mm: clean up mm_counter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53
54#include <asm/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/pgtable.h>
57#include <asm/mmu_context.h>
58#include "cred-internals.h"
59
60static void exit_mm(struct task_struct * tsk);
61
62static void __unhash_process(struct task_struct *p)
63{
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75}
76
77/*
78 * This function expects the tasklist_lock write-locked.
79 */
80static void __exit_signal(struct task_struct *tsk)
81{
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference_check(tsk->sighand,
89 rcu_read_lock_held() ||
90 lockdep_is_held(&tasklist_lock));
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (atomic_dec_and_test(&sig->count))
95 posix_cpu_timers_exit_group(tsk);
96 else {
97 /*
98 * If there is any task waiting for the group exit
99 * then notify it:
100 */
101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 wake_up_process(sig->group_exit_task);
103
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
106 /*
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
115 */
116 sig->utime = cputime_add(sig->utime, tsk->utime);
117 sig->stime = cputime_add(sig->stime, tsk->stime);
118 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 sig = NULL; /* Marker for below. */
128 }
129
130 __unhash_process(tsk);
131
132 /*
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 */
136 flush_sigqueue(&tsk->pending);
137
138 tsk->signal = NULL;
139 tsk->sighand = NULL;
140 spin_unlock(&sighand->siglock);
141
142 __cleanup_sighand(sighand);
143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 if (sig) {
145 flush_sigqueue(&sig->shared_pending);
146 taskstats_tgid_free(sig);
147 /*
148 * Make sure ->signal can't go away under rq->lock,
149 * see account_group_exec_runtime().
150 */
151 task_rq_unlock_wait(tsk);
152 __cleanup_signal(sig);
153 }
154}
155
156static void delayed_put_task_struct(struct rcu_head *rhp)
157{
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160#ifdef CONFIG_PERF_EVENTS
161 WARN_ON_ONCE(tsk->perf_event_ctxp);
162#endif
163 trace_sched_process_free(tsk);
164 put_task_struct(tsk);
165}
166
167
168void release_task(struct task_struct * p)
169{
170 struct task_struct *leader;
171 int zap_leader;
172repeat:
173 tracehook_prepare_release_task(p);
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
179
180 proc_flush_task(p);
181
182 write_lock_irq(&tasklist_lock);
183 tracehook_finish_release_task(p);
184 __exit_signal(p);
185
186 /*
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
190 */
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
194 BUG_ON(task_detached(leader));
195 do_notify_parent(leader, leader->exit_signal);
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 *
201 * do_notify_parent() will have marked it self-reaping in
202 * that case.
203 */
204 zap_leader = task_detached(leader);
205
206 /*
207 * This maintains the invariant that release_task()
208 * only runs on a task in EXIT_DEAD, just for sanity.
209 */
210 if (zap_leader)
211 leader->exit_state = EXIT_DEAD;
212 }
213
214 write_unlock_irq(&tasklist_lock);
215 release_thread(p);
216 call_rcu(&p->rcu, delayed_put_task_struct);
217
218 p = leader;
219 if (unlikely(zap_leader))
220 goto repeat;
221}
222
223/*
224 * This checks not only the pgrp, but falls back on the pid if no
225 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
226 * without this...
227 *
228 * The caller must hold rcu lock or the tasklist lock.
229 */
230struct pid *session_of_pgrp(struct pid *pgrp)
231{
232 struct task_struct *p;
233 struct pid *sid = NULL;
234
235 p = pid_task(pgrp, PIDTYPE_PGID);
236 if (p == NULL)
237 p = pid_task(pgrp, PIDTYPE_PID);
238 if (p != NULL)
239 sid = task_session(p);
240
241 return sid;
242}
243
244/*
245 * Determine if a process group is "orphaned", according to the POSIX
246 * definition in 2.2.2.52. Orphaned process groups are not to be affected
247 * by terminal-generated stop signals. Newly orphaned process groups are
248 * to receive a SIGHUP and a SIGCONT.
249 *
250 * "I ask you, have you ever known what it is to be an orphan?"
251 */
252static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253{
254 struct task_struct *p;
255
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if ((p == ignored_task) ||
258 (p->exit_state && thread_group_empty(p)) ||
259 is_global_init(p->real_parent))
260 continue;
261
262 if (task_pgrp(p->real_parent) != pgrp &&
263 task_session(p->real_parent) == task_session(p))
264 return 0;
265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266
267 return 1;
268}
269
270int is_current_pgrp_orphaned(void)
271{
272 int retval;
273
274 read_lock(&tasklist_lock);
275 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
276 read_unlock(&tasklist_lock);
277
278 return retval;
279}
280
281static int has_stopped_jobs(struct pid *pgrp)
282{
283 int retval = 0;
284 struct task_struct *p;
285
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (!task_is_stopped(p))
288 continue;
289 retval = 1;
290 break;
291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
292 return retval;
293}
294
295/*
296 * Check to see if any process groups have become orphaned as
297 * a result of our exiting, and if they have any stopped jobs,
298 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 */
300static void
301kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302{
303 struct pid *pgrp = task_pgrp(tsk);
304 struct task_struct *ignored_task = tsk;
305
306 if (!parent)
307 /* exit: our father is in a different pgrp than
308 * we are and we were the only connection outside.
309 */
310 parent = tsk->real_parent;
311 else
312 /* reparent: our child is in a different pgrp than
313 * we are, and it was the only connection outside.
314 */
315 ignored_task = NULL;
316
317 if (task_pgrp(parent) != pgrp &&
318 task_session(parent) == task_session(tsk) &&
319 will_become_orphaned_pgrp(pgrp, ignored_task) &&
320 has_stopped_jobs(pgrp)) {
321 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
322 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
323 }
324}
325
326/**
327 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 *
329 * If a kernel thread is launched as a result of a system call, or if
330 * it ever exits, it should generally reparent itself to kthreadd so it
331 * isn't in the way of other processes and is correctly cleaned up on exit.
332 *
333 * The various task state such as scheduling policy and priority may have
334 * been inherited from a user process, so we reset them to sane values here.
335 *
336 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 */
338static void reparent_to_kthreadd(void)
339{
340 write_lock_irq(&tasklist_lock);
341
342 ptrace_unlink(current);
343 /* Reparent to init */
344 current->real_parent = current->parent = kthreadd_task;
345 list_move_tail(&current->sibling, &current->real_parent->children);
346
347 /* Set the exit signal to SIGCHLD so we signal init on exit */
348 current->exit_signal = SIGCHLD;
349
350 if (task_nice(current) < 0)
351 set_user_nice(current, 0);
352 /* cpus_allowed? */
353 /* rt_priority? */
354 /* signals? */
355 memcpy(current->signal->rlim, init_task.signal->rlim,
356 sizeof(current->signal->rlim));
357
358 atomic_inc(&init_cred.usage);
359 commit_creds(&init_cred);
360 write_unlock_irq(&tasklist_lock);
361}
362
363void __set_special_pids(struct pid *pid)
364{
365 struct task_struct *curr = current->group_leader;
366
367 if (task_session(curr) != pid)
368 change_pid(curr, PIDTYPE_SID, pid);
369
370 if (task_pgrp(curr) != pid)
371 change_pid(curr, PIDTYPE_PGID, pid);
372}
373
374static void set_special_pids(struct pid *pid)
375{
376 write_lock_irq(&tasklist_lock);
377 __set_special_pids(pid);
378 write_unlock_irq(&tasklist_lock);
379}
380
381/*
382 * Let kernel threads use this to say that they allow a certain signal.
383 * Must not be used if kthread was cloned with CLONE_SIGHAND.
384 */
385int allow_signal(int sig)
386{
387 if (!valid_signal(sig) || sig < 1)
388 return -EINVAL;
389
390 spin_lock_irq(&current->sighand->siglock);
391 /* This is only needed for daemonize()'ed kthreads */
392 sigdelset(&current->blocked, sig);
393 /*
394 * Kernel threads handle their own signals. Let the signal code
395 * know it'll be handled, so that they don't get converted to
396 * SIGKILL or just silently dropped.
397 */
398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
399 recalc_sigpending();
400 spin_unlock_irq(&current->sighand->siglock);
401 return 0;
402}
403
404EXPORT_SYMBOL(allow_signal);
405
406int disallow_signal(int sig)
407{
408 if (!valid_signal(sig) || sig < 1)
409 return -EINVAL;
410
411 spin_lock_irq(&current->sighand->siglock);
412 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
413 recalc_sigpending();
414 spin_unlock_irq(&current->sighand->siglock);
415 return 0;
416}
417
418EXPORT_SYMBOL(disallow_signal);
419
420/*
421 * Put all the gunge required to become a kernel thread without
422 * attached user resources in one place where it belongs.
423 */
424
425void daemonize(const char *name, ...)
426{
427 va_list args;
428 sigset_t blocked;
429
430 va_start(args, name);
431 vsnprintf(current->comm, sizeof(current->comm), name, args);
432 va_end(args);
433
434 /*
435 * If we were started as result of loading a module, close all of the
436 * user space pages. We don't need them, and if we didn't close them
437 * they would be locked into memory.
438 */
439 exit_mm(current);
440 /*
441 * We don't want to have TIF_FREEZE set if the system-wide hibernation
442 * or suspend transition begins right now.
443 */
444 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445
446 if (current->nsproxy != &init_nsproxy) {
447 get_nsproxy(&init_nsproxy);
448 switch_task_namespaces(current, &init_nsproxy);
449 }
450 set_special_pids(&init_struct_pid);
451 proc_clear_tty(current);
452
453 /* Block and flush all signals */
454 sigfillset(&blocked);
455 sigprocmask(SIG_BLOCK, &blocked, NULL);
456 flush_signals(current);
457
458 /* Become as one with the init task */
459
460 daemonize_fs_struct();
461 exit_files(current);
462 current->files = init_task.files;
463 atomic_inc(&current->files->count);
464
465 reparent_to_kthreadd();
466}
467
468EXPORT_SYMBOL(daemonize);
469
470static void close_files(struct files_struct * files)
471{
472 int i, j;
473 struct fdtable *fdt;
474
475 j = 0;
476
477 /*
478 * It is safe to dereference the fd table without RCU or
479 * ->file_lock because this is the last reference to the
480 * files structure. But use RCU to shut RCU-lockdep up.
481 */
482 rcu_read_lock();
483 fdt = files_fdtable(files);
484 rcu_read_unlock();
485 for (;;) {
486 unsigned long set;
487 i = j * __NFDBITS;
488 if (i >= fdt->max_fds)
489 break;
490 set = fdt->open_fds->fds_bits[j++];
491 while (set) {
492 if (set & 1) {
493 struct file * file = xchg(&fdt->fd[i], NULL);
494 if (file) {
495 filp_close(file, files);
496 cond_resched();
497 }
498 }
499 i++;
500 set >>= 1;
501 }
502 }
503}
504
505struct files_struct *get_files_struct(struct task_struct *task)
506{
507 struct files_struct *files;
508
509 task_lock(task);
510 files = task->files;
511 if (files)
512 atomic_inc(&files->count);
513 task_unlock(task);
514
515 return files;
516}
517
518void put_files_struct(struct files_struct *files)
519{
520 struct fdtable *fdt;
521
522 if (atomic_dec_and_test(&files->count)) {
523 close_files(files);
524 /*
525 * Free the fd and fdset arrays if we expanded them.
526 * If the fdtable was embedded, pass files for freeing
527 * at the end of the RCU grace period. Otherwise,
528 * you can free files immediately.
529 */
530 rcu_read_lock();
531 fdt = files_fdtable(files);
532 if (fdt != &files->fdtab)
533 kmem_cache_free(files_cachep, files);
534 free_fdtable(fdt);
535 rcu_read_unlock();
536 }
537}
538
539void reset_files_struct(struct files_struct *files)
540{
541 struct task_struct *tsk = current;
542 struct files_struct *old;
543
544 old = tsk->files;
545 task_lock(tsk);
546 tsk->files = files;
547 task_unlock(tsk);
548 put_files_struct(old);
549}
550
551void exit_files(struct task_struct *tsk)
552{
553 struct files_struct * files = tsk->files;
554
555 if (files) {
556 task_lock(tsk);
557 tsk->files = NULL;
558 task_unlock(tsk);
559 put_files_struct(files);
560 }
561}
562
563#ifdef CONFIG_MM_OWNER
564/*
565 * Task p is exiting and it owned mm, lets find a new owner for it
566 */
567static inline int
568mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
569{
570 /*
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
573 */
574 if (atomic_read(&mm->mm_users) <= 1)
575 return 0;
576 if (mm->owner != p)
577 return 0;
578 return 1;
579}
580
581void mm_update_next_owner(struct mm_struct *mm)
582{
583 struct task_struct *c, *g, *p = current;
584
585retry:
586 if (!mm_need_new_owner(mm, p))
587 return;
588
589 read_lock(&tasklist_lock);
590 /*
591 * Search in the children
592 */
593 list_for_each_entry(c, &p->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search in the siblings
600 */
601 list_for_each_entry(c, &p->real_parent->children, sibling) {
602 if (c->mm == mm)
603 goto assign_new_owner;
604 }
605
606 /*
607 * Search through everything else. We should not get
608 * here often
609 */
610 do_each_thread(g, c) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 } while_each_thread(g, c);
614
615 read_unlock(&tasklist_lock);
616 /*
617 * We found no owner yet mm_users > 1: this implies that we are
618 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
620 */
621 mm->owner = NULL;
622 return;
623
624assign_new_owner:
625 BUG_ON(c == p);
626 get_task_struct(c);
627 /*
628 * The task_lock protects c->mm from changing.
629 * We always want mm->owner->mm == mm
630 */
631 task_lock(c);
632 /*
633 * Delay read_unlock() till we have the task_lock()
634 * to ensure that c does not slip away underneath us
635 */
636 read_unlock(&tasklist_lock);
637 if (c->mm != mm) {
638 task_unlock(c);
639 put_task_struct(c);
640 goto retry;
641 }
642 mm->owner = c;
643 task_unlock(c);
644 put_task_struct(c);
645}
646#endif /* CONFIG_MM_OWNER */
647
648/*
649 * Turn us into a lazy TLB process if we
650 * aren't already..
651 */
652static void exit_mm(struct task_struct * tsk)
653{
654 struct mm_struct *mm = tsk->mm;
655 struct core_state *core_state;
656
657 mm_release(tsk, mm);
658 if (!mm)
659 return;
660 /*
661 * Serialize with any possible pending coredump.
662 * We must hold mmap_sem around checking core_state
663 * and clearing tsk->mm. The core-inducing thread
664 * will increment ->nr_threads for each thread in the
665 * group with ->mm != NULL.
666 */
667 down_read(&mm->mmap_sem);
668 core_state = mm->core_state;
669 if (core_state) {
670 struct core_thread self;
671 up_read(&mm->mmap_sem);
672
673 self.task = tsk;
674 self.next = xchg(&core_state->dumper.next, &self);
675 /*
676 * Implies mb(), the result of xchg() must be visible
677 * to core_state->dumper.
678 */
679 if (atomic_dec_and_test(&core_state->nr_threads))
680 complete(&core_state->startup);
681
682 for (;;) {
683 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
684 if (!self.task) /* see coredump_finish() */
685 break;
686 schedule();
687 }
688 __set_task_state(tsk, TASK_RUNNING);
689 down_read(&mm->mmap_sem);
690 }
691 atomic_inc(&mm->mm_count);
692 BUG_ON(mm != tsk->active_mm);
693 /* more a memory barrier than a real lock */
694 task_lock(tsk);
695 tsk->mm = NULL;
696 up_read(&mm->mmap_sem);
697 enter_lazy_tlb(mm, current);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
703}
704
705/*
706 * When we die, we re-parent all our children.
707 * Try to give them to another thread in our thread
708 * group, and if no such member exists, give it to
709 * the child reaper process (ie "init") in our pid
710 * space.
711 */
712static struct task_struct *find_new_reaper(struct task_struct *father)
713{
714 struct pid_namespace *pid_ns = task_active_pid_ns(father);
715 struct task_struct *thread;
716
717 thread = father;
718 while_each_thread(father, thread) {
719 if (thread->flags & PF_EXITING)
720 continue;
721 if (unlikely(pid_ns->child_reaper == father))
722 pid_ns->child_reaper = thread;
723 return thread;
724 }
725
726 if (unlikely(pid_ns->child_reaper == father)) {
727 write_unlock_irq(&tasklist_lock);
728 if (unlikely(pid_ns == &init_pid_ns))
729 panic("Attempted to kill init!");
730
731 zap_pid_ns_processes(pid_ns);
732 write_lock_irq(&tasklist_lock);
733 /*
734 * We can not clear ->child_reaper or leave it alone.
735 * There may by stealth EXIT_DEAD tasks on ->children,
736 * forget_original_parent() must move them somewhere.
737 */
738 pid_ns->child_reaper = init_pid_ns.child_reaper;
739 }
740
741 return pid_ns->child_reaper;
742}
743
744/*
745* Any that need to be release_task'd are put on the @dead list.
746 */
747static void reparent_leader(struct task_struct *father, struct task_struct *p,
748 struct list_head *dead)
749{
750 list_move_tail(&p->sibling, &p->real_parent->children);
751
752 if (task_detached(p))
753 return;
754 /*
755 * If this is a threaded reparent there is no need to
756 * notify anyone anything has happened.
757 */
758 if (same_thread_group(p->real_parent, father))
759 return;
760
761 /* We don't want people slaying init. */
762 p->exit_signal = SIGCHLD;
763
764 /* If it has exited notify the new parent about this child's death. */
765 if (!task_ptrace(p) &&
766 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
767 do_notify_parent(p, p->exit_signal);
768 if (task_detached(p)) {
769 p->exit_state = EXIT_DEAD;
770 list_move_tail(&p->sibling, dead);
771 }
772 }
773
774 kill_orphaned_pgrp(p, father);
775}
776
777static void forget_original_parent(struct task_struct *father)
778{
779 struct task_struct *p, *n, *reaper;
780 LIST_HEAD(dead_children);
781
782 exit_ptrace(father);
783
784 write_lock_irq(&tasklist_lock);
785 reaper = find_new_reaper(father);
786
787 list_for_each_entry_safe(p, n, &father->children, sibling) {
788 struct task_struct *t = p;
789 do {
790 t->real_parent = reaper;
791 if (t->parent == father) {
792 BUG_ON(task_ptrace(t));
793 t->parent = t->real_parent;
794 }
795 if (t->pdeath_signal)
796 group_send_sig_info(t->pdeath_signal,
797 SEND_SIG_NOINFO, t);
798 } while_each_thread(p, t);
799 reparent_leader(father, p, &dead_children);
800 }
801 write_unlock_irq(&tasklist_lock);
802
803 BUG_ON(!list_empty(&father->children));
804
805 list_for_each_entry_safe(p, n, &dead_children, sibling) {
806 list_del_init(&p->sibling);
807 release_task(p);
808 }
809}
810
811/*
812 * Send signals to all our closest relatives so that they know
813 * to properly mourn us..
814 */
815static void exit_notify(struct task_struct *tsk, int group_dead)
816{
817 int signal;
818 void *cookie;
819
820 /*
821 * This does two things:
822 *
823 * A. Make init inherit all the child processes
824 * B. Check to see if any process groups have become orphaned
825 * as a result of our exiting, and if they have any stopped
826 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
827 */
828 forget_original_parent(tsk);
829 exit_task_namespaces(tsk);
830
831 write_lock_irq(&tasklist_lock);
832 if (group_dead)
833 kill_orphaned_pgrp(tsk->group_leader, NULL);
834
835 /* Let father know we died
836 *
837 * Thread signals are configurable, but you aren't going to use
838 * that to send signals to arbitary processes.
839 * That stops right now.
840 *
841 * If the parent exec id doesn't match the exec id we saved
842 * when we started then we know the parent has changed security
843 * domain.
844 *
845 * If our self_exec id doesn't match our parent_exec_id then
846 * we have changed execution domain as these two values started
847 * the same after a fork.
848 */
849 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
850 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
851 tsk->self_exec_id != tsk->parent_exec_id))
852 tsk->exit_signal = SIGCHLD;
853
854 signal = tracehook_notify_death(tsk, &cookie, group_dead);
855 if (signal >= 0)
856 signal = do_notify_parent(tsk, signal);
857
858 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
859
860 /* mt-exec, de_thread() is waiting for us */
861 if (thread_group_leader(tsk) &&
862 tsk->signal->group_exit_task &&
863 tsk->signal->notify_count < 0)
864 wake_up_process(tsk->signal->group_exit_task);
865
866 write_unlock_irq(&tasklist_lock);
867
868 tracehook_report_death(tsk, signal, cookie, group_dead);
869
870 /* If the process is dead, release it - nobody will wait for it */
871 if (signal == DEATH_REAP)
872 release_task(tsk);
873}
874
875#ifdef CONFIG_DEBUG_STACK_USAGE
876static void check_stack_usage(void)
877{
878 static DEFINE_SPINLOCK(low_water_lock);
879 static int lowest_to_date = THREAD_SIZE;
880 unsigned long free;
881
882 free = stack_not_used(current);
883
884 if (free >= lowest_to_date)
885 return;
886
887 spin_lock(&low_water_lock);
888 if (free < lowest_to_date) {
889 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
890 "left\n",
891 current->comm, free);
892 lowest_to_date = free;
893 }
894 spin_unlock(&low_water_lock);
895}
896#else
897static inline void check_stack_usage(void) {}
898#endif
899
900NORET_TYPE void do_exit(long code)
901{
902 struct task_struct *tsk = current;
903 int group_dead;
904
905 profile_task_exit(tsk);
906
907 WARN_ON(atomic_read(&tsk->fs_excl));
908
909 if (unlikely(in_interrupt()))
910 panic("Aiee, killing interrupt handler!");
911 if (unlikely(!tsk->pid))
912 panic("Attempted to kill the idle task!");
913
914 tracehook_report_exit(&code);
915
916 validate_creds_for_do_exit(tsk);
917
918 /*
919 * We're taking recursive faults here in do_exit. Safest is to just
920 * leave this task alone and wait for reboot.
921 */
922 if (unlikely(tsk->flags & PF_EXITING)) {
923 printk(KERN_ALERT
924 "Fixing recursive fault but reboot is needed!\n");
925 /*
926 * We can do this unlocked here. The futex code uses
927 * this flag just to verify whether the pi state
928 * cleanup has been done or not. In the worst case it
929 * loops once more. We pretend that the cleanup was
930 * done as there is no way to return. Either the
931 * OWNER_DIED bit is set by now or we push the blocked
932 * task into the wait for ever nirwana as well.
933 */
934 tsk->flags |= PF_EXITPIDONE;
935 set_current_state(TASK_UNINTERRUPTIBLE);
936 schedule();
937 }
938
939 exit_irq_thread();
940
941 exit_signals(tsk); /* sets PF_EXITING */
942 /*
943 * tsk->flags are checked in the futex code to protect against
944 * an exiting task cleaning up the robust pi futexes.
945 */
946 smp_mb();
947 raw_spin_unlock_wait(&tsk->pi_lock);
948
949 if (unlikely(in_atomic()))
950 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
951 current->comm, task_pid_nr(current),
952 preempt_count());
953
954 acct_update_integrals(tsk);
955
956 group_dead = atomic_dec_and_test(&tsk->signal->live);
957 if (group_dead) {
958 hrtimer_cancel(&tsk->signal->real_timer);
959 exit_itimers(tsk->signal);
960 if (tsk->mm)
961 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
962 }
963 acct_collect(code, group_dead);
964 if (group_dead)
965 tty_audit_exit();
966 if (unlikely(tsk->audit_context))
967 audit_free(tsk);
968
969 tsk->exit_code = code;
970 taskstats_exit(tsk, group_dead);
971
972 exit_mm(tsk);
973
974 if (group_dead)
975 acct_process();
976 trace_sched_process_exit(tsk);
977
978 exit_sem(tsk);
979 exit_files(tsk);
980 exit_fs(tsk);
981 check_stack_usage();
982 exit_thread();
983 cgroup_exit(tsk, 1);
984
985 if (group_dead)
986 disassociate_ctty(1);
987
988 module_put(task_thread_info(tsk)->exec_domain->module);
989
990 proc_exit_connector(tsk);
991
992 /*
993 * FIXME: do that only when needed, using sched_exit tracepoint
994 */
995 flush_ptrace_hw_breakpoint(tsk);
996 /*
997 * Flush inherited counters to the parent - before the parent
998 * gets woken up by child-exit notifications.
999 */
1000 perf_event_exit_task(tsk);
1001
1002 exit_notify(tsk, group_dead);
1003#ifdef CONFIG_NUMA
1004 mpol_put(tsk->mempolicy);
1005 tsk->mempolicy = NULL;
1006#endif
1007#ifdef CONFIG_FUTEX
1008 if (unlikely(current->pi_state_cache))
1009 kfree(current->pi_state_cache);
1010#endif
1011 /*
1012 * Make sure we are holding no locks:
1013 */
1014 debug_check_no_locks_held(tsk);
1015 /*
1016 * We can do this unlocked here. The futex code uses this flag
1017 * just to verify whether the pi state cleanup has been done
1018 * or not. In the worst case it loops once more.
1019 */
1020 tsk->flags |= PF_EXITPIDONE;
1021
1022 if (tsk->io_context)
1023 exit_io_context(tsk);
1024
1025 if (tsk->splice_pipe)
1026 __free_pipe_info(tsk->splice_pipe);
1027
1028 validate_creds_for_do_exit(tsk);
1029
1030 preempt_disable();
1031 exit_rcu();
1032 /* causes final put_task_struct in finish_task_switch(). */
1033 tsk->state = TASK_DEAD;
1034 schedule();
1035 BUG();
1036 /* Avoid "noreturn function does return". */
1037 for (;;)
1038 cpu_relax(); /* For when BUG is null */
1039}
1040
1041EXPORT_SYMBOL_GPL(do_exit);
1042
1043NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1044{
1045 if (comp)
1046 complete(comp);
1047
1048 do_exit(code);
1049}
1050
1051EXPORT_SYMBOL(complete_and_exit);
1052
1053SYSCALL_DEFINE1(exit, int, error_code)
1054{
1055 do_exit((error_code&0xff)<<8);
1056}
1057
1058/*
1059 * Take down every thread in the group. This is called by fatal signals
1060 * as well as by sys_exit_group (below).
1061 */
1062NORET_TYPE void
1063do_group_exit(int exit_code)
1064{
1065 struct signal_struct *sig = current->signal;
1066
1067 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1068
1069 if (signal_group_exit(sig))
1070 exit_code = sig->group_exit_code;
1071 else if (!thread_group_empty(current)) {
1072 struct sighand_struct *const sighand = current->sighand;
1073 spin_lock_irq(&sighand->siglock);
1074 if (signal_group_exit(sig))
1075 /* Another thread got here before we took the lock. */
1076 exit_code = sig->group_exit_code;
1077 else {
1078 sig->group_exit_code = exit_code;
1079 sig->flags = SIGNAL_GROUP_EXIT;
1080 zap_other_threads(current);
1081 }
1082 spin_unlock_irq(&sighand->siglock);
1083 }
1084
1085 do_exit(exit_code);
1086 /* NOTREACHED */
1087}
1088
1089/*
1090 * this kills every thread in the thread group. Note that any externally
1091 * wait4()-ing process will get the correct exit code - even if this
1092 * thread is not the thread group leader.
1093 */
1094SYSCALL_DEFINE1(exit_group, int, error_code)
1095{
1096 do_group_exit((error_code & 0xff) << 8);
1097 /* NOTREACHED */
1098 return 0;
1099}
1100
1101struct wait_opts {
1102 enum pid_type wo_type;
1103 int wo_flags;
1104 struct pid *wo_pid;
1105
1106 struct siginfo __user *wo_info;
1107 int __user *wo_stat;
1108 struct rusage __user *wo_rusage;
1109
1110 wait_queue_t child_wait;
1111 int notask_error;
1112};
1113
1114static inline
1115struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1116{
1117 if (type != PIDTYPE_PID)
1118 task = task->group_leader;
1119 return task->pids[type].pid;
1120}
1121
1122static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1123{
1124 return wo->wo_type == PIDTYPE_MAX ||
1125 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1126}
1127
1128static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1129{
1130 if (!eligible_pid(wo, p))
1131 return 0;
1132 /* Wait for all children (clone and not) if __WALL is set;
1133 * otherwise, wait for clone children *only* if __WCLONE is
1134 * set; otherwise, wait for non-clone children *only*. (Note:
1135 * A "clone" child here is one that reports to its parent
1136 * using a signal other than SIGCHLD.) */
1137 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1138 && !(wo->wo_flags & __WALL))
1139 return 0;
1140
1141 return 1;
1142}
1143
1144static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1145 pid_t pid, uid_t uid, int why, int status)
1146{
1147 struct siginfo __user *infop;
1148 int retval = wo->wo_rusage
1149 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1150
1151 put_task_struct(p);
1152 infop = wo->wo_info;
1153 if (infop) {
1154 if (!retval)
1155 retval = put_user(SIGCHLD, &infop->si_signo);
1156 if (!retval)
1157 retval = put_user(0, &infop->si_errno);
1158 if (!retval)
1159 retval = put_user((short)why, &infop->si_code);
1160 if (!retval)
1161 retval = put_user(pid, &infop->si_pid);
1162 if (!retval)
1163 retval = put_user(uid, &infop->si_uid);
1164 if (!retval)
1165 retval = put_user(status, &infop->si_status);
1166 }
1167 if (!retval)
1168 retval = pid;
1169 return retval;
1170}
1171
1172/*
1173 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1174 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1175 * the lock and this task is uninteresting. If we return nonzero, we have
1176 * released the lock and the system call should return.
1177 */
1178static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1179{
1180 unsigned long state;
1181 int retval, status, traced;
1182 pid_t pid = task_pid_vnr(p);
1183 uid_t uid = __task_cred(p)->uid;
1184 struct siginfo __user *infop;
1185
1186 if (!likely(wo->wo_flags & WEXITED))
1187 return 0;
1188
1189 if (unlikely(wo->wo_flags & WNOWAIT)) {
1190 int exit_code = p->exit_code;
1191 int why, status;
1192
1193 get_task_struct(p);
1194 read_unlock(&tasklist_lock);
1195 if ((exit_code & 0x7f) == 0) {
1196 why = CLD_EXITED;
1197 status = exit_code >> 8;
1198 } else {
1199 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1200 status = exit_code & 0x7f;
1201 }
1202 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1203 }
1204
1205 /*
1206 * Try to move the task's state to DEAD
1207 * only one thread is allowed to do this:
1208 */
1209 state = xchg(&p->exit_state, EXIT_DEAD);
1210 if (state != EXIT_ZOMBIE) {
1211 BUG_ON(state != EXIT_DEAD);
1212 return 0;
1213 }
1214
1215 traced = ptrace_reparented(p);
1216 /*
1217 * It can be ptraced but not reparented, check
1218 * !task_detached() to filter out sub-threads.
1219 */
1220 if (likely(!traced) && likely(!task_detached(p))) {
1221 struct signal_struct *psig;
1222 struct signal_struct *sig;
1223 unsigned long maxrss;
1224 cputime_t tgutime, tgstime;
1225
1226 /*
1227 * The resource counters for the group leader are in its
1228 * own task_struct. Those for dead threads in the group
1229 * are in its signal_struct, as are those for the child
1230 * processes it has previously reaped. All these
1231 * accumulate in the parent's signal_struct c* fields.
1232 *
1233 * We don't bother to take a lock here to protect these
1234 * p->signal fields, because they are only touched by
1235 * __exit_signal, which runs with tasklist_lock
1236 * write-locked anyway, and so is excluded here. We do
1237 * need to protect the access to parent->signal fields,
1238 * as other threads in the parent group can be right
1239 * here reaping other children at the same time.
1240 *
1241 * We use thread_group_times() to get times for the thread
1242 * group, which consolidates times for all threads in the
1243 * group including the group leader.
1244 */
1245 thread_group_times(p, &tgutime, &tgstime);
1246 spin_lock_irq(&p->real_parent->sighand->siglock);
1247 psig = p->real_parent->signal;
1248 sig = p->signal;
1249 psig->cutime =
1250 cputime_add(psig->cutime,
1251 cputime_add(tgutime,
1252 sig->cutime));
1253 psig->cstime =
1254 cputime_add(psig->cstime,
1255 cputime_add(tgstime,
1256 sig->cstime));
1257 psig->cgtime =
1258 cputime_add(psig->cgtime,
1259 cputime_add(p->gtime,
1260 cputime_add(sig->gtime,
1261 sig->cgtime)));
1262 psig->cmin_flt +=
1263 p->min_flt + sig->min_flt + sig->cmin_flt;
1264 psig->cmaj_flt +=
1265 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1266 psig->cnvcsw +=
1267 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1268 psig->cnivcsw +=
1269 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1270 psig->cinblock +=
1271 task_io_get_inblock(p) +
1272 sig->inblock + sig->cinblock;
1273 psig->coublock +=
1274 task_io_get_oublock(p) +
1275 sig->oublock + sig->coublock;
1276 maxrss = max(sig->maxrss, sig->cmaxrss);
1277 if (psig->cmaxrss < maxrss)
1278 psig->cmaxrss = maxrss;
1279 task_io_accounting_add(&psig->ioac, &p->ioac);
1280 task_io_accounting_add(&psig->ioac, &sig->ioac);
1281 spin_unlock_irq(&p->real_parent->sighand->siglock);
1282 }
1283
1284 /*
1285 * Now we are sure this task is interesting, and no other
1286 * thread can reap it because we set its state to EXIT_DEAD.
1287 */
1288 read_unlock(&tasklist_lock);
1289
1290 retval = wo->wo_rusage
1291 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1292 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1293 ? p->signal->group_exit_code : p->exit_code;
1294 if (!retval && wo->wo_stat)
1295 retval = put_user(status, wo->wo_stat);
1296
1297 infop = wo->wo_info;
1298 if (!retval && infop)
1299 retval = put_user(SIGCHLD, &infop->si_signo);
1300 if (!retval && infop)
1301 retval = put_user(0, &infop->si_errno);
1302 if (!retval && infop) {
1303 int why;
1304
1305 if ((status & 0x7f) == 0) {
1306 why = CLD_EXITED;
1307 status >>= 8;
1308 } else {
1309 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1310 status &= 0x7f;
1311 }
1312 retval = put_user((short)why, &infop->si_code);
1313 if (!retval)
1314 retval = put_user(status, &infop->si_status);
1315 }
1316 if (!retval && infop)
1317 retval = put_user(pid, &infop->si_pid);
1318 if (!retval && infop)
1319 retval = put_user(uid, &infop->si_uid);
1320 if (!retval)
1321 retval = pid;
1322
1323 if (traced) {
1324 write_lock_irq(&tasklist_lock);
1325 /* We dropped tasklist, ptracer could die and untrace */
1326 ptrace_unlink(p);
1327 /*
1328 * If this is not a detached task, notify the parent.
1329 * If it's still not detached after that, don't release
1330 * it now.
1331 */
1332 if (!task_detached(p)) {
1333 do_notify_parent(p, p->exit_signal);
1334 if (!task_detached(p)) {
1335 p->exit_state = EXIT_ZOMBIE;
1336 p = NULL;
1337 }
1338 }
1339 write_unlock_irq(&tasklist_lock);
1340 }
1341 if (p != NULL)
1342 release_task(p);
1343
1344 return retval;
1345}
1346
1347static int *task_stopped_code(struct task_struct *p, bool ptrace)
1348{
1349 if (ptrace) {
1350 if (task_is_stopped_or_traced(p))
1351 return &p->exit_code;
1352 } else {
1353 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1354 return &p->signal->group_exit_code;
1355 }
1356 return NULL;
1357}
1358
1359/*
1360 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1361 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1362 * the lock and this task is uninteresting. If we return nonzero, we have
1363 * released the lock and the system call should return.
1364 */
1365static int wait_task_stopped(struct wait_opts *wo,
1366 int ptrace, struct task_struct *p)
1367{
1368 struct siginfo __user *infop;
1369 int retval, exit_code, *p_code, why;
1370 uid_t uid = 0; /* unneeded, required by compiler */
1371 pid_t pid;
1372
1373 /*
1374 * Traditionally we see ptrace'd stopped tasks regardless of options.
1375 */
1376 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1377 return 0;
1378
1379 exit_code = 0;
1380 spin_lock_irq(&p->sighand->siglock);
1381
1382 p_code = task_stopped_code(p, ptrace);
1383 if (unlikely(!p_code))
1384 goto unlock_sig;
1385
1386 exit_code = *p_code;
1387 if (!exit_code)
1388 goto unlock_sig;
1389
1390 if (!unlikely(wo->wo_flags & WNOWAIT))
1391 *p_code = 0;
1392
1393 /* don't need the RCU readlock here as we're holding a spinlock */
1394 uid = __task_cred(p)->uid;
1395unlock_sig:
1396 spin_unlock_irq(&p->sighand->siglock);
1397 if (!exit_code)
1398 return 0;
1399
1400 /*
1401 * Now we are pretty sure this task is interesting.
1402 * Make sure it doesn't get reaped out from under us while we
1403 * give up the lock and then examine it below. We don't want to
1404 * keep holding onto the tasklist_lock while we call getrusage and
1405 * possibly take page faults for user memory.
1406 */
1407 get_task_struct(p);
1408 pid = task_pid_vnr(p);
1409 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1410 read_unlock(&tasklist_lock);
1411
1412 if (unlikely(wo->wo_flags & WNOWAIT))
1413 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1414
1415 retval = wo->wo_rusage
1416 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1417 if (!retval && wo->wo_stat)
1418 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1419
1420 infop = wo->wo_info;
1421 if (!retval && infop)
1422 retval = put_user(SIGCHLD, &infop->si_signo);
1423 if (!retval && infop)
1424 retval = put_user(0, &infop->si_errno);
1425 if (!retval && infop)
1426 retval = put_user((short)why, &infop->si_code);
1427 if (!retval && infop)
1428 retval = put_user(exit_code, &infop->si_status);
1429 if (!retval && infop)
1430 retval = put_user(pid, &infop->si_pid);
1431 if (!retval && infop)
1432 retval = put_user(uid, &infop->si_uid);
1433 if (!retval)
1434 retval = pid;
1435 put_task_struct(p);
1436
1437 BUG_ON(!retval);
1438 return retval;
1439}
1440
1441/*
1442 * Handle do_wait work for one task in a live, non-stopped state.
1443 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1444 * the lock and this task is uninteresting. If we return nonzero, we have
1445 * released the lock and the system call should return.
1446 */
1447static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1448{
1449 int retval;
1450 pid_t pid;
1451 uid_t uid;
1452
1453 if (!unlikely(wo->wo_flags & WCONTINUED))
1454 return 0;
1455
1456 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1457 return 0;
1458
1459 spin_lock_irq(&p->sighand->siglock);
1460 /* Re-check with the lock held. */
1461 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1462 spin_unlock_irq(&p->sighand->siglock);
1463 return 0;
1464 }
1465 if (!unlikely(wo->wo_flags & WNOWAIT))
1466 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1467 uid = __task_cred(p)->uid;
1468 spin_unlock_irq(&p->sighand->siglock);
1469
1470 pid = task_pid_vnr(p);
1471 get_task_struct(p);
1472 read_unlock(&tasklist_lock);
1473
1474 if (!wo->wo_info) {
1475 retval = wo->wo_rusage
1476 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1477 put_task_struct(p);
1478 if (!retval && wo->wo_stat)
1479 retval = put_user(0xffff, wo->wo_stat);
1480 if (!retval)
1481 retval = pid;
1482 } else {
1483 retval = wait_noreap_copyout(wo, p, pid, uid,
1484 CLD_CONTINUED, SIGCONT);
1485 BUG_ON(retval == 0);
1486 }
1487
1488 return retval;
1489}
1490
1491/*
1492 * Consider @p for a wait by @parent.
1493 *
1494 * -ECHILD should be in ->notask_error before the first call.
1495 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1496 * Returns zero if the search for a child should continue;
1497 * then ->notask_error is 0 if @p is an eligible child,
1498 * or another error from security_task_wait(), or still -ECHILD.
1499 */
1500static int wait_consider_task(struct wait_opts *wo, int ptrace,
1501 struct task_struct *p)
1502{
1503 int ret = eligible_child(wo, p);
1504 if (!ret)
1505 return ret;
1506
1507 ret = security_task_wait(p);
1508 if (unlikely(ret < 0)) {
1509 /*
1510 * If we have not yet seen any eligible child,
1511 * then let this error code replace -ECHILD.
1512 * A permission error will give the user a clue
1513 * to look for security policy problems, rather
1514 * than for mysterious wait bugs.
1515 */
1516 if (wo->notask_error)
1517 wo->notask_error = ret;
1518 return 0;
1519 }
1520
1521 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1522 /*
1523 * This child is hidden by ptrace.
1524 * We aren't allowed to see it now, but eventually we will.
1525 */
1526 wo->notask_error = 0;
1527 return 0;
1528 }
1529
1530 if (p->exit_state == EXIT_DEAD)
1531 return 0;
1532
1533 /*
1534 * We don't reap group leaders with subthreads.
1535 */
1536 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1537 return wait_task_zombie(wo, p);
1538
1539 /*
1540 * It's stopped or running now, so it might
1541 * later continue, exit, or stop again.
1542 */
1543 wo->notask_error = 0;
1544
1545 if (task_stopped_code(p, ptrace))
1546 return wait_task_stopped(wo, ptrace, p);
1547
1548 return wait_task_continued(wo, p);
1549}
1550
1551/*
1552 * Do the work of do_wait() for one thread in the group, @tsk.
1553 *
1554 * -ECHILD should be in ->notask_error before the first call.
1555 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1556 * Returns zero if the search for a child should continue; then
1557 * ->notask_error is 0 if there were any eligible children,
1558 * or another error from security_task_wait(), or still -ECHILD.
1559 */
1560static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1561{
1562 struct task_struct *p;
1563
1564 list_for_each_entry(p, &tsk->children, sibling) {
1565 int ret = wait_consider_task(wo, 0, p);
1566 if (ret)
1567 return ret;
1568 }
1569
1570 return 0;
1571}
1572
1573static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1574{
1575 struct task_struct *p;
1576
1577 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1578 int ret = wait_consider_task(wo, 1, p);
1579 if (ret)
1580 return ret;
1581 }
1582
1583 return 0;
1584}
1585
1586static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1587 int sync, void *key)
1588{
1589 struct wait_opts *wo = container_of(wait, struct wait_opts,
1590 child_wait);
1591 struct task_struct *p = key;
1592
1593 if (!eligible_pid(wo, p))
1594 return 0;
1595
1596 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1597 return 0;
1598
1599 return default_wake_function(wait, mode, sync, key);
1600}
1601
1602void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1603{
1604 __wake_up_sync_key(&parent->signal->wait_chldexit,
1605 TASK_INTERRUPTIBLE, 1, p);
1606}
1607
1608static long do_wait(struct wait_opts *wo)
1609{
1610 struct task_struct *tsk;
1611 int retval;
1612
1613 trace_sched_process_wait(wo->wo_pid);
1614
1615 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1616 wo->child_wait.private = current;
1617 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1618repeat:
1619 /*
1620 * If there is nothing that can match our critiera just get out.
1621 * We will clear ->notask_error to zero if we see any child that
1622 * might later match our criteria, even if we are not able to reap
1623 * it yet.
1624 */
1625 wo->notask_error = -ECHILD;
1626 if ((wo->wo_type < PIDTYPE_MAX) &&
1627 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1628 goto notask;
1629
1630 set_current_state(TASK_INTERRUPTIBLE);
1631 read_lock(&tasklist_lock);
1632 tsk = current;
1633 do {
1634 retval = do_wait_thread(wo, tsk);
1635 if (retval)
1636 goto end;
1637
1638 retval = ptrace_do_wait(wo, tsk);
1639 if (retval)
1640 goto end;
1641
1642 if (wo->wo_flags & __WNOTHREAD)
1643 break;
1644 } while_each_thread(current, tsk);
1645 read_unlock(&tasklist_lock);
1646
1647notask:
1648 retval = wo->notask_error;
1649 if (!retval && !(wo->wo_flags & WNOHANG)) {
1650 retval = -ERESTARTSYS;
1651 if (!signal_pending(current)) {
1652 schedule();
1653 goto repeat;
1654 }
1655 }
1656end:
1657 __set_current_state(TASK_RUNNING);
1658 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1659 return retval;
1660}
1661
1662SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1663 infop, int, options, struct rusage __user *, ru)
1664{
1665 struct wait_opts wo;
1666 struct pid *pid = NULL;
1667 enum pid_type type;
1668 long ret;
1669
1670 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1671 return -EINVAL;
1672 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1673 return -EINVAL;
1674
1675 switch (which) {
1676 case P_ALL:
1677 type = PIDTYPE_MAX;
1678 break;
1679 case P_PID:
1680 type = PIDTYPE_PID;
1681 if (upid <= 0)
1682 return -EINVAL;
1683 break;
1684 case P_PGID:
1685 type = PIDTYPE_PGID;
1686 if (upid <= 0)
1687 return -EINVAL;
1688 break;
1689 default:
1690 return -EINVAL;
1691 }
1692
1693 if (type < PIDTYPE_MAX)
1694 pid = find_get_pid(upid);
1695
1696 wo.wo_type = type;
1697 wo.wo_pid = pid;
1698 wo.wo_flags = options;
1699 wo.wo_info = infop;
1700 wo.wo_stat = NULL;
1701 wo.wo_rusage = ru;
1702 ret = do_wait(&wo);
1703
1704 if (ret > 0) {
1705 ret = 0;
1706 } else if (infop) {
1707 /*
1708 * For a WNOHANG return, clear out all the fields
1709 * we would set so the user can easily tell the
1710 * difference.
1711 */
1712 if (!ret)
1713 ret = put_user(0, &infop->si_signo);
1714 if (!ret)
1715 ret = put_user(0, &infop->si_errno);
1716 if (!ret)
1717 ret = put_user(0, &infop->si_code);
1718 if (!ret)
1719 ret = put_user(0, &infop->si_pid);
1720 if (!ret)
1721 ret = put_user(0, &infop->si_uid);
1722 if (!ret)
1723 ret = put_user(0, &infop->si_status);
1724 }
1725
1726 put_pid(pid);
1727
1728 /* avoid REGPARM breakage on x86: */
1729 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1730 return ret;
1731}
1732
1733SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1734 int, options, struct rusage __user *, ru)
1735{
1736 struct wait_opts wo;
1737 struct pid *pid = NULL;
1738 enum pid_type type;
1739 long ret;
1740
1741 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1742 __WNOTHREAD|__WCLONE|__WALL))
1743 return -EINVAL;
1744
1745 if (upid == -1)
1746 type = PIDTYPE_MAX;
1747 else if (upid < 0) {
1748 type = PIDTYPE_PGID;
1749 pid = find_get_pid(-upid);
1750 } else if (upid == 0) {
1751 type = PIDTYPE_PGID;
1752 pid = get_task_pid(current, PIDTYPE_PGID);
1753 } else /* upid > 0 */ {
1754 type = PIDTYPE_PID;
1755 pid = find_get_pid(upid);
1756 }
1757
1758 wo.wo_type = type;
1759 wo.wo_pid = pid;
1760 wo.wo_flags = options | WEXITED;
1761 wo.wo_info = NULL;
1762 wo.wo_stat = stat_addr;
1763 wo.wo_rusage = ru;
1764 ret = do_wait(&wo);
1765 put_pid(pid);
1766
1767 /* avoid REGPARM breakage on x86: */
1768 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1769 return ret;
1770}
1771
1772#ifdef __ARCH_WANT_SYS_WAITPID
1773
1774/*
1775 * sys_waitpid() remains for compatibility. waitpid() should be
1776 * implemented by calling sys_wait4() from libc.a.
1777 */
1778SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1779{
1780 return sys_wait4(pid, stat_addr, options, NULL);
1781}
1782
1783#endif