (if nr_running == 1 then
382 * the two values are equal)
383 * [Note: delta_mine - delta_exec is negative]:
384 */
385 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
386}
387
388static void update_curr(struct cfs_rq *cfs_rq)
389{
390 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
391 unsigned long delta_exec;
392
393 if (unlikely(!curr))
394 return;
395
396 /*
397 * Get the amount of time the current task was running
398 * since the last time we changed load (this cannot
399 * overflow on 32 bits):
400 */
401 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
402
403 curr->delta_exec += delta_exec;
404
405 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
406 __update_curr(cfs_rq, curr);
407 curr->delta_exec = 0;
408 }
409 curr->exec_start = rq_of(cfs_rq)->clock;
410}
411
412static inline void
413update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
414{
415 se->wait_start_fair = cfs_rq->fair_clock;
416 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
417}
418
419/*
420 * We calculate fair deltas here, so protect against the random effects
421 * of a multiplication overflow by capping it to the runtime limit:
422 */
423#if BITS_PER_LONG == 32
424static inline unsigned long
425calc_weighted(unsigned long delta, unsigned long weight, int shift)
426{
427 u64 tmp = (u64)delta * weight >> shift;
428
429 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
430 return sysctl_sched_runtime_limit*2;
431 return tmp;
432}
433#else
434static inline unsigned long
435calc_weighted(unsigned long delta, unsigned long weight, int shift)
436{
437 return delta * weight >> shift;
438}
439#endif
440
441/*
442 * Task is being enqueued - update stats:
443 */
444static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
445{
446 s64 key;
447
448 /*
449 * Are we enqueueing a waiting task? (for current tasks
450 * a dequeue/enqueue event is a NOP)
451 */
452 if (se != cfs_rq_curr(cfs_rq))
453 update_stats_wait_start(cfs_rq, se);
454 /*
455 * Update the key:
456 */
457 key = cfs_rq->fair_clock;
458
459 /*
460 * Optimize the common nice 0 case:
461 */
462 if (likely(se->load.weight == NICE_0_LOAD)) {
463 key -= se->wait_runtime;
464 } else {
465 u64 tmp;
466
467 if (se->wait_runtime < 0) {
468 tmp = -se->wait_runtime;
469 key += (tmp * se->load.inv_weight) >>
470 (WMULT_SHIFT - NICE_0_SHIFT);
471 } else {
472 tmp = se->wait_runtime;
473 key -= (tmp * se->load.inv_weight) >>
474 (WMULT_SHIFT - NICE_0_SHIFT);
475 }
476 }
477
478 se->fair_key = key;
479}
480
481/*
482 * Note: must be called with a freshly updated rq->fair_clock.
483 */
484static inline void
485__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
486{
487 unsigned long delta_fair = se->delta_fair_run;
488
489 schedstat_set(se->wait_max, max(se->wait_max,
490 rq_of(cfs_rq)->clock - se->wait_start));
491
492 if (unlikely(se->load.weight != NICE_0_LOAD))
493 delta_fair = calc_weighted(delta_fair, se->load.weight,
494 NICE_0_SHIFT);
495
496 add_wait_runtime(cfs_rq, se, delta_fair);
497}
498
499static void
500update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
501{
502 unsigned long delta_fair;
503
504 if (unlikely(!se->wait_start_fair))
505 return;
506
507 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
508 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
509
510 se->delta_fair_run += delta_fair;
511 if (unlikely(abs(se->delta_fair_run) >=
512 sysctl_sched_stat_granularity)) {
513 __update_stats_wait_end(cfs_rq, se);
514 se->delta_fair_run = 0;
515 }
516
517 se->wait_start_fair = 0;
518 schedstat_set(se->wait_start, 0);
519}
520
521static inline void
522update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523{
524 update_curr(cfs_rq);
525 /*
526 * Mark the end of the wait period if dequeueing a
527 * waiting task:
528 */
529 if (se != cfs_rq_curr(cfs_rq))
530 update_stats_wait_end(cfs_rq, se);
531}
532
533/*
534 * We are picking a new current task - update its stats:
535 */
536static inline void
537update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
538{
539 /*
540 * We are starting a new run period:
541 */
542 se->exec_start = rq_of(cfs_rq)->clock;
543}
544
545/*
546 * We are descheduling a task - update its stats:
547 */
548static inline void
549update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
550{
551 se->exec_start = 0;
552}
553
554/**************************************************
555 * Scheduling class queueing methods:
556 */
557
558static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
559{
560 unsigned long load = cfs_rq->load.weight, delta_fair;
561 long prev_runtime;
562
563 /*
564 * Do not boost sleepers if there's too much bonus 'in flight'
565 * already:
566 */
567 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
568 return;
569
570 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
571 load = rq_of(cfs_rq)->cpu_load[2];
572
573 delta_fair = se->delta_fair_sleep;
574
575 /*
576 * Fix up delta_fair with the effect of us running
577 * during the whole sleep period:
578 */
579 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
580 delta_fair = div64_likely32((u64)delta_fair * load,
581 load + se->load.weight);
582
583 if (unlikely(se->load.weight != NICE_0_LOAD))
584 delta_fair = calc_weighted(delta_fair, se->load.weight,
585 NICE_0_SHIFT);
586
587 prev_runtime = se->wait_runtime;
588 __add_wait_runtime(cfs_rq, se, delta_fair);
589 delta_fair = se->wait_runtime - prev_runtime;
590
591 /*
592 * Track the amount of bonus we've given to sleepers:
593 */
594 cfs_rq->sleeper_bonus += delta_fair;
595}
596
597static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
598{
599 struct task_struct *tsk = task_of(se);
600 unsigned long delta_fair;
601
602 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
603 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
604 return;
605
606 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
607 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
608
609 se->delta_fair_sleep += delta_fair;
610 if (unlikely(abs(se->delta_fair_sleep) >=
611 sysctl_sched_stat_granularity)) {
612 __enqueue_sleeper(cfs_rq, se);
613 se->delta_fair_sleep = 0;
614 }
615
616 se->sleep_start_fair = 0;
617
618#ifdef CONFIG_SCHEDSTATS
619 if (se->sleep_start) {
620 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
621
622 if ((s64)delta < 0)
623 delta = 0;
624
625 if (unlikely(delta > se->sleep_max))
626 se->sleep_max = delta;
627
628 se->sleep_start = 0;
629 se->sum_sleep_runtime += delta;
630 }
631 if (se->block_start) {
632 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
633
634 if ((s64)delta < 0)
635 delta = 0;
636
637 if (unlikely(delta > se->block_max))
638 se->block_max = delta;
639
640 se->block_start = 0;
641 se->sum_sleep_runtime += delta;
642
643 /*
644 * Blocking time is in units of nanosecs, so shift by 20 to
645 * get a milliseconds-range estimation of the amount of
646 * time that the task spent sleeping:
647 */
648 if (unlikely(prof_on == SLEEP_PROFILING)) {
649 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
650 delta >> 20);
651 }
652 }
653#endif
654}
655
656static void
657enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
658{
659 /*
660 * Update the fair clock.
661 */
662 update_curr(cfs_rq);
663
664 if (wakeup)
665 enqueue_sleeper(cfs_rq, se);
666
667 update_stats_enqueue(cfs_rq, se);
668 __enqueue_entity(cfs_rq, se);
669}
670
671static void
672dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
673{
674 update_stats_dequeue(cfs_rq, se);
675 if (sleep) {
676 se->sleep_start_fair = cfs_rq->fair_clock;
677#ifdef CONFIG_SCHEDSTATS
678 if (entity_is_task(se)) {
679 struct task_struct *tsk = task_of(se);
680
681 if (tsk->state & TASK_INTERRUPTIBLE)
682 se->sleep_start = rq_of(cfs_rq)->clock;
683 if (tsk->state & TASK_UNINTERRUPTIBLE)
684 se->block_start = rq_of(cfs_rq)->clock;
685 }
686#endif
687 }
688 __dequeue_entity(cfs_rq, se);
689}
690
691/*
692 * Preempt the current task with a newly woken task if needed:
693 */
694static void
695__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
696 struct sched_entity *curr, unsigned long granularity)
697{
698 s64 __delta = curr->fair_key - se->fair_key;
699 unsigned long ideal_runtime, delta_exec;
700
701 /*
702 * ideal_runtime is compared against sum_exec_runtime, which is
703 * walltime, hence do not scale.
704 */
705 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
706 (unsigned long)sysctl_sched_min_granularity);
707
708 /*
709 * If we executed more than what the latency constraint suggests,
710 * reduce the rescheduling granularity. This way the total latency
711 * of how much a task is not scheduled converges to
712 * sysctl_sched_latency:
713 */
714 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
715 if (delta_exec > ideal_runtime)
716 granularity = 0;
717
718 /*
719 * Take scheduling granularity into account - do not
720 * preempt the current task unless the best task has
721 * a larger than sched_granularity fairness advantage:
722 *
723 * scale granularity as key space is in fair_clock.
724 */
725 if (__delta > niced_granularity(curr, granularity))
726 resched_task(rq_of(cfs_rq)->curr);
727}
728
729static inline void
730set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
731{
732 /*
733 * Any task has to be enqueued before it get to execute on
734 * a CPU. So account for the time it spent waiting on the
735 * runqueue. (note, here we rely on pick_next_task() having
736 * done a put_prev_task_fair() shortly before this, which
737 * updated rq->fair_clock - used by update_stats_wait_end())
738 */
739 update_stats_wait_end(cfs_rq, se);
740 update_stats_curr_start(cfs_rq, se);
741 set_cfs_rq_curr(cfs_rq, se);
742#ifdef CONFIG_SCHEDSTATS
743 /*
744 * Track our maximum slice length, if the CPU's load is at
745 * least twice that of our own weight (i.e. dont track it
746 * when there are only lesser-weight tasks around):
747 */
748 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
749 se->slice_max = max(se->slice_max,
750 se->sum_exec_runtime - se->prev_sum_exec_runtime);
751 }
752#endif
753 se->prev_sum_exec_runtime = se->sum_exec_runtime;
754}
755
756static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
757{
758 struct sched_entity *se = __pick_next_entity(cfs_rq);
759
760 set_next_entity(cfs_rq, se);
761
762 return se;
763}
764
765static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
766{
767 /*
768 * If still on the runqueue then deactivate_task()
769 * was not called and update_curr() has to be done:
770 */
771 if (prev->on_rq)
772 update_curr(cfs_rq);
773
774 update_stats_curr_end(cfs_rq, prev);
775
776 if (prev->on_rq)
777 update_stats_wait_start(cfs_rq, prev);
778 set_cfs_rq_curr(cfs_rq, NULL);
779}
780
781static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
782{
783 struct sched_entity *next;
784
785 /*
786 * Dequeue and enqueue the task to update its
787 * position within the tree:
788 */
789 dequeue_entity(cfs_rq, curr, 0);
790 enqueue_entity(cfs_rq, curr, 0);
791
792 /*
793 * Reschedule if another task tops the current one.
794 */
795 next = __pick_next_entity(cfs_rq);
796 if (next == curr)
797 return;
798
799 __check_preempt_curr_fair(cfs_rq, next, curr,
800 sched_granularity(cfs_rq));
801}
802
803/**************************************************
804 * CFS operations on tasks:
805 */
806
807#ifdef CONFIG_FAIR_GROUP_SCHED
808
809/* Walk up scheduling entities hierarchy */
810#define for_each_sched_entity(se) \
811 for (; se; se = se->parent)
812
813static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
814{
815 return p->se.cfs_rq;
816}
817
818/* runqueue on which this entity is (to be) queued */
819static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
820{
821 return se->cfs_rq;
822}
823
824/* runqueue "owned" by this group */
825static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
826{
827 return grp->my_q;
828}
829
830/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
831 * another cpu ('this_cpu')
832 */
833static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
834{
835 /* A later patch will take group into account */
836 return &cpu_rq(this_cpu)->cfs;
837}
838
839/* Iterate thr' all leaf cfs_rq's on a runqueue */
840#define for_each_leaf_cfs_rq(rq, cfs_rq) \
841 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
842
843/* Do the two (enqueued) tasks belong to the same group ? */
844static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
845{
846 if (curr->se.cfs_rq == p->se.cfs_rq)
847 return 1;
848
849 return 0;
850}
851
852#else /* CONFIG_FAIR_GROUP_SCHED */
853
854#define for_each_sched_entity(se) \
855 for (; se; se = NULL)
856
857static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
858{
859 return &task_rq(p)->cfs;
860}
861
862static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
863{
864 struct task_struct *p = task_of(se);
865 struct rq *rq = task_rq(p);
866
867 return &rq->cfs;
868}
869
870/* runqueue "owned" by this group */
871static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
872{
873 return NULL;
874}
875
876static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
877{
878 return &cpu_rq(this_cpu)->cfs;
879}
880
881#define for_each_leaf_cfs_rq(rq, cfs_rq) \
882 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
883
884static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
885{
886 return 1;
887}
888
889#endif /* CONFIG_FAIR_GROUP_SCHED */
890
891/*
892 * The enqueue_task method is called before nr_running is
893 * increased. Here we update the fair scheduling stats and
894 * then put the task into the rbtree:
895 */
896static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
897{
898 struct cfs_rq *cfs_rq;
899 struct sched_entity *se = &p->se;
900
901 for_each_sched_entity(se) {
902 if (se->on_rq)
903 break;
904 cfs_rq = cfs_rq_of(se);
905 enqueue_entity(cfs_rq, se, wakeup);
906 }
907}
908
909/*
910 * The dequeue_task method is called before nr_running is
911 * decreased. We remove the task from the rbtree and
912 * update the fair scheduling stats:
913 */
914static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
915{
916 struct cfs_rq *cfs_rq;
917 struct sched_entity *se = &p->se;
918
919 for_each_sched_entity(se) {
920 cfs_rq = cfs_rq_of(se);
921 dequeue_entity(cfs_rq, se, sleep);
922 /* Don't dequeue parent if it has other entities besides us */
923 if (cfs_rq->load.weight)
924 break;
925 }
926}
927
928/*
929 * sched_yield() support is very simple - we dequeue and enqueue.
930 *
931 * If compat_yield is turned on then we requeue to the end of the tree.
932 */
933static void yield_task_fair(struct rq *rq, struct task_struct *p)
934{
935 struct cfs_rq *cfs_rq = task_cfs_rq(p);
936 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
937 struct sched_entity *rightmost, *se = &p->se;
938 struct rb_node *parent;
939
940 /*
941 * Are we the only task in the tree?
942 */
943 if (unlikely(cfs_rq->nr_running == 1))
944 return;
945
946 if (likely(!sysctl_sched_compat_yield)) {
947 __update_rq_clock(rq);
948 /*
949 * Dequeue and enqueue the task to update its
950 * position within the tree:
951 */
952 dequeue_entity(cfs_rq, &p->se, 0);
953 enqueue_entity(cfs_rq, &p->se, 0);
954
955 return;
956 }
957 /*
958 * Find the rightmost entry in the rbtree:
959 */
960 do {
961 parent = *link;
962 link = &parent->rb_right;
963 } while (*link);
964
965 rightmost = rb_entry(parent, struct sched_entity, run_node);
966 /*
967 * Already in the rightmost position?
968 */
969 if (unlikely(rightmost == se))
970 return;
971
972 /*
973 * Minimally necessary key value to be last in the tree:
974 */
975 se->fair_key = rightmost->fair_key + 1;
976
977 if (cfs_rq->rb_leftmost == &se->run_node)
978 cfs_rq->rb_leftmost = rb_next(&se->run_node);
979 /*
980 * Relink the task to the rightmost position:
981 */
982 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
983 rb_link_node(&se->run_node, parent, link);
984 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
985}
986
987/*
988 * Preempt the current task with a newly woken task if needed:
989 */
990static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
991{
992 struct task_struct *curr = rq->curr;
993 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
994 unsigned long gran;
995
996 if (unlikely(rt_prio(p->prio))) {
997 update_rq_clock(rq);
998 update_curr(cfs_rq);
999 resched_task(curr);
1000 return;
1001 }
1002
1003 gran = sysctl_sched_wakeup_granularity;
1004 /*
1005 * Batch tasks prefer throughput over latency:
1006 */
1007 if (unlikely(p->policy == SCHED_BATCH))
1008 gran = sysctl_sched_batch_wakeup_granularity;
1009
1010 if (is_same_group(curr, p))
1011 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
1012}
1013
1014static struct task_struct *pick_next_task_fair(struct rq *rq)
1015{
1016 struct cfs_rq *cfs_rq = &rq->cfs;
1017 struct sched_entity *se;
1018
1019 if (unlikely(!cfs_rq->nr_running))
1020 return NULL;
1021
1022 do {
1023 se = pick_next_entity(cfs_rq);
1024 cfs_rq = group_cfs_rq(se);
1025 } while (cfs_rq);
1026
1027 return task_of(se);
1028}
1029
1030/*
1031 * Account for a descheduled task:
1032 */
1033static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1034{
1035 struct sched_entity *se = &prev->se;
1036 struct cfs_rq *cfs_rq;
1037
1038 for_each_sched_entity(se) {
1039 cfs_rq = cfs_rq_of(se);
1040 put_prev_entity(cfs_rq, se);
1041 }
1042}
1043
1044/**************************************************
1045 * Fair scheduling class load-balancing methods:
1046 */
1047
1048/*
1049 * Load-balancing iterator. Note: while the runqueue stays locked
1050 * during the whole iteration, the current task might be
1051 * dequeued so the iterator has to be dequeue-safe. Here we
1052 * achieve that by always pre-iterating before returning
1053 * the current task:
1054 */
1055static inline struct task_struct *
1056__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1057{
1058 struct task_struct *p;
1059
1060 if (!curr)
1061 return NULL;
1062
1063 p = rb_entry(curr, struct task_struct, se.run_node);
1064 cfs_rq->rb_load_balance_curr = rb_next(curr);
1065
1066 return p;
1067}
1068
1069static struct task_struct *load_balance_start_fair(void *arg)
1070{
1071 struct cfs_rq *cfs_rq = arg;
1072
1073 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1074}
1075
1076static struct task_struct *load_balance_next_fair(void *arg)
1077{
1078 struct cfs_rq *cfs_rq = arg;
1079
1080 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1081}
1082
1083#ifdef CONFIG_FAIR_GROUP_SCHED
1084static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1085{
1086 struct sched_entity *curr;
1087 struct task_struct *p;
1088
1089 if (!cfs_rq->nr_running)
1090 return MAX_PRIO;
1091
1092 curr = __pick_next_entity(cfs_rq);
1093 p = task_of(curr);
1094
1095 return p->prio;
1096}
1097#endif
1098
1099static unsigned long
1100load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1101 unsigned long max_nr_move, unsigned long max_load_move,
1102 struct sched_domain *sd, enum cpu_idle_type idle,
1103 int *all_pinned, int *this_best_prio)
1104{
1105 struct cfs_rq *busy_cfs_rq;
1106 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1107 long rem_load_move = max_load_move;
1108 struct rq_iterator cfs_rq_iterator;
1109
1110 cfs_rq_iterator.start = load_balance_start_fair;
1111 cfs_rq_iterator.next = load_balance_next_fair;
1112
1113 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1114#ifdef CONFIG_FAIR_GROUP_SCHED
1115 struct cfs_rq *this_cfs_rq;
1116 long imbalance;
1117 unsigned long maxload;
1118
1119 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1120
1121 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1122 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1123 if (imbalance <= 0)
1124 continue;
1125
1126 /* Don't pull more than imbalance/2 */
1127 imbalance /= 2;
1128 maxload = min(rem_load_move, imbalance);
1129
1130 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1131#else
1132# define maxload rem_load_move
1133#endif
1134 /* pass busy_cfs_rq argument into
1135 * load_balance_[start|next]_fair iterators
1136 */
1137 cfs_rq_iterator.arg = busy_cfs_rq;
1138 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1139 max_nr_move, maxload, sd, idle, all_pinned,
1140 &load_moved, this_best_prio, &cfs_rq_iterator);
1141
1142 total_nr_moved += nr_moved;
1143 max_nr_move -= nr_moved;
1144 rem_load_move -= load_moved;
1145
1146 if (max_nr_move <= 0 || rem_load_move <= 0)
1147 break;
1148 }
1149
1150 return max_load_move - rem_load_move;
1151}
1152
1153/*
1154 * scheduler tick hitting a task of our scheduling class:
1155 */
1156static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1157{
1158 struct cfs_rq *cfs_rq;
1159 struct sched_entity *se = &curr->se;
1160
1161 for_each_sched_entity(se) {
1162 cfs_rq = cfs_rq_of(se);
1163 entity_tick(cfs_rq, se);
1164 }
1165}
1166
1167/*
1168 * Share the fairness runtime between parent and child, thus the
1169 * total amount of pressure for CPU stays equal - new tasks
1170 * get a chance to run but frequent forkers are not allowed to
1171 * monopolize the CPU. Note: the parent runqueue is locked,
1172 * the child is not running yet.
1173 */
1174static void task_new_fair(struct rq *rq, struct task_struct *p)
1175{
1176 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1177 struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
1178
1179 sched_info_queued(p);
1180
1181 update_curr(cfs_rq);
1182 update_stats_enqueue(cfs_rq, se);
1183 /*
1184 * Child runs first: we let it run before the parent
1185 * until it reschedules once. We set up the key so that
1186 * it will preempt the parent:
1187 */
1188 se->fair_key = curr->fair_key -
1189 niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
1190 /*
1191 * The first wait is dominated by the child-runs-first logic,
1192 * so do not credit it with that waiting time yet:
1193 */
1194 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1195 se->wait_start_fair = 0;
1196
1197 /*
1198 * The statistical average of wait_runtime is about
1199 * -granularity/2, so initialize the task with that:
1200 */
1201 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1202 se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
1203
1204 __enqueue_entity(cfs_rq, se);
1205 resched_task(rq->curr);
1206}
1207
1208#ifdef CONFIG_FAIR_GROUP_SCHED
1209/* Account for a task changing its policy or group.
1210 *
1211 * This routine is mostly called to set cfs_rq->curr field when a task
1212 * migrates between groups/classes.
1213 */
1214static void set_curr_task_fair(struct rq *rq)
1215{
1216 struct sched_entity *se = &rq->curr->se;
1217
1218 for_each_sched_entity(se)
1219 set_next_entity(cfs_rq_of(se), se);
1220}
1221#else
1222static void set_curr_task_fair(struct rq *rq)
1223{
1224}
1225#endif
1226
1227/*
1228 * All the scheduling class methods:
1229 */
1230struct sched_class fair_sched_class __read_mostly = {
1231 .enqueue_task = enqueue_task_fair,
1232 .dequeue_task = dequeue_task_fair,
1233 .yield_task = yield_task_fair,
1234
1235 .check_preempt_curr = check_preempt_curr_fair,
1236
1237 .pick_next_task = pick_next_task_fair,
1238 .put_prev_task = put_prev_task_fair,
1239
1240 .load_balance = load_balance_fair,
1241
1242 .set_curr_task = set_curr_task_fair,
1243 .task_tick = task_tick_fair,
1244 .task_new = task_new_fair,
1245};
1246
1247#ifdef CONFIG_SCHED_DEBUG
1248static void print_cfs_stats(struct seq_file *m, int cpu)
1249{
1250 struct cfs_rq *cfs_rq;
1251
1252 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1253 print_cfs_rq(m, cpu, cfs_rq);
1254}
1255#endif