usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / include / net / sock.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61
62#include <linux/filter.h>
63#include <linux/rculist_nulls.h>
64#include <linux/poll.h>
65
66#include <linux/atomic.h>
67#include <net/dst.h>
68#include <net/checksum.h>
69#include <net/tcp_states.h>
70#include <linux/net_tstamp.h>
71
72struct cgroup;
73struct cgroup_subsys;
74#ifdef CONFIG_NET
75int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77#else
78static inline
79int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80{
81 return 0;
82}
83static inline
84void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85{
86}
87#endif
88/*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94/* Define this to get the SOCK_DBG debugging facility. */
95#define SOCK_DEBUGGING
96#ifdef SOCK_DEBUGGING
97#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99#else
100/* Validate arguments and do nothing */
101static inline __printf(2, 3)
102void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103{
104}
105#endif
106
107/* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121#ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123#endif
124} socket_lock_t;
125
126struct sock;
127struct proto;
128struct net;
129
130typedef __u32 __bitwise __portpair;
131typedef __u64 __bitwise __addrpair;
132
133/**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_flags: place holder for sk_flags
154 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156 * @skc_incoming_cpu: record/match cpu processing incoming packets
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_nulls_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203#endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 int skc_tx_queue_mapping;
229 union {
230 int skc_incoming_cpu;
231 u32 skc_rcv_wnd;
232 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
233 };
234
235 atomic_t skc_refcnt;
236 /* private: */
237 int skc_dontcopy_end[0];
238 union {
239 u32 skc_rxhash;
240 u32 skc_window_clamp;
241 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
242 };
243 /* public: */
244};
245
246struct cg_proto;
247/**
248 * struct sock - network layer representation of sockets
249 * @__sk_common: shared layout with inet_timewait_sock
250 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252 * @sk_lock: synchronizer
253 * @sk_rcvbuf: size of receive buffer in bytes
254 * @sk_wq: sock wait queue and async head
255 * @sk_rx_dst: receive input route used by early demux
256 * @sk_dst_cache: destination cache
257 * @sk_policy: flow policy
258 * @sk_receive_queue: incoming packets
259 * @sk_wmem_alloc: transmit queue bytes committed
260 * @sk_write_queue: Packet sending queue
261 * @sk_omem_alloc: "o" is "option" or "other"
262 * @sk_wmem_queued: persistent queue size
263 * @sk_forward_alloc: space allocated forward
264 * @sk_napi_id: id of the last napi context to receive data for sk
265 * @sk_ll_usec: usecs to busypoll when there is no data
266 * @sk_allocation: allocation mode
267 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269 * @sk_sndbuf: size of send buffer in bytes
270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271 * @sk_no_check_rx: allow zero checksum in RX packets
272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275 * @sk_gso_max_size: Maximum GSO segment size to build
276 * @sk_gso_max_segs: Maximum number of GSO segments
277 * @sk_lingertime: %SO_LINGER l_linger setting
278 * @sk_backlog: always used with the per-socket spinlock held
279 * @sk_callback_lock: used with the callbacks in the end of this struct
280 * @sk_error_queue: rarely used
281 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282 * IPV6_ADDRFORM for instance)
283 * @sk_err: last error
284 * @sk_err_soft: errors that don't cause failure but are the cause of a
285 * persistent failure not just 'timed out'
286 * @sk_drops: raw/udp drops counter
287 * @sk_ack_backlog: current listen backlog
288 * @sk_max_ack_backlog: listen backlog set in listen()
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_cgrp_prioidx: socket group's priority map index
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_pid: &struct pid for this socket's peer
294 * @sk_peer_cred: %SO_PEERCRED setting
295 * @sk_rcvlowat: %SO_RCVLOWAT setting
296 * @sk_rcvtimeo: %SO_RCVTIMEO setting
297 * @sk_sndtimeo: %SO_SNDTIMEO setting
298 * @sk_txhash: computed flow hash for use on transmit
299 * @sk_filter: socket filtering instructions
300 * @sk_timer: sock cleanup timer
301 * @sk_stamp: time stamp of last packet received
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_classid: this socket's cgroup classid
312 * @sk_cgrp: this socket's cgroup-specific proto data
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320 */
321struct sock {
322 /*
323 * Now struct inet_timewait_sock also uses sock_common, so please just
324 * don't add nothing before this first member (__sk_common) --acme
325 */
326 struct sock_common __sk_common;
327#define sk_node __sk_common.skc_node
328#define sk_nulls_node __sk_common.skc_nulls_node
329#define sk_refcnt __sk_common.skc_refcnt
330#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
331
332#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
333#define sk_dontcopy_end __sk_common.skc_dontcopy_end
334#define sk_hash __sk_common.skc_hash
335#define sk_portpair __sk_common.skc_portpair
336#define sk_num __sk_common.skc_num
337#define sk_dport __sk_common.skc_dport
338#define sk_addrpair __sk_common.skc_addrpair
339#define sk_daddr __sk_common.skc_daddr
340#define sk_rcv_saddr __sk_common.skc_rcv_saddr
341#define sk_family __sk_common.skc_family
342#define sk_state __sk_common.skc_state
343#define sk_reuse __sk_common.skc_reuse
344#define sk_reuseport __sk_common.skc_reuseport
345#define sk_ipv6only __sk_common.skc_ipv6only
346#define sk_net_refcnt __sk_common.skc_net_refcnt
347#define sk_bound_dev_if __sk_common.skc_bound_dev_if
348#define sk_bind_node __sk_common.skc_bind_node
349#define sk_prot __sk_common.skc_prot
350#define sk_net __sk_common.skc_net
351#define sk_v6_daddr __sk_common.skc_v6_daddr
352#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
353#define sk_cookie __sk_common.skc_cookie
354#define sk_incoming_cpu __sk_common.skc_incoming_cpu
355#define sk_flags __sk_common.skc_flags
356#define sk_rxhash __sk_common.skc_rxhash
357
358 socket_lock_t sk_lock;
359 struct sk_buff_head sk_receive_queue;
360 /*
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
367 */
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374#define sk_rmem_alloc sk_backlog.rmem_alloc
375 int sk_forward_alloc;
376
377 __u32 sk_txhash;
378#ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_napi_id;
380 unsigned int sk_ll_usec;
381#endif
382 atomic_t sk_drops;
383 int sk_rcvbuf;
384
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
389 };
390#ifdef CONFIG_XFRM
391 struct xfrm_policy __rcu *sk_policy[2];
392#endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 /* Note: 32bit hole on 64bit arches */
396 atomic_t sk_wmem_alloc;
397 atomic_t sk_omem_alloc;
398 int sk_sndbuf;
399 struct sk_buff_head sk_write_queue;
400 kmemcheck_bitfield_begin(flags);
401 unsigned int sk_shutdown : 2,
402 sk_no_check_tx : 1,
403 sk_no_check_rx : 1,
404 sk_userlocks : 4,
405 sk_protocol : 8,
406 sk_type : 16;
407#define SK_PROTOCOL_MAX U8_MAX
408 kmemcheck_bitfield_end(flags);
409 int sk_wmem_queued;
410 gfp_t sk_allocation;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 netdev_features_t sk_route_caps;
414 netdev_features_t sk_route_nocaps;
415 int sk_gso_type;
416 unsigned int sk_gso_max_size;
417 u16 sk_gso_max_segs;
418 int sk_rcvlowat;
419 unsigned long sk_lingertime;
420 struct sk_buff_head sk_error_queue;
421 struct proto *sk_prot_creator;
422 rwlock_t sk_callback_lock;
423 int sk_err,
424 sk_err_soft;
425 u32 sk_ack_backlog;
426 u32 sk_max_ack_backlog;
427 __u32 sk_priority;
428#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
429 __u32 sk_cgrp_prioidx;
430#endif
431 struct pid *sk_peer_pid;
432 const struct cred *sk_peer_cred;
433 long sk_rcvtimeo;
434 long sk_sndtimeo;
435 struct timer_list sk_timer;
436 ktime_t sk_stamp;
437 u16 sk_tsflags;
438 u32 sk_tskey;
439 struct socket *sk_socket;
440 void *sk_user_data;
441 struct page_frag sk_frag;
442 struct sk_buff *sk_send_head;
443 __s32 sk_peek_off;
444 int sk_write_pending;
445#ifdef CONFIG_SECURITY
446 void *sk_security;
447#endif
448 __u32 sk_mark;
449 kuid_t sk_uid;
450#ifdef CONFIG_CGROUP_NET_CLASSID
451 u32 sk_classid;
452#endif
453 struct cg_proto *sk_cgrp;
454 /* START_OF_KNOX_NPA */
455 uid_t knox_uid;
456 pid_t knox_pid;
457 uid_t knox_dns_uid;
458 __be32 sk_udp_daddr_v6[4];
459 __be32 sk_udp_saddr_v6[4];
460 __be16 sk_udp_dport;
461 __be16 sk_udp_sport;
462 char domain_name[255];
463 /* END_OF_KNOX_NPA */
464 void (*sk_state_change)(struct sock *sk);
465 void (*sk_data_ready)(struct sock *sk);
466 void (*sk_write_space)(struct sock *sk);
467 void (*sk_error_report)(struct sock *sk);
468 int (*sk_backlog_rcv)(struct sock *sk,
469 struct sk_buff *skb);
470 void (*sk_destruct)(struct sock *sk);
471};
472
473#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
474
475#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
476#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
477
478/*
479 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
480 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
481 * on a socket means that the socket will reuse everybody else's port
482 * without looking at the other's sk_reuse value.
483 */
484
485#define SK_NO_REUSE 0
486#define SK_CAN_REUSE 1
487#define SK_FORCE_REUSE 2
488
489static inline int sk_peek_offset(struct sock *sk, int flags)
490{
491 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
492 return sk->sk_peek_off;
493 else
494 return 0;
495}
496
497static inline void sk_peek_offset_bwd(struct sock *sk, int val)
498{
499 if (sk->sk_peek_off >= 0) {
500 if (sk->sk_peek_off >= val)
501 sk->sk_peek_off -= val;
502 else
503 sk->sk_peek_off = 0;
504 }
505}
506
507static inline void sk_peek_offset_fwd(struct sock *sk, int val)
508{
509 if (sk->sk_peek_off >= 0)
510 sk->sk_peek_off += val;
511}
512
513/*
514 * Hashed lists helper routines
515 */
516static inline struct sock *sk_entry(const struct hlist_node *node)
517{
518 return hlist_entry(node, struct sock, sk_node);
519}
520
521static inline struct sock *__sk_head(const struct hlist_head *head)
522{
523 return hlist_entry(head->first, struct sock, sk_node);
524}
525
526static inline struct sock *sk_head(const struct hlist_head *head)
527{
528 return hlist_empty(head) ? NULL : __sk_head(head);
529}
530
531static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
532{
533 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
534}
535
536static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
537{
538 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
539}
540
541static inline struct sock *sk_next(const struct sock *sk)
542{
543 return sk->sk_node.next ?
544 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
545}
546
547static inline struct sock *sk_nulls_next(const struct sock *sk)
548{
549 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
550 hlist_nulls_entry(sk->sk_nulls_node.next,
551 struct sock, sk_nulls_node) :
552 NULL;
553}
554
555static inline bool sk_unhashed(const struct sock *sk)
556{
557 return hlist_unhashed(&sk->sk_node);
558}
559
560static inline bool sk_hashed(const struct sock *sk)
561{
562 return !sk_unhashed(sk);
563}
564
565static inline void sk_node_init(struct hlist_node *node)
566{
567 node->pprev = NULL;
568}
569
570static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
571{
572 node->pprev = NULL;
573}
574
575static inline void __sk_del_node(struct sock *sk)
576{
577 __hlist_del(&sk->sk_node);
578}
579
580/* NB: equivalent to hlist_del_init_rcu */
581static inline bool __sk_del_node_init(struct sock *sk)
582{
583 if (sk_hashed(sk)) {
584 __sk_del_node(sk);
585 sk_node_init(&sk->sk_node);
586 return true;
587 }
588 return false;
589}
590
591/* Grab socket reference count. This operation is valid only
592 when sk is ALREADY grabbed f.e. it is found in hash table
593 or a list and the lookup is made under lock preventing hash table
594 modifications.
595 */
596
597static inline void sock_hold(struct sock *sk)
598{
599 atomic_inc(&sk->sk_refcnt);
600}
601
602/* Ungrab socket in the context, which assumes that socket refcnt
603 cannot hit zero, f.e. it is true in context of any socketcall.
604 */
605static inline void __sock_put(struct sock *sk)
606{
607 atomic_dec(&sk->sk_refcnt);
608}
609
610static inline bool sk_del_node_init(struct sock *sk)
611{
612 bool rc = __sk_del_node_init(sk);
613
614 if (rc) {
615 /* paranoid for a while -acme */
616 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
617 __sock_put(sk);
618 }
619 return rc;
620}
621#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
622
623static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
624{
625 if (sk_hashed(sk)) {
626 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
627 return true;
628 }
629 return false;
630}
631
632static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
633{
634 bool rc = __sk_nulls_del_node_init_rcu(sk);
635
636 if (rc) {
637 /* paranoid for a while -acme */
638 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
639 __sock_put(sk);
640 }
641 return rc;
642}
643
644static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
645{
646 hlist_add_head(&sk->sk_node, list);
647}
648
649static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
650{
651 sock_hold(sk);
652 __sk_add_node(sk, list);
653}
654
655static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
656{
657 sock_hold(sk);
658 hlist_add_head_rcu(&sk->sk_node, list);
659}
660
661static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
662{
663 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
664}
665
666static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
667{
668 sock_hold(sk);
669 __sk_nulls_add_node_rcu(sk, list);
670}
671
672static inline void __sk_del_bind_node(struct sock *sk)
673{
674 __hlist_del(&sk->sk_bind_node);
675}
676
677static inline void sk_add_bind_node(struct sock *sk,
678 struct hlist_head *list)
679{
680 hlist_add_head(&sk->sk_bind_node, list);
681}
682
683#define sk_for_each(__sk, list) \
684 hlist_for_each_entry(__sk, list, sk_node)
685#define sk_for_each_rcu(__sk, list) \
686 hlist_for_each_entry_rcu(__sk, list, sk_node)
687#define sk_nulls_for_each(__sk, node, list) \
688 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
689#define sk_nulls_for_each_rcu(__sk, node, list) \
690 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
691#define sk_for_each_from(__sk) \
692 hlist_for_each_entry_from(__sk, sk_node)
693#define sk_nulls_for_each_from(__sk, node) \
694 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
695 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
696#define sk_for_each_safe(__sk, tmp, list) \
697 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
698#define sk_for_each_bound(__sk, list) \
699 hlist_for_each_entry(__sk, list, sk_bind_node)
700
701/**
702 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
703 * @tpos: the type * to use as a loop cursor.
704 * @pos: the &struct hlist_node to use as a loop cursor.
705 * @head: the head for your list.
706 * @offset: offset of hlist_node within the struct.
707 *
708 */
709#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
710 for (pos = (head)->first; \
711 (!is_a_nulls(pos)) && \
712 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
713 pos = pos->next)
714
715static inline struct user_namespace *sk_user_ns(struct sock *sk)
716{
717 /* Careful only use this in a context where these parameters
718 * can not change and must all be valid, such as recvmsg from
719 * userspace.
720 */
721 return sk->sk_socket->file->f_cred->user_ns;
722}
723
724/* Sock flags */
725enum sock_flags {
726 SOCK_DEAD,
727 SOCK_DONE,
728 SOCK_URGINLINE,
729 SOCK_KEEPOPEN,
730 SOCK_LINGER,
731 SOCK_DESTROY,
732 SOCK_BROADCAST,
733 SOCK_TIMESTAMP,
734 SOCK_ZAPPED,
735 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
736 SOCK_DBG, /* %SO_DEBUG setting */
737 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
738 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
739 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
740 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
741 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
742 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
743 SOCK_FASYNC, /* fasync() active */
744 SOCK_RXQ_OVFL,
745 SOCK_ZEROCOPY, /* buffers from userspace */
746 SOCK_WIFI_STATUS, /* push wifi status to userspace */
747 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
748 * Will use last 4 bytes of packet sent from
749 * user-space instead.
750 */
751 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
752 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
753#ifdef CONFIG_MPTCP
754 SOCK_MPTCP, /* MPTCP set on this socket */
755#endif
756};
757
758#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
759
760static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
761{
762 nsk->sk_flags = osk->sk_flags;
763}
764
765static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
766{
767 __set_bit(flag, &sk->sk_flags);
768}
769
770static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
771{
772 __clear_bit(flag, &sk->sk_flags);
773}
774
775static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
776{
777 return test_bit(flag, &sk->sk_flags);
778}
779
780#ifdef CONFIG_NET
781extern struct static_key memalloc_socks;
782static inline int sk_memalloc_socks(void)
783{
784 return static_key_false(&memalloc_socks);
785}
786#else
787
788static inline int sk_memalloc_socks(void)
789{
790 return 0;
791}
792
793#endif
794
795static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
796{
797 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
798}
799
800static inline void sk_acceptq_removed(struct sock *sk)
801{
802 sk->sk_ack_backlog--;
803}
804
805static inline void sk_acceptq_added(struct sock *sk)
806{
807 sk->sk_ack_backlog++;
808}
809
810static inline bool sk_acceptq_is_full(const struct sock *sk)
811{
812 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
813}
814
815/*
816 * Compute minimal free write space needed to queue new packets.
817 */
818static inline int sk_stream_min_wspace(const struct sock *sk)
819{
820 return sk->sk_wmem_queued >> 1;
821}
822
823static inline int sk_stream_wspace(const struct sock *sk)
824{
825 return sk->sk_sndbuf - sk->sk_wmem_queued;
826}
827
828void sk_stream_write_space(struct sock *sk);
829
830/* OOB backlog add */
831static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
832{
833 /* dont let skb dst not refcounted, we are going to leave rcu lock */
834 skb_dst_force_safe(skb);
835
836 if (!sk->sk_backlog.tail)
837 sk->sk_backlog.head = skb;
838 else
839 sk->sk_backlog.tail->next = skb;
840
841 sk->sk_backlog.tail = skb;
842 skb->next = NULL;
843}
844
845/*
846 * Take into account size of receive queue and backlog queue
847 * Do not take into account this skb truesize,
848 * to allow even a single big packet to come.
849 */
850static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
851{
852 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
853
854 return qsize > limit;
855}
856
857/* The per-socket spinlock must be held here. */
858static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
859 unsigned int limit)
860{
861 if (sk_rcvqueues_full(sk, limit))
862 return -ENOBUFS;
863
864 /*
865 * If the skb was allocated from pfmemalloc reserves, only
866 * allow SOCK_MEMALLOC sockets to use it as this socket is
867 * helping free memory
868 */
869 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
870 return -ENOMEM;
871
872 __sk_add_backlog(sk, skb);
873 sk->sk_backlog.len += skb->truesize;
874 return 0;
875}
876
877int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
878
879static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
880{
881 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
882 return __sk_backlog_rcv(sk, skb);
883
884 return sk->sk_backlog_rcv(sk, skb);
885}
886
887static inline void sk_incoming_cpu_update(struct sock *sk)
888{
889 sk->sk_incoming_cpu = raw_smp_processor_id();
890}
891
892static inline void sock_rps_record_flow_hash(__u32 hash)
893{
894#ifdef CONFIG_RPS
895 struct rps_sock_flow_table *sock_flow_table;
896
897 rcu_read_lock();
898 sock_flow_table = rcu_dereference(rps_sock_flow_table);
899 rps_record_sock_flow(sock_flow_table, hash);
900 rcu_read_unlock();
901#endif
902}
903
904static inline void sock_rps_record_flow(const struct sock *sk)
905{
906#ifdef CONFIG_RPS
907 sock_rps_record_flow_hash(sk->sk_rxhash);
908#endif
909}
910
911static inline void sock_rps_save_rxhash(struct sock *sk,
912 const struct sk_buff *skb)
913{
914#ifdef CONFIG_RPS
915 if (unlikely(sk->sk_rxhash != skb->hash))
916 sk->sk_rxhash = skb->hash;
917#endif
918}
919
920static inline void sock_rps_reset_rxhash(struct sock *sk)
921{
922#ifdef CONFIG_RPS
923 sk->sk_rxhash = 0;
924#endif
925}
926
927#define sk_wait_event(__sk, __timeo, __condition) \
928 ({ int __rc; \
929 release_sock(__sk); \
930 __rc = __condition; \
931 if (!__rc) { \
932 *(__timeo) = schedule_timeout(*(__timeo)); \
933 } \
934 sched_annotate_sleep(); \
935 lock_sock(__sk); \
936 __rc = __condition; \
937 __rc; \
938 })
939
940int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
941int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
942void sk_stream_wait_close(struct sock *sk, long timeo_p);
943int sk_stream_error(struct sock *sk, int flags, int err);
944void sk_stream_kill_queues(struct sock *sk);
945void sk_set_memalloc(struct sock *sk);
946void sk_clear_memalloc(struct sock *sk);
947
948int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
949#ifdef CONFIG_MPTCP
950 /* START - needed for MPTCP */
951 struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, int family);
952 void sock_lock_init(struct sock *sk);
953
954 extern struct lock_class_key af_callback_keys[AF_MAX];
955 extern char *const af_family_clock_key_strings[AF_MAX+1];
956
957 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
958/* END - needed for MPTCP */
959#endif
960
961struct request_sock_ops;
962struct timewait_sock_ops;
963struct inet_hashinfo;
964struct raw_hashinfo;
965struct module;
966
967/*
968 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
969 * un-modified. Special care is taken when initializing object to zero.
970 */
971static inline void sk_prot_clear_nulls(struct sock *sk, int size)
972{
973 if (offsetof(struct sock, sk_node.next) != 0)
974 memset(sk, 0, offsetof(struct sock, sk_node.next));
975 memset(&sk->sk_node.pprev, 0,
976 size - offsetof(struct sock, sk_node.pprev));
977}
978
979/* Networking protocol blocks we attach to sockets.
980 * socket layer -> transport layer interface
981 */
982struct proto {
983 void (*close)(struct sock *sk,
984 long timeout);
985 int (*connect)(struct sock *sk,
986 struct sockaddr *uaddr,
987 int addr_len);
988 int (*disconnect)(struct sock *sk, int flags);
989
990 struct sock * (*accept)(struct sock *sk, int flags, int *err);
991
992 int (*ioctl)(struct sock *sk, int cmd,
993 unsigned long arg);
994 int (*init)(struct sock *sk);
995 void (*destroy)(struct sock *sk);
996 void (*shutdown)(struct sock *sk, int how);
997 int (*setsockopt)(struct sock *sk, int level,
998 int optname, char __user *optval,
999 unsigned int optlen);
1000 int (*getsockopt)(struct sock *sk, int level,
1001 int optname, char __user *optval,
1002 int __user *option);
1003#ifdef CONFIG_COMPAT
1004 int (*compat_setsockopt)(struct sock *sk,
1005 int level,
1006 int optname, char __user *optval,
1007 unsigned int optlen);
1008 int (*compat_getsockopt)(struct sock *sk,
1009 int level,
1010 int optname, char __user *optval,
1011 int __user *option);
1012 int (*compat_ioctl)(struct sock *sk,
1013 unsigned int cmd, unsigned long arg);
1014#endif
1015 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1016 size_t len);
1017 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1018 size_t len, int noblock, int flags,
1019 int *addr_len);
1020 int (*sendpage)(struct sock *sk, struct page *page,
1021 int offset, size_t size, int flags);
1022 int (*bind)(struct sock *sk,
1023 struct sockaddr *uaddr, int addr_len);
1024
1025 int (*backlog_rcv) (struct sock *sk,
1026 struct sk_buff *skb);
1027
1028 void (*release_cb)(struct sock *sk);
1029
1030 /* Keeping track of sk's, looking them up, and port selection methods. */
1031 void (*hash)(struct sock *sk);
1032 void (*unhash)(struct sock *sk);
1033 void (*rehash)(struct sock *sk);
1034 int (*get_port)(struct sock *sk, unsigned short snum);
1035 void (*clear_sk)(struct sock *sk, int size);
1036#ifdef CONFIG_MPTCP
1037 void (*copy_sk)(struct sock *nsk, const struct sock *osk);
1038#endif
1039
1040 /* Keeping track of sockets in use */
1041#ifdef CONFIG_PROC_FS
1042 unsigned int inuse_idx;
1043#endif
1044
1045 bool (*stream_memory_free)(const struct sock *sk);
1046 /* Memory pressure */
1047 void (*enter_memory_pressure)(struct sock *sk);
1048 atomic_long_t *memory_allocated; /* Current allocated memory. */
1049 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1050 /*
1051 * Pressure flag: try to collapse.
1052 * Technical note: it is used by multiple contexts non atomically.
1053 * All the __sk_mem_schedule() is of this nature: accounting
1054 * is strict, actions are advisory and have some latency.
1055 */
1056 int *memory_pressure;
1057 long *sysctl_mem;
1058 int *sysctl_wmem;
1059 int *sysctl_rmem;
1060 int max_header;
1061 bool no_autobind;
1062
1063 struct kmem_cache *slab;
1064 unsigned int obj_size;
1065 int slab_flags;
1066
1067 struct percpu_counter *orphan_count;
1068
1069 struct request_sock_ops *rsk_prot;
1070 struct timewait_sock_ops *twsk_prot;
1071
1072 union {
1073 struct inet_hashinfo *hashinfo;
1074 struct udp_table *udp_table;
1075 struct raw_hashinfo *raw_hash;
1076 } h;
1077
1078 struct module *owner;
1079
1080 char name[32];
1081
1082 struct list_head node;
1083#ifdef SOCK_REFCNT_DEBUG
1084 atomic_t socks;
1085#endif
1086#ifdef CONFIG_MEMCG_KMEM
1087 /*
1088 * cgroup specific init/deinit functions. Called once for all
1089 * protocols that implement it, from cgroups populate function.
1090 * This function has to setup any files the protocol want to
1091 * appear in the kmem cgroup filesystem.
1092 */
1093 int (*init_cgroup)(struct mem_cgroup *memcg,
1094 struct cgroup_subsys *ss);
1095 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1096 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1097#endif
1098 int (*diag_destroy)(struct sock *sk, int err);
1099};
1100
1101int proto_register(struct proto *prot, int alloc_slab);
1102void proto_unregister(struct proto *prot);
1103
1104#ifdef SOCK_REFCNT_DEBUG
1105static inline void sk_refcnt_debug_inc(struct sock *sk)
1106{
1107 atomic_inc(&sk->sk_prot->socks);
1108}
1109
1110static inline void sk_refcnt_debug_dec(struct sock *sk)
1111{
1112 atomic_dec(&sk->sk_prot->socks);
1113 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1114 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1115}
1116
1117static inline void sk_refcnt_debug_release(const struct sock *sk)
1118{
1119 if (atomic_read(&sk->sk_refcnt) != 1)
1120 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1121 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1122}
1123#else /* SOCK_REFCNT_DEBUG */
1124#define sk_refcnt_debug_inc(sk) do { } while (0)
1125#define sk_refcnt_debug_dec(sk) do { } while (0)
1126#define sk_refcnt_debug_release(sk) do { } while (0)
1127#endif /* SOCK_REFCNT_DEBUG */
1128
1129#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1130extern struct static_key memcg_socket_limit_enabled;
1131static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1132 struct cg_proto *cg_proto)
1133{
1134 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1135}
1136#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1137#else
1138#define mem_cgroup_sockets_enabled 0
1139static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1140 struct cg_proto *cg_proto)
1141{
1142 return NULL;
1143}
1144#endif
1145
1146static inline bool sk_stream_memory_free(const struct sock *sk)
1147{
1148 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1149 return false;
1150
1151 return sk->sk_prot->stream_memory_free ?
1152 sk->sk_prot->stream_memory_free(sk) : true;
1153}
1154
1155static inline bool sk_stream_is_writeable(const struct sock *sk)
1156{
1157 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1158 sk_stream_memory_free(sk);
1159}
1160
1161
1162static inline bool sk_has_memory_pressure(const struct sock *sk)
1163{
1164 return sk->sk_prot->memory_pressure != NULL;
1165}
1166
1167static inline bool sk_under_memory_pressure(const struct sock *sk)
1168{
1169 if (!sk->sk_prot->memory_pressure)
1170 return false;
1171
1172 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1173 return !!sk->sk_cgrp->memory_pressure;
1174
1175 return !!*sk->sk_prot->memory_pressure;
1176}
1177
1178static inline void sk_leave_memory_pressure(struct sock *sk)
1179{
1180 int *memory_pressure = sk->sk_prot->memory_pressure;
1181
1182 if (!memory_pressure)
1183 return;
1184
1185 if (*memory_pressure)
1186 *memory_pressure = 0;
1187
1188 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1189 struct cg_proto *cg_proto = sk->sk_cgrp;
1190 struct proto *prot = sk->sk_prot;
1191
1192 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1193 cg_proto->memory_pressure = 0;
1194 }
1195
1196}
1197
1198static inline void sk_enter_memory_pressure(struct sock *sk)
1199{
1200 if (!sk->sk_prot->enter_memory_pressure)
1201 return;
1202
1203 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1204 struct cg_proto *cg_proto = sk->sk_cgrp;
1205 struct proto *prot = sk->sk_prot;
1206
1207 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1208 cg_proto->memory_pressure = 1;
1209 }
1210
1211 sk->sk_prot->enter_memory_pressure(sk);
1212}
1213
1214static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1215{
1216 long *prot = sk->sk_prot->sysctl_mem;
1217 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1218 prot = sk->sk_cgrp->sysctl_mem;
1219 return prot[index];
1220}
1221
1222static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1223 unsigned long amt,
1224 int *parent_status)
1225{
1226 page_counter_charge(&prot->memory_allocated, amt);
1227
1228 if (page_counter_read(&prot->memory_allocated) >
1229 prot->memory_allocated.limit)
1230 *parent_status = OVER_LIMIT;
1231}
1232
1233static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1234 unsigned long amt)
1235{
1236 page_counter_uncharge(&prot->memory_allocated, amt);
1237}
1238
1239static inline long
1240sk_memory_allocated(const struct sock *sk)
1241{
1242 struct proto *prot = sk->sk_prot;
1243
1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1245 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1246
1247 return atomic_long_read(prot->memory_allocated);
1248}
1249
1250static inline long
1251sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1252{
1253 struct proto *prot = sk->sk_prot;
1254
1255 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1256 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1257 /* update the root cgroup regardless */
1258 atomic_long_add_return(amt, prot->memory_allocated);
1259 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1260 }
1261
1262 return atomic_long_add_return(amt, prot->memory_allocated);
1263}
1264
1265static inline void
1266sk_memory_allocated_sub(struct sock *sk, int amt)
1267{
1268 struct proto *prot = sk->sk_prot;
1269
1270 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1271 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1272
1273 atomic_long_sub(amt, prot->memory_allocated);
1274}
1275
1276static inline void sk_sockets_allocated_dec(struct sock *sk)
1277{
1278 struct proto *prot = sk->sk_prot;
1279
1280 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1281 struct cg_proto *cg_proto = sk->sk_cgrp;
1282
1283 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1284 percpu_counter_dec(&cg_proto->sockets_allocated);
1285 }
1286
1287 percpu_counter_dec(prot->sockets_allocated);
1288}
1289
1290static inline void sk_sockets_allocated_inc(struct sock *sk)
1291{
1292 struct proto *prot = sk->sk_prot;
1293
1294 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1295 struct cg_proto *cg_proto = sk->sk_cgrp;
1296
1297 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1298 percpu_counter_inc(&cg_proto->sockets_allocated);
1299 }
1300
1301 percpu_counter_inc(prot->sockets_allocated);
1302}
1303
1304static inline int
1305sk_sockets_allocated_read_positive(struct sock *sk)
1306{
1307 struct proto *prot = sk->sk_prot;
1308
1309 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1310 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1311
1312 return percpu_counter_read_positive(prot->sockets_allocated);
1313}
1314
1315static inline int
1316proto_sockets_allocated_sum_positive(struct proto *prot)
1317{
1318 return percpu_counter_sum_positive(prot->sockets_allocated);
1319}
1320
1321static inline long
1322proto_memory_allocated(struct proto *prot)
1323{
1324 return atomic_long_read(prot->memory_allocated);
1325}
1326
1327static inline bool
1328proto_memory_pressure(struct proto *prot)
1329{
1330 if (!prot->memory_pressure)
1331 return false;
1332 return !!*prot->memory_pressure;
1333}
1334
1335
1336#ifdef CONFIG_PROC_FS
1337/* Called with local bh disabled */
1338void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1339int sock_prot_inuse_get(struct net *net, struct proto *proto);
1340#else
1341static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1342 int inc)
1343{
1344}
1345#endif
1346
1347
1348/* With per-bucket locks this operation is not-atomic, so that
1349 * this version is not worse.
1350 */
1351static inline void __sk_prot_rehash(struct sock *sk)
1352{
1353 sk->sk_prot->unhash(sk);
1354 sk->sk_prot->hash(sk);
1355}
1356
1357void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1358
1359/* About 10 seconds */
1360#define SOCK_DESTROY_TIME (10*HZ)
1361
1362/* Sockets 0-1023 can't be bound to unless you are superuser */
1363#define PROT_SOCK 1024
1364
1365#define SHUTDOWN_MASK 3
1366#define RCV_SHUTDOWN 1
1367#define SEND_SHUTDOWN 2
1368
1369#define SOCK_SNDBUF_LOCK 1
1370#define SOCK_RCVBUF_LOCK 2
1371#define SOCK_BINDADDR_LOCK 4
1372#define SOCK_BINDPORT_LOCK 8
1373
1374struct socket_alloc {
1375 struct socket socket;
1376 struct inode vfs_inode;
1377};
1378
1379static inline struct socket *SOCKET_I(struct inode *inode)
1380{
1381 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1382}
1383
1384static inline struct inode *SOCK_INODE(struct socket *socket)
1385{
1386 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1387}
1388
1389/*
1390 * Functions for memory accounting
1391 */
1392int __sk_mem_schedule(struct sock *sk, int size, int kind);
1393void __sk_mem_reclaim(struct sock *sk, int amount);
1394
1395#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1396#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1397#define SK_MEM_SEND 0
1398#define SK_MEM_RECV 1
1399
1400static inline int sk_mem_pages(int amt)
1401{
1402 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1403}
1404
1405static inline bool sk_has_account(struct sock *sk)
1406{
1407 /* return true if protocol supports memory accounting */
1408 return !!sk->sk_prot->memory_allocated;
1409}
1410
1411static inline bool sk_wmem_schedule(struct sock *sk, int size)
1412{
1413 if (!sk_has_account(sk))
1414 return true;
1415 return size <= sk->sk_forward_alloc ||
1416 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1417}
1418
1419static inline bool
1420sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1421{
1422 if (!sk_has_account(sk))
1423 return true;
1424 return size<= sk->sk_forward_alloc ||
1425 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1426 skb_pfmemalloc(skb);
1427}
1428
1429static inline void sk_mem_reclaim(struct sock *sk)
1430{
1431 if (!sk_has_account(sk))
1432 return;
1433 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1434 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1435}
1436
1437static inline void sk_mem_reclaim_partial(struct sock *sk)
1438{
1439 if (!sk_has_account(sk))
1440 return;
1441 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1442 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1443}
1444
1445static inline void sk_mem_charge(struct sock *sk, int size)
1446{
1447 if (!sk_has_account(sk))
1448 return;
1449 sk->sk_forward_alloc -= size;
1450}
1451
1452static inline void sk_mem_uncharge(struct sock *sk, int size)
1453{
1454 if (!sk_has_account(sk))
1455 return;
1456 sk->sk_forward_alloc += size;
1457
1458 /* Avoid a possible overflow.
1459 * TCP send queues can make this happen, if sk_mem_reclaim()
1460 * is not called and more than 2 GBytes are released at once.
1461 *
1462 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1463 * no need to hold that much forward allocation anyway.
1464 */
1465 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1466 __sk_mem_reclaim(sk, 1 << 20);
1467}
1468
1469static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1470{
1471 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1472 sk->sk_wmem_queued -= skb->truesize;
1473 sk_mem_uncharge(sk, skb->truesize);
1474 __kfree_skb(skb);
1475}
1476
1477/* Used by processes to "lock" a socket state, so that
1478 * interrupts and bottom half handlers won't change it
1479 * from under us. It essentially blocks any incoming
1480 * packets, so that we won't get any new data or any
1481 * packets that change the state of the socket.
1482 *
1483 * While locked, BH processing will add new packets to
1484 * the backlog queue. This queue is processed by the
1485 * owner of the socket lock right before it is released.
1486 *
1487 * Since ~2.3.5 it is also exclusive sleep lock serializing
1488 * accesses from user process context.
1489 */
1490#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1491
1492static inline void sock_release_ownership(struct sock *sk)
1493{
1494 sk->sk_lock.owned = 0;
1495}
1496
1497/*
1498 * Macro so as to not evaluate some arguments when
1499 * lockdep is not enabled.
1500 *
1501 * Mark both the sk_lock and the sk_lock.slock as a
1502 * per-address-family lock class.
1503 */
1504#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1505do { \
1506 sk->sk_lock.owned = 0; \
1507 init_waitqueue_head(&sk->sk_lock.wq); \
1508 spin_lock_init(&(sk)->sk_lock.slock); \
1509 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1510 sizeof((sk)->sk_lock)); \
1511 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1512 (skey), (sname)); \
1513 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1514} while (0)
1515
1516void lock_sock_nested(struct sock *sk, int subclass);
1517
1518static inline void lock_sock(struct sock *sk)
1519{
1520 lock_sock_nested(sk, 0);
1521}
1522
1523void release_sock(struct sock *sk);
1524
1525/* BH context may only use the following locking interface. */
1526#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1527#define bh_lock_sock_nested(__sk) \
1528 spin_lock_nested(&((__sk)->sk_lock.slock), \
1529 SINGLE_DEPTH_NESTING)
1530#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1531
1532bool lock_sock_fast(struct sock *sk);
1533/**
1534 * unlock_sock_fast - complement of lock_sock_fast
1535 * @sk: socket
1536 * @slow: slow mode
1537 *
1538 * fast unlock socket for user context.
1539 * If slow mode is on, we call regular release_sock()
1540 */
1541static inline void unlock_sock_fast(struct sock *sk, bool slow)
1542{
1543 if (slow)
1544 release_sock(sk);
1545 else
1546 spin_unlock_bh(&sk->sk_lock.slock);
1547}
1548
1549
1550struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1551 struct proto *prot, int kern);
1552void sk_free(struct sock *sk);
1553void sk_destruct(struct sock *sk);
1554struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1555
1556struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1557 gfp_t priority);
1558void sock_wfree(struct sk_buff *skb);
1559void skb_orphan_partial(struct sk_buff *skb);
1560void sock_rfree(struct sk_buff *skb);
1561void sock_efree(struct sk_buff *skb);
1562#ifdef CONFIG_INET
1563void sock_edemux(struct sk_buff *skb);
1564#else
1565#define sock_edemux(skb) sock_efree(skb)
1566#endif
1567
1568int sock_setsockopt(struct socket *sock, int level, int op,
1569 char __user *optval, unsigned int optlen);
1570
1571int sock_getsockopt(struct socket *sock, int level, int op,
1572 char __user *optval, int __user *optlen);
1573struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1574 int noblock, int *errcode);
1575struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1576 unsigned long data_len, int noblock,
1577 int *errcode, int max_page_order);
1578void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1579void sock_kfree_s(struct sock *sk, void *mem, int size);
1580void sock_kzfree_s(struct sock *sk, void *mem, int size);
1581void sk_send_sigurg(struct sock *sk);
1582
1583struct sockcm_cookie {
1584 u32 mark;
1585};
1586
1587int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1588 struct sockcm_cookie *sockc);
1589
1590/*
1591 * Functions to fill in entries in struct proto_ops when a protocol
1592 * does not implement a particular function.
1593 */
1594int sock_no_bind(struct socket *, struct sockaddr *, int);
1595int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1596int sock_no_socketpair(struct socket *, struct socket *);
1597int sock_no_accept(struct socket *, struct socket *, int);
1598int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1599unsigned int sock_no_poll(struct file *, struct socket *,
1600 struct poll_table_struct *);
1601int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1602int sock_no_listen(struct socket *, int);
1603int sock_no_shutdown(struct socket *, int);
1604int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1605int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1606int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1607int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1608int sock_no_mmap(struct file *file, struct socket *sock,
1609 struct vm_area_struct *vma);
1610ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1611 size_t size, int flags);
1612
1613/*
1614 * Functions to fill in entries in struct proto_ops when a protocol
1615 * uses the inet style.
1616 */
1617int sock_common_getsockopt(struct socket *sock, int level, int optname,
1618 char __user *optval, int __user *optlen);
1619int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1620 int flags);
1621int sock_common_setsockopt(struct socket *sock, int level, int optname,
1622 char __user *optval, unsigned int optlen);
1623int compat_sock_common_getsockopt(struct socket *sock, int level,
1624 int optname, char __user *optval, int __user *optlen);
1625int compat_sock_common_setsockopt(struct socket *sock, int level,
1626 int optname, char __user *optval, unsigned int optlen);
1627
1628void sk_common_release(struct sock *sk);
1629
1630/*
1631 * Default socket callbacks and setup code
1632 */
1633
1634/* Initialise core socket variables */
1635void sock_init_data(struct socket *sock, struct sock *sk);
1636
1637/*
1638 * Socket reference counting postulates.
1639 *
1640 * * Each user of socket SHOULD hold a reference count.
1641 * * Each access point to socket (an hash table bucket, reference from a list,
1642 * running timer, skb in flight MUST hold a reference count.
1643 * * When reference count hits 0, it means it will never increase back.
1644 * * When reference count hits 0, it means that no references from
1645 * outside exist to this socket and current process on current CPU
1646 * is last user and may/should destroy this socket.
1647 * * sk_free is called from any context: process, BH, IRQ. When
1648 * it is called, socket has no references from outside -> sk_free
1649 * may release descendant resources allocated by the socket, but
1650 * to the time when it is called, socket is NOT referenced by any
1651 * hash tables, lists etc.
1652 * * Packets, delivered from outside (from network or from another process)
1653 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1654 * when they sit in queue. Otherwise, packets will leak to hole, when
1655 * socket is looked up by one cpu and unhasing is made by another CPU.
1656 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1657 * (leak to backlog). Packet socket does all the processing inside
1658 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1659 * use separate SMP lock, so that they are prone too.
1660 */
1661
1662/* Ungrab socket and destroy it, if it was the last reference. */
1663static inline void sock_put(struct sock *sk)
1664{
1665 if (atomic_dec_and_test(&sk->sk_refcnt))
1666 sk_free(sk);
1667}
1668/* Generic version of sock_put(), dealing with all sockets
1669 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1670 */
1671void sock_gen_put(struct sock *sk);
1672
1673int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1674
1675static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1676{
1677 sk->sk_tx_queue_mapping = tx_queue;
1678}
1679
1680static inline void sk_tx_queue_clear(struct sock *sk)
1681{
1682 sk->sk_tx_queue_mapping = -1;
1683}
1684
1685static inline int sk_tx_queue_get(const struct sock *sk)
1686{
1687 return sk ? sk->sk_tx_queue_mapping : -1;
1688}
1689
1690static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1691{
1692 sk_tx_queue_clear(sk);
1693 sk->sk_socket = sock;
1694}
1695
1696static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1697{
1698 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1699 return &rcu_dereference_raw(sk->sk_wq)->wait;
1700}
1701/* Detach socket from process context.
1702 * Announce socket dead, detach it from wait queue and inode.
1703 * Note that parent inode held reference count on this struct sock,
1704 * we do not release it in this function, because protocol
1705 * probably wants some additional cleanups or even continuing
1706 * to work with this socket (TCP).
1707 */
1708static inline void sock_orphan(struct sock *sk)
1709{
1710 write_lock_bh(&sk->sk_callback_lock);
1711 sock_set_flag(sk, SOCK_DEAD);
1712 sk_set_socket(sk, NULL);
1713 sk->sk_wq = NULL;
1714 write_unlock_bh(&sk->sk_callback_lock);
1715}
1716
1717static inline void sock_graft(struct sock *sk, struct socket *parent)
1718{
1719 write_lock_bh(&sk->sk_callback_lock);
1720 sk->sk_wq = parent->wq;
1721 parent->sk = sk;
1722 sk_set_socket(sk, parent);
1723 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1724 security_sock_graft(sk, parent);
1725 write_unlock_bh(&sk->sk_callback_lock);
1726}
1727
1728kuid_t sock_i_uid(struct sock *sk);
1729unsigned long sock_i_ino(struct sock *sk);
1730
1731static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1732{
1733 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1734}
1735
1736
1737static inline u32 net_tx_rndhash(void)
1738{
1739 u32 v = prandom_u32();
1740
1741 return v ?: 1;
1742}
1743
1744static inline void sk_set_txhash(struct sock *sk)
1745{
1746 sk->sk_txhash = net_tx_rndhash();
1747}
1748
1749static inline void sk_rethink_txhash(struct sock *sk)
1750{
1751 if (sk->sk_txhash)
1752 sk_set_txhash(sk);
1753}
1754
1755static inline struct dst_entry *
1756__sk_dst_get(struct sock *sk)
1757{
1758 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1759 lockdep_is_held(&sk->sk_lock.slock));
1760}
1761
1762static inline struct dst_entry *
1763sk_dst_get(struct sock *sk)
1764{
1765 struct dst_entry *dst;
1766
1767 rcu_read_lock();
1768 dst = rcu_dereference(sk->sk_dst_cache);
1769 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1770 dst = NULL;
1771 rcu_read_unlock();
1772 return dst;
1773}
1774
1775static inline void dst_negative_advice(struct sock *sk)
1776{
1777 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1778
1779 sk_rethink_txhash(sk);
1780
1781 if (dst && dst->ops->negative_advice) {
1782 ndst = dst->ops->negative_advice(dst);
1783
1784 if (ndst != dst) {
1785 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1786 sk_tx_queue_clear(sk);
1787 }
1788 }
1789}
1790
1791static inline void
1792__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1793{
1794 struct dst_entry *old_dst;
1795
1796 sk_tx_queue_clear(sk);
1797 /*
1798 * This can be called while sk is owned by the caller only,
1799 * with no state that can be checked in a rcu_dereference_check() cond
1800 */
1801 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1802 rcu_assign_pointer(sk->sk_dst_cache, dst);
1803 dst_release(old_dst);
1804}
1805
1806static inline void
1807sk_dst_set(struct sock *sk, struct dst_entry *dst)
1808{
1809 struct dst_entry *old_dst;
1810
1811 sk_tx_queue_clear(sk);
1812 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1813 dst_release(old_dst);
1814}
1815
1816static inline void
1817__sk_dst_reset(struct sock *sk)
1818{
1819 __sk_dst_set(sk, NULL);
1820}
1821
1822static inline void
1823sk_dst_reset(struct sock *sk)
1824{
1825 sk_dst_set(sk, NULL);
1826}
1827
1828struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1829
1830struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1831
1832bool sk_mc_loop(struct sock *sk);
1833
1834static inline bool sk_can_gso(const struct sock *sk)
1835{
1836 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1837}
1838
1839void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1840
1841static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1842{
1843 sk->sk_route_nocaps |= flags;
1844 sk->sk_route_caps &= ~flags;
1845}
1846
1847static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1848 struct iov_iter *from, char *to,
1849 int copy, int offset)
1850{
1851 if (skb->ip_summed == CHECKSUM_NONE) {
1852 __wsum csum = 0;
1853 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1854 return -EFAULT;
1855 skb->csum = csum_block_add(skb->csum, csum, offset);
1856 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1857 if (copy_from_iter_nocache(to, copy, from) != copy)
1858 return -EFAULT;
1859 } else if (copy_from_iter(to, copy, from) != copy)
1860 return -EFAULT;
1861
1862 return 0;
1863}
1864
1865static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1866 struct iov_iter *from, int copy)
1867{
1868 int err, offset = skb->len;
1869
1870 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1871 copy, offset);
1872 if (err)
1873 __skb_trim(skb, offset);
1874
1875 return err;
1876}
1877
1878static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1879 struct sk_buff *skb,
1880 struct page *page,
1881 int off, int copy)
1882{
1883 int err;
1884
1885 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1886 copy, skb->len);
1887 if (err)
1888 return err;
1889
1890 skb->len += copy;
1891 skb->data_len += copy;
1892 skb->truesize += copy;
1893 sk->sk_wmem_queued += copy;
1894 sk_mem_charge(sk, copy);
1895 return 0;
1896}
1897
1898/**
1899 * sk_wmem_alloc_get - returns write allocations
1900 * @sk: socket
1901 *
1902 * Returns sk_wmem_alloc minus initial offset of one
1903 */
1904static inline int sk_wmem_alloc_get(const struct sock *sk)
1905{
1906 return atomic_read(&sk->sk_wmem_alloc) - 1;
1907}
1908
1909/**
1910 * sk_rmem_alloc_get - returns read allocations
1911 * @sk: socket
1912 *
1913 * Returns sk_rmem_alloc
1914 */
1915static inline int sk_rmem_alloc_get(const struct sock *sk)
1916{
1917 return atomic_read(&sk->sk_rmem_alloc);
1918}
1919
1920/**
1921 * sk_has_allocations - check if allocations are outstanding
1922 * @sk: socket
1923 *
1924 * Returns true if socket has write or read allocations
1925 */
1926static inline bool sk_has_allocations(const struct sock *sk)
1927{
1928 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1929}
1930
1931/**
1932 * wq_has_sleeper - check if there are any waiting processes
1933 * @wq: struct socket_wq
1934 *
1935 * Returns true if socket_wq has waiting processes
1936 *
1937 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1938 * barrier call. They were added due to the race found within the tcp code.
1939 *
1940 * Consider following tcp code paths:
1941 *
1942 * CPU1 CPU2
1943 *
1944 * sys_select receive packet
1945 * ... ...
1946 * __add_wait_queue update tp->rcv_nxt
1947 * ... ...
1948 * tp->rcv_nxt check sock_def_readable
1949 * ... {
1950 * schedule rcu_read_lock();
1951 * wq = rcu_dereference(sk->sk_wq);
1952 * if (wq && waitqueue_active(&wq->wait))
1953 * wake_up_interruptible(&wq->wait)
1954 * ...
1955 * }
1956 *
1957 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1958 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1959 * could then endup calling schedule and sleep forever if there are no more
1960 * data on the socket.
1961 *
1962 */
1963static inline bool wq_has_sleeper(struct socket_wq *wq)
1964{
1965 /* We need to be sure we are in sync with the
1966 * add_wait_queue modifications to the wait queue.
1967 *
1968 * This memory barrier is paired in the sock_poll_wait.
1969 */
1970 smp_mb();
1971 return wq && waitqueue_active(&wq->wait);
1972}
1973
1974/**
1975 * sock_poll_wait - place memory barrier behind the poll_wait call.
1976 * @filp: file
1977 * @wait_address: socket wait queue
1978 * @p: poll_table
1979 *
1980 * See the comments in the wq_has_sleeper function.
1981 */
1982static inline void sock_poll_wait(struct file *filp,
1983 wait_queue_head_t *wait_address, poll_table *p)
1984{
1985 if (!poll_does_not_wait(p) && wait_address) {
1986 poll_wait(filp, wait_address, p);
1987 /* We need to be sure we are in sync with the
1988 * socket flags modification.
1989 *
1990 * This memory barrier is paired in the wq_has_sleeper.
1991 */
1992 smp_mb();
1993 }
1994}
1995
1996static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1997{
1998 if (sk->sk_txhash) {
1999 skb->l4_hash = 1;
2000 skb->hash = sk->sk_txhash;
2001 }
2002}
2003
2004void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2005
2006/*
2007 * Queue a received datagram if it will fit. Stream and sequenced
2008 * protocols can't normally use this as they need to fit buffers in
2009 * and play with them.
2010 *
2011 * Inlined as it's very short and called for pretty much every
2012 * packet ever received.
2013 */
2014static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2015{
2016 skb_orphan(skb);
2017 skb->sk = sk;
2018 skb->destructor = sock_rfree;
2019 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2020 sk_mem_charge(sk, skb->truesize);
2021}
2022
2023void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2024 unsigned long expires);
2025
2026void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2027
2028int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2029
2030int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2031struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2032
2033/*
2034 * Recover an error report and clear atomically
2035 */
2036
2037static inline int sock_error(struct sock *sk)
2038{
2039 int err;
2040 if (likely(!sk->sk_err))
2041 return 0;
2042 err = xchg(&sk->sk_err, 0);
2043 return -err;
2044}
2045
2046static inline unsigned long sock_wspace(struct sock *sk)
2047{
2048 int amt = 0;
2049
2050 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2051 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2052 if (amt < 0)
2053 amt = 0;
2054 }
2055 return amt;
2056}
2057
2058/* Note:
2059 * We use sk->sk_wq_raw, from contexts knowing this
2060 * pointer is not NULL and cannot disappear/change.
2061 */
2062static inline void sk_set_bit(int nr, struct sock *sk)
2063{
2064 set_bit(nr, &sk->sk_wq_raw->flags);
2065}
2066
2067static inline void sk_clear_bit(int nr, struct sock *sk)
2068{
2069 clear_bit(nr, &sk->sk_wq_raw->flags);
2070}
2071
2072static inline void sk_wake_async(const struct sock *sk, int how, int band)
2073{
2074 if (sock_flag(sk, SOCK_FASYNC)) {
2075 rcu_read_lock();
2076 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2077 rcu_read_unlock();
2078 }
2079}
2080
2081/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2082 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2083 * Note: for send buffers, TCP works better if we can build two skbs at
2084 * minimum.
2085 */
2086#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2087
2088#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2089#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2090
2091static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2092{
2093 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2094 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2095 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2096 }
2097}
2098
2099struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2100 bool force_schedule);
2101
2102/**
2103 * sk_page_frag - return an appropriate page_frag
2104 * @sk: socket
2105 *
2106 * If socket allocation mode allows current thread to sleep, it means its
2107 * safe to use the per task page_frag instead of the per socket one.
2108 */
2109static inline struct page_frag *sk_page_frag(struct sock *sk)
2110{
2111 if (gfpflags_allow_blocking(sk->sk_allocation))
2112 return &current->task_frag;
2113
2114 return &sk->sk_frag;
2115}
2116
2117bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2118
2119/*
2120 * Default write policy as shown to user space via poll/select/SIGIO
2121 */
2122static inline bool sock_writeable(const struct sock *sk)
2123{
2124 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2125}
2126
2127static inline gfp_t gfp_any(void)
2128{
2129 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2130}
2131
2132static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2133{
2134 return noblock ? 0 : sk->sk_rcvtimeo;
2135}
2136
2137static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2138{
2139 return noblock ? 0 : sk->sk_sndtimeo;
2140}
2141
2142static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2143{
2144 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2145}
2146
2147/* Alas, with timeout socket operations are not restartable.
2148 * Compare this to poll().
2149 */
2150static inline int sock_intr_errno(long timeo)
2151{
2152 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2153}
2154
2155struct sock_skb_cb {
2156 u32 dropcount;
2157};
2158
2159/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2160 * using skb->cb[] would keep using it directly and utilize its
2161 * alignement guarantee.
2162 */
2163#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2164 sizeof(struct sock_skb_cb)))
2165
2166#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2167 SOCK_SKB_CB_OFFSET))
2168
2169#define sock_skb_cb_check_size(size) \
2170 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2171
2172static inline void
2173sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2174{
2175 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2176}
2177
2178void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2179 struct sk_buff *skb);
2180void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2181 struct sk_buff *skb);
2182
2183static inline void
2184sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2185{
2186 ktime_t kt = skb->tstamp;
2187 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2188
2189 /*
2190 * generate control messages if
2191 * - receive time stamping in software requested
2192 * - software time stamp available and wanted
2193 * - hardware time stamps available and wanted
2194 */
2195 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2196 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2197 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2198 (hwtstamps->hwtstamp.tv64 &&
2199 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2200 __sock_recv_timestamp(msg, sk, skb);
2201 else
2202 sk->sk_stamp = kt;
2203
2204 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2205 __sock_recv_wifi_status(msg, sk, skb);
2206}
2207
2208void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2209 struct sk_buff *skb);
2210
2211static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2212 struct sk_buff *skb)
2213{
2214#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2215 (1UL << SOCK_RCVTSTAMP))
2216#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2217 SOF_TIMESTAMPING_RAW_HARDWARE)
2218
2219 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2220 __sock_recv_ts_and_drops(msg, sk, skb);
2221 else
2222 sk->sk_stamp = skb->tstamp;
2223}
2224
2225void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2226
2227/**
2228 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2229 * @sk: socket sending this packet
2230 * @tx_flags: completed with instructions for time stamping
2231 *
2232 * Note : callers should take care of initial *tx_flags value (usually 0)
2233 */
2234static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2235{
2236 if (unlikely(sk->sk_tsflags))
2237 __sock_tx_timestamp(sk, tx_flags);
2238 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2239 *tx_flags |= SKBTX_WIFI_STATUS;
2240}
2241
2242/**
2243 * sk_eat_skb - Release a skb if it is no longer needed
2244 * @sk: socket to eat this skb from
2245 * @skb: socket buffer to eat
2246 *
2247 * This routine must be called with interrupts disabled or with the socket
2248 * locked so that the sk_buff queue operation is ok.
2249*/
2250static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2251{
2252 __skb_unlink(skb, &sk->sk_receive_queue);
2253 __kfree_skb(skb);
2254}
2255
2256static inline
2257struct net *sock_net(const struct sock *sk)
2258{
2259 return read_pnet(&sk->sk_net);
2260}
2261
2262static inline
2263void sock_net_set(struct sock *sk, struct net *net)
2264{
2265 write_pnet(&sk->sk_net, net);
2266}
2267
2268static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2269{
2270 if (skb->sk) {
2271 struct sock *sk = skb->sk;
2272
2273 skb->destructor = NULL;
2274 skb->sk = NULL;
2275 return sk;
2276 }
2277 return NULL;
2278}
2279
2280/* This helper checks if a socket is a full socket,
2281 * ie _not_ a timewait or request socket.
2282 */
2283static inline bool sk_fullsock(const struct sock *sk)
2284{
2285 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2286}
2287
2288/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2289 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2290 */
2291static inline bool sk_listener(const struct sock *sk)
2292{
2293 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2294}
2295
2296/**
2297 * sk_state_load - read sk->sk_state for lockless contexts
2298 * @sk: socket pointer
2299 *
2300 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2301 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2302 */
2303static inline int sk_state_load(const struct sock *sk)
2304{
2305 return smp_load_acquire(&sk->sk_state);
2306}
2307
2308/**
2309 * sk_state_store - update sk->sk_state
2310 * @sk: socket pointer
2311 * @newstate: new state
2312 *
2313 * Paired with sk_state_load(). Should be used in contexts where
2314 * state change might impact lockless readers.
2315 */
2316static inline void sk_state_store(struct sock *sk, int newstate)
2317{
2318 smp_store_release(&sk->sk_state, newstate);
2319}
2320
2321void sock_enable_timestamp(struct sock *sk, int flag);
2322int sock_get_timestamp(struct sock *, struct timeval __user *);
2323int sock_get_timestampns(struct sock *, struct timespec __user *);
2324int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2325 int type);
2326
2327bool sk_ns_capable(const struct sock *sk,
2328 struct user_namespace *user_ns, int cap);
2329bool sk_capable(const struct sock *sk, int cap);
2330bool sk_net_capable(const struct sock *sk, int cap);
2331
2332extern __u32 sysctl_wmem_max;
2333extern __u32 sysctl_rmem_max;
2334
2335extern int sysctl_tstamp_allow_data;
2336extern int sysctl_optmem_max;
2337
2338extern __u32 sysctl_wmem_default;
2339extern __u32 sysctl_rmem_default;
2340
2341#endif /* _SOCK_H */