Merge branch 'work.sane_pwd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / kprobes.c
... / ...
CommitLineData
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61static int kprobes_initialized;
62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65/* NOTE: change this value only with kprobe_mutex held */
66static bool kprobes_all_disarmed;
67
68/* This protects kprobe_table and optimizing_list */
69static DEFINE_MUTEX(kprobe_mutex);
70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77{
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79}
80
81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82{
83 return &(kretprobe_table_locks[hash].lock);
84}
85
86/* Blacklist -- list of struct kprobe_blacklist_entry */
87static LIST_HEAD(kprobe_blacklist);
88
89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90/*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103};
104
105#define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109static int slots_per_page(struct kprobe_insn_cache *c)
110{
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112}
113
114enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118};
119
120static void *alloc_insn_page(void)
121{
122 return module_alloc(PAGE_SIZE);
123}
124
125static void free_insn_page(void *page)
126{
127 module_memfree(page);
128}
129
130struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return 1 if all garbages are collected, otherwise 0. */
205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225}
226
227static int collect_garbage_slots(struct kprobe_insn_cache *c)
228{
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246}
247
248void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250{
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281}
282
283/*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289{
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304}
305
306#ifdef CONFIG_OPTPROBES
307/* For optimized_kprobe buffer */
308struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315};
316#endif
317#endif
318
319/* We have preemption disabled.. so it is safe to use __ versions */
320static inline void set_kprobe_instance(struct kprobe *kp)
321{
322 __this_cpu_write(kprobe_instance, kp);
323}
324
325static inline void reset_kprobe_instance(void)
326{
327 __this_cpu_write(kprobe_instance, NULL);
328}
329
330/*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336struct kprobe *get_kprobe(void *addr)
337{
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348}
349NOKPROBE_SYMBOL(get_kprobe);
350
351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353/* Return true if the kprobe is an aggregator */
354static inline int kprobe_aggrprobe(struct kprobe *p)
355{
356 return p->pre_handler == aggr_pre_handler;
357}
358
359/* Return true(!0) if the kprobe is unused */
360static inline int kprobe_unused(struct kprobe *p)
361{
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364}
365
366/*
367 * Keep all fields in the kprobe consistent
368 */
369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370{
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373}
374
375#ifdef CONFIG_OPTPROBES
376/* NOTE: change this value only with kprobe_mutex held */
377static bool kprobes_allow_optimization;
378
379/*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384{
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394}
395NOKPROBE_SYMBOL(opt_pre_handler);
396
397/* Free optimized instructions and optimized_kprobe */
398static void free_aggr_kprobe(struct kprobe *p)
399{
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406}
407
408/* Return true(!0) if the kprobe is ready for optimization. */
409static inline int kprobe_optready(struct kprobe *p)
410{
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419}
420
421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422static inline int kprobe_disarmed(struct kprobe *p)
423{
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433}
434
435/* Return true(!0) if the probe is queued on (un)optimizing lists */
436static int kprobe_queued(struct kprobe *p)
437{
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446}
447
448/*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452static struct kprobe *get_optimized_kprobe(unsigned long addr)
453{
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469}
470
471/* Optimization staging list, protected by kprobe_mutex */
472static LIST_HEAD(optimizing_list);
473static LIST_HEAD(unoptimizing_list);
474static LIST_HEAD(freeing_list);
475
476static void kprobe_optimizer(struct work_struct *work);
477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478#define OPTIMIZE_DELAY 5
479
480/*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484static void do_optimize_kprobes(void)
485{
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
490
491 /*
492 * The optimization/unoptimization refers online_cpus via
493 * stop_machine() and cpu-hotplug modifies online_cpus.
494 * And same time, text_mutex will be held in cpu-hotplug and here.
495 * This combination can cause a deadlock (cpu-hotplug try to lock
496 * text_mutex but stop_machine can not be done because online_cpus
497 * has been changed)
498 * To avoid this deadlock, we need to call get_online_cpus()
499 * for preventing cpu-hotplug outside of text_mutex locking.
500 */
501 get_online_cpus();
502 mutex_lock(&text_mutex);
503 arch_optimize_kprobes(&optimizing_list);
504 mutex_unlock(&text_mutex);
505 put_online_cpus();
506}
507
508/*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512static void do_unoptimize_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 /* Unoptimization must be done anytime */
517 if (list_empty(&unoptimizing_list))
518 return;
519
520 /* Ditto to do_optimize_kprobes */
521 get_online_cpus();
522 mutex_lock(&text_mutex);
523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 /* Loop free_list for disarming */
525 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 /* Disarm probes if marked disabled */
527 if (kprobe_disabled(&op->kp))
528 arch_disarm_kprobe(&op->kp);
529 if (kprobe_unused(&op->kp)) {
530 /*
531 * Remove unused probes from hash list. After waiting
532 * for synchronization, these probes are reclaimed.
533 * (reclaiming is done by do_free_cleaned_kprobes.)
534 */
535 hlist_del_rcu(&op->kp.hlist);
536 } else
537 list_del_init(&op->list);
538 }
539 mutex_unlock(&text_mutex);
540 put_online_cpus();
541}
542
543/* Reclaim all kprobes on the free_list */
544static void do_free_cleaned_kprobes(void)
545{
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553}
554
555/* Start optimizer after OPTIMIZE_DELAY passed */
556static void kick_kprobe_optimizer(void)
557{
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559}
560
561/* Kprobe jump optimizer */
562static void kprobe_optimizer(struct work_struct *work)
563{
564 mutex_lock(&kprobe_mutex);
565 /* Lock modules while optimizing kprobes */
566 mutex_lock(&module_mutex);
567
568 /*
569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 * kprobes before waiting for quiesence period.
571 */
572 do_unoptimize_kprobes();
573
574 /*
575 * Step 2: Wait for quiesence period to ensure all running interrupts
576 * are done. Because optprobe may modify multiple instructions
577 * there is a chance that Nth instruction is interrupted. In that
578 * case, running interrupt can return to 2nd-Nth byte of jump
579 * instruction. This wait is for avoiding it.
580 */
581 synchronize_sched();
582
583 /* Step 3: Optimize kprobes after quiesence period */
584 do_optimize_kprobes();
585
586 /* Step 4: Free cleaned kprobes after quiesence period */
587 do_free_cleaned_kprobes();
588
589 mutex_unlock(&module_mutex);
590 mutex_unlock(&kprobe_mutex);
591
592 /* Step 5: Kick optimizer again if needed */
593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 kick_kprobe_optimizer();
595}
596
597/* Wait for completing optimization and unoptimization */
598static void wait_for_kprobe_optimizer(void)
599{
600 mutex_lock(&kprobe_mutex);
601
602 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
603 mutex_unlock(&kprobe_mutex);
604
605 /* this will also make optimizing_work execute immmediately */
606 flush_delayed_work(&optimizing_work);
607 /* @optimizing_work might not have been queued yet, relax */
608 cpu_relax();
609
610 mutex_lock(&kprobe_mutex);
611 }
612
613 mutex_unlock(&kprobe_mutex);
614}
615
616/* Optimize kprobe if p is ready to be optimized */
617static void optimize_kprobe(struct kprobe *p)
618{
619 struct optimized_kprobe *op;
620
621 /* Check if the kprobe is disabled or not ready for optimization. */
622 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
623 (kprobe_disabled(p) || kprobes_all_disarmed))
624 return;
625
626 /* Both of break_handler and post_handler are not supported. */
627 if (p->break_handler || p->post_handler)
628 return;
629
630 op = container_of(p, struct optimized_kprobe, kp);
631
632 /* Check there is no other kprobes at the optimized instructions */
633 if (arch_check_optimized_kprobe(op) < 0)
634 return;
635
636 /* Check if it is already optimized. */
637 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
638 return;
639 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
640
641 if (!list_empty(&op->list))
642 /* This is under unoptimizing. Just dequeue the probe */
643 list_del_init(&op->list);
644 else {
645 list_add(&op->list, &optimizing_list);
646 kick_kprobe_optimizer();
647 }
648}
649
650/* Short cut to direct unoptimizing */
651static void force_unoptimize_kprobe(struct optimized_kprobe *op)
652{
653 get_online_cpus();
654 arch_unoptimize_kprobe(op);
655 put_online_cpus();
656 if (kprobe_disabled(&op->kp))
657 arch_disarm_kprobe(&op->kp);
658}
659
660/* Unoptimize a kprobe if p is optimized */
661static void unoptimize_kprobe(struct kprobe *p, bool force)
662{
663 struct optimized_kprobe *op;
664
665 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
666 return; /* This is not an optprobe nor optimized */
667
668 op = container_of(p, struct optimized_kprobe, kp);
669 if (!kprobe_optimized(p)) {
670 /* Unoptimized or unoptimizing case */
671 if (force && !list_empty(&op->list)) {
672 /*
673 * Only if this is unoptimizing kprobe and forced,
674 * forcibly unoptimize it. (No need to unoptimize
675 * unoptimized kprobe again :)
676 */
677 list_del_init(&op->list);
678 force_unoptimize_kprobe(op);
679 }
680 return;
681 }
682
683 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684 if (!list_empty(&op->list)) {
685 /* Dequeue from the optimization queue */
686 list_del_init(&op->list);
687 return;
688 }
689 /* Optimized kprobe case */
690 if (force)
691 /* Forcibly update the code: this is a special case */
692 force_unoptimize_kprobe(op);
693 else {
694 list_add(&op->list, &unoptimizing_list);
695 kick_kprobe_optimizer();
696 }
697}
698
699/* Cancel unoptimizing for reusing */
700static void reuse_unused_kprobe(struct kprobe *ap)
701{
702 struct optimized_kprobe *op;
703
704 BUG_ON(!kprobe_unused(ap));
705 /*
706 * Unused kprobe MUST be on the way of delayed unoptimizing (means
707 * there is still a relative jump) and disabled.
708 */
709 op = container_of(ap, struct optimized_kprobe, kp);
710 if (unlikely(list_empty(&op->list)))
711 printk(KERN_WARNING "Warning: found a stray unused "
712 "aggrprobe@%p\n", ap->addr);
713 /* Enable the probe again */
714 ap->flags &= ~KPROBE_FLAG_DISABLED;
715 /* Optimize it again (remove from op->list) */
716 BUG_ON(!kprobe_optready(ap));
717 optimize_kprobe(ap);
718}
719
720/* Remove optimized instructions */
721static void kill_optimized_kprobe(struct kprobe *p)
722{
723 struct optimized_kprobe *op;
724
725 op = container_of(p, struct optimized_kprobe, kp);
726 if (!list_empty(&op->list))
727 /* Dequeue from the (un)optimization queue */
728 list_del_init(&op->list);
729 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730
731 if (kprobe_unused(p)) {
732 /* Enqueue if it is unused */
733 list_add(&op->list, &freeing_list);
734 /*
735 * Remove unused probes from the hash list. After waiting
736 * for synchronization, this probe is reclaimed.
737 * (reclaiming is done by do_free_cleaned_kprobes().)
738 */
739 hlist_del_rcu(&op->kp.hlist);
740 }
741
742 /* Don't touch the code, because it is already freed. */
743 arch_remove_optimized_kprobe(op);
744}
745
746static inline
747void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
748{
749 if (!kprobe_ftrace(p))
750 arch_prepare_optimized_kprobe(op, p);
751}
752
753/* Try to prepare optimized instructions */
754static void prepare_optimized_kprobe(struct kprobe *p)
755{
756 struct optimized_kprobe *op;
757
758 op = container_of(p, struct optimized_kprobe, kp);
759 __prepare_optimized_kprobe(op, p);
760}
761
762/* Allocate new optimized_kprobe and try to prepare optimized instructions */
763static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
764{
765 struct optimized_kprobe *op;
766
767 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
768 if (!op)
769 return NULL;
770
771 INIT_LIST_HEAD(&op->list);
772 op->kp.addr = p->addr;
773 __prepare_optimized_kprobe(op, p);
774
775 return &op->kp;
776}
777
778static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
779
780/*
781 * Prepare an optimized_kprobe and optimize it
782 * NOTE: p must be a normal registered kprobe
783 */
784static void try_to_optimize_kprobe(struct kprobe *p)
785{
786 struct kprobe *ap;
787 struct optimized_kprobe *op;
788
789 /* Impossible to optimize ftrace-based kprobe */
790 if (kprobe_ftrace(p))
791 return;
792
793 /* For preparing optimization, jump_label_text_reserved() is called */
794 jump_label_lock();
795 mutex_lock(&text_mutex);
796
797 ap = alloc_aggr_kprobe(p);
798 if (!ap)
799 goto out;
800
801 op = container_of(ap, struct optimized_kprobe, kp);
802 if (!arch_prepared_optinsn(&op->optinsn)) {
803 /* If failed to setup optimizing, fallback to kprobe */
804 arch_remove_optimized_kprobe(op);
805 kfree(op);
806 goto out;
807 }
808
809 init_aggr_kprobe(ap, p);
810 optimize_kprobe(ap); /* This just kicks optimizer thread */
811
812out:
813 mutex_unlock(&text_mutex);
814 jump_label_unlock();
815}
816
817#ifdef CONFIG_SYSCTL
818static void optimize_all_kprobes(void)
819{
820 struct hlist_head *head;
821 struct kprobe *p;
822 unsigned int i;
823
824 mutex_lock(&kprobe_mutex);
825 /* If optimization is already allowed, just return */
826 if (kprobes_allow_optimization)
827 goto out;
828
829 kprobes_allow_optimization = true;
830 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
831 head = &kprobe_table[i];
832 hlist_for_each_entry_rcu(p, head, hlist)
833 if (!kprobe_disabled(p))
834 optimize_kprobe(p);
835 }
836 printk(KERN_INFO "Kprobes globally optimized\n");
837out:
838 mutex_unlock(&kprobe_mutex);
839}
840
841static void unoptimize_all_kprobes(void)
842{
843 struct hlist_head *head;
844 struct kprobe *p;
845 unsigned int i;
846
847 mutex_lock(&kprobe_mutex);
848 /* If optimization is already prohibited, just return */
849 if (!kprobes_allow_optimization) {
850 mutex_unlock(&kprobe_mutex);
851 return;
852 }
853
854 kprobes_allow_optimization = false;
855 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856 head = &kprobe_table[i];
857 hlist_for_each_entry_rcu(p, head, hlist) {
858 if (!kprobe_disabled(p))
859 unoptimize_kprobe(p, false);
860 }
861 }
862 mutex_unlock(&kprobe_mutex);
863
864 /* Wait for unoptimizing completion */
865 wait_for_kprobe_optimizer();
866 printk(KERN_INFO "Kprobes globally unoptimized\n");
867}
868
869static DEFINE_MUTEX(kprobe_sysctl_mutex);
870int sysctl_kprobes_optimization;
871int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
872 void __user *buffer, size_t *length,
873 loff_t *ppos)
874{
875 int ret;
876
877 mutex_lock(&kprobe_sysctl_mutex);
878 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
879 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
880
881 if (sysctl_kprobes_optimization)
882 optimize_all_kprobes();
883 else
884 unoptimize_all_kprobes();
885 mutex_unlock(&kprobe_sysctl_mutex);
886
887 return ret;
888}
889#endif /* CONFIG_SYSCTL */
890
891/* Put a breakpoint for a probe. Must be called with text_mutex locked */
892static void __arm_kprobe(struct kprobe *p)
893{
894 struct kprobe *_p;
895
896 /* Check collision with other optimized kprobes */
897 _p = get_optimized_kprobe((unsigned long)p->addr);
898 if (unlikely(_p))
899 /* Fallback to unoptimized kprobe */
900 unoptimize_kprobe(_p, true);
901
902 arch_arm_kprobe(p);
903 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
904}
905
906/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
907static void __disarm_kprobe(struct kprobe *p, bool reopt)
908{
909 struct kprobe *_p;
910
911 /* Try to unoptimize */
912 unoptimize_kprobe(p, kprobes_all_disarmed);
913
914 if (!kprobe_queued(p)) {
915 arch_disarm_kprobe(p);
916 /* If another kprobe was blocked, optimize it. */
917 _p = get_optimized_kprobe((unsigned long)p->addr);
918 if (unlikely(_p) && reopt)
919 optimize_kprobe(_p);
920 }
921 /* TODO: reoptimize others after unoptimized this probe */
922}
923
924#else /* !CONFIG_OPTPROBES */
925
926#define optimize_kprobe(p) do {} while (0)
927#define unoptimize_kprobe(p, f) do {} while (0)
928#define kill_optimized_kprobe(p) do {} while (0)
929#define prepare_optimized_kprobe(p) do {} while (0)
930#define try_to_optimize_kprobe(p) do {} while (0)
931#define __arm_kprobe(p) arch_arm_kprobe(p)
932#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
933#define kprobe_disarmed(p) kprobe_disabled(p)
934#define wait_for_kprobe_optimizer() do {} while (0)
935
936/* There should be no unused kprobes can be reused without optimization */
937static void reuse_unused_kprobe(struct kprobe *ap)
938{
939 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
940 BUG_ON(kprobe_unused(ap));
941}
942
943static void free_aggr_kprobe(struct kprobe *p)
944{
945 arch_remove_kprobe(p);
946 kfree(p);
947}
948
949static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
950{
951 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
952}
953#endif /* CONFIG_OPTPROBES */
954
955#ifdef CONFIG_KPROBES_ON_FTRACE
956static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
957 .func = kprobe_ftrace_handler,
958 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
959};
960static int kprobe_ftrace_enabled;
961
962/* Must ensure p->addr is really on ftrace */
963static int prepare_kprobe(struct kprobe *p)
964{
965 if (!kprobe_ftrace(p))
966 return arch_prepare_kprobe(p);
967
968 return arch_prepare_kprobe_ftrace(p);
969}
970
971/* Caller must lock kprobe_mutex */
972static void arm_kprobe_ftrace(struct kprobe *p)
973{
974 int ret;
975
976 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
977 (unsigned long)p->addr, 0, 0);
978 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
979 kprobe_ftrace_enabled++;
980 if (kprobe_ftrace_enabled == 1) {
981 ret = register_ftrace_function(&kprobe_ftrace_ops);
982 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983 }
984}
985
986/* Caller must lock kprobe_mutex */
987static void disarm_kprobe_ftrace(struct kprobe *p)
988{
989 int ret;
990
991 kprobe_ftrace_enabled--;
992 if (kprobe_ftrace_enabled == 0) {
993 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
994 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
995 }
996 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997 (unsigned long)p->addr, 1, 0);
998 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
999}
1000#else /* !CONFIG_KPROBES_ON_FTRACE */
1001#define prepare_kprobe(p) arch_prepare_kprobe(p)
1002#define arm_kprobe_ftrace(p) do {} while (0)
1003#define disarm_kprobe_ftrace(p) do {} while (0)
1004#endif
1005
1006/* Arm a kprobe with text_mutex */
1007static void arm_kprobe(struct kprobe *kp)
1008{
1009 if (unlikely(kprobe_ftrace(kp))) {
1010 arm_kprobe_ftrace(kp);
1011 return;
1012 }
1013 /*
1014 * Here, since __arm_kprobe() doesn't use stop_machine(),
1015 * this doesn't cause deadlock on text_mutex. So, we don't
1016 * need get_online_cpus().
1017 */
1018 mutex_lock(&text_mutex);
1019 __arm_kprobe(kp);
1020 mutex_unlock(&text_mutex);
1021}
1022
1023/* Disarm a kprobe with text_mutex */
1024static void disarm_kprobe(struct kprobe *kp, bool reopt)
1025{
1026 if (unlikely(kprobe_ftrace(kp))) {
1027 disarm_kprobe_ftrace(kp);
1028 return;
1029 }
1030 /* Ditto */
1031 mutex_lock(&text_mutex);
1032 __disarm_kprobe(kp, reopt);
1033 mutex_unlock(&text_mutex);
1034}
1035
1036/*
1037 * Aggregate handlers for multiple kprobes support - these handlers
1038 * take care of invoking the individual kprobe handlers on p->list
1039 */
1040static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1041{
1042 struct kprobe *kp;
1043
1044 list_for_each_entry_rcu(kp, &p->list, list) {
1045 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1046 set_kprobe_instance(kp);
1047 if (kp->pre_handler(kp, regs))
1048 return 1;
1049 }
1050 reset_kprobe_instance();
1051 }
1052 return 0;
1053}
1054NOKPROBE_SYMBOL(aggr_pre_handler);
1055
1056static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1057 unsigned long flags)
1058{
1059 struct kprobe *kp;
1060
1061 list_for_each_entry_rcu(kp, &p->list, list) {
1062 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1063 set_kprobe_instance(kp);
1064 kp->post_handler(kp, regs, flags);
1065 reset_kprobe_instance();
1066 }
1067 }
1068}
1069NOKPROBE_SYMBOL(aggr_post_handler);
1070
1071static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1072 int trapnr)
1073{
1074 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1075
1076 /*
1077 * if we faulted "during" the execution of a user specified
1078 * probe handler, invoke just that probe's fault handler
1079 */
1080 if (cur && cur->fault_handler) {
1081 if (cur->fault_handler(cur, regs, trapnr))
1082 return 1;
1083 }
1084 return 0;
1085}
1086NOKPROBE_SYMBOL(aggr_fault_handler);
1087
1088static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1089{
1090 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1091 int ret = 0;
1092
1093 if (cur && cur->break_handler) {
1094 if (cur->break_handler(cur, regs))
1095 ret = 1;
1096 }
1097 reset_kprobe_instance();
1098 return ret;
1099}
1100NOKPROBE_SYMBOL(aggr_break_handler);
1101
1102/* Walks the list and increments nmissed count for multiprobe case */
1103void kprobes_inc_nmissed_count(struct kprobe *p)
1104{
1105 struct kprobe *kp;
1106 if (!kprobe_aggrprobe(p)) {
1107 p->nmissed++;
1108 } else {
1109 list_for_each_entry_rcu(kp, &p->list, list)
1110 kp->nmissed++;
1111 }
1112 return;
1113}
1114NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1115
1116void recycle_rp_inst(struct kretprobe_instance *ri,
1117 struct hlist_head *head)
1118{
1119 struct kretprobe *rp = ri->rp;
1120
1121 /* remove rp inst off the rprobe_inst_table */
1122 hlist_del(&ri->hlist);
1123 INIT_HLIST_NODE(&ri->hlist);
1124 if (likely(rp)) {
1125 raw_spin_lock(&rp->lock);
1126 hlist_add_head(&ri->hlist, &rp->free_instances);
1127 raw_spin_unlock(&rp->lock);
1128 } else
1129 /* Unregistering */
1130 hlist_add_head(&ri->hlist, head);
1131}
1132NOKPROBE_SYMBOL(recycle_rp_inst);
1133
1134void kretprobe_hash_lock(struct task_struct *tsk,
1135 struct hlist_head **head, unsigned long *flags)
1136__acquires(hlist_lock)
1137{
1138 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1139 raw_spinlock_t *hlist_lock;
1140
1141 *head = &kretprobe_inst_table[hash];
1142 hlist_lock = kretprobe_table_lock_ptr(hash);
1143 raw_spin_lock_irqsave(hlist_lock, *flags);
1144}
1145NOKPROBE_SYMBOL(kretprobe_hash_lock);
1146
1147static void kretprobe_table_lock(unsigned long hash,
1148 unsigned long *flags)
1149__acquires(hlist_lock)
1150{
1151 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152 raw_spin_lock_irqsave(hlist_lock, *flags);
1153}
1154NOKPROBE_SYMBOL(kretprobe_table_lock);
1155
1156void kretprobe_hash_unlock(struct task_struct *tsk,
1157 unsigned long *flags)
1158__releases(hlist_lock)
1159{
1160 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1161 raw_spinlock_t *hlist_lock;
1162
1163 hlist_lock = kretprobe_table_lock_ptr(hash);
1164 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1165}
1166NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1167
1168static void kretprobe_table_unlock(unsigned long hash,
1169 unsigned long *flags)
1170__releases(hlist_lock)
1171{
1172 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1173 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1174}
1175NOKPROBE_SYMBOL(kretprobe_table_unlock);
1176
1177/*
1178 * This function is called from finish_task_switch when task tk becomes dead,
1179 * so that we can recycle any function-return probe instances associated
1180 * with this task. These left over instances represent probed functions
1181 * that have been called but will never return.
1182 */
1183void kprobe_flush_task(struct task_struct *tk)
1184{
1185 struct kretprobe_instance *ri;
1186 struct hlist_head *head, empty_rp;
1187 struct hlist_node *tmp;
1188 unsigned long hash, flags = 0;
1189
1190 if (unlikely(!kprobes_initialized))
1191 /* Early boot. kretprobe_table_locks not yet initialized. */
1192 return;
1193
1194 INIT_HLIST_HEAD(&empty_rp);
1195 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1196 head = &kretprobe_inst_table[hash];
1197 kretprobe_table_lock(hash, &flags);
1198 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1199 if (ri->task == tk)
1200 recycle_rp_inst(ri, &empty_rp);
1201 }
1202 kretprobe_table_unlock(hash, &flags);
1203 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1204 hlist_del(&ri->hlist);
1205 kfree(ri);
1206 }
1207}
1208NOKPROBE_SYMBOL(kprobe_flush_task);
1209
1210static inline void free_rp_inst(struct kretprobe *rp)
1211{
1212 struct kretprobe_instance *ri;
1213 struct hlist_node *next;
1214
1215 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216 hlist_del(&ri->hlist);
1217 kfree(ri);
1218 }
1219}
1220
1221static void cleanup_rp_inst(struct kretprobe *rp)
1222{
1223 unsigned long flags, hash;
1224 struct kretprobe_instance *ri;
1225 struct hlist_node *next;
1226 struct hlist_head *head;
1227
1228 /* No race here */
1229 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230 kretprobe_table_lock(hash, &flags);
1231 head = &kretprobe_inst_table[hash];
1232 hlist_for_each_entry_safe(ri, next, head, hlist) {
1233 if (ri->rp == rp)
1234 ri->rp = NULL;
1235 }
1236 kretprobe_table_unlock(hash, &flags);
1237 }
1238 free_rp_inst(rp);
1239}
1240NOKPROBE_SYMBOL(cleanup_rp_inst);
1241
1242/*
1243* Add the new probe to ap->list. Fail if this is the
1244* second jprobe at the address - two jprobes can't coexist
1245*/
1246static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247{
1248 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249
1250 if (p->break_handler || p->post_handler)
1251 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1252
1253 if (p->break_handler) {
1254 if (ap->break_handler)
1255 return -EEXIST;
1256 list_add_tail_rcu(&p->list, &ap->list);
1257 ap->break_handler = aggr_break_handler;
1258 } else
1259 list_add_rcu(&p->list, &ap->list);
1260 if (p->post_handler && !ap->post_handler)
1261 ap->post_handler = aggr_post_handler;
1262
1263 return 0;
1264}
1265
1266/*
1267 * Fill in the required fields of the "manager kprobe". Replace the
1268 * earlier kprobe in the hlist with the manager kprobe
1269 */
1270static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271{
1272 /* Copy p's insn slot to ap */
1273 copy_kprobe(p, ap);
1274 flush_insn_slot(ap);
1275 ap->addr = p->addr;
1276 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277 ap->pre_handler = aggr_pre_handler;
1278 ap->fault_handler = aggr_fault_handler;
1279 /* We don't care the kprobe which has gone. */
1280 if (p->post_handler && !kprobe_gone(p))
1281 ap->post_handler = aggr_post_handler;
1282 if (p->break_handler && !kprobe_gone(p))
1283 ap->break_handler = aggr_break_handler;
1284
1285 INIT_LIST_HEAD(&ap->list);
1286 INIT_HLIST_NODE(&ap->hlist);
1287
1288 list_add_rcu(&p->list, &ap->list);
1289 hlist_replace_rcu(&p->hlist, &ap->hlist);
1290}
1291
1292/*
1293 * This is the second or subsequent kprobe at the address - handle
1294 * the intricacies
1295 */
1296static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297{
1298 int ret = 0;
1299 struct kprobe *ap = orig_p;
1300
1301 /* For preparing optimization, jump_label_text_reserved() is called */
1302 jump_label_lock();
1303 /*
1304 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306 */
1307 get_online_cpus();
1308 mutex_lock(&text_mutex);
1309
1310 if (!kprobe_aggrprobe(orig_p)) {
1311 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312 ap = alloc_aggr_kprobe(orig_p);
1313 if (!ap) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317 init_aggr_kprobe(ap, orig_p);
1318 } else if (kprobe_unused(ap))
1319 /* This probe is going to die. Rescue it */
1320 reuse_unused_kprobe(ap);
1321
1322 if (kprobe_gone(ap)) {
1323 /*
1324 * Attempting to insert new probe at the same location that
1325 * had a probe in the module vaddr area which already
1326 * freed. So, the instruction slot has already been
1327 * released. We need a new slot for the new probe.
1328 */
1329 ret = arch_prepare_kprobe(ap);
1330 if (ret)
1331 /*
1332 * Even if fail to allocate new slot, don't need to
1333 * free aggr_probe. It will be used next time, or
1334 * freed by unregister_kprobe.
1335 */
1336 goto out;
1337
1338 /* Prepare optimized instructions if possible. */
1339 prepare_optimized_kprobe(ap);
1340
1341 /*
1342 * Clear gone flag to prevent allocating new slot again, and
1343 * set disabled flag because it is not armed yet.
1344 */
1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346 | KPROBE_FLAG_DISABLED;
1347 }
1348
1349 /* Copy ap's insn slot to p */
1350 copy_kprobe(ap, p);
1351 ret = add_new_kprobe(ap, p);
1352
1353out:
1354 mutex_unlock(&text_mutex);
1355 put_online_cpus();
1356 jump_label_unlock();
1357
1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360 if (!kprobes_all_disarmed)
1361 /* Arm the breakpoint again. */
1362 arm_kprobe(ap);
1363 }
1364 return ret;
1365}
1366
1367bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1368{
1369 /* The __kprobes marked functions and entry code must not be probed */
1370 return addr >= (unsigned long)__kprobes_text_start &&
1371 addr < (unsigned long)__kprobes_text_end;
1372}
1373
1374bool within_kprobe_blacklist(unsigned long addr)
1375{
1376 struct kprobe_blacklist_entry *ent;
1377
1378 if (arch_within_kprobe_blacklist(addr))
1379 return true;
1380 /*
1381 * If there exists a kprobe_blacklist, verify and
1382 * fail any probe registration in the prohibited area
1383 */
1384 list_for_each_entry(ent, &kprobe_blacklist, list) {
1385 if (addr >= ent->start_addr && addr < ent->end_addr)
1386 return true;
1387 }
1388
1389 return false;
1390}
1391
1392/*
1393 * If we have a symbol_name argument, look it up and add the offset field
1394 * to it. This way, we can specify a relative address to a symbol.
1395 * This returns encoded errors if it fails to look up symbol or invalid
1396 * combination of parameters.
1397 */
1398static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1399 const char *symbol_name, unsigned int offset)
1400{
1401 if ((symbol_name && addr) || (!symbol_name && !addr))
1402 goto invalid;
1403
1404 if (symbol_name) {
1405 addr = kprobe_lookup_name(symbol_name, offset);
1406 if (!addr)
1407 return ERR_PTR(-ENOENT);
1408 }
1409
1410 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1411 if (addr)
1412 return addr;
1413
1414invalid:
1415 return ERR_PTR(-EINVAL);
1416}
1417
1418static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1419{
1420 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1421}
1422
1423/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1424static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425{
1426 struct kprobe *ap, *list_p;
1427
1428 ap = get_kprobe(p->addr);
1429 if (unlikely(!ap))
1430 return NULL;
1431
1432 if (p != ap) {
1433 list_for_each_entry_rcu(list_p, &ap->list, list)
1434 if (list_p == p)
1435 /* kprobe p is a valid probe */
1436 goto valid;
1437 return NULL;
1438 }
1439valid:
1440 return ap;
1441}
1442
1443/* Return error if the kprobe is being re-registered */
1444static inline int check_kprobe_rereg(struct kprobe *p)
1445{
1446 int ret = 0;
1447
1448 mutex_lock(&kprobe_mutex);
1449 if (__get_valid_kprobe(p))
1450 ret = -EINVAL;
1451 mutex_unlock(&kprobe_mutex);
1452
1453 return ret;
1454}
1455
1456int __weak arch_check_ftrace_location(struct kprobe *p)
1457{
1458 unsigned long ftrace_addr;
1459
1460 ftrace_addr = ftrace_location((unsigned long)p->addr);
1461 if (ftrace_addr) {
1462#ifdef CONFIG_KPROBES_ON_FTRACE
1463 /* Given address is not on the instruction boundary */
1464 if ((unsigned long)p->addr != ftrace_addr)
1465 return -EILSEQ;
1466 p->flags |= KPROBE_FLAG_FTRACE;
1467#else /* !CONFIG_KPROBES_ON_FTRACE */
1468 return -EINVAL;
1469#endif
1470 }
1471 return 0;
1472}
1473
1474static int check_kprobe_address_safe(struct kprobe *p,
1475 struct module **probed_mod)
1476{
1477 int ret;
1478
1479 ret = arch_check_ftrace_location(p);
1480 if (ret)
1481 return ret;
1482 jump_label_lock();
1483 preempt_disable();
1484
1485 /* Ensure it is not in reserved area nor out of text */
1486 if (!kernel_text_address((unsigned long) p->addr) ||
1487 within_kprobe_blacklist((unsigned long) p->addr) ||
1488 jump_label_text_reserved(p->addr, p->addr)) {
1489 ret = -EINVAL;
1490 goto out;
1491 }
1492
1493 /* Check if are we probing a module */
1494 *probed_mod = __module_text_address((unsigned long) p->addr);
1495 if (*probed_mod) {
1496 /*
1497 * We must hold a refcount of the probed module while updating
1498 * its code to prohibit unexpected unloading.
1499 */
1500 if (unlikely(!try_module_get(*probed_mod))) {
1501 ret = -ENOENT;
1502 goto out;
1503 }
1504
1505 /*
1506 * If the module freed .init.text, we couldn't insert
1507 * kprobes in there.
1508 */
1509 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1510 (*probed_mod)->state != MODULE_STATE_COMING) {
1511 module_put(*probed_mod);
1512 *probed_mod = NULL;
1513 ret = -ENOENT;
1514 }
1515 }
1516out:
1517 preempt_enable();
1518 jump_label_unlock();
1519
1520 return ret;
1521}
1522
1523int register_kprobe(struct kprobe *p)
1524{
1525 int ret;
1526 struct kprobe *old_p;
1527 struct module *probed_mod;
1528 kprobe_opcode_t *addr;
1529
1530 /* Adjust probe address from symbol */
1531 addr = kprobe_addr(p);
1532 if (IS_ERR(addr))
1533 return PTR_ERR(addr);
1534 p->addr = addr;
1535
1536 ret = check_kprobe_rereg(p);
1537 if (ret)
1538 return ret;
1539
1540 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1541 p->flags &= KPROBE_FLAG_DISABLED;
1542 p->nmissed = 0;
1543 INIT_LIST_HEAD(&p->list);
1544
1545 ret = check_kprobe_address_safe(p, &probed_mod);
1546 if (ret)
1547 return ret;
1548
1549 mutex_lock(&kprobe_mutex);
1550
1551 old_p = get_kprobe(p->addr);
1552 if (old_p) {
1553 /* Since this may unoptimize old_p, locking text_mutex. */
1554 ret = register_aggr_kprobe(old_p, p);
1555 goto out;
1556 }
1557
1558 mutex_lock(&text_mutex); /* Avoiding text modification */
1559 ret = prepare_kprobe(p);
1560 mutex_unlock(&text_mutex);
1561 if (ret)
1562 goto out;
1563
1564 INIT_HLIST_NODE(&p->hlist);
1565 hlist_add_head_rcu(&p->hlist,
1566 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1567
1568 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1569 arm_kprobe(p);
1570
1571 /* Try to optimize kprobe */
1572 try_to_optimize_kprobe(p);
1573
1574out:
1575 mutex_unlock(&kprobe_mutex);
1576
1577 if (probed_mod)
1578 module_put(probed_mod);
1579
1580 return ret;
1581}
1582EXPORT_SYMBOL_GPL(register_kprobe);
1583
1584/* Check if all probes on the aggrprobe are disabled */
1585static int aggr_kprobe_disabled(struct kprobe *ap)
1586{
1587 struct kprobe *kp;
1588
1589 list_for_each_entry_rcu(kp, &ap->list, list)
1590 if (!kprobe_disabled(kp))
1591 /*
1592 * There is an active probe on the list.
1593 * We can't disable this ap.
1594 */
1595 return 0;
1596
1597 return 1;
1598}
1599
1600/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1601static struct kprobe *__disable_kprobe(struct kprobe *p)
1602{
1603 struct kprobe *orig_p;
1604
1605 /* Get an original kprobe for return */
1606 orig_p = __get_valid_kprobe(p);
1607 if (unlikely(orig_p == NULL))
1608 return NULL;
1609
1610 if (!kprobe_disabled(p)) {
1611 /* Disable probe if it is a child probe */
1612 if (p != orig_p)
1613 p->flags |= KPROBE_FLAG_DISABLED;
1614
1615 /* Try to disarm and disable this/parent probe */
1616 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1617 /*
1618 * If kprobes_all_disarmed is set, orig_p
1619 * should have already been disarmed, so
1620 * skip unneed disarming process.
1621 */
1622 if (!kprobes_all_disarmed)
1623 disarm_kprobe(orig_p, true);
1624 orig_p->flags |= KPROBE_FLAG_DISABLED;
1625 }
1626 }
1627
1628 return orig_p;
1629}
1630
1631/*
1632 * Unregister a kprobe without a scheduler synchronization.
1633 */
1634static int __unregister_kprobe_top(struct kprobe *p)
1635{
1636 struct kprobe *ap, *list_p;
1637
1638 /* Disable kprobe. This will disarm it if needed. */
1639 ap = __disable_kprobe(p);
1640 if (ap == NULL)
1641 return -EINVAL;
1642
1643 if (ap == p)
1644 /*
1645 * This probe is an independent(and non-optimized) kprobe
1646 * (not an aggrprobe). Remove from the hash list.
1647 */
1648 goto disarmed;
1649
1650 /* Following process expects this probe is an aggrprobe */
1651 WARN_ON(!kprobe_aggrprobe(ap));
1652
1653 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1654 /*
1655 * !disarmed could be happen if the probe is under delayed
1656 * unoptimizing.
1657 */
1658 goto disarmed;
1659 else {
1660 /* If disabling probe has special handlers, update aggrprobe */
1661 if (p->break_handler && !kprobe_gone(p))
1662 ap->break_handler = NULL;
1663 if (p->post_handler && !kprobe_gone(p)) {
1664 list_for_each_entry_rcu(list_p, &ap->list, list) {
1665 if ((list_p != p) && (list_p->post_handler))
1666 goto noclean;
1667 }
1668 ap->post_handler = NULL;
1669 }
1670noclean:
1671 /*
1672 * Remove from the aggrprobe: this path will do nothing in
1673 * __unregister_kprobe_bottom().
1674 */
1675 list_del_rcu(&p->list);
1676 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1677 /*
1678 * Try to optimize this probe again, because post
1679 * handler may have been changed.
1680 */
1681 optimize_kprobe(ap);
1682 }
1683 return 0;
1684
1685disarmed:
1686 BUG_ON(!kprobe_disarmed(ap));
1687 hlist_del_rcu(&ap->hlist);
1688 return 0;
1689}
1690
1691static void __unregister_kprobe_bottom(struct kprobe *p)
1692{
1693 struct kprobe *ap;
1694
1695 if (list_empty(&p->list))
1696 /* This is an independent kprobe */
1697 arch_remove_kprobe(p);
1698 else if (list_is_singular(&p->list)) {
1699 /* This is the last child of an aggrprobe */
1700 ap = list_entry(p->list.next, struct kprobe, list);
1701 list_del(&p->list);
1702 free_aggr_kprobe(ap);
1703 }
1704 /* Otherwise, do nothing. */
1705}
1706
1707int register_kprobes(struct kprobe **kps, int num)
1708{
1709 int i, ret = 0;
1710
1711 if (num <= 0)
1712 return -EINVAL;
1713 for (i = 0; i < num; i++) {
1714 ret = register_kprobe(kps[i]);
1715 if (ret < 0) {
1716 if (i > 0)
1717 unregister_kprobes(kps, i);
1718 break;
1719 }
1720 }
1721 return ret;
1722}
1723EXPORT_SYMBOL_GPL(register_kprobes);
1724
1725void unregister_kprobe(struct kprobe *p)
1726{
1727 unregister_kprobes(&p, 1);
1728}
1729EXPORT_SYMBOL_GPL(unregister_kprobe);
1730
1731void unregister_kprobes(struct kprobe **kps, int num)
1732{
1733 int i;
1734
1735 if (num <= 0)
1736 return;
1737 mutex_lock(&kprobe_mutex);
1738 for (i = 0; i < num; i++)
1739 if (__unregister_kprobe_top(kps[i]) < 0)
1740 kps[i]->addr = NULL;
1741 mutex_unlock(&kprobe_mutex);
1742
1743 synchronize_sched();
1744 for (i = 0; i < num; i++)
1745 if (kps[i]->addr)
1746 __unregister_kprobe_bottom(kps[i]);
1747}
1748EXPORT_SYMBOL_GPL(unregister_kprobes);
1749
1750int __weak kprobe_exceptions_notify(struct notifier_block *self,
1751 unsigned long val, void *data)
1752{
1753 return NOTIFY_DONE;
1754}
1755NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1756
1757static struct notifier_block kprobe_exceptions_nb = {
1758 .notifier_call = kprobe_exceptions_notify,
1759 .priority = 0x7fffffff /* we need to be notified first */
1760};
1761
1762unsigned long __weak arch_deref_entry_point(void *entry)
1763{
1764 return (unsigned long)entry;
1765}
1766
1767int register_jprobes(struct jprobe **jps, int num)
1768{
1769 struct jprobe *jp;
1770 int ret = 0, i;
1771
1772 if (num <= 0)
1773 return -EINVAL;
1774 for (i = 0; i < num; i++) {
1775 unsigned long addr, offset;
1776 jp = jps[i];
1777 addr = arch_deref_entry_point(jp->entry);
1778
1779 /* Verify probepoint is a function entry point */
1780 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1781 offset == 0) {
1782 jp->kp.pre_handler = setjmp_pre_handler;
1783 jp->kp.break_handler = longjmp_break_handler;
1784 ret = register_kprobe(&jp->kp);
1785 } else
1786 ret = -EINVAL;
1787
1788 if (ret < 0) {
1789 if (i > 0)
1790 unregister_jprobes(jps, i);
1791 break;
1792 }
1793 }
1794 return ret;
1795}
1796EXPORT_SYMBOL_GPL(register_jprobes);
1797
1798int register_jprobe(struct jprobe *jp)
1799{
1800 return register_jprobes(&jp, 1);
1801}
1802EXPORT_SYMBOL_GPL(register_jprobe);
1803
1804void unregister_jprobe(struct jprobe *jp)
1805{
1806 unregister_jprobes(&jp, 1);
1807}
1808EXPORT_SYMBOL_GPL(unregister_jprobe);
1809
1810void unregister_jprobes(struct jprobe **jps, int num)
1811{
1812 int i;
1813
1814 if (num <= 0)
1815 return;
1816 mutex_lock(&kprobe_mutex);
1817 for (i = 0; i < num; i++)
1818 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1819 jps[i]->kp.addr = NULL;
1820 mutex_unlock(&kprobe_mutex);
1821
1822 synchronize_sched();
1823 for (i = 0; i < num; i++) {
1824 if (jps[i]->kp.addr)
1825 __unregister_kprobe_bottom(&jps[i]->kp);
1826 }
1827}
1828EXPORT_SYMBOL_GPL(unregister_jprobes);
1829
1830#ifdef CONFIG_KRETPROBES
1831/*
1832 * This kprobe pre_handler is registered with every kretprobe. When probe
1833 * hits it will set up the return probe.
1834 */
1835static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1836{
1837 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1838 unsigned long hash, flags = 0;
1839 struct kretprobe_instance *ri;
1840
1841 /*
1842 * To avoid deadlocks, prohibit return probing in NMI contexts,
1843 * just skip the probe and increase the (inexact) 'nmissed'
1844 * statistical counter, so that the user is informed that
1845 * something happened:
1846 */
1847 if (unlikely(in_nmi())) {
1848 rp->nmissed++;
1849 return 0;
1850 }
1851
1852 /* TODO: consider to only swap the RA after the last pre_handler fired */
1853 hash = hash_ptr(current, KPROBE_HASH_BITS);
1854 raw_spin_lock_irqsave(&rp->lock, flags);
1855 if (!hlist_empty(&rp->free_instances)) {
1856 ri = hlist_entry(rp->free_instances.first,
1857 struct kretprobe_instance, hlist);
1858 hlist_del(&ri->hlist);
1859 raw_spin_unlock_irqrestore(&rp->lock, flags);
1860
1861 ri->rp = rp;
1862 ri->task = current;
1863
1864 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1865 raw_spin_lock_irqsave(&rp->lock, flags);
1866 hlist_add_head(&ri->hlist, &rp->free_instances);
1867 raw_spin_unlock_irqrestore(&rp->lock, flags);
1868 return 0;
1869 }
1870
1871 arch_prepare_kretprobe(ri, regs);
1872
1873 /* XXX(hch): why is there no hlist_move_head? */
1874 INIT_HLIST_NODE(&ri->hlist);
1875 kretprobe_table_lock(hash, &flags);
1876 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1877 kretprobe_table_unlock(hash, &flags);
1878 } else {
1879 rp->nmissed++;
1880 raw_spin_unlock_irqrestore(&rp->lock, flags);
1881 }
1882 return 0;
1883}
1884NOKPROBE_SYMBOL(pre_handler_kretprobe);
1885
1886bool __weak arch_function_offset_within_entry(unsigned long offset)
1887{
1888 return !offset;
1889}
1890
1891bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1892{
1893 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1894
1895 if (IS_ERR(kp_addr))
1896 return false;
1897
1898 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1899 !arch_function_offset_within_entry(offset))
1900 return false;
1901
1902 return true;
1903}
1904
1905int register_kretprobe(struct kretprobe *rp)
1906{
1907 int ret = 0;
1908 struct kretprobe_instance *inst;
1909 int i;
1910 void *addr;
1911
1912 if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1913 return -EINVAL;
1914
1915 if (kretprobe_blacklist_size) {
1916 addr = kprobe_addr(&rp->kp);
1917 if (IS_ERR(addr))
1918 return PTR_ERR(addr);
1919
1920 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1921 if (kretprobe_blacklist[i].addr == addr)
1922 return -EINVAL;
1923 }
1924 }
1925
1926 rp->kp.pre_handler = pre_handler_kretprobe;
1927 rp->kp.post_handler = NULL;
1928 rp->kp.fault_handler = NULL;
1929 rp->kp.break_handler = NULL;
1930
1931 /* Pre-allocate memory for max kretprobe instances */
1932 if (rp->maxactive <= 0) {
1933#ifdef CONFIG_PREEMPT
1934 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1935#else
1936 rp->maxactive = num_possible_cpus();
1937#endif
1938 }
1939 raw_spin_lock_init(&rp->lock);
1940 INIT_HLIST_HEAD(&rp->free_instances);
1941 for (i = 0; i < rp->maxactive; i++) {
1942 inst = kmalloc(sizeof(struct kretprobe_instance) +
1943 rp->data_size, GFP_KERNEL);
1944 if (inst == NULL) {
1945 free_rp_inst(rp);
1946 return -ENOMEM;
1947 }
1948 INIT_HLIST_NODE(&inst->hlist);
1949 hlist_add_head(&inst->hlist, &rp->free_instances);
1950 }
1951
1952 rp->nmissed = 0;
1953 /* Establish function entry probe point */
1954 ret = register_kprobe(&rp->kp);
1955 if (ret != 0)
1956 free_rp_inst(rp);
1957 return ret;
1958}
1959EXPORT_SYMBOL_GPL(register_kretprobe);
1960
1961int register_kretprobes(struct kretprobe **rps, int num)
1962{
1963 int ret = 0, i;
1964
1965 if (num <= 0)
1966 return -EINVAL;
1967 for (i = 0; i < num; i++) {
1968 ret = register_kretprobe(rps[i]);
1969 if (ret < 0) {
1970 if (i > 0)
1971 unregister_kretprobes(rps, i);
1972 break;
1973 }
1974 }
1975 return ret;
1976}
1977EXPORT_SYMBOL_GPL(register_kretprobes);
1978
1979void unregister_kretprobe(struct kretprobe *rp)
1980{
1981 unregister_kretprobes(&rp, 1);
1982}
1983EXPORT_SYMBOL_GPL(unregister_kretprobe);
1984
1985void unregister_kretprobes(struct kretprobe **rps, int num)
1986{
1987 int i;
1988
1989 if (num <= 0)
1990 return;
1991 mutex_lock(&kprobe_mutex);
1992 for (i = 0; i < num; i++)
1993 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1994 rps[i]->kp.addr = NULL;
1995 mutex_unlock(&kprobe_mutex);
1996
1997 synchronize_sched();
1998 for (i = 0; i < num; i++) {
1999 if (rps[i]->kp.addr) {
2000 __unregister_kprobe_bottom(&rps[i]->kp);
2001 cleanup_rp_inst(rps[i]);
2002 }
2003 }
2004}
2005EXPORT_SYMBOL_GPL(unregister_kretprobes);
2006
2007#else /* CONFIG_KRETPROBES */
2008int register_kretprobe(struct kretprobe *rp)
2009{
2010 return -ENOSYS;
2011}
2012EXPORT_SYMBOL_GPL(register_kretprobe);
2013
2014int register_kretprobes(struct kretprobe **rps, int num)
2015{
2016 return -ENOSYS;
2017}
2018EXPORT_SYMBOL_GPL(register_kretprobes);
2019
2020void unregister_kretprobe(struct kretprobe *rp)
2021{
2022}
2023EXPORT_SYMBOL_GPL(unregister_kretprobe);
2024
2025void unregister_kretprobes(struct kretprobe **rps, int num)
2026{
2027}
2028EXPORT_SYMBOL_GPL(unregister_kretprobes);
2029
2030static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2031{
2032 return 0;
2033}
2034NOKPROBE_SYMBOL(pre_handler_kretprobe);
2035
2036#endif /* CONFIG_KRETPROBES */
2037
2038/* Set the kprobe gone and remove its instruction buffer. */
2039static void kill_kprobe(struct kprobe *p)
2040{
2041 struct kprobe *kp;
2042
2043 p->flags |= KPROBE_FLAG_GONE;
2044 if (kprobe_aggrprobe(p)) {
2045 /*
2046 * If this is an aggr_kprobe, we have to list all the
2047 * chained probes and mark them GONE.
2048 */
2049 list_for_each_entry_rcu(kp, &p->list, list)
2050 kp->flags |= KPROBE_FLAG_GONE;
2051 p->post_handler = NULL;
2052 p->break_handler = NULL;
2053 kill_optimized_kprobe(p);
2054 }
2055 /*
2056 * Here, we can remove insn_slot safely, because no thread calls
2057 * the original probed function (which will be freed soon) any more.
2058 */
2059 arch_remove_kprobe(p);
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065 int ret = 0;
2066
2067 mutex_lock(&kprobe_mutex);
2068
2069 /* Disable this kprobe */
2070 if (__disable_kprobe(kp) == NULL)
2071 ret = -EINVAL;
2072
2073 mutex_unlock(&kprobe_mutex);
2074 return ret;
2075}
2076EXPORT_SYMBOL_GPL(disable_kprobe);
2077
2078/* Enable one kprobe */
2079int enable_kprobe(struct kprobe *kp)
2080{
2081 int ret = 0;
2082 struct kprobe *p;
2083
2084 mutex_lock(&kprobe_mutex);
2085
2086 /* Check whether specified probe is valid. */
2087 p = __get_valid_kprobe(kp);
2088 if (unlikely(p == NULL)) {
2089 ret = -EINVAL;
2090 goto out;
2091 }
2092
2093 if (kprobe_gone(kp)) {
2094 /* This kprobe has gone, we couldn't enable it. */
2095 ret = -EINVAL;
2096 goto out;
2097 }
2098
2099 if (p != kp)
2100 kp->flags &= ~KPROBE_FLAG_DISABLED;
2101
2102 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2103 p->flags &= ~KPROBE_FLAG_DISABLED;
2104 arm_kprobe(p);
2105 }
2106out:
2107 mutex_unlock(&kprobe_mutex);
2108 return ret;
2109}
2110EXPORT_SYMBOL_GPL(enable_kprobe);
2111
2112void dump_kprobe(struct kprobe *kp)
2113{
2114 printk(KERN_WARNING "Dumping kprobe:\n");
2115 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2116 kp->symbol_name, kp->addr, kp->offset);
2117}
2118NOKPROBE_SYMBOL(dump_kprobe);
2119
2120/*
2121 * Lookup and populate the kprobe_blacklist.
2122 *
2123 * Unlike the kretprobe blacklist, we'll need to determine
2124 * the range of addresses that belong to the said functions,
2125 * since a kprobe need not necessarily be at the beginning
2126 * of a function.
2127 */
2128static int __init populate_kprobe_blacklist(unsigned long *start,
2129 unsigned long *end)
2130{
2131 unsigned long *iter;
2132 struct kprobe_blacklist_entry *ent;
2133 unsigned long entry, offset = 0, size = 0;
2134
2135 for (iter = start; iter < end; iter++) {
2136 entry = arch_deref_entry_point((void *)*iter);
2137
2138 if (!kernel_text_address(entry) ||
2139 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2140 pr_err("Failed to find blacklist at %p\n",
2141 (void *)entry);
2142 continue;
2143 }
2144
2145 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2146 if (!ent)
2147 return -ENOMEM;
2148 ent->start_addr = entry;
2149 ent->end_addr = entry + size;
2150 INIT_LIST_HEAD(&ent->list);
2151 list_add_tail(&ent->list, &kprobe_blacklist);
2152 }
2153 return 0;
2154}
2155
2156/* Module notifier call back, checking kprobes on the module */
2157static int kprobes_module_callback(struct notifier_block *nb,
2158 unsigned long val, void *data)
2159{
2160 struct module *mod = data;
2161 struct hlist_head *head;
2162 struct kprobe *p;
2163 unsigned int i;
2164 int checkcore = (val == MODULE_STATE_GOING);
2165
2166 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2167 return NOTIFY_DONE;
2168
2169 /*
2170 * When MODULE_STATE_GOING was notified, both of module .text and
2171 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2172 * notified, only .init.text section would be freed. We need to
2173 * disable kprobes which have been inserted in the sections.
2174 */
2175 mutex_lock(&kprobe_mutex);
2176 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2177 head = &kprobe_table[i];
2178 hlist_for_each_entry_rcu(p, head, hlist)
2179 if (within_module_init((unsigned long)p->addr, mod) ||
2180 (checkcore &&
2181 within_module_core((unsigned long)p->addr, mod))) {
2182 /*
2183 * The vaddr this probe is installed will soon
2184 * be vfreed buy not synced to disk. Hence,
2185 * disarming the breakpoint isn't needed.
2186 */
2187 kill_kprobe(p);
2188 }
2189 }
2190 mutex_unlock(&kprobe_mutex);
2191 return NOTIFY_DONE;
2192}
2193
2194static struct notifier_block kprobe_module_nb = {
2195 .notifier_call = kprobes_module_callback,
2196 .priority = 0
2197};
2198
2199/* Markers of _kprobe_blacklist section */
2200extern unsigned long __start_kprobe_blacklist[];
2201extern unsigned long __stop_kprobe_blacklist[];
2202
2203static int __init init_kprobes(void)
2204{
2205 int i, err = 0;
2206
2207 /* FIXME allocate the probe table, currently defined statically */
2208 /* initialize all list heads */
2209 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2210 INIT_HLIST_HEAD(&kprobe_table[i]);
2211 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2212 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2213 }
2214
2215 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2216 __stop_kprobe_blacklist);
2217 if (err) {
2218 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2219 pr_err("Please take care of using kprobes.\n");
2220 }
2221
2222 if (kretprobe_blacklist_size) {
2223 /* lookup the function address from its name */
2224 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2225 kretprobe_blacklist[i].addr =
2226 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2227 if (!kretprobe_blacklist[i].addr)
2228 printk("kretprobe: lookup failed: %s\n",
2229 kretprobe_blacklist[i].name);
2230 }
2231 }
2232
2233#if defined(CONFIG_OPTPROBES)
2234#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2235 /* Init kprobe_optinsn_slots */
2236 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2237#endif
2238 /* By default, kprobes can be optimized */
2239 kprobes_allow_optimization = true;
2240#endif
2241
2242 /* By default, kprobes are armed */
2243 kprobes_all_disarmed = false;
2244
2245 err = arch_init_kprobes();
2246 if (!err)
2247 err = register_die_notifier(&kprobe_exceptions_nb);
2248 if (!err)
2249 err = register_module_notifier(&kprobe_module_nb);
2250
2251 kprobes_initialized = (err == 0);
2252
2253 if (!err)
2254 init_test_probes();
2255 return err;
2256}
2257
2258#ifdef CONFIG_DEBUG_FS
2259static void report_probe(struct seq_file *pi, struct kprobe *p,
2260 const char *sym, int offset, char *modname, struct kprobe *pp)
2261{
2262 char *kprobe_type;
2263
2264 if (p->pre_handler == pre_handler_kretprobe)
2265 kprobe_type = "r";
2266 else if (p->pre_handler == setjmp_pre_handler)
2267 kprobe_type = "j";
2268 else
2269 kprobe_type = "k";
2270
2271 if (sym)
2272 seq_printf(pi, "%p %s %s+0x%x %s ",
2273 p->addr, kprobe_type, sym, offset,
2274 (modname ? modname : " "));
2275 else
2276 seq_printf(pi, "%p %s %p ",
2277 p->addr, kprobe_type, p->addr);
2278
2279 if (!pp)
2280 pp = p;
2281 seq_printf(pi, "%s%s%s%s\n",
2282 (kprobe_gone(p) ? "[GONE]" : ""),
2283 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2284 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2285 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2286}
2287
2288static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2289{
2290 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2291}
2292
2293static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2294{
2295 (*pos)++;
2296 if (*pos >= KPROBE_TABLE_SIZE)
2297 return NULL;
2298 return pos;
2299}
2300
2301static void kprobe_seq_stop(struct seq_file *f, void *v)
2302{
2303 /* Nothing to do */
2304}
2305
2306static int show_kprobe_addr(struct seq_file *pi, void *v)
2307{
2308 struct hlist_head *head;
2309 struct kprobe *p, *kp;
2310 const char *sym = NULL;
2311 unsigned int i = *(loff_t *) v;
2312 unsigned long offset = 0;
2313 char *modname, namebuf[KSYM_NAME_LEN];
2314
2315 head = &kprobe_table[i];
2316 preempt_disable();
2317 hlist_for_each_entry_rcu(p, head, hlist) {
2318 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2319 &offset, &modname, namebuf);
2320 if (kprobe_aggrprobe(p)) {
2321 list_for_each_entry_rcu(kp, &p->list, list)
2322 report_probe(pi, kp, sym, offset, modname, p);
2323 } else
2324 report_probe(pi, p, sym, offset, modname, NULL);
2325 }
2326 preempt_enable();
2327 return 0;
2328}
2329
2330static const struct seq_operations kprobes_seq_ops = {
2331 .start = kprobe_seq_start,
2332 .next = kprobe_seq_next,
2333 .stop = kprobe_seq_stop,
2334 .show = show_kprobe_addr
2335};
2336
2337static int kprobes_open(struct inode *inode, struct file *filp)
2338{
2339 return seq_open(filp, &kprobes_seq_ops);
2340}
2341
2342static const struct file_operations debugfs_kprobes_operations = {
2343 .open = kprobes_open,
2344 .read = seq_read,
2345 .llseek = seq_lseek,
2346 .release = seq_release,
2347};
2348
2349/* kprobes/blacklist -- shows which functions can not be probed */
2350static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2351{
2352 return seq_list_start(&kprobe_blacklist, *pos);
2353}
2354
2355static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2356{
2357 return seq_list_next(v, &kprobe_blacklist, pos);
2358}
2359
2360static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2361{
2362 struct kprobe_blacklist_entry *ent =
2363 list_entry(v, struct kprobe_blacklist_entry, list);
2364
2365 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2366 (void *)ent->end_addr, (void *)ent->start_addr);
2367 return 0;
2368}
2369
2370static const struct seq_operations kprobe_blacklist_seq_ops = {
2371 .start = kprobe_blacklist_seq_start,
2372 .next = kprobe_blacklist_seq_next,
2373 .stop = kprobe_seq_stop, /* Reuse void function */
2374 .show = kprobe_blacklist_seq_show,
2375};
2376
2377static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2378{
2379 return seq_open(filp, &kprobe_blacklist_seq_ops);
2380}
2381
2382static const struct file_operations debugfs_kprobe_blacklist_ops = {
2383 .open = kprobe_blacklist_open,
2384 .read = seq_read,
2385 .llseek = seq_lseek,
2386 .release = seq_release,
2387};
2388
2389static void arm_all_kprobes(void)
2390{
2391 struct hlist_head *head;
2392 struct kprobe *p;
2393 unsigned int i;
2394
2395 mutex_lock(&kprobe_mutex);
2396
2397 /* If kprobes are armed, just return */
2398 if (!kprobes_all_disarmed)
2399 goto already_enabled;
2400
2401 /*
2402 * optimize_kprobe() called by arm_kprobe() checks
2403 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2404 * arm_kprobe.
2405 */
2406 kprobes_all_disarmed = false;
2407 /* Arming kprobes doesn't optimize kprobe itself */
2408 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2409 head = &kprobe_table[i];
2410 hlist_for_each_entry_rcu(p, head, hlist)
2411 if (!kprobe_disabled(p))
2412 arm_kprobe(p);
2413 }
2414
2415 printk(KERN_INFO "Kprobes globally enabled\n");
2416
2417already_enabled:
2418 mutex_unlock(&kprobe_mutex);
2419 return;
2420}
2421
2422static void disarm_all_kprobes(void)
2423{
2424 struct hlist_head *head;
2425 struct kprobe *p;
2426 unsigned int i;
2427
2428 mutex_lock(&kprobe_mutex);
2429
2430 /* If kprobes are already disarmed, just return */
2431 if (kprobes_all_disarmed) {
2432 mutex_unlock(&kprobe_mutex);
2433 return;
2434 }
2435
2436 kprobes_all_disarmed = true;
2437 printk(KERN_INFO "Kprobes globally disabled\n");
2438
2439 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2440 head = &kprobe_table[i];
2441 hlist_for_each_entry_rcu(p, head, hlist) {
2442 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2443 disarm_kprobe(p, false);
2444 }
2445 }
2446 mutex_unlock(&kprobe_mutex);
2447
2448 /* Wait for disarming all kprobes by optimizer */
2449 wait_for_kprobe_optimizer();
2450}
2451
2452/*
2453 * XXX: The debugfs bool file interface doesn't allow for callbacks
2454 * when the bool state is switched. We can reuse that facility when
2455 * available
2456 */
2457static ssize_t read_enabled_file_bool(struct file *file,
2458 char __user *user_buf, size_t count, loff_t *ppos)
2459{
2460 char buf[3];
2461
2462 if (!kprobes_all_disarmed)
2463 buf[0] = '1';
2464 else
2465 buf[0] = '0';
2466 buf[1] = '\n';
2467 buf[2] = 0x00;
2468 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2469}
2470
2471static ssize_t write_enabled_file_bool(struct file *file,
2472 const char __user *user_buf, size_t count, loff_t *ppos)
2473{
2474 char buf[32];
2475 size_t buf_size;
2476
2477 buf_size = min(count, (sizeof(buf)-1));
2478 if (copy_from_user(buf, user_buf, buf_size))
2479 return -EFAULT;
2480
2481 buf[buf_size] = '\0';
2482 switch (buf[0]) {
2483 case 'y':
2484 case 'Y':
2485 case '1':
2486 arm_all_kprobes();
2487 break;
2488 case 'n':
2489 case 'N':
2490 case '0':
2491 disarm_all_kprobes();
2492 break;
2493 default:
2494 return -EINVAL;
2495 }
2496
2497 return count;
2498}
2499
2500static const struct file_operations fops_kp = {
2501 .read = read_enabled_file_bool,
2502 .write = write_enabled_file_bool,
2503 .llseek = default_llseek,
2504};
2505
2506static int __init debugfs_kprobe_init(void)
2507{
2508 struct dentry *dir, *file;
2509 unsigned int value = 1;
2510
2511 dir = debugfs_create_dir("kprobes", NULL);
2512 if (!dir)
2513 return -ENOMEM;
2514
2515 file = debugfs_create_file("list", 0444, dir, NULL,
2516 &debugfs_kprobes_operations);
2517 if (!file)
2518 goto error;
2519
2520 file = debugfs_create_file("enabled", 0600, dir,
2521 &value, &fops_kp);
2522 if (!file)
2523 goto error;
2524
2525 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2526 &debugfs_kprobe_blacklist_ops);
2527 if (!file)
2528 goto error;
2529
2530 return 0;
2531
2532error:
2533 debugfs_remove(dir);
2534 return -ENOMEM;
2535}
2536
2537late_initcall(debugfs_kprobe_init);
2538#endif /* CONFIG_DEBUG_FS */
2539
2540module_init(init_kprobes);
2541
2542/* defined in arch/.../kernel/kprobes.c */
2543EXPORT_SYMBOL_GPL(jprobe_return);