defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / reiserfs / fix_node.c
... / ...
CommitLineData
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/slab.h>
7#include <linux/string.h>
8#include "reiserfs.h"
9#include <linux/buffer_head.h>
10
11/*
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
25 */
26
27/*
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
30 */
31static inline int old_item_num(int new_num, int affected_item_num, int mode)
32{
33 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34 return new_num;
35
36 if (mode == M_INSERT) {
37
38 RFALSE(new_num == 0,
39 "vs-8005: for INSERT mode and item number of inserted item");
40
41 return new_num - 1;
42 }
43
44 RFALSE(mode != M_DELETE,
45 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46 mode);
47 /* delete mode */
48 return new_num + 1;
49}
50
51static void create_virtual_node(struct tree_balance *tb, int h)
52{
53 struct item_head *ih;
54 struct virtual_node *vn = tb->tb_vn;
55 int new_num;
56 struct buffer_head *Sh; /* this comes from tb->S[h] */
57
58 Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60 /* size of changed node */
61 vn->vn_size =
62 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64 /* for internal nodes array if virtual items is not created */
65 if (h) {
66 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67 return;
68 }
69
70 /* number of items in virtual node */
71 vn->vn_nr_item =
72 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73 ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75 /* first virtual item */
76 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80 /* first item in the node */
81 ih = item_head(Sh, 0);
82
83 /* define the mergeability for 0-th item (if it is not being deleted) */
84 if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88 /*
89 * go through all items that remain in the virtual
90 * node (except for the new (inserted) one)
91 */
92 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93 int j;
94 struct virtual_item *vi = vn->vn_vi + new_num;
95 int is_affected =
96 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98 if (is_affected && vn->vn_mode == M_INSERT)
99 continue;
100
101 /* get item number in source node */
102 j = old_item_num(new_num, vn->vn_affected_item_num,
103 vn->vn_mode);
104
105 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106 vi->vi_ih = ih + j;
107 vi->vi_item = ih_item_body(Sh, ih + j);
108 vi->vi_uarea = vn->vn_free_ptr;
109
110 /*
111 * FIXME: there is no check that item operation did not
112 * consume too much memory
113 */
114 vn->vn_free_ptr +=
115 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117 reiserfs_panic(tb->tb_sb, "vs-8030",
118 "virtual node space consumed");
119
120 if (!is_affected)
121 /* this is not being changed */
122 continue;
123
124 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126 /* pointer to data which is going to be pasted */
127 vi->vi_new_data = vn->vn_data;
128 }
129 }
130
131 /* virtual inserted item is not defined yet */
132 if (vn->vn_mode == M_INSERT) {
133 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135 RFALSE(vn->vn_ins_ih == NULL,
136 "vs-8040: item header of inserted item is not specified");
137 vi->vi_item_len = tb->insert_size[0];
138 vi->vi_ih = vn->vn_ins_ih;
139 vi->vi_item = vn->vn_data;
140 vi->vi_uarea = vn->vn_free_ptr;
141
142 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143 tb->insert_size[0]);
144 }
145
146 /*
147 * set right merge flag we take right delimiting key and
148 * check whether it is a mergeable item
149 */
150 if (tb->CFR[0]) {
151 struct reiserfs_key *key;
152
153 key = internal_key(tb->CFR[0], tb->rkey[0]);
154 if (op_is_left_mergeable(key, Sh->b_size)
155 && (vn->vn_mode != M_DELETE
156 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158 VI_TYPE_RIGHT_MERGEABLE;
159
160#ifdef CONFIG_REISERFS_CHECK
161 if (op_is_left_mergeable(key, Sh->b_size) &&
162 !(vn->vn_mode != M_DELETE
163 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164 /*
165 * we delete last item and it could be merged
166 * with right neighbor's first item
167 */
168 if (!
169 (B_NR_ITEMS(Sh) == 1
170 && is_direntry_le_ih(item_head(Sh, 0))
171 && ih_entry_count(item_head(Sh, 0)) == 1)) {
172 /*
173 * node contains more than 1 item, or item
174 * is not directory item, or this item
175 * contains more than 1 entry
176 */
177 print_block(Sh, 0, -1, -1);
178 reiserfs_panic(tb->tb_sb, "vs-8045",
179 "rdkey %k, affected item==%d "
180 "(mode==%c) Must be %c",
181 key, vn->vn_affected_item_num,
182 vn->vn_mode, M_DELETE);
183 }
184 }
185#endif
186
187 }
188}
189
190/*
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
193 */
194static void check_left(struct tree_balance *tb, int h, int cur_free)
195{
196 int i;
197 struct virtual_node *vn = tb->tb_vn;
198 struct virtual_item *vi;
199 int d_size, ih_size;
200
201 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203 /* internal level */
204 if (h > 0) {
205 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206 return;
207 }
208
209 /* leaf level */
210
211 if (!cur_free || !vn->vn_nr_item) {
212 /* no free space or nothing to move */
213 tb->lnum[h] = 0;
214 tb->lbytes = -1;
215 return;
216 }
217
218 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219 "vs-8055: parent does not exist or invalid");
220
221 vi = vn->vn_vi;
222 if ((unsigned int)cur_free >=
223 (vn->vn_size -
224 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225 /* all contents of S[0] fits into L[0] */
226
227 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228 "vs-8055: invalid mode or balance condition failed");
229
230 tb->lnum[0] = vn->vn_nr_item;
231 tb->lbytes = -1;
232 return;
233 }
234
235 d_size = 0, ih_size = IH_SIZE;
236
237 /* first item may be merge with last item in left neighbor */
238 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239 d_size = -((int)IH_SIZE), ih_size = 0;
240
241 tb->lnum[0] = 0;
242 for (i = 0; i < vn->vn_nr_item;
243 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244 d_size += vi->vi_item_len;
245 if (cur_free >= d_size) {
246 /* the item can be shifted entirely */
247 cur_free -= d_size;
248 tb->lnum[0]++;
249 continue;
250 }
251
252 /* the item cannot be shifted entirely, try to split it */
253 /*
254 * check whether L[0] can hold ih and at least one byte
255 * of the item body
256 */
257
258 /* cannot shift even a part of the current item */
259 if (cur_free <= ih_size) {
260 tb->lbytes = -1;
261 return;
262 }
263 cur_free -= ih_size;
264
265 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266 if (tb->lbytes != -1)
267 /* count partially shifted item */
268 tb->lnum[0]++;
269
270 break;
271 }
272
273 return;
274}
275
276/*
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
279 */
280static void check_right(struct tree_balance *tb, int h, int cur_free)
281{
282 int i;
283 struct virtual_node *vn = tb->tb_vn;
284 struct virtual_item *vi;
285 int d_size, ih_size;
286
287 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289 /* internal level */
290 if (h > 0) {
291 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292 return;
293 }
294
295 /* leaf level */
296
297 if (!cur_free || !vn->vn_nr_item) {
298 /* no free space */
299 tb->rnum[h] = 0;
300 tb->rbytes = -1;
301 return;
302 }
303
304 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305 "vs-8075: parent does not exist or invalid");
306
307 vi = vn->vn_vi + vn->vn_nr_item - 1;
308 if ((unsigned int)cur_free >=
309 (vn->vn_size -
310 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311 /* all contents of S[0] fits into R[0] */
312
313 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314 "vs-8080: invalid mode or balance condition failed");
315
316 tb->rnum[h] = vn->vn_nr_item;
317 tb->rbytes = -1;
318 return;
319 }
320
321 d_size = 0, ih_size = IH_SIZE;
322
323 /* last item may be merge with first item in right neighbor */
324 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325 d_size = -(int)IH_SIZE, ih_size = 0;
326
327 tb->rnum[0] = 0;
328 for (i = vn->vn_nr_item - 1; i >= 0;
329 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330 d_size += vi->vi_item_len;
331 if (cur_free >= d_size) {
332 /* the item can be shifted entirely */
333 cur_free -= d_size;
334 tb->rnum[0]++;
335 continue;
336 }
337
338 /*
339 * check whether R[0] can hold ih and at least one
340 * byte of the item body
341 */
342
343 /* cannot shift even a part of the current item */
344 if (cur_free <= ih_size) {
345 tb->rbytes = -1;
346 return;
347 }
348
349 /*
350 * R[0] can hold the header of the item and at least
351 * one byte of its body
352 */
353 cur_free -= ih_size; /* cur_free is still > 0 */
354
355 tb->rbytes = op_check_right(vi, cur_free);
356 if (tb->rbytes != -1)
357 /* count partially shifted item */
358 tb->rnum[0]++;
359
360 break;
361 }
362
363 return;
364}
365
366/*
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 * which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 * which are shifted to right neighbor
373 */
374static int get_num_ver(int mode, struct tree_balance *tb, int h,
375 int from, int from_bytes,
376 int to, int to_bytes, short *snum012, int flow)
377{
378 int i;
379 int cur_free;
380 int units;
381 struct virtual_node *vn = tb->tb_vn;
382 int total_node_size, max_node_size, current_item_size;
383 int needed_nodes;
384
385 /* position of item we start filling node from */
386 int start_item;
387
388 /* position of item we finish filling node by */
389 int end_item;
390
391 /*
392 * number of first bytes (entries for directory) of start_item-th item
393 * we do not include into node that is being filled
394 */
395 int start_bytes;
396
397 /*
398 * number of last bytes (entries for directory) of end_item-th item
399 * we do node include into node that is being filled
400 */
401 int end_bytes;
402
403 /*
404 * these are positions in virtual item of items, that are split
405 * between S[0] and S1new and S1new and S2new
406 */
407 int split_item_positions[2];
408
409 split_item_positions[0] = -1;
410 split_item_positions[1] = -1;
411
412 /*
413 * We only create additional nodes if we are in insert or paste mode
414 * or we are in replace mode at the internal level. If h is 0 and
415 * the mode is M_REPLACE then in fix_nodes we change the mode to
416 * paste or insert before we get here in the code.
417 */
418 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419 "vs-8100: insert_size < 0 in overflow");
420
421 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422
423 /*
424 * snum012 [0-2] - number of items, that lay
425 * to S[0], first new node and second new node
426 */
427 snum012[3] = -1; /* s1bytes */
428 snum012[4] = -1; /* s2bytes */
429
430 /* internal level */
431 if (h > 0) {
432 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433 if (i == max_node_size)
434 return 1;
435 return (i / max_node_size + 1);
436 }
437
438 /* leaf level */
439 needed_nodes = 1;
440 total_node_size = 0;
441 cur_free = max_node_size;
442
443 /* start from 'from'-th item */
444 start_item = from;
445 /* skip its first 'start_bytes' units */
446 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447
448 /* last included item is the 'end_item'-th one */
449 end_item = vn->vn_nr_item - to - 1;
450 /* do not count last 'end_bytes' units of 'end_item'-th item */
451 end_bytes = (to_bytes != -1) ? to_bytes : 0;
452
453 /*
454 * go through all item beginning from the start_item-th item
455 * and ending by the end_item-th item. Do not count first
456 * 'start_bytes' units of 'start_item'-th item and last
457 * 'end_bytes' of 'end_item'-th item
458 */
459 for (i = start_item; i <= end_item; i++) {
460 struct virtual_item *vi = vn->vn_vi + i;
461 int skip_from_end = ((i == end_item) ? end_bytes : 0);
462
463 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464
465 /* get size of current item */
466 current_item_size = vi->vi_item_len;
467
468 /*
469 * do not take in calculation head part (from_bytes)
470 * of from-th item
471 */
472 current_item_size -=
473 op_part_size(vi, 0 /*from start */ , start_bytes);
474
475 /* do not take in calculation tail part of last item */
476 current_item_size -=
477 op_part_size(vi, 1 /*from end */ , skip_from_end);
478
479 /* if item fits into current node entierly */
480 if (total_node_size + current_item_size <= max_node_size) {
481 snum012[needed_nodes - 1]++;
482 total_node_size += current_item_size;
483 start_bytes = 0;
484 continue;
485 }
486
487 /*
488 * virtual item length is longer, than max size of item in
489 * a node. It is impossible for direct item
490 */
491 if (current_item_size > max_node_size) {
492 RFALSE(is_direct_le_ih(vi->vi_ih),
493 "vs-8110: "
494 "direct item length is %d. It can not be longer than %d",
495 current_item_size, max_node_size);
496 /* we will try to split it */
497 flow = 1;
498 }
499
500 /* as we do not split items, take new node and continue */
501 if (!flow) {
502 needed_nodes++;
503 i--;
504 total_node_size = 0;
505 continue;
506 }
507
508 /*
509 * calculate number of item units which fit into node being
510 * filled
511 */
512 {
513 int free_space;
514
515 free_space = max_node_size - total_node_size - IH_SIZE;
516 units =
517 op_check_left(vi, free_space, start_bytes,
518 skip_from_end);
519 /*
520 * nothing fits into current node, take new
521 * node and continue
522 */
523 if (units == -1) {
524 needed_nodes++, i--, total_node_size = 0;
525 continue;
526 }
527 }
528
529 /* something fits into the current node */
530 start_bytes += units;
531 snum012[needed_nodes - 1 + 3] = units;
532
533 if (needed_nodes > 2)
534 reiserfs_warning(tb->tb_sb, "vs-8111",
535 "split_item_position is out of range");
536 snum012[needed_nodes - 1]++;
537 split_item_positions[needed_nodes - 1] = i;
538 needed_nodes++;
539 /* continue from the same item with start_bytes != -1 */
540 start_item = i;
541 i--;
542 total_node_size = 0;
543 }
544
545 /*
546 * sum012[4] (if it is not -1) contains number of units of which
547 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548 * to be S1bytes and S2bytes correspondingly, so recalculate
549 */
550 if (snum012[4] > 0) {
551 int split_item_num;
552 int bytes_to_r, bytes_to_l;
553 int bytes_to_S1new;
554
555 split_item_num = split_item_positions[1];
556 bytes_to_l =
557 ((from == split_item_num
558 && from_bytes != -1) ? from_bytes : 0);
559 bytes_to_r =
560 ((end_item == split_item_num
561 && end_bytes != -1) ? end_bytes : 0);
562 bytes_to_S1new =
563 ((split_item_positions[0] ==
564 split_item_positions[1]) ? snum012[3] : 0);
565
566 /* s2bytes */
567 snum012[4] =
568 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569 bytes_to_r - bytes_to_l - bytes_to_S1new;
570
571 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573 reiserfs_warning(tb->tb_sb, "vs-8115",
574 "not directory or indirect item");
575 }
576
577 /* now we know S2bytes, calculate S1bytes */
578 if (snum012[3] > 0) {
579 int split_item_num;
580 int bytes_to_r, bytes_to_l;
581 int bytes_to_S2new;
582
583 split_item_num = split_item_positions[0];
584 bytes_to_l =
585 ((from == split_item_num
586 && from_bytes != -1) ? from_bytes : 0);
587 bytes_to_r =
588 ((end_item == split_item_num
589 && end_bytes != -1) ? end_bytes : 0);
590 bytes_to_S2new =
591 ((split_item_positions[0] == split_item_positions[1]
592 && snum012[4] != -1) ? snum012[4] : 0);
593
594 /* s1bytes */
595 snum012[3] =
596 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597 bytes_to_r - bytes_to_l - bytes_to_S2new;
598 }
599
600 return needed_nodes;
601}
602
603
604/*
605 * Set parameters for balancing.
606 * Performs write of results of analysis of balancing into structure tb,
607 * where it will later be used by the functions that actually do the balancing.
608 * Parameters:
609 * tb tree_balance structure;
610 * h current level of the node;
611 * lnum number of items from S[h] that must be shifted to L[h];
612 * rnum number of items from S[h] that must be shifted to R[h];
613 * blk_num number of blocks that S[h] will be splitted into;
614 * s012 number of items that fall into splitted nodes.
615 * lbytes number of bytes which flow to the left neighbor from the
616 * item that is not not shifted entirely
617 * rbytes number of bytes which flow to the right neighbor from the
618 * item that is not not shifted entirely
619 * s1bytes number of bytes which flow to the first new node when
620 * S[0] splits (this number is contained in s012 array)
621 */
622
623static void set_parameters(struct tree_balance *tb, int h, int lnum,
624 int rnum, int blk_num, short *s012, int lb, int rb)
625{
626
627 tb->lnum[h] = lnum;
628 tb->rnum[h] = rnum;
629 tb->blknum[h] = blk_num;
630
631 /* only for leaf level */
632 if (h == 0) {
633 if (s012 != NULL) {
634 tb->s0num = *s012++;
635 tb->snum[0] = *s012++;
636 tb->snum[1] = *s012++;
637 tb->sbytes[0] = *s012++;
638 tb->sbytes[1] = *s012;
639 }
640 tb->lbytes = lb;
641 tb->rbytes = rb;
642 }
643 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
644 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
645
646 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
647 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
648}
649
650/*
651 * check if node disappears if we shift tb->lnum[0] items to left
652 * neighbor and tb->rnum[0] to the right one.
653 */
654static int is_leaf_removable(struct tree_balance *tb)
655{
656 struct virtual_node *vn = tb->tb_vn;
657 int to_left, to_right;
658 int size;
659 int remain_items;
660
661 /*
662 * number of items that will be shifted to left (right) neighbor
663 * entirely
664 */
665 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
666 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
667 remain_items = vn->vn_nr_item;
668
669 /* how many items remain in S[0] after shiftings to neighbors */
670 remain_items -= (to_left + to_right);
671
672 /* all content of node can be shifted to neighbors */
673 if (remain_items < 1) {
674 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
675 NULL, -1, -1);
676 return 1;
677 }
678
679 /* S[0] is not removable */
680 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
681 return 0;
682
683 /* check whether we can divide 1 remaining item between neighbors */
684
685 /* get size of remaining item (in item units) */
686 size = op_unit_num(&vn->vn_vi[to_left]);
687
688 if (tb->lbytes + tb->rbytes >= size) {
689 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
690 tb->lbytes, -1);
691 return 1;
692 }
693
694 return 0;
695}
696
697/* check whether L, S, R can be joined in one node */
698static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
699{
700 struct virtual_node *vn = tb->tb_vn;
701 int ih_size;
702 struct buffer_head *S0;
703
704 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
705
706 ih_size = 0;
707 if (vn->vn_nr_item) {
708 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
709 ih_size += IH_SIZE;
710
711 if (vn->vn_vi[vn->vn_nr_item - 1].
712 vi_type & VI_TYPE_RIGHT_MERGEABLE)
713 ih_size += IH_SIZE;
714 } else {
715 /* there was only one item and it will be deleted */
716 struct item_head *ih;
717
718 RFALSE(B_NR_ITEMS(S0) != 1,
719 "vs-8125: item number must be 1: it is %d",
720 B_NR_ITEMS(S0));
721
722 ih = item_head(S0, 0);
723 if (tb->CFR[0]
724 && !comp_short_le_keys(&ih->ih_key,
725 internal_key(tb->CFR[0],
726 tb->rkey[0])))
727 /*
728 * Directory must be in correct state here: that is
729 * somewhere at the left side should exist first
730 * directory item. But the item being deleted can
731 * not be that first one because its right neighbor
732 * is item of the same directory. (But first item
733 * always gets deleted in last turn). So, neighbors
734 * of deleted item can be merged, so we can save
735 * ih_size
736 */
737 if (is_direntry_le_ih(ih)) {
738 ih_size = IH_SIZE;
739
740 /*
741 * we might check that left neighbor exists
742 * and is of the same directory
743 */
744 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
745 "vs-8130: first directory item can not be removed until directory is not empty");
746 }
747
748 }
749
750 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
751 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
752 PROC_INFO_INC(tb->tb_sb, leaves_removable);
753 return 1;
754 }
755 return 0;
756
757}
758
759/* when we do not split item, lnum and rnum are numbers of entire items */
760#define SET_PAR_SHIFT_LEFT \
761if (h)\
762{\
763 int to_l;\
764 \
765 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
766 (MAX_NR_KEY(Sh) + 1 - lpar);\
767 \
768 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
769}\
770else \
771{\
772 if (lset==LEFT_SHIFT_FLOW)\
773 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
774 tb->lbytes, -1);\
775 else\
776 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
777 -1, -1);\
778}
779
780#define SET_PAR_SHIFT_RIGHT \
781if (h)\
782{\
783 int to_r;\
784 \
785 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
786 \
787 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
788}\
789else \
790{\
791 if (rset==RIGHT_SHIFT_FLOW)\
792 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
793 -1, tb->rbytes);\
794 else\
795 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
796 -1, -1);\
797}
798
799static void free_buffers_in_tb(struct tree_balance *tb)
800{
801 int i;
802
803 pathrelse(tb->tb_path);
804
805 for (i = 0; i < MAX_HEIGHT; i++) {
806 brelse(tb->L[i]);
807 brelse(tb->R[i]);
808 brelse(tb->FL[i]);
809 brelse(tb->FR[i]);
810 brelse(tb->CFL[i]);
811 brelse(tb->CFR[i]);
812
813 tb->L[i] = NULL;
814 tb->R[i] = NULL;
815 tb->FL[i] = NULL;
816 tb->FR[i] = NULL;
817 tb->CFL[i] = NULL;
818 tb->CFR[i] = NULL;
819 }
820}
821
822/*
823 * Get new buffers for storing new nodes that are created while balancing.
824 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
825 * CARRY_ON - schedule didn't occur while the function worked;
826 * NO_DISK_SPACE - no disk space.
827 */
828/* The function is NOT SCHEDULE-SAFE! */
829static int get_empty_nodes(struct tree_balance *tb, int h)
830{
831 struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
832 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
833 int counter, number_of_freeblk;
834 int amount_needed; /* number of needed empty blocks */
835 int retval = CARRY_ON;
836 struct super_block *sb = tb->tb_sb;
837
838 /*
839 * number_of_freeblk is the number of empty blocks which have been
840 * acquired for use by the balancing algorithm minus the number of
841 * empty blocks used in the previous levels of the analysis,
842 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
843 * occurs after empty blocks are acquired, and the balancing analysis
844 * is then restarted, amount_needed is the number needed by this
845 * level (h) of the balancing analysis.
846 *
847 * Note that for systems with many processes writing, it would be
848 * more layout optimal to calculate the total number needed by all
849 * levels and then to run reiserfs_new_blocks to get all of them at
850 * once.
851 */
852
853 /*
854 * Initiate number_of_freeblk to the amount acquired prior to the
855 * restart of the analysis or 0 if not restarted, then subtract the
856 * amount needed by all of the levels of the tree below h.
857 */
858 /* blknum includes S[h], so we subtract 1 in this calculation */
859 for (counter = 0, number_of_freeblk = tb->cur_blknum;
860 counter < h; counter++)
861 number_of_freeblk -=
862 (tb->blknum[counter]) ? (tb->blknum[counter] -
863 1) : 0;
864
865 /* Allocate missing empty blocks. */
866 /* if Sh == 0 then we are getting a new root */
867 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
868 /*
869 * Amount_needed = the amount that we need more than the
870 * amount that we have.
871 */
872 if (amount_needed > number_of_freeblk)
873 amount_needed -= number_of_freeblk;
874 else /* If we have enough already then there is nothing to do. */
875 return CARRY_ON;
876
877 /*
878 * No need to check quota - is not allocated for blocks used
879 * for formatted nodes
880 */
881 if (reiserfs_new_form_blocknrs(tb, blocknrs,
882 amount_needed) == NO_DISK_SPACE)
883 return NO_DISK_SPACE;
884
885 /* for each blocknumber we just got, get a buffer and stick it on FEB */
886 for (blocknr = blocknrs, counter = 0;
887 counter < amount_needed; blocknr++, counter++) {
888
889 RFALSE(!*blocknr,
890 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
891
892 new_bh = sb_getblk(sb, *blocknr);
893 RFALSE(buffer_dirty(new_bh) ||
894 buffer_journaled(new_bh) ||
895 buffer_journal_dirty(new_bh),
896 "PAP-8140: journaled or dirty buffer %b for the new block",
897 new_bh);
898
899 /* Put empty buffers into the array. */
900 RFALSE(tb->FEB[tb->cur_blknum],
901 "PAP-8141: busy slot for new buffer");
902
903 set_buffer_journal_new(new_bh);
904 tb->FEB[tb->cur_blknum++] = new_bh;
905 }
906
907 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
908 retval = REPEAT_SEARCH;
909
910 return retval;
911}
912
913/*
914 * Get free space of the left neighbor, which is stored in the parent
915 * node of the left neighbor.
916 */
917static int get_lfree(struct tree_balance *tb, int h)
918{
919 struct buffer_head *l, *f;
920 int order;
921
922 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
923 (l = tb->FL[h]) == NULL)
924 return 0;
925
926 if (f == l)
927 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
928 else {
929 order = B_NR_ITEMS(l);
930 f = l;
931 }
932
933 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
934}
935
936/*
937 * Get free space of the right neighbor,
938 * which is stored in the parent node of the right neighbor.
939 */
940static int get_rfree(struct tree_balance *tb, int h)
941{
942 struct buffer_head *r, *f;
943 int order;
944
945 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
946 (r = tb->FR[h]) == NULL)
947 return 0;
948
949 if (f == r)
950 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
951 else {
952 order = 0;
953 f = r;
954 }
955
956 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
957
958}
959
960/* Check whether left neighbor is in memory. */
961static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
962{
963 struct buffer_head *father, *left;
964 struct super_block *sb = tb->tb_sb;
965 b_blocknr_t left_neighbor_blocknr;
966 int left_neighbor_position;
967
968 /* Father of the left neighbor does not exist. */
969 if (!tb->FL[h])
970 return 0;
971
972 /* Calculate father of the node to be balanced. */
973 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
974
975 RFALSE(!father ||
976 !B_IS_IN_TREE(father) ||
977 !B_IS_IN_TREE(tb->FL[h]) ||
978 !buffer_uptodate(father) ||
979 !buffer_uptodate(tb->FL[h]),
980 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
981 father, tb->FL[h]);
982
983 /*
984 * Get position of the pointer to the left neighbor
985 * into the left father.
986 */
987 left_neighbor_position = (father == tb->FL[h]) ?
988 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
989 /* Get left neighbor block number. */
990 left_neighbor_blocknr =
991 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
992 /* Look for the left neighbor in the cache. */
993 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
994
995 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
996 "vs-8170: left neighbor (%b %z) is not in the tree",
997 left, left);
998 put_bh(left);
999 return 1;
1000 }
1001
1002 return 0;
1003}
1004
1005#define LEFT_PARENTS 'l'
1006#define RIGHT_PARENTS 'r'
1007
1008static void decrement_key(struct cpu_key *key)
1009{
1010 /* call item specific function for this key */
1011 item_ops[cpu_key_k_type(key)]->decrement_key(key);
1012}
1013
1014/*
1015 * Calculate far left/right parent of the left/right neighbor of the
1016 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1017 * of the parent F[h].
1018 * Calculate left/right common parent of the current node and L[h]/R[h].
1019 * Calculate left/right delimiting key position.
1020 * Returns: PATH_INCORRECT - path in the tree is not correct
1021 * SCHEDULE_OCCURRED - schedule occurred while the function worked
1022 * CARRY_ON - schedule didn't occur while the function
1023 * worked
1024 */
1025static int get_far_parent(struct tree_balance *tb,
1026 int h,
1027 struct buffer_head **pfather,
1028 struct buffer_head **pcom_father, char c_lr_par)
1029{
1030 struct buffer_head *parent;
1031 INITIALIZE_PATH(s_path_to_neighbor_father);
1032 struct treepath *path = tb->tb_path;
1033 struct cpu_key s_lr_father_key;
1034 int counter,
1035 position = INT_MAX,
1036 first_last_position = 0,
1037 path_offset = PATH_H_PATH_OFFSET(path, h);
1038
1039 /*
1040 * Starting from F[h] go upwards in the tree, and look for the common
1041 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1042 */
1043
1044 counter = path_offset;
1045
1046 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1047 "PAP-8180: invalid path length");
1048
1049 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1050 /*
1051 * Check whether parent of the current buffer in the path
1052 * is really parent in the tree.
1053 */
1054 if (!B_IS_IN_TREE
1055 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1056 return REPEAT_SEARCH;
1057
1058 /* Check whether position in the parent is correct. */
1059 if ((position =
1060 PATH_OFFSET_POSITION(path,
1061 counter - 1)) >
1062 B_NR_ITEMS(parent))
1063 return REPEAT_SEARCH;
1064
1065 /*
1066 * Check whether parent at the path really points
1067 * to the child.
1068 */
1069 if (B_N_CHILD_NUM(parent, position) !=
1070 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1071 return REPEAT_SEARCH;
1072
1073 /*
1074 * Return delimiting key if position in the parent is not
1075 * equal to first/last one.
1076 */
1077 if (c_lr_par == RIGHT_PARENTS)
1078 first_last_position = B_NR_ITEMS(parent);
1079 if (position != first_last_position) {
1080 *pcom_father = parent;
1081 get_bh(*pcom_father);
1082 /*(*pcom_father = parent)->b_count++; */
1083 break;
1084 }
1085 }
1086
1087 /* if we are in the root of the tree, then there is no common father */
1088 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1089 /*
1090 * Check whether first buffer in the path is the
1091 * root of the tree.
1092 */
1093 if (PATH_OFFSET_PBUFFER
1094 (tb->tb_path,
1095 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1096 SB_ROOT_BLOCK(tb->tb_sb)) {
1097 *pfather = *pcom_father = NULL;
1098 return CARRY_ON;
1099 }
1100 return REPEAT_SEARCH;
1101 }
1102
1103 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1104 "PAP-8185: (%b %z) level too small",
1105 *pcom_father, *pcom_father);
1106
1107 /* Check whether the common parent is locked. */
1108
1109 if (buffer_locked(*pcom_father)) {
1110
1111 /* Release the write lock while the buffer is busy */
1112 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1113 __wait_on_buffer(*pcom_father);
1114 reiserfs_write_lock_nested(tb->tb_sb, depth);
1115 if (FILESYSTEM_CHANGED_TB(tb)) {
1116 brelse(*pcom_father);
1117 return REPEAT_SEARCH;
1118 }
1119 }
1120
1121 /*
1122 * So, we got common parent of the current node and its
1123 * left/right neighbor. Now we are getting the parent of the
1124 * left/right neighbor.
1125 */
1126
1127 /* Form key to get parent of the left/right neighbor. */
1128 le_key2cpu_key(&s_lr_father_key,
1129 internal_key(*pcom_father,
1130 (c_lr_par ==
1131 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1132 position -
1133 1) : (tb->rkey[h -
1134 1] =
1135 position)));
1136
1137 if (c_lr_par == LEFT_PARENTS)
1138 decrement_key(&s_lr_father_key);
1139
1140 if (search_by_key
1141 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1142 h + 1) == IO_ERROR)
1143 /* path is released */
1144 return IO_ERROR;
1145
1146 if (FILESYSTEM_CHANGED_TB(tb)) {
1147 pathrelse(&s_path_to_neighbor_father);
1148 brelse(*pcom_father);
1149 return REPEAT_SEARCH;
1150 }
1151
1152 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1153
1154 RFALSE(B_LEVEL(*pfather) != h + 1,
1155 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1156 RFALSE(s_path_to_neighbor_father.path_length <
1157 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1158
1159 s_path_to_neighbor_father.path_length--;
1160 pathrelse(&s_path_to_neighbor_father);
1161 return CARRY_ON;
1162}
1163
1164/*
1165 * Get parents of neighbors of node in the path(S[path_offset]) and
1166 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1167 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1168 * CFR[path_offset].
1169 * Calculate numbers of left and right delimiting keys position:
1170 * lkey[path_offset], rkey[path_offset].
1171 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked
1172 * CARRY_ON - schedule didn't occur while the function worked
1173 */
1174static int get_parents(struct tree_balance *tb, int h)
1175{
1176 struct treepath *path = tb->tb_path;
1177 int position,
1178 ret,
1179 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1180 struct buffer_head *curf, *curcf;
1181
1182 /* Current node is the root of the tree or will be root of the tree */
1183 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1184 /*
1185 * The root can not have parents.
1186 * Release nodes which previously were obtained as
1187 * parents of the current node neighbors.
1188 */
1189 brelse(tb->FL[h]);
1190 brelse(tb->CFL[h]);
1191 brelse(tb->FR[h]);
1192 brelse(tb->CFR[h]);
1193 tb->FL[h] = NULL;
1194 tb->CFL[h] = NULL;
1195 tb->FR[h] = NULL;
1196 tb->CFR[h] = NULL;
1197 return CARRY_ON;
1198 }
1199
1200 /* Get parent FL[path_offset] of L[path_offset]. */
1201 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1202 if (position) {
1203 /* Current node is not the first child of its parent. */
1204 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1206 get_bh(curf);
1207 get_bh(curf);
1208 tb->lkey[h] = position - 1;
1209 } else {
1210 /*
1211 * Calculate current parent of L[path_offset], which is the
1212 * left neighbor of the current node. Calculate current
1213 * common parent of L[path_offset] and the current node.
1214 * Note that CFL[path_offset] not equal FL[path_offset] and
1215 * CFL[path_offset] not equal F[path_offset].
1216 * Calculate lkey[path_offset].
1217 */
1218 if ((ret = get_far_parent(tb, h + 1, &curf,
1219 &curcf,
1220 LEFT_PARENTS)) != CARRY_ON)
1221 return ret;
1222 }
1223
1224 brelse(tb->FL[h]);
1225 tb->FL[h] = curf; /* New initialization of FL[h]. */
1226 brelse(tb->CFL[h]);
1227 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
1228
1229 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1230 (curcf && !B_IS_IN_TREE(curcf)),
1231 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1232
1233 /* Get parent FR[h] of R[h]. */
1234
1235 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1236 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1237 /*
1238 * Calculate current parent of R[h], which is the right
1239 * neighbor of F[h]. Calculate current common parent of
1240 * R[h] and current node. Note that CFR[h] not equal
1241 * FR[path_offset] and CFR[h] not equal F[h].
1242 */
1243 if ((ret =
1244 get_far_parent(tb, h + 1, &curf, &curcf,
1245 RIGHT_PARENTS)) != CARRY_ON)
1246 return ret;
1247 } else {
1248 /* Current node is not the last child of its parent F[h]. */
1249 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1251 get_bh(curf);
1252 get_bh(curf);
1253 tb->rkey[h] = position;
1254 }
1255
1256 brelse(tb->FR[h]);
1257 /* New initialization of FR[path_offset]. */
1258 tb->FR[h] = curf;
1259
1260 brelse(tb->CFR[h]);
1261 /* New initialization of CFR[path_offset]. */
1262 tb->CFR[h] = curcf;
1263
1264 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1265 (curcf && !B_IS_IN_TREE(curcf)),
1266 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1267
1268 return CARRY_ON;
1269}
1270
1271/*
1272 * it is possible to remove node as result of shiftings to
1273 * neighbors even when we insert or paste item.
1274 */
1275static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1276 struct tree_balance *tb, int h)
1277{
1278 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1279 int levbytes = tb->insert_size[h];
1280 struct item_head *ih;
1281 struct reiserfs_key *r_key = NULL;
1282
1283 ih = item_head(Sh, 0);
1284 if (tb->CFR[h])
1285 r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1286
1287 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1288 /* shifting may merge items which might save space */
1289 -
1290 ((!h
1291 && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1292 -
1293 ((!h && r_key
1294 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1295 + ((h) ? KEY_SIZE : 0)) {
1296 /* node can not be removed */
1297 if (sfree >= levbytes) {
1298 /* new item fits into node S[h] without any shifting */
1299 if (!h)
1300 tb->s0num =
1301 B_NR_ITEMS(Sh) +
1302 ((mode == M_INSERT) ? 1 : 0);
1303 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1304 return NO_BALANCING_NEEDED;
1305 }
1306 }
1307 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1308 return !NO_BALANCING_NEEDED;
1309}
1310
1311/*
1312 * Check whether current node S[h] is balanced when increasing its size by
1313 * Inserting or Pasting.
1314 * Calculate parameters for balancing for current level h.
1315 * Parameters:
1316 * tb tree_balance structure;
1317 * h current level of the node;
1318 * inum item number in S[h];
1319 * mode i - insert, p - paste;
1320 * Returns: 1 - schedule occurred;
1321 * 0 - balancing for higher levels needed;
1322 * -1 - no balancing for higher levels needed;
1323 * -2 - no disk space.
1324 */
1325/* ip means Inserting or Pasting */
1326static int ip_check_balance(struct tree_balance *tb, int h)
1327{
1328 struct virtual_node *vn = tb->tb_vn;
1329 /*
1330 * Number of bytes that must be inserted into (value is negative
1331 * if bytes are deleted) buffer which contains node being balanced.
1332 * The mnemonic is that the attempted change in node space used
1333 * level is levbytes bytes.
1334 */
1335 int levbytes;
1336 int ret;
1337
1338 int lfree, sfree, rfree /* free space in L, S and R */ ;
1339
1340 /*
1341 * nver is short for number of vertixes, and lnver is the number if
1342 * we shift to the left, rnver is the number if we shift to the
1343 * right, and lrnver is the number if we shift in both directions.
1344 * The goal is to minimize first the number of vertixes, and second,
1345 * the number of vertixes whose contents are changed by shifting,
1346 * and third the number of uncached vertixes whose contents are
1347 * changed by shifting and must be read from disk.
1348 */
1349 int nver, lnver, rnver, lrnver;
1350
1351 /*
1352 * used at leaf level only, S0 = S[0] is the node being balanced,
1353 * sInum [ I = 0,1,2 ] is the number of items that will
1354 * remain in node SI after balancing. S1 and S2 are new
1355 * nodes that might be created.
1356 */
1357
1358 /*
1359 * we perform 8 calls to get_num_ver(). For each call we
1360 * calculate five parameters. where 4th parameter is s1bytes
1361 * and 5th - s2bytes
1362 *
1363 * s0num, s1num, s2num for 8 cases
1364 * 0,1 - do not shift and do not shift but bottle
1365 * 2 - shift only whole item to left
1366 * 3 - shift to left and bottle as much as possible
1367 * 4,5 - shift to right (whole items and as much as possible
1368 * 6,7 - shift to both directions (whole items and as much as possible)
1369 */
1370 short snum012[40] = { 0, };
1371
1372 /* Sh is the node whose balance is currently being checked */
1373 struct buffer_head *Sh;
1374
1375 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1376 levbytes = tb->insert_size[h];
1377
1378 /* Calculate balance parameters for creating new root. */
1379 if (!Sh) {
1380 if (!h)
1381 reiserfs_panic(tb->tb_sb, "vs-8210",
1382 "S[0] can not be 0");
1383 switch (ret = get_empty_nodes(tb, h)) {
1384 /* no balancing for higher levels needed */
1385 case CARRY_ON:
1386 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1387 return NO_BALANCING_NEEDED;
1388
1389 case NO_DISK_SPACE:
1390 case REPEAT_SEARCH:
1391 return ret;
1392 default:
1393 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1394 "return value of get_empty_nodes");
1395 }
1396 }
1397
1398 /* get parents of S[h] neighbors. */
1399 ret = get_parents(tb, h);
1400 if (ret != CARRY_ON)
1401 return ret;
1402
1403 sfree = B_FREE_SPACE(Sh);
1404
1405 /* get free space of neighbors */
1406 rfree = get_rfree(tb, h);
1407 lfree = get_lfree(tb, h);
1408
1409 /* and new item fits into node S[h] without any shifting */
1410 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1411 NO_BALANCING_NEEDED)
1412 return NO_BALANCING_NEEDED;
1413
1414 create_virtual_node(tb, h);
1415
1416 /*
1417 * determine maximal number of items we can shift to the left
1418 * neighbor (in tb structure) and the maximal number of bytes
1419 * that can flow to the left neighbor from the left most liquid
1420 * item that cannot be shifted from S[0] entirely (returned value)
1421 */
1422 check_left(tb, h, lfree);
1423
1424 /*
1425 * determine maximal number of items we can shift to the right
1426 * neighbor (in tb structure) and the maximal number of bytes
1427 * that can flow to the right neighbor from the right most liquid
1428 * item that cannot be shifted from S[0] entirely (returned value)
1429 */
1430 check_right(tb, h, rfree);
1431
1432 /*
1433 * all contents of internal node S[h] can be moved into its
1434 * neighbors, S[h] will be removed after balancing
1435 */
1436 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1437 int to_r;
1438
1439 /*
1440 * Since we are working on internal nodes, and our internal
1441 * nodes have fixed size entries, then we can balance by the
1442 * number of items rather than the space they consume. In this
1443 * routine we set the left node equal to the right node,
1444 * allowing a difference of less than or equal to 1 child
1445 * pointer.
1446 */
1447 to_r =
1448 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1449 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1450 tb->rnum[h]);
1451 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1452 -1, -1);
1453 return CARRY_ON;
1454 }
1455
1456 /*
1457 * this checks balance condition, that any two neighboring nodes
1458 * can not fit in one node
1459 */
1460 RFALSE(h &&
1461 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1462 tb->rnum[h] >= vn->vn_nr_item + 1),
1463 "vs-8220: tree is not balanced on internal level");
1464 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1465 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1466 "vs-8225: tree is not balanced on leaf level");
1467
1468 /*
1469 * all contents of S[0] can be moved into its neighbors
1470 * S[0] will be removed after balancing.
1471 */
1472 if (!h && is_leaf_removable(tb))
1473 return CARRY_ON;
1474
1475 /*
1476 * why do we perform this check here rather than earlier??
1477 * Answer: we can win 1 node in some cases above. Moreover we
1478 * checked it above, when we checked, that S[0] is not removable
1479 * in principle
1480 */
1481
1482 /* new item fits into node S[h] without any shifting */
1483 if (sfree >= levbytes) {
1484 if (!h)
1485 tb->s0num = vn->vn_nr_item;
1486 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1487 return NO_BALANCING_NEEDED;
1488 }
1489
1490 {
1491 int lpar, rpar, nset, lset, rset, lrset;
1492 /* regular overflowing of the node */
1493
1494 /*
1495 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1496 * lpar, rpar - number of items we can shift to left/right
1497 * neighbor (including splitting item)
1498 * nset, lset, rset, lrset - shows, whether flowing items
1499 * give better packing
1500 */
1501#define FLOW 1
1502#define NO_FLOW 0 /* do not any splitting */
1503
1504 /* we choose one of the following */
1505#define NOTHING_SHIFT_NO_FLOW 0
1506#define NOTHING_SHIFT_FLOW 5
1507#define LEFT_SHIFT_NO_FLOW 10
1508#define LEFT_SHIFT_FLOW 15
1509#define RIGHT_SHIFT_NO_FLOW 20
1510#define RIGHT_SHIFT_FLOW 25
1511#define LR_SHIFT_NO_FLOW 30
1512#define LR_SHIFT_FLOW 35
1513
1514 lpar = tb->lnum[h];
1515 rpar = tb->rnum[h];
1516
1517 /*
1518 * calculate number of blocks S[h] must be split into when
1519 * nothing is shifted to the neighbors, as well as number of
1520 * items in each part of the split node (s012 numbers),
1521 * and number of bytes (s1bytes) of the shared drop which
1522 * flow to S1 if any
1523 */
1524 nset = NOTHING_SHIFT_NO_FLOW;
1525 nver = get_num_ver(vn->vn_mode, tb, h,
1526 0, -1, h ? vn->vn_nr_item : 0, -1,
1527 snum012, NO_FLOW);
1528
1529 if (!h) {
1530 int nver1;
1531
1532 /*
1533 * note, that in this case we try to bottle
1534 * between S[0] and S1 (S1 - the first new node)
1535 */
1536 nver1 = get_num_ver(vn->vn_mode, tb, h,
1537 0, -1, 0, -1,
1538 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1539 if (nver > nver1)
1540 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1541 }
1542
1543 /*
1544 * calculate number of blocks S[h] must be split into when
1545 * l_shift_num first items and l_shift_bytes of the right
1546 * most liquid item to be shifted are shifted to the left
1547 * neighbor, as well as number of items in each part of the
1548 * splitted node (s012 numbers), and number of bytes
1549 * (s1bytes) of the shared drop which flow to S1 if any
1550 */
1551 lset = LEFT_SHIFT_NO_FLOW;
1552 lnver = get_num_ver(vn->vn_mode, tb, h,
1553 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1554 -1, h ? vn->vn_nr_item : 0, -1,
1555 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1556 if (!h) {
1557 int lnver1;
1558
1559 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1560 lpar -
1561 ((tb->lbytes != -1) ? 1 : 0),
1562 tb->lbytes, 0, -1,
1563 snum012 + LEFT_SHIFT_FLOW, FLOW);
1564 if (lnver > lnver1)
1565 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1566 }
1567
1568 /*
1569 * calculate number of blocks S[h] must be split into when
1570 * r_shift_num first items and r_shift_bytes of the left most
1571 * liquid item to be shifted are shifted to the right neighbor,
1572 * as well as number of items in each part of the splitted
1573 * node (s012 numbers), and number of bytes (s1bytes) of the
1574 * shared drop which flow to S1 if any
1575 */
1576 rset = RIGHT_SHIFT_NO_FLOW;
1577 rnver = get_num_ver(vn->vn_mode, tb, h,
1578 0, -1,
1579 h ? (vn->vn_nr_item - rpar) : (rpar -
1580 ((tb->
1581 rbytes !=
1582 -1) ? 1 :
1583 0)), -1,
1584 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1585 if (!h) {
1586 int rnver1;
1587
1588 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1589 0, -1,
1590 (rpar -
1591 ((tb->rbytes != -1) ? 1 : 0)),
1592 tb->rbytes,
1593 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1594
1595 if (rnver > rnver1)
1596 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1597 }
1598
1599 /*
1600 * calculate number of blocks S[h] must be split into when
1601 * items are shifted in both directions, as well as number
1602 * of items in each part of the splitted node (s012 numbers),
1603 * and number of bytes (s1bytes) of the shared drop which
1604 * flow to S1 if any
1605 */
1606 lrset = LR_SHIFT_NO_FLOW;
1607 lrnver = get_num_ver(vn->vn_mode, tb, h,
1608 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1609 -1,
1610 h ? (vn->vn_nr_item - rpar) : (rpar -
1611 ((tb->
1612 rbytes !=
1613 -1) ? 1 :
1614 0)), -1,
1615 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1616 if (!h) {
1617 int lrnver1;
1618
1619 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1620 lpar -
1621 ((tb->lbytes != -1) ? 1 : 0),
1622 tb->lbytes,
1623 (rpar -
1624 ((tb->rbytes != -1) ? 1 : 0)),
1625 tb->rbytes,
1626 snum012 + LR_SHIFT_FLOW, FLOW);
1627 if (lrnver > lrnver1)
1628 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1629 }
1630
1631 /*
1632 * Our general shifting strategy is:
1633 * 1) to minimized number of new nodes;
1634 * 2) to minimized number of neighbors involved in shifting;
1635 * 3) to minimized number of disk reads;
1636 */
1637
1638 /* we can win TWO or ONE nodes by shifting in both directions */
1639 if (lrnver < lnver && lrnver < rnver) {
1640 RFALSE(h &&
1641 (tb->lnum[h] != 1 ||
1642 tb->rnum[h] != 1 ||
1643 lrnver != 1 || rnver != 2 || lnver != 2
1644 || h != 1), "vs-8230: bad h");
1645 if (lrset == LR_SHIFT_FLOW)
1646 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1647 lrnver, snum012 + lrset,
1648 tb->lbytes, tb->rbytes);
1649 else
1650 set_parameters(tb, h,
1651 tb->lnum[h] -
1652 ((tb->lbytes == -1) ? 0 : 1),
1653 tb->rnum[h] -
1654 ((tb->rbytes == -1) ? 0 : 1),
1655 lrnver, snum012 + lrset, -1, -1);
1656
1657 return CARRY_ON;
1658 }
1659
1660 /*
1661 * if shifting doesn't lead to better packing
1662 * then don't shift
1663 */
1664 if (nver == lrnver) {
1665 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1666 -1);
1667 return CARRY_ON;
1668 }
1669
1670 /*
1671 * now we know that for better packing shifting in only one
1672 * direction either to the left or to the right is required
1673 */
1674
1675 /*
1676 * if shifting to the left is better than
1677 * shifting to the right
1678 */
1679 if (lnver < rnver) {
1680 SET_PAR_SHIFT_LEFT;
1681 return CARRY_ON;
1682 }
1683
1684 /*
1685 * if shifting to the right is better than
1686 * shifting to the left
1687 */
1688 if (lnver > rnver) {
1689 SET_PAR_SHIFT_RIGHT;
1690 return CARRY_ON;
1691 }
1692
1693 /*
1694 * now shifting in either direction gives the same number
1695 * of nodes and we can make use of the cached neighbors
1696 */
1697 if (is_left_neighbor_in_cache(tb, h)) {
1698 SET_PAR_SHIFT_LEFT;
1699 return CARRY_ON;
1700 }
1701
1702 /*
1703 * shift to the right independently on whether the
1704 * right neighbor in cache or not
1705 */
1706 SET_PAR_SHIFT_RIGHT;
1707 return CARRY_ON;
1708 }
1709}
1710
1711/*
1712 * Check whether current node S[h] is balanced when Decreasing its size by
1713 * Deleting or Cutting for INTERNAL node of S+tree.
1714 * Calculate parameters for balancing for current level h.
1715 * Parameters:
1716 * tb tree_balance structure;
1717 * h current level of the node;
1718 * inum item number in S[h];
1719 * mode i - insert, p - paste;
1720 * Returns: 1 - schedule occurred;
1721 * 0 - balancing for higher levels needed;
1722 * -1 - no balancing for higher levels needed;
1723 * -2 - no disk space.
1724 *
1725 * Note: Items of internal nodes have fixed size, so the balance condition for
1726 * the internal part of S+tree is as for the B-trees.
1727 */
1728static int dc_check_balance_internal(struct tree_balance *tb, int h)
1729{
1730 struct virtual_node *vn = tb->tb_vn;
1731
1732 /*
1733 * Sh is the node whose balance is currently being checked,
1734 * and Fh is its father.
1735 */
1736 struct buffer_head *Sh, *Fh;
1737 int maxsize, ret;
1738 int lfree, rfree /* free space in L and R */ ;
1739
1740 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1741 Fh = PATH_H_PPARENT(tb->tb_path, h);
1742
1743 maxsize = MAX_CHILD_SIZE(Sh);
1744
1745 /*
1746 * using tb->insert_size[h], which is negative in this case,
1747 * create_virtual_node calculates:
1748 * new_nr_item = number of items node would have if operation is
1749 * performed without balancing (new_nr_item);
1750 */
1751 create_virtual_node(tb, h);
1752
1753 if (!Fh) { /* S[h] is the root. */
1754 /* no balancing for higher levels needed */
1755 if (vn->vn_nr_item > 0) {
1756 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1757 return NO_BALANCING_NEEDED;
1758 }
1759 /*
1760 * new_nr_item == 0.
1761 * Current root will be deleted resulting in
1762 * decrementing the tree height.
1763 */
1764 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1765 return CARRY_ON;
1766 }
1767
1768 if ((ret = get_parents(tb, h)) != CARRY_ON)
1769 return ret;
1770
1771 /* get free space of neighbors */
1772 rfree = get_rfree(tb, h);
1773 lfree = get_lfree(tb, h);
1774
1775 /* determine maximal number of items we can fit into neighbors */
1776 check_left(tb, h, lfree);
1777 check_right(tb, h, rfree);
1778
1779 /*
1780 * Balance condition for the internal node is valid.
1781 * In this case we balance only if it leads to better packing.
1782 */
1783 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1784 /*
1785 * Here we join S[h] with one of its neighbors,
1786 * which is impossible with greater values of new_nr_item.
1787 */
1788 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1789 /* All contents of S[h] can be moved to L[h]. */
1790 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1791 int n;
1792 int order_L;
1793
1794 order_L =
1795 ((n =
1796 PATH_H_B_ITEM_ORDER(tb->tb_path,
1797 h)) ==
1798 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1799 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1800 (DC_SIZE + KEY_SIZE);
1801 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1802 -1);
1803 return CARRY_ON;
1804 }
1805
1806 /* All contents of S[h] can be moved to R[h]. */
1807 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1808 int n;
1809 int order_R;
1810
1811 order_R =
1812 ((n =
1813 PATH_H_B_ITEM_ORDER(tb->tb_path,
1814 h)) ==
1815 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1816 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1817 (DC_SIZE + KEY_SIZE);
1818 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1819 -1);
1820 return CARRY_ON;
1821 }
1822 }
1823
1824 /*
1825 * All contents of S[h] can be moved to the neighbors
1826 * (L[h] & R[h]).
1827 */
1828 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1829 int to_r;
1830
1831 to_r =
1832 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1833 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1834 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1835 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1836 0, NULL, -1, -1);
1837 return CARRY_ON;
1838 }
1839
1840 /* Balancing does not lead to better packing. */
1841 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1842 return NO_BALANCING_NEEDED;
1843 }
1844
1845 /*
1846 * Current node contain insufficient number of items.
1847 * Balancing is required.
1848 */
1849 /* Check whether we can merge S[h] with left neighbor. */
1850 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1851 if (is_left_neighbor_in_cache(tb, h)
1852 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1853 int n;
1854 int order_L;
1855
1856 order_L =
1857 ((n =
1858 PATH_H_B_ITEM_ORDER(tb->tb_path,
1859 h)) ==
1860 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1861 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1862 KEY_SIZE);
1863 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1864 return CARRY_ON;
1865 }
1866
1867 /* Check whether we can merge S[h] with right neighbor. */
1868 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1869 int n;
1870 int order_R;
1871
1872 order_R =
1873 ((n =
1874 PATH_H_B_ITEM_ORDER(tb->tb_path,
1875 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1876 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1877 KEY_SIZE);
1878 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1879 return CARRY_ON;
1880 }
1881
1882 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1883 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1884 int to_r;
1885
1886 to_r =
1887 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1888 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1889 tb->rnum[h]);
1890 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1891 -1, -1);
1892 return CARRY_ON;
1893 }
1894
1895 /* For internal nodes try to borrow item from a neighbor */
1896 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1897
1898 /* Borrow one or two items from caching neighbor */
1899 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1900 int from_l;
1901
1902 from_l =
1903 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1904 1) / 2 - (vn->vn_nr_item + 1);
1905 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1906 return CARRY_ON;
1907 }
1908
1909 set_parameters(tb, h, 0,
1910 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1911 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1912 return CARRY_ON;
1913}
1914
1915/*
1916 * Check whether current node S[h] is balanced when Decreasing its size by
1917 * Deleting or Truncating for LEAF node of S+tree.
1918 * Calculate parameters for balancing for current level h.
1919 * Parameters:
1920 * tb tree_balance structure;
1921 * h current level of the node;
1922 * inum item number in S[h];
1923 * mode i - insert, p - paste;
1924 * Returns: 1 - schedule occurred;
1925 * 0 - balancing for higher levels needed;
1926 * -1 - no balancing for higher levels needed;
1927 * -2 - no disk space.
1928 */
1929static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1930{
1931 struct virtual_node *vn = tb->tb_vn;
1932
1933 /*
1934 * Number of bytes that must be deleted from
1935 * (value is negative if bytes are deleted) buffer which
1936 * contains node being balanced. The mnemonic is that the
1937 * attempted change in node space used level is levbytes bytes.
1938 */
1939 int levbytes;
1940
1941 /* the maximal item size */
1942 int maxsize, ret;
1943
1944 /*
1945 * S0 is the node whose balance is currently being checked,
1946 * and F0 is its father.
1947 */
1948 struct buffer_head *S0, *F0;
1949 int lfree, rfree /* free space in L and R */ ;
1950
1951 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1952 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1953
1954 levbytes = tb->insert_size[h];
1955
1956 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1957
1958 if (!F0) { /* S[0] is the root now. */
1959
1960 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1961 "vs-8240: attempt to create empty buffer tree");
1962
1963 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1964 return NO_BALANCING_NEEDED;
1965 }
1966
1967 if ((ret = get_parents(tb, h)) != CARRY_ON)
1968 return ret;
1969
1970 /* get free space of neighbors */
1971 rfree = get_rfree(tb, h);
1972 lfree = get_lfree(tb, h);
1973
1974 create_virtual_node(tb, h);
1975
1976 /* if 3 leaves can be merge to one, set parameters and return */
1977 if (are_leaves_removable(tb, lfree, rfree))
1978 return CARRY_ON;
1979
1980 /*
1981 * determine maximal number of items we can shift to the left/right
1982 * neighbor and the maximal number of bytes that can flow to the
1983 * left/right neighbor from the left/right most liquid item that
1984 * cannot be shifted from S[0] entirely
1985 */
1986 check_left(tb, h, lfree);
1987 check_right(tb, h, rfree);
1988
1989 /* check whether we can merge S with left neighbor. */
1990 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1991 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1992 !tb->FR[h]) {
1993
1994 RFALSE(!tb->FL[h],
1995 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1996
1997 /* set parameter to merge S[0] with its left neighbor */
1998 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1999 return CARRY_ON;
2000 }
2001
2002 /* check whether we can merge S[0] with right neighbor. */
2003 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2004 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2005 return CARRY_ON;
2006 }
2007
2008 /*
2009 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2010 * Set parameters and return
2011 */
2012 if (is_leaf_removable(tb))
2013 return CARRY_ON;
2014
2015 /* Balancing is not required. */
2016 tb->s0num = vn->vn_nr_item;
2017 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2018 return NO_BALANCING_NEEDED;
2019}
2020
2021/*
2022 * Check whether current node S[h] is balanced when Decreasing its size by
2023 * Deleting or Cutting.
2024 * Calculate parameters for balancing for current level h.
2025 * Parameters:
2026 * tb tree_balance structure;
2027 * h current level of the node;
2028 * inum item number in S[h];
2029 * mode d - delete, c - cut.
2030 * Returns: 1 - schedule occurred;
2031 * 0 - balancing for higher levels needed;
2032 * -1 - no balancing for higher levels needed;
2033 * -2 - no disk space.
2034 */
2035static int dc_check_balance(struct tree_balance *tb, int h)
2036{
2037 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2038 "vs-8250: S is not initialized");
2039
2040 if (h)
2041 return dc_check_balance_internal(tb, h);
2042 else
2043 return dc_check_balance_leaf(tb, h);
2044}
2045
2046/*
2047 * Check whether current node S[h] is balanced.
2048 * Calculate parameters for balancing for current level h.
2049 * Parameters:
2050 *
2051 * tb tree_balance structure:
2052 *
2053 * tb is a large structure that must be read about in the header
2054 * file at the same time as this procedure if the reader is
2055 * to successfully understand this procedure
2056 *
2057 * h current level of the node;
2058 * inum item number in S[h];
2059 * mode i - insert, p - paste, d - delete, c - cut.
2060 * Returns: 1 - schedule occurred;
2061 * 0 - balancing for higher levels needed;
2062 * -1 - no balancing for higher levels needed;
2063 * -2 - no disk space.
2064 */
2065static int check_balance(int mode,
2066 struct tree_balance *tb,
2067 int h,
2068 int inum,
2069 int pos_in_item,
2070 struct item_head *ins_ih, const void *data)
2071{
2072 struct virtual_node *vn;
2073
2074 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2075 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2076 vn->vn_mode = mode;
2077 vn->vn_affected_item_num = inum;
2078 vn->vn_pos_in_item = pos_in_item;
2079 vn->vn_ins_ih = ins_ih;
2080 vn->vn_data = data;
2081
2082 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2083 "vs-8255: ins_ih can not be 0 in insert mode");
2084
2085 /* Calculate balance parameters when size of node is increasing. */
2086 if (tb->insert_size[h] > 0)
2087 return ip_check_balance(tb, h);
2088
2089 /* Calculate balance parameters when size of node is decreasing. */
2090 return dc_check_balance(tb, h);
2091}
2092
2093/* Check whether parent at the path is the really parent of the current node.*/
2094static int get_direct_parent(struct tree_balance *tb, int h)
2095{
2096 struct buffer_head *bh;
2097 struct treepath *path = tb->tb_path;
2098 int position,
2099 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2100
2101 /* We are in the root or in the new root. */
2102 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2103
2104 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2105 "PAP-8260: invalid offset in the path");
2106
2107 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2108 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2109 /* Root is not changed. */
2110 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2111 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2112 return CARRY_ON;
2113 }
2114 /* Root is changed and we must recalculate the path. */
2115 return REPEAT_SEARCH;
2116 }
2117
2118 /* Parent in the path is not in the tree. */
2119 if (!B_IS_IN_TREE
2120 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2121 return REPEAT_SEARCH;
2122
2123 if ((position =
2124 PATH_OFFSET_POSITION(path,
2125 path_offset - 1)) > B_NR_ITEMS(bh))
2126 return REPEAT_SEARCH;
2127
2128 /* Parent in the path is not parent of the current node in the tree. */
2129 if (B_N_CHILD_NUM(bh, position) !=
2130 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2131 return REPEAT_SEARCH;
2132
2133 if (buffer_locked(bh)) {
2134 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2135 __wait_on_buffer(bh);
2136 reiserfs_write_lock_nested(tb->tb_sb, depth);
2137 if (FILESYSTEM_CHANGED_TB(tb))
2138 return REPEAT_SEARCH;
2139 }
2140
2141 /*
2142 * Parent in the path is unlocked and really parent
2143 * of the current node.
2144 */
2145 return CARRY_ON;
2146}
2147
2148/*
2149 * Using lnum[h] and rnum[h] we should determine what neighbors
2150 * of S[h] we
2151 * need in order to balance S[h], and get them if necessary.
2152 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
2153 * CARRY_ON - schedule didn't occur while the function worked;
2154 */
2155static int get_neighbors(struct tree_balance *tb, int h)
2156{
2157 int child_position,
2158 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2159 unsigned long son_number;
2160 struct super_block *sb = tb->tb_sb;
2161 struct buffer_head *bh;
2162 int depth;
2163
2164 PROC_INFO_INC(sb, get_neighbors[h]);
2165
2166 if (tb->lnum[h]) {
2167 /* We need left neighbor to balance S[h]. */
2168 PROC_INFO_INC(sb, need_l_neighbor[h]);
2169 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2170
2171 RFALSE(bh == tb->FL[h] &&
2172 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2173 "PAP-8270: invalid position in the parent");
2174
2175 child_position =
2176 (bh ==
2177 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2178 FL[h]);
2179 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2180 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2181 bh = sb_bread(sb, son_number);
2182 reiserfs_write_lock_nested(tb->tb_sb, depth);
2183 if (!bh)
2184 return IO_ERROR;
2185 if (FILESYSTEM_CHANGED_TB(tb)) {
2186 brelse(bh);
2187 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2188 return REPEAT_SEARCH;
2189 }
2190
2191 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2192 child_position > B_NR_ITEMS(tb->FL[h]) ||
2193 B_N_CHILD_NUM(tb->FL[h], child_position) !=
2194 bh->b_blocknr, "PAP-8275: invalid parent");
2195 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2196 RFALSE(!h &&
2197 B_FREE_SPACE(bh) !=
2198 MAX_CHILD_SIZE(bh) -
2199 dc_size(B_N_CHILD(tb->FL[0], child_position)),
2200 "PAP-8290: invalid child size of left neighbor");
2201
2202 brelse(tb->L[h]);
2203 tb->L[h] = bh;
2204 }
2205
2206 /* We need right neighbor to balance S[path_offset]. */
2207 if (tb->rnum[h]) {
2208 PROC_INFO_INC(sb, need_r_neighbor[h]);
2209 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2210
2211 RFALSE(bh == tb->FR[h] &&
2212 PATH_OFFSET_POSITION(tb->tb_path,
2213 path_offset) >=
2214 B_NR_ITEMS(bh),
2215 "PAP-8295: invalid position in the parent");
2216
2217 child_position =
2218 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2219 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2220 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2221 bh = sb_bread(sb, son_number);
2222 reiserfs_write_lock_nested(tb->tb_sb, depth);
2223 if (!bh)
2224 return IO_ERROR;
2225 if (FILESYSTEM_CHANGED_TB(tb)) {
2226 brelse(bh);
2227 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2228 return REPEAT_SEARCH;
2229 }
2230 brelse(tb->R[h]);
2231 tb->R[h] = bh;
2232
2233 RFALSE(!h
2234 && B_FREE_SPACE(bh) !=
2235 MAX_CHILD_SIZE(bh) -
2236 dc_size(B_N_CHILD(tb->FR[0], child_position)),
2237 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2238 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2239 dc_size(B_N_CHILD(tb->FR[0], child_position)));
2240
2241 }
2242 return CARRY_ON;
2243}
2244
2245static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2246{
2247 int max_num_of_items;
2248 int max_num_of_entries;
2249 unsigned long blocksize = sb->s_blocksize;
2250
2251#define MIN_NAME_LEN 1
2252
2253 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2254 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2255 (DEH_SIZE + MIN_NAME_LEN);
2256
2257 return sizeof(struct virtual_node) +
2258 max(max_num_of_items * sizeof(struct virtual_item),
2259 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2260 (max_num_of_entries - 1) * sizeof(__u16));
2261}
2262
2263/*
2264 * maybe we should fail balancing we are going to perform when kmalloc
2265 * fails several times. But now it will loop until kmalloc gets
2266 * required memory
2267 */
2268static int get_mem_for_virtual_node(struct tree_balance *tb)
2269{
2270 int check_fs = 0;
2271 int size;
2272 char *buf;
2273
2274 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2275
2276 /* we have to allocate more memory for virtual node */
2277 if (size > tb->vn_buf_size) {
2278 if (tb->vn_buf) {
2279 /* free memory allocated before */
2280 kfree(tb->vn_buf);
2281 /* this is not needed if kfree is atomic */
2282 check_fs = 1;
2283 }
2284
2285 /* virtual node requires now more memory */
2286 tb->vn_buf_size = size;
2287
2288 /* get memory for virtual item */
2289 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2290 if (!buf) {
2291 /*
2292 * getting memory with GFP_KERNEL priority may involve
2293 * balancing now (due to indirect_to_direct conversion
2294 * on dcache shrinking). So, release path and collected
2295 * resources here
2296 */
2297 free_buffers_in_tb(tb);
2298 buf = kmalloc(size, GFP_NOFS);
2299 if (!buf) {
2300 tb->vn_buf_size = 0;
2301 }
2302 tb->vn_buf = buf;
2303 schedule();
2304 return REPEAT_SEARCH;
2305 }
2306
2307 tb->vn_buf = buf;
2308 }
2309
2310 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2311 return REPEAT_SEARCH;
2312
2313 return CARRY_ON;
2314}
2315
2316#ifdef CONFIG_REISERFS_CHECK
2317static void tb_buffer_sanity_check(struct super_block *sb,
2318 struct buffer_head *bh,
2319 const char *descr, int level)
2320{
2321 if (bh) {
2322 if (atomic_read(&(bh->b_count)) <= 0)
2323
2324 reiserfs_panic(sb, "jmacd-1", "negative or zero "
2325 "reference counter for buffer %s[%d] "
2326 "(%b)", descr, level, bh);
2327
2328 if (!buffer_uptodate(bh))
2329 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2330 "to date %s[%d] (%b)",
2331 descr, level, bh);
2332
2333 if (!B_IS_IN_TREE(bh))
2334 reiserfs_panic(sb, "jmacd-3", "buffer is not "
2335 "in tree %s[%d] (%b)",
2336 descr, level, bh);
2337
2338 if (bh->b_bdev != sb->s_bdev)
2339 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2340 "device %s[%d] (%b)",
2341 descr, level, bh);
2342
2343 if (bh->b_size != sb->s_blocksize)
2344 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2345 "blocksize %s[%d] (%b)",
2346 descr, level, bh);
2347
2348 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2349 reiserfs_panic(sb, "jmacd-6", "buffer block "
2350 "number too high %s[%d] (%b)",
2351 descr, level, bh);
2352 }
2353}
2354#else
2355static void tb_buffer_sanity_check(struct super_block *sb,
2356 struct buffer_head *bh,
2357 const char *descr, int level)
2358{;
2359}
2360#endif
2361
2362static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2363{
2364 return reiserfs_prepare_for_journal(s, bh, 0);
2365}
2366
2367static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2368{
2369 struct buffer_head *locked;
2370#ifdef CONFIG_REISERFS_CHECK
2371 int repeat_counter = 0;
2372#endif
2373 int i;
2374
2375 do {
2376
2377 locked = NULL;
2378
2379 for (i = tb->tb_path->path_length;
2380 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2381 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2382 /*
2383 * if I understand correctly, we can only
2384 * be sure the last buffer in the path is
2385 * in the tree --clm
2386 */
2387#ifdef CONFIG_REISERFS_CHECK
2388 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2389 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2390 tb_buffer_sanity_check(tb->tb_sb,
2391 PATH_OFFSET_PBUFFER
2392 (tb->tb_path,
2393 i), "S",
2394 tb->tb_path->
2395 path_length - i);
2396#endif
2397 if (!clear_all_dirty_bits(tb->tb_sb,
2398 PATH_OFFSET_PBUFFER
2399 (tb->tb_path,
2400 i))) {
2401 locked =
2402 PATH_OFFSET_PBUFFER(tb->tb_path,
2403 i);
2404 }
2405 }
2406 }
2407
2408 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2409 i++) {
2410
2411 if (tb->lnum[i]) {
2412
2413 if (tb->L[i]) {
2414 tb_buffer_sanity_check(tb->tb_sb,
2415 tb->L[i],
2416 "L", i);
2417 if (!clear_all_dirty_bits
2418 (tb->tb_sb, tb->L[i]))
2419 locked = tb->L[i];
2420 }
2421
2422 if (!locked && tb->FL[i]) {
2423 tb_buffer_sanity_check(tb->tb_sb,
2424 tb->FL[i],
2425 "FL", i);
2426 if (!clear_all_dirty_bits
2427 (tb->tb_sb, tb->FL[i]))
2428 locked = tb->FL[i];
2429 }
2430
2431 if (!locked && tb->CFL[i]) {
2432 tb_buffer_sanity_check(tb->tb_sb,
2433 tb->CFL[i],
2434 "CFL", i);
2435 if (!clear_all_dirty_bits
2436 (tb->tb_sb, tb->CFL[i]))
2437 locked = tb->CFL[i];
2438 }
2439
2440 }
2441
2442 if (!locked && (tb->rnum[i])) {
2443
2444 if (tb->R[i]) {
2445 tb_buffer_sanity_check(tb->tb_sb,
2446 tb->R[i],
2447 "R", i);
2448 if (!clear_all_dirty_bits
2449 (tb->tb_sb, tb->R[i]))
2450 locked = tb->R[i];
2451 }
2452
2453 if (!locked && tb->FR[i]) {
2454 tb_buffer_sanity_check(tb->tb_sb,
2455 tb->FR[i],
2456 "FR", i);
2457 if (!clear_all_dirty_bits
2458 (tb->tb_sb, tb->FR[i]))
2459 locked = tb->FR[i];
2460 }
2461
2462 if (!locked && tb->CFR[i]) {
2463 tb_buffer_sanity_check(tb->tb_sb,
2464 tb->CFR[i],
2465 "CFR", i);
2466 if (!clear_all_dirty_bits
2467 (tb->tb_sb, tb->CFR[i]))
2468 locked = tb->CFR[i];
2469 }
2470 }
2471 }
2472
2473 /*
2474 * as far as I can tell, this is not required. The FEB list
2475 * seems to be full of newly allocated nodes, which will
2476 * never be locked, dirty, or anything else.
2477 * To be safe, I'm putting in the checks and waits in.
2478 * For the moment, they are needed to keep the code in
2479 * journal.c from complaining about the buffer.
2480 * That code is inside CONFIG_REISERFS_CHECK as well. --clm
2481 */
2482 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2483 if (tb->FEB[i]) {
2484 if (!clear_all_dirty_bits
2485 (tb->tb_sb, tb->FEB[i]))
2486 locked = tb->FEB[i];
2487 }
2488 }
2489
2490 if (locked) {
2491 int depth;
2492#ifdef CONFIG_REISERFS_CHECK
2493 repeat_counter++;
2494 if ((repeat_counter % 10000) == 0) {
2495 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2496 "too many iterations waiting "
2497 "for buffer to unlock "
2498 "(%b)", locked);
2499
2500 /* Don't loop forever. Try to recover from possible error. */
2501
2502 return (FILESYSTEM_CHANGED_TB(tb)) ?
2503 REPEAT_SEARCH : CARRY_ON;
2504 }
2505#endif
2506 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2507 __wait_on_buffer(locked);
2508 reiserfs_write_lock_nested(tb->tb_sb, depth);
2509 if (FILESYSTEM_CHANGED_TB(tb))
2510 return REPEAT_SEARCH;
2511 }
2512
2513 } while (locked);
2514
2515 return CARRY_ON;
2516}
2517
2518/*
2519 * Prepare for balancing, that is
2520 * get all necessary parents, and neighbors;
2521 * analyze what and where should be moved;
2522 * get sufficient number of new nodes;
2523 * Balancing will start only after all resources will be collected at a time.
2524 *
2525 * When ported to SMP kernels, only at the last moment after all needed nodes
2526 * are collected in cache, will the resources be locked using the usual
2527 * textbook ordered lock acquisition algorithms. Note that ensuring that
2528 * this code neither write locks what it does not need to write lock nor locks
2529 * out of order will be a pain in the butt that could have been avoided.
2530 * Grumble grumble. -Hans
2531 *
2532 * fix is meant in the sense of render unchanging
2533 *
2534 * Latency might be improved by first gathering a list of what buffers
2535 * are needed and then getting as many of them in parallel as possible? -Hans
2536 *
2537 * Parameters:
2538 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2539 * tb tree_balance structure;
2540 * inum item number in S[h];
2541 * pos_in_item - comment this if you can
2542 * ins_ih item head of item being inserted
2543 * data inserted item or data to be pasted
2544 * Returns: 1 - schedule occurred while the function worked;
2545 * 0 - schedule didn't occur while the function worked;
2546 * -1 - if no_disk_space
2547 */
2548
2549int fix_nodes(int op_mode, struct tree_balance *tb,
2550 struct item_head *ins_ih, const void *data)
2551{
2552 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2553 int pos_in_item;
2554
2555 /*
2556 * we set wait_tb_buffers_run when we have to restore any dirty
2557 * bits cleared during wait_tb_buffers_run
2558 */
2559 int wait_tb_buffers_run = 0;
2560 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2561
2562 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2563
2564 pos_in_item = tb->tb_path->pos_in_item;
2565
2566 tb->fs_gen = get_generation(tb->tb_sb);
2567
2568 /*
2569 * we prepare and log the super here so it will already be in the
2570 * transaction when do_balance needs to change it.
2571 * This way do_balance won't have to schedule when trying to prepare
2572 * the super for logging
2573 */
2574 reiserfs_prepare_for_journal(tb->tb_sb,
2575 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2576 journal_mark_dirty(tb->transaction_handle,
2577 SB_BUFFER_WITH_SB(tb->tb_sb));
2578 if (FILESYSTEM_CHANGED_TB(tb))
2579 return REPEAT_SEARCH;
2580
2581 /* if it possible in indirect_to_direct conversion */
2582 if (buffer_locked(tbS0)) {
2583 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2584 __wait_on_buffer(tbS0);
2585 reiserfs_write_lock_nested(tb->tb_sb, depth);
2586 if (FILESYSTEM_CHANGED_TB(tb))
2587 return REPEAT_SEARCH;
2588 }
2589#ifdef CONFIG_REISERFS_CHECK
2590 if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2591 print_cur_tb("fix_nodes");
2592 reiserfs_panic(tb->tb_sb, "PAP-8305",
2593 "there is pending do_balance");
2594 }
2595
2596 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2597 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2598 "not uptodate at the beginning of fix_nodes "
2599 "or not in tree (mode %c)",
2600 tbS0, tbS0, op_mode);
2601
2602 /* Check parameters. */
2603 switch (op_mode) {
2604 case M_INSERT:
2605 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2606 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2607 "item number %d (in S0 - %d) in case "
2608 "of insert", item_num,
2609 B_NR_ITEMS(tbS0));
2610 break;
2611 case M_PASTE:
2612 case M_DELETE:
2613 case M_CUT:
2614 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2615 print_block(tbS0, 0, -1, -1);
2616 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2617 "item number(%d); mode = %c "
2618 "insert_size = %d",
2619 item_num, op_mode,
2620 tb->insert_size[0]);
2621 }
2622 break;
2623 default:
2624 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2625 "of operation");
2626 }
2627#endif
2628
2629 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2630 /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2631 return REPEAT_SEARCH;
2632
2633 /* Starting from the leaf level; for all levels h of the tree. */
2634 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2635 ret = get_direct_parent(tb, h);
2636 if (ret != CARRY_ON)
2637 goto repeat;
2638
2639 ret = check_balance(op_mode, tb, h, item_num,
2640 pos_in_item, ins_ih, data);
2641 if (ret != CARRY_ON) {
2642 if (ret == NO_BALANCING_NEEDED) {
2643 /* No balancing for higher levels needed. */
2644 ret = get_neighbors(tb, h);
2645 if (ret != CARRY_ON)
2646 goto repeat;
2647 if (h != MAX_HEIGHT - 1)
2648 tb->insert_size[h + 1] = 0;
2649 /*
2650 * ok, analysis and resource gathering
2651 * are complete
2652 */
2653 break;
2654 }
2655 goto repeat;
2656 }
2657
2658 ret = get_neighbors(tb, h);
2659 if (ret != CARRY_ON)
2660 goto repeat;
2661
2662 /*
2663 * No disk space, or schedule occurred and analysis may be
2664 * invalid and needs to be redone.
2665 */
2666 ret = get_empty_nodes(tb, h);
2667 if (ret != CARRY_ON)
2668 goto repeat;
2669
2670 /*
2671 * We have a positive insert size but no nodes exist on this
2672 * level, this means that we are creating a new root.
2673 */
2674 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2675
2676 RFALSE(tb->blknum[h] != 1,
2677 "PAP-8350: creating new empty root");
2678
2679 if (h < MAX_HEIGHT - 1)
2680 tb->insert_size[h + 1] = 0;
2681 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2682 /*
2683 * The tree needs to be grown, so this node S[h]
2684 * which is the root node is split into two nodes,
2685 * and a new node (S[h+1]) will be created to
2686 * become the root node.
2687 */
2688 if (tb->blknum[h] > 1) {
2689
2690 RFALSE(h == MAX_HEIGHT - 1,
2691 "PAP-8355: attempt to create too high of a tree");
2692
2693 tb->insert_size[h + 1] =
2694 (DC_SIZE +
2695 KEY_SIZE) * (tb->blknum[h] - 1) +
2696 DC_SIZE;
2697 } else if (h < MAX_HEIGHT - 1)
2698 tb->insert_size[h + 1] = 0;
2699 } else
2700 tb->insert_size[h + 1] =
2701 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2702 }
2703
2704 ret = wait_tb_buffers_until_unlocked(tb);
2705 if (ret == CARRY_ON) {
2706 if (FILESYSTEM_CHANGED_TB(tb)) {
2707 wait_tb_buffers_run = 1;
2708 ret = REPEAT_SEARCH;
2709 goto repeat;
2710 } else {
2711 return CARRY_ON;
2712 }
2713 } else {
2714 wait_tb_buffers_run = 1;
2715 goto repeat;
2716 }
2717
2718repeat:
2719 /*
2720 * fix_nodes was unable to perform its calculation due to
2721 * filesystem got changed under us, lack of free disk space or i/o
2722 * failure. If the first is the case - the search will be
2723 * repeated. For now - free all resources acquired so far except
2724 * for the new allocated nodes
2725 */
2726 {
2727 int i;
2728
2729 /* Release path buffers. */
2730 if (wait_tb_buffers_run) {
2731 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2732 } else {
2733 pathrelse(tb->tb_path);
2734 }
2735 /* brelse all resources collected for balancing */
2736 for (i = 0; i < MAX_HEIGHT; i++) {
2737 if (wait_tb_buffers_run) {
2738 reiserfs_restore_prepared_buffer(tb->tb_sb,
2739 tb->L[i]);
2740 reiserfs_restore_prepared_buffer(tb->tb_sb,
2741 tb->R[i]);
2742 reiserfs_restore_prepared_buffer(tb->tb_sb,
2743 tb->FL[i]);
2744 reiserfs_restore_prepared_buffer(tb->tb_sb,
2745 tb->FR[i]);
2746 reiserfs_restore_prepared_buffer(tb->tb_sb,
2747 tb->
2748 CFL[i]);
2749 reiserfs_restore_prepared_buffer(tb->tb_sb,
2750 tb->
2751 CFR[i]);
2752 }
2753
2754 brelse(tb->L[i]);
2755 brelse(tb->R[i]);
2756 brelse(tb->FL[i]);
2757 brelse(tb->FR[i]);
2758 brelse(tb->CFL[i]);
2759 brelse(tb->CFR[i]);
2760
2761 tb->L[i] = NULL;
2762 tb->R[i] = NULL;
2763 tb->FL[i] = NULL;
2764 tb->FR[i] = NULL;
2765 tb->CFL[i] = NULL;
2766 tb->CFR[i] = NULL;
2767 }
2768
2769 if (wait_tb_buffers_run) {
2770 for (i = 0; i < MAX_FEB_SIZE; i++) {
2771 if (tb->FEB[i])
2772 reiserfs_restore_prepared_buffer
2773 (tb->tb_sb, tb->FEB[i]);
2774 }
2775 }
2776 return ret;
2777 }
2778
2779}
2780
2781void unfix_nodes(struct tree_balance *tb)
2782{
2783 int i;
2784
2785 /* Release path buffers. */
2786 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2787
2788 /* brelse all resources collected for balancing */
2789 for (i = 0; i < MAX_HEIGHT; i++) {
2790 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2791 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2792 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2793 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2794 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2795 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2796
2797 brelse(tb->L[i]);
2798 brelse(tb->R[i]);
2799 brelse(tb->FL[i]);
2800 brelse(tb->FR[i]);
2801 brelse(tb->CFL[i]);
2802 brelse(tb->CFR[i]);
2803 }
2804
2805 /* deal with list of allocated (used and unused) nodes */
2806 for (i = 0; i < MAX_FEB_SIZE; i++) {
2807 if (tb->FEB[i]) {
2808 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2809 /*
2810 * de-allocated block which was not used by
2811 * balancing and bforget about buffer for it
2812 */
2813 brelse(tb->FEB[i]);
2814 reiserfs_free_block(tb->transaction_handle, NULL,
2815 blocknr, 0);
2816 }
2817 if (tb->used[i]) {
2818 /* release used as new nodes including a new root */
2819 brelse(tb->used[i]);
2820 }
2821 }
2822
2823 kfree(tb->vn_buf);
2824
2825}