defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / ext4 / inode.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42
43#include "ext4_jbd2.h"
44#include "xattr.h"
45#include "acl.h"
46#include "truncate.h"
47
48#include <trace/events/ext4.h>
49#include <trace/events/android_fs.h>
50
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138}
139
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173{
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext4_evict_inode(struct inode *inode)
196{
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = get_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340}
341
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
344{
345 return &EXT4_I(inode)->i_reserved_quota;
346}
347#endif
348
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
396}
397
398static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401{
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
409 }
410 return 0;
411}
412
413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415{
416 int ret;
417
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426}
427
428#define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
430
431#ifdef ES_AGGRESSIVE_TEST
432static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437{
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
456 up_read((&EXT4_I(inode)->i_data_sem));
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473}
474#endif /* ES_AGGRESSIVE_TEST */
475
476/*
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
479 *
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
487 *
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
495 *
496 * It returns the error in case of allocation failure.
497 */
498int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
500{
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504#ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508#endif
509
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
514
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
524
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
564 }
565 if (retval > 0) {
566 unsigned int status;
567
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
574 }
575
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 up_read((&EXT4_I(inode)->i_data_sem));
589
590found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
595 }
596
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
607 */
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
616
617 /*
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
620 */
621 map->m_flags &= ~EXT4_MAP_FLAGS;
622
623 /*
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
628 */
629 down_write(&EXT4_I(inode)->i_data_sem);
630
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 }
648
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
659
660 if (retval > 0) {
661 unsigned int status;
662
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
669 }
670
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_find_delalloc_range(inode, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
736 if (ret)
737 return ret;
738 }
739 }
740 return retval;
741}
742
743/*
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
746 */
747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748{
749 unsigned long old_state;
750 unsigned long new_state;
751
752 flags &= EXT4_MAP_FLAGS;
753
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
758 }
759 /*
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
763 */
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769}
770
771static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
773{
774 struct ext4_map_blocks map;
775 int ret = 0;
776
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 }
794 return ret;
795}
796
797int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799{
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802}
803
804/*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811{
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816}
817
818/* Maximum number of blocks we map for direct IO at once. */
819#define DIO_MAX_BLOCKS 4096
820
821/*
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
825 */
826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
828{
829 int dio_credits;
830 handle_t *handle;
831 int retries = 0;
832 int ret;
833
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
839retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
843
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
846
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
850}
851
852/* Get block function for DIO reads and writes to inodes without extents */
853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
855{
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862}
863
864/*
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
868 */
869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
871{
872 int ret;
873
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880 /*
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
886 */
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
890
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
896 }
897 set_buffer_defer_completion(bh_result);
898 }
899
900 return ret;
901}
902
903/*
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
907 */
908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
910{
911 int ret;
912
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
915
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919 /*
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
922 * written.
923 */
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927 return ret;
928}
929
930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932{
933 int ret;
934
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
939
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 /*
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
944 */
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947 return ret;
948}
949
950
951/*
952 * `handle' can be NULL if create is zero
953 */
954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
956{
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 int err;
961
962 J_ASSERT(handle != NULL || create == 0);
963
964 map.m_lblk = block;
965 map.m_len = 1;
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
970 if (err < 0)
971 return ERR_PTR(err);
972
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
979
980 /*
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
986 */
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
993 }
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
997 }
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 if (unlikely(err))
1002 goto errout;
1003 } else
1004 BUFFER_TRACE(bh, "not a new buffer");
1005 return bh;
1006errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1013{
1014 struct buffer_head *bh;
1015
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (IS_ERR(bh))
1018 return bh;
1019 if (!bh || buffer_uptodate(bh))
1020 return bh;
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1026 return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1032{
1033 int i, err;
1034
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1041 }
1042 }
1043
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1049
1050 if (!wait)
1051 return 0;
1052
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1056
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1061 }
1062 }
1063 return 0;
1064
1065out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1069 }
1070 return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1080{
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1086
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1096 }
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1100 }
1101 return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1130{
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1133
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
1136 /*
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1143 */
1144 if (dirty)
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1156{
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1167
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1171 BUG_ON(from > to);
1172
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1186 }
1187 continue;
1188 }
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1203 }
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1208 }
1209 }
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1214 }
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 int bi_opf = 0;
1219
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1222 bi_opf = decrypt ? REQ_NOENCRYPT : 0;
1223 if (decrypt && fscrypt_has_encryption_key(inode)) {
1224 bh->b_private = fscrypt_get_diskcipher(inode);
1225 if (bh->b_private) {
1226 bi_opf |= REQ_CRYPT;
1227 decrypt = 0;
1228 }
1229 }
1230 ll_rw_block(REQ_OP_READ, bi_opf, 1, &bh);
1231 crypto_diskcipher_debug(FS_BLOCK_WRITE, bi_opf);
1232 *wait_bh++ = bh;
1233 }
1234 }
1235 /*
1236 * If we issued read requests, let them complete.
1237 */
1238 while (wait_bh > wait) {
1239 wait_on_buffer(*--wait_bh);
1240 if (!buffer_uptodate(*wait_bh))
1241 err = -EIO;
1242 }
1243 if (unlikely(err))
1244 page_zero_new_buffers(page, from, to);
1245 else if (decrypt)
1246 err = fscrypt_decrypt_page(page->mapping->host, page,
1247 PAGE_SIZE, 0, page->index);
1248 return err;
1249}
1250#endif
1251
1252static int ext4_write_begin(struct file *file, struct address_space *mapping,
1253 loff_t pos, unsigned len, unsigned flags,
1254 struct page **pagep, void **fsdata)
1255{
1256 struct inode *inode = mapping->host;
1257 int ret, needed_blocks;
1258 handle_t *handle;
1259 int retries = 0;
1260 struct page *page;
1261 pgoff_t index;
1262 unsigned from, to;
1263
1264 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1265 return -EIO;
1266
1267 if (trace_android_fs_datawrite_start_enabled()) {
1268 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1269
1270 path = android_fstrace_get_pathname(pathbuf,
1271 MAX_TRACE_PATHBUF_LEN,
1272 inode);
1273 trace_android_fs_datawrite_start(inode, pos, len,
1274 current->pid, path,
1275 current->comm);
1276 }
1277 trace_ext4_write_begin(inode, pos, len, flags);
1278 /*
1279 * Reserve one block more for addition to orphan list in case
1280 * we allocate blocks but write fails for some reason
1281 */
1282 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1283 index = pos >> PAGE_SHIFT;
1284 from = pos & (PAGE_SIZE - 1);
1285 to = from + len;
1286
1287 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1288 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1289 flags, pagep);
1290 if (ret < 0)
1291 return ret;
1292 if (ret == 1)
1293 return 0;
1294 }
1295
1296 /*
1297 * grab_cache_page_write_begin() can take a long time if the
1298 * system is thrashing due to memory pressure, or if the page
1299 * is being written back. So grab it first before we start
1300 * the transaction handle. This also allows us to allocate
1301 * the page (if needed) without using GFP_NOFS.
1302 */
1303retry_grab:
1304 page = grab_cache_page_write_begin(mapping, index, flags);
1305 if (!page)
1306 return -ENOMEM;
1307 unlock_page(page);
1308
1309retry_journal:
1310 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1311 if (IS_ERR(handle)) {
1312 put_page(page);
1313 return PTR_ERR(handle);
1314 }
1315
1316 lock_page(page);
1317 if (page->mapping != mapping) {
1318 /* The page got truncated from under us */
1319 unlock_page(page);
1320 put_page(page);
1321 ext4_journal_stop(handle);
1322 goto retry_grab;
1323 }
1324 /* In case writeback began while the page was unlocked */
1325 wait_for_stable_page(page);
1326
1327#ifdef CONFIG_EXT4_FS_ENCRYPTION
1328 if (ext4_should_dioread_nolock(inode))
1329 ret = ext4_block_write_begin(page, pos, len,
1330 ext4_get_block_unwritten);
1331 else
1332 ret = ext4_block_write_begin(page, pos, len,
1333 ext4_get_block);
1334#else
1335 if (ext4_should_dioread_nolock(inode))
1336 ret = __block_write_begin(page, pos, len,
1337 ext4_get_block_unwritten);
1338 else
1339 ret = __block_write_begin(page, pos, len, ext4_get_block);
1340#endif
1341 if (!ret && ext4_should_journal_data(inode)) {
1342 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1343 from, to, NULL,
1344 do_journal_get_write_access);
1345 }
1346
1347 if (ret) {
1348 unlock_page(page);
1349 /*
1350 * __block_write_begin may have instantiated a few blocks
1351 * outside i_size. Trim these off again. Don't need
1352 * i_size_read because we hold i_mutex.
1353 *
1354 * Add inode to orphan list in case we crash before
1355 * truncate finishes
1356 */
1357 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1358 ext4_orphan_add(handle, inode);
1359
1360 ext4_journal_stop(handle);
1361 if (pos + len > inode->i_size) {
1362 ext4_truncate_failed_write(inode);
1363 /*
1364 * If truncate failed early the inode might
1365 * still be on the orphan list; we need to
1366 * make sure the inode is removed from the
1367 * orphan list in that case.
1368 */
1369 if (inode->i_nlink)
1370 ext4_orphan_del(NULL, inode);
1371 }
1372
1373 if (ret == -ENOSPC &&
1374 ext4_should_retry_alloc(inode->i_sb, &retries))
1375 goto retry_journal;
1376 put_page(page);
1377 return ret;
1378 }
1379 *pagep = page;
1380 return ret;
1381}
1382
1383/* For write_end() in data=journal mode */
1384static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385{
1386 int ret;
1387 if (!buffer_mapped(bh) || buffer_freed(bh))
1388 return 0;
1389 set_buffer_uptodate(bh);
1390 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1391 clear_buffer_meta(bh);
1392 clear_buffer_prio(bh);
1393 return ret;
1394}
1395
1396/*
1397 * We need to pick up the new inode size which generic_commit_write gave us
1398 * `file' can be NULL - eg, when called from page_symlink().
1399 *
1400 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1401 * buffers are managed internally.
1402 */
1403static int ext4_write_end(struct file *file,
1404 struct address_space *mapping,
1405 loff_t pos, unsigned len, unsigned copied,
1406 struct page *page, void *fsdata)
1407{
1408 handle_t *handle = ext4_journal_current_handle();
1409 struct inode *inode = mapping->host;
1410 loff_t old_size = inode->i_size;
1411 int ret = 0, ret2;
1412 int i_size_changed = 0;
1413 int inline_data = ext4_has_inline_data(inode);
1414
1415 trace_android_fs_datawrite_end(inode, pos, len);
1416 trace_ext4_write_end(inode, pos, len, copied);
1417 if (inline_data) {
1418 ret = ext4_write_inline_data_end(inode, pos, len,
1419 copied, page);
1420 if (ret < 0) {
1421 unlock_page(page);
1422 put_page(page);
1423 goto errout;
1424 }
1425 copied = ret;
1426 } else
1427 copied = block_write_end(file, mapping, pos,
1428 len, copied, page, fsdata);
1429 /*
1430 * it's important to update i_size while still holding page lock:
1431 * page writeout could otherwise come in and zero beyond i_size.
1432 */
1433 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1434 unlock_page(page);
1435 put_page(page);
1436
1437 if (old_size < pos)
1438 pagecache_isize_extended(inode, old_size, pos);
1439 /*
1440 * Don't mark the inode dirty under page lock. First, it unnecessarily
1441 * makes the holding time of page lock longer. Second, it forces lock
1442 * ordering of page lock and transaction start for journaling
1443 * filesystems.
1444 */
1445 if (i_size_changed || inline_data)
1446 ext4_mark_inode_dirty(handle, inode);
1447
1448 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1449 /* if we have allocated more blocks and copied
1450 * less. We will have blocks allocated outside
1451 * inode->i_size. So truncate them
1452 */
1453 ext4_orphan_add(handle, inode);
1454errout:
1455 ret2 = ext4_journal_stop(handle);
1456 if (!ret)
1457 ret = ret2;
1458
1459 if (pos + len > inode->i_size) {
1460 ext4_truncate_failed_write(inode);
1461 /*
1462 * If truncate failed early the inode might still be
1463 * on the orphan list; we need to make sure the inode
1464 * is removed from the orphan list in that case.
1465 */
1466 if (inode->i_nlink)
1467 ext4_orphan_del(NULL, inode);
1468 }
1469
1470 return ret ? ret : copied;
1471}
1472
1473/*
1474 * This is a private version of page_zero_new_buffers() which doesn't
1475 * set the buffer to be dirty, since in data=journalled mode we need
1476 * to call ext4_handle_dirty_metadata() instead.
1477 */
1478static void ext4_journalled_zero_new_buffers(handle_t *handle,
1479 struct page *page,
1480 unsigned from, unsigned to)
1481{
1482 unsigned int block_start = 0, block_end;
1483 struct buffer_head *head, *bh;
1484
1485 bh = head = page_buffers(page);
1486 do {
1487 block_end = block_start + bh->b_size;
1488 if (buffer_new(bh)) {
1489 if (block_end > from && block_start < to) {
1490 if (!PageUptodate(page)) {
1491 unsigned start, size;
1492
1493 start = max(from, block_start);
1494 size = min(to, block_end) - start;
1495
1496 zero_user(page, start, size);
1497 write_end_fn(handle, bh);
1498 }
1499 clear_buffer_new(bh);
1500 }
1501 }
1502 block_start = block_end;
1503 bh = bh->b_this_page;
1504 } while (bh != head);
1505}
1506
1507static int ext4_journalled_write_end(struct file *file,
1508 struct address_space *mapping,
1509 loff_t pos, unsigned len, unsigned copied,
1510 struct page *page, void *fsdata)
1511{
1512 handle_t *handle = ext4_journal_current_handle();
1513 struct inode *inode = mapping->host;
1514 loff_t old_size = inode->i_size;
1515 int ret = 0, ret2;
1516 int partial = 0;
1517 unsigned from, to;
1518 int size_changed = 0;
1519 int inline_data = ext4_has_inline_data(inode);
1520
1521 trace_android_fs_datawrite_end(inode, pos, len);
1522 trace_ext4_journalled_write_end(inode, pos, len, copied);
1523 from = pos & (PAGE_SIZE - 1);
1524 to = from + len;
1525
1526 BUG_ON(!ext4_handle_valid(handle));
1527
1528 if (inline_data) {
1529 ret = ext4_write_inline_data_end(inode, pos, len,
1530 copied, page);
1531 if (ret < 0) {
1532 unlock_page(page);
1533 put_page(page);
1534 goto errout;
1535 }
1536 copied = ret;
1537 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1538 copied = 0;
1539 ext4_journalled_zero_new_buffers(handle, page, from, to);
1540 } else {
1541 if (unlikely(copied < len))
1542 ext4_journalled_zero_new_buffers(handle, page,
1543 from + copied, to);
1544 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1545 from + copied, &partial,
1546 write_end_fn);
1547 if (!partial)
1548 SetPageUptodate(page);
1549 }
1550 size_changed = ext4_update_inode_size(inode, pos + copied);
1551 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1552 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1553 unlock_page(page);
1554 put_page(page);
1555
1556 if (old_size < pos)
1557 pagecache_isize_extended(inode, old_size, pos);
1558
1559 if (size_changed || inline_data) {
1560 ret2 = ext4_mark_inode_dirty(handle, inode);
1561 if (!ret)
1562 ret = ret2;
1563 }
1564
1565 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1566 /* if we have allocated more blocks and copied
1567 * less. We will have blocks allocated outside
1568 * inode->i_size. So truncate them
1569 */
1570 ext4_orphan_add(handle, inode);
1571
1572errout:
1573 ret2 = ext4_journal_stop(handle);
1574 if (!ret)
1575 ret = ret2;
1576 if (pos + len > inode->i_size) {
1577 ext4_truncate_failed_write(inode);
1578 /*
1579 * If truncate failed early the inode might still be
1580 * on the orphan list; we need to make sure the inode
1581 * is removed from the orphan list in that case.
1582 */
1583 if (inode->i_nlink)
1584 ext4_orphan_del(NULL, inode);
1585 }
1586
1587 return ret ? ret : copied;
1588}
1589
1590/*
1591 * Reserve space for a single cluster
1592 */
1593static int ext4_da_reserve_space(struct inode *inode)
1594{
1595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1596 struct ext4_inode_info *ei = EXT4_I(inode);
1597 int ret;
1598
1599 /*
1600 * We will charge metadata quota at writeout time; this saves
1601 * us from metadata over-estimation, though we may go over by
1602 * a small amount in the end. Here we just reserve for data.
1603 */
1604 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1605 if (ret)
1606 return ret;
1607
1608 spin_lock(&ei->i_block_reservation_lock);
1609 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1610 spin_unlock(&ei->i_block_reservation_lock);
1611 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1612 return -ENOSPC;
1613 }
1614 ei->i_reserved_data_blocks++;
1615 trace_ext4_da_reserve_space(inode);
1616 spin_unlock(&ei->i_block_reservation_lock);
1617
1618 return 0; /* success */
1619}
1620
1621static void ext4_da_release_space(struct inode *inode, int to_free)
1622{
1623 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1624 struct ext4_inode_info *ei = EXT4_I(inode);
1625
1626 if (!to_free)
1627 return; /* Nothing to release, exit */
1628
1629 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1630
1631 trace_ext4_da_release_space(inode, to_free);
1632 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1633 /*
1634 * if there aren't enough reserved blocks, then the
1635 * counter is messed up somewhere. Since this
1636 * function is called from invalidate page, it's
1637 * harmless to return without any action.
1638 */
1639 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1640 "ino %lu, to_free %d with only %d reserved "
1641 "data blocks", inode->i_ino, to_free,
1642 ei->i_reserved_data_blocks);
1643 WARN_ON(1);
1644 to_free = ei->i_reserved_data_blocks;
1645 }
1646 ei->i_reserved_data_blocks -= to_free;
1647
1648 /* update fs dirty data blocks counter */
1649 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1650
1651 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1652
1653 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1654}
1655
1656static void ext4_da_page_release_reservation(struct page *page,
1657 unsigned int offset,
1658 unsigned int length)
1659{
1660 int to_release = 0, contiguous_blks = 0;
1661 struct buffer_head *head, *bh;
1662 unsigned int curr_off = 0;
1663 struct inode *inode = page->mapping->host;
1664 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1665 unsigned int stop = offset + length;
1666 int num_clusters;
1667 ext4_fsblk_t lblk;
1668
1669 BUG_ON(stop > PAGE_SIZE || stop < length);
1670
1671 head = page_buffers(page);
1672 bh = head;
1673 do {
1674 unsigned int next_off = curr_off + bh->b_size;
1675
1676 if (next_off > stop)
1677 break;
1678
1679 if ((offset <= curr_off) && (buffer_delay(bh))) {
1680 to_release++;
1681 contiguous_blks++;
1682 clear_buffer_delay(bh);
1683 } else if (contiguous_blks) {
1684 lblk = page->index <<
1685 (PAGE_SHIFT - inode->i_blkbits);
1686 lblk += (curr_off >> inode->i_blkbits) -
1687 contiguous_blks;
1688 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1689 contiguous_blks = 0;
1690 }
1691 curr_off = next_off;
1692 } while ((bh = bh->b_this_page) != head);
1693
1694 if (contiguous_blks) {
1695 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1696 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1697 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1698 }
1699
1700 /* If we have released all the blocks belonging to a cluster, then we
1701 * need to release the reserved space for that cluster. */
1702 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1703 while (num_clusters > 0) {
1704 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1705 ((num_clusters - 1) << sbi->s_cluster_bits);
1706 if (sbi->s_cluster_ratio == 1 ||
1707 !ext4_find_delalloc_cluster(inode, lblk))
1708 ext4_da_release_space(inode, 1);
1709
1710 num_clusters--;
1711 }
1712}
1713
1714/*
1715 * Delayed allocation stuff
1716 */
1717
1718struct mpage_da_data {
1719 struct inode *inode;
1720 struct writeback_control *wbc;
1721
1722 pgoff_t first_page; /* The first page to write */
1723 pgoff_t next_page; /* Current page to examine */
1724 pgoff_t last_page; /* Last page to examine */
1725 /*
1726 * Extent to map - this can be after first_page because that can be
1727 * fully mapped. We somewhat abuse m_flags to store whether the extent
1728 * is delalloc or unwritten.
1729 */
1730 struct ext4_map_blocks map;
1731 struct ext4_io_submit io_submit; /* IO submission data */
1732 unsigned int do_map:1;
1733};
1734
1735static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1736 bool invalidate)
1737{
1738 int nr_pages, i;
1739 pgoff_t index, end;
1740 struct pagevec pvec;
1741 struct inode *inode = mpd->inode;
1742 struct address_space *mapping = inode->i_mapping;
1743
1744 /* This is necessary when next_page == 0. */
1745 if (mpd->first_page >= mpd->next_page)
1746 return;
1747
1748 index = mpd->first_page;
1749 end = mpd->next_page - 1;
1750 if (invalidate) {
1751 ext4_lblk_t start, last;
1752 start = index << (PAGE_SHIFT - inode->i_blkbits);
1753 last = end << (PAGE_SHIFT - inode->i_blkbits);
1754 ext4_es_remove_extent(inode, start, last - start + 1);
1755 }
1756
1757 pagevec_init(&pvec, 0);
1758 while (index <= end) {
1759 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1760 if (nr_pages == 0)
1761 break;
1762 for (i = 0; i < nr_pages; i++) {
1763 struct page *page = pvec.pages[i];
1764
1765 BUG_ON(!PageLocked(page));
1766 BUG_ON(PageWriteback(page));
1767 if (invalidate) {
1768 if (page_mapped(page))
1769 clear_page_dirty_for_io(page);
1770 block_invalidatepage(page, 0, PAGE_SIZE);
1771 ClearPageUptodate(page);
1772 }
1773 unlock_page(page);
1774 }
1775 pagevec_release(&pvec);
1776 }
1777}
1778
1779static void ext4_print_free_blocks(struct inode *inode)
1780{
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 struct super_block *sb = inode->i_sb;
1783 struct ext4_inode_info *ei = EXT4_I(inode);
1784
1785 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1786 EXT4_C2B(EXT4_SB(inode->i_sb),
1787 ext4_count_free_clusters(sb)));
1788 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1789 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1790 (long long) EXT4_C2B(EXT4_SB(sb),
1791 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1792 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1793 (long long) EXT4_C2B(EXT4_SB(sb),
1794 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1795 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1796 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1797 ei->i_reserved_data_blocks);
1798 return;
1799}
1800
1801static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1802{
1803 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1804}
1805
1806/*
1807 * This function is grabs code from the very beginning of
1808 * ext4_map_blocks, but assumes that the caller is from delayed write
1809 * time. This function looks up the requested blocks and sets the
1810 * buffer delay bit under the protection of i_data_sem.
1811 */
1812static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1813 struct ext4_map_blocks *map,
1814 struct buffer_head *bh)
1815{
1816 struct extent_status es;
1817 int retval;
1818 sector_t invalid_block = ~((sector_t) 0xffff);
1819#ifdef ES_AGGRESSIVE_TEST
1820 struct ext4_map_blocks orig_map;
1821
1822 memcpy(&orig_map, map, sizeof(*map));
1823#endif
1824
1825 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1826 invalid_block = ~0;
1827
1828 map->m_flags = 0;
1829 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1830 "logical block %lu\n", inode->i_ino, map->m_len,
1831 (unsigned long) map->m_lblk);
1832
1833 /* Lookup extent status tree firstly */
1834 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1835 if (ext4_es_is_hole(&es)) {
1836 retval = 0;
1837 down_read(&EXT4_I(inode)->i_data_sem);
1838 goto add_delayed;
1839 }
1840
1841 /*
1842 * Delayed extent could be allocated by fallocate.
1843 * So we need to check it.
1844 */
1845 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1846 map_bh(bh, inode->i_sb, invalid_block);
1847 set_buffer_new(bh);
1848 set_buffer_delay(bh);
1849 return 0;
1850 }
1851
1852 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1853 retval = es.es_len - (iblock - es.es_lblk);
1854 if (retval > map->m_len)
1855 retval = map->m_len;
1856 map->m_len = retval;
1857 if (ext4_es_is_written(&es))
1858 map->m_flags |= EXT4_MAP_MAPPED;
1859 else if (ext4_es_is_unwritten(&es))
1860 map->m_flags |= EXT4_MAP_UNWRITTEN;
1861 else
1862 BUG_ON(1);
1863
1864#ifdef ES_AGGRESSIVE_TEST
1865 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1866#endif
1867 return retval;
1868 }
1869
1870 /*
1871 * Try to see if we can get the block without requesting a new
1872 * file system block.
1873 */
1874 down_read(&EXT4_I(inode)->i_data_sem);
1875 if (ext4_has_inline_data(inode))
1876 retval = 0;
1877 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1878 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1879 else
1880 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1881
1882add_delayed:
1883 if (retval == 0) {
1884 int ret;
1885 /*
1886 * XXX: __block_prepare_write() unmaps passed block,
1887 * is it OK?
1888 */
1889 /*
1890 * If the block was allocated from previously allocated cluster,
1891 * then we don't need to reserve it again. However we still need
1892 * to reserve metadata for every block we're going to write.
1893 */
1894 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1895 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1896 ret = ext4_da_reserve_space(inode);
1897 if (ret) {
1898 /* not enough space to reserve */
1899 retval = ret;
1900 goto out_unlock;
1901 }
1902 }
1903
1904 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1905 ~0, EXTENT_STATUS_DELAYED);
1906 if (ret) {
1907 retval = ret;
1908 goto out_unlock;
1909 }
1910
1911 map_bh(bh, inode->i_sb, invalid_block);
1912 set_buffer_new(bh);
1913 set_buffer_delay(bh);
1914 } else if (retval > 0) {
1915 int ret;
1916 unsigned int status;
1917
1918 if (unlikely(retval != map->m_len)) {
1919 ext4_warning(inode->i_sb,
1920 "ES len assertion failed for inode "
1921 "%lu: retval %d != map->m_len %d",
1922 inode->i_ino, retval, map->m_len);
1923 WARN_ON(1);
1924 }
1925
1926 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1927 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1928 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1929 map->m_pblk, status);
1930 if (ret != 0)
1931 retval = ret;
1932 }
1933
1934out_unlock:
1935 up_read((&EXT4_I(inode)->i_data_sem));
1936
1937 return retval;
1938}
1939
1940/*
1941 * This is a special get_block_t callback which is used by
1942 * ext4_da_write_begin(). It will either return mapped block or
1943 * reserve space for a single block.
1944 *
1945 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1946 * We also have b_blocknr = -1 and b_bdev initialized properly
1947 *
1948 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1949 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1950 * initialized properly.
1951 */
1952int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1953 struct buffer_head *bh, int create)
1954{
1955 struct ext4_map_blocks map;
1956 int ret = 0;
1957
1958 BUG_ON(create == 0);
1959 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1960
1961 map.m_lblk = iblock;
1962 map.m_len = 1;
1963
1964 /*
1965 * first, we need to know whether the block is allocated already
1966 * preallocated blocks are unmapped but should treated
1967 * the same as allocated blocks.
1968 */
1969 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1970 if (ret <= 0)
1971 return ret;
1972
1973 map_bh(bh, inode->i_sb, map.m_pblk);
1974 ext4_update_bh_state(bh, map.m_flags);
1975
1976 if (buffer_unwritten(bh)) {
1977 /* A delayed write to unwritten bh should be marked
1978 * new and mapped. Mapped ensures that we don't do
1979 * get_block multiple times when we write to the same
1980 * offset and new ensures that we do proper zero out
1981 * for partial write.
1982 */
1983 set_buffer_new(bh);
1984 set_buffer_mapped(bh);
1985 }
1986 return 0;
1987}
1988
1989static int bget_one(handle_t *handle, struct buffer_head *bh)
1990{
1991 get_bh(bh);
1992 return 0;
1993}
1994
1995static int bput_one(handle_t *handle, struct buffer_head *bh)
1996{
1997 put_bh(bh);
1998 return 0;
1999}
2000
2001static int __ext4_journalled_writepage(struct page *page,
2002 unsigned int len)
2003{
2004 struct address_space *mapping = page->mapping;
2005 struct inode *inode = mapping->host;
2006 struct buffer_head *page_bufs = NULL;
2007 handle_t *handle = NULL;
2008 int ret = 0, err = 0;
2009 int inline_data = ext4_has_inline_data(inode);
2010 struct buffer_head *inode_bh = NULL;
2011
2012 ClearPageChecked(page);
2013
2014 if (inline_data) {
2015 BUG_ON(page->index != 0);
2016 BUG_ON(len > ext4_get_max_inline_size(inode));
2017 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2018 if (inode_bh == NULL)
2019 goto out;
2020 } else {
2021 page_bufs = page_buffers(page);
2022 if (!page_bufs) {
2023 BUG();
2024 goto out;
2025 }
2026 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2027 NULL, bget_one);
2028 }
2029 /*
2030 * We need to release the page lock before we start the
2031 * journal, so grab a reference so the page won't disappear
2032 * out from under us.
2033 */
2034 get_page(page);
2035 unlock_page(page);
2036
2037 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2038 ext4_writepage_trans_blocks(inode));
2039 if (IS_ERR(handle)) {
2040 ret = PTR_ERR(handle);
2041 put_page(page);
2042 goto out_no_pagelock;
2043 }
2044 BUG_ON(!ext4_handle_valid(handle));
2045
2046 lock_page(page);
2047 put_page(page);
2048 if (page->mapping != mapping) {
2049 /* The page got truncated from under us */
2050 ext4_journal_stop(handle);
2051 ret = 0;
2052 goto out;
2053 }
2054
2055 if (inline_data) {
2056 ret = ext4_mark_inode_dirty(handle, inode);
2057 } else {
2058 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2059 do_journal_get_write_access);
2060
2061 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2062 write_end_fn);
2063 }
2064 if (ret == 0)
2065 ret = err;
2066 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2067 err = ext4_journal_stop(handle);
2068 if (!ret)
2069 ret = err;
2070
2071 if (!ext4_has_inline_data(inode))
2072 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2073 NULL, bput_one);
2074 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2075out:
2076 unlock_page(page);
2077out_no_pagelock:
2078 brelse(inode_bh);
2079 return ret;
2080}
2081
2082/*
2083 * Note that we don't need to start a transaction unless we're journaling data
2084 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2085 * need to file the inode to the transaction's list in ordered mode because if
2086 * we are writing back data added by write(), the inode is already there and if
2087 * we are writing back data modified via mmap(), no one guarantees in which
2088 * transaction the data will hit the disk. In case we are journaling data, we
2089 * cannot start transaction directly because transaction start ranks above page
2090 * lock so we have to do some magic.
2091 *
2092 * This function can get called via...
2093 * - ext4_writepages after taking page lock (have journal handle)
2094 * - journal_submit_inode_data_buffers (no journal handle)
2095 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2096 * - grab_page_cache when doing write_begin (have journal handle)
2097 *
2098 * We don't do any block allocation in this function. If we have page with
2099 * multiple blocks we need to write those buffer_heads that are mapped. This
2100 * is important for mmaped based write. So if we do with blocksize 1K
2101 * truncate(f, 1024);
2102 * a = mmap(f, 0, 4096);
2103 * a[0] = 'a';
2104 * truncate(f, 4096);
2105 * we have in the page first buffer_head mapped via page_mkwrite call back
2106 * but other buffer_heads would be unmapped but dirty (dirty done via the
2107 * do_wp_page). So writepage should write the first block. If we modify
2108 * the mmap area beyond 1024 we will again get a page_fault and the
2109 * page_mkwrite callback will do the block allocation and mark the
2110 * buffer_heads mapped.
2111 *
2112 * We redirty the page if we have any buffer_heads that is either delay or
2113 * unwritten in the page.
2114 *
2115 * We can get recursively called as show below.
2116 *
2117 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2118 * ext4_writepage()
2119 *
2120 * But since we don't do any block allocation we should not deadlock.
2121 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2122 */
2123static int ext4_writepage(struct page *page,
2124 struct writeback_control *wbc)
2125{
2126 int ret = 0;
2127 loff_t size;
2128 unsigned int len;
2129 struct buffer_head *page_bufs = NULL;
2130 struct inode *inode = page->mapping->host;
2131 struct ext4_io_submit io_submit;
2132 bool keep_towrite = false;
2133
2134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2135 ext4_invalidatepage(page, 0, PAGE_SIZE);
2136 unlock_page(page);
2137 return -EIO;
2138 }
2139
2140 trace_ext4_writepage(page);
2141 size = i_size_read(inode);
2142 if (page->index == size >> PAGE_SHIFT)
2143 len = size & ~PAGE_MASK;
2144 else
2145 len = PAGE_SIZE;
2146
2147 page_bufs = page_buffers(page);
2148 /*
2149 * We cannot do block allocation or other extent handling in this
2150 * function. If there are buffers needing that, we have to redirty
2151 * the page. But we may reach here when we do a journal commit via
2152 * journal_submit_inode_data_buffers() and in that case we must write
2153 * allocated buffers to achieve data=ordered mode guarantees.
2154 *
2155 * Also, if there is only one buffer per page (the fs block
2156 * size == the page size), if one buffer needs block
2157 * allocation or needs to modify the extent tree to clear the
2158 * unwritten flag, we know that the page can't be written at
2159 * all, so we might as well refuse the write immediately.
2160 * Unfortunately if the block size != page size, we can't as
2161 * easily detect this case using ext4_walk_page_buffers(), but
2162 * for the extremely common case, this is an optimization that
2163 * skips a useless round trip through ext4_bio_write_page().
2164 */
2165 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2166 ext4_bh_delay_or_unwritten)) {
2167 redirty_page_for_writepage(wbc, page);
2168 if ((current->flags & PF_MEMALLOC) ||
2169 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2170 /*
2171 * For memory cleaning there's no point in writing only
2172 * some buffers. So just bail out. Warn if we came here
2173 * from direct reclaim.
2174 */
2175 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2176 == PF_MEMALLOC);
2177 unlock_page(page);
2178 return 0;
2179 }
2180 keep_towrite = true;
2181 }
2182
2183 if (PageChecked(page) && ext4_should_journal_data(inode))
2184 /*
2185 * It's mmapped pagecache. Add buffers and journal it. There
2186 * doesn't seem much point in redirtying the page here.
2187 */
2188 return __ext4_journalled_writepage(page, len);
2189
2190 ext4_io_submit_init(&io_submit, wbc);
2191 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2192 if (!io_submit.io_end) {
2193 redirty_page_for_writepage(wbc, page);
2194 unlock_page(page);
2195 return -ENOMEM;
2196 }
2197 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2198 ext4_io_submit(&io_submit);
2199 /* Drop io_end reference we got from init */
2200 ext4_put_io_end_defer(io_submit.io_end);
2201 return ret;
2202}
2203
2204static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2205{
2206 int len;
2207 loff_t size;
2208 int err;
2209
2210 BUG_ON(page->index != mpd->first_page);
2211 clear_page_dirty_for_io(page);
2212 /*
2213 * We have to be very careful here! Nothing protects writeback path
2214 * against i_size changes and the page can be writeably mapped into
2215 * page tables. So an application can be growing i_size and writing
2216 * data through mmap while writeback runs. clear_page_dirty_for_io()
2217 * write-protects our page in page tables and the page cannot get
2218 * written to again until we release page lock. So only after
2219 * clear_page_dirty_for_io() we are safe to sample i_size for
2220 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2221 * on the barrier provided by TestClearPageDirty in
2222 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2223 * after page tables are updated.
2224 */
2225 size = i_size_read(mpd->inode);
2226 if (page->index == size >> PAGE_SHIFT)
2227 len = size & ~PAGE_MASK;
2228 else
2229 len = PAGE_SIZE;
2230 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2231 if (!err)
2232 mpd->wbc->nr_to_write--;
2233 mpd->first_page++;
2234
2235 return err;
2236}
2237
2238#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2239
2240/*
2241 * mballoc gives us at most this number of blocks...
2242 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2243 * The rest of mballoc seems to handle chunks up to full group size.
2244 */
2245#define MAX_WRITEPAGES_EXTENT_LEN 2048
2246
2247/*
2248 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2249 *
2250 * @mpd - extent of blocks
2251 * @lblk - logical number of the block in the file
2252 * @bh - buffer head we want to add to the extent
2253 *
2254 * The function is used to collect contig. blocks in the same state. If the
2255 * buffer doesn't require mapping for writeback and we haven't started the
2256 * extent of buffers to map yet, the function returns 'true' immediately - the
2257 * caller can write the buffer right away. Otherwise the function returns true
2258 * if the block has been added to the extent, false if the block couldn't be
2259 * added.
2260 */
2261static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2262 struct buffer_head *bh)
2263{
2264 struct ext4_map_blocks *map = &mpd->map;
2265
2266 /* Buffer that doesn't need mapping for writeback? */
2267 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2268 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2269 /* So far no extent to map => we write the buffer right away */
2270 if (map->m_len == 0)
2271 return true;
2272 return false;
2273 }
2274
2275 /* First block in the extent? */
2276 if (map->m_len == 0) {
2277 /* We cannot map unless handle is started... */
2278 if (!mpd->do_map)
2279 return false;
2280 map->m_lblk = lblk;
2281 map->m_len = 1;
2282 map->m_flags = bh->b_state & BH_FLAGS;
2283 return true;
2284 }
2285
2286 /* Don't go larger than mballoc is willing to allocate */
2287 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2288 return false;
2289
2290 /* Can we merge the block to our big extent? */
2291 if (lblk == map->m_lblk + map->m_len &&
2292 (bh->b_state & BH_FLAGS) == map->m_flags) {
2293 map->m_len++;
2294 return true;
2295 }
2296 return false;
2297}
2298
2299/*
2300 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2301 *
2302 * @mpd - extent of blocks for mapping
2303 * @head - the first buffer in the page
2304 * @bh - buffer we should start processing from
2305 * @lblk - logical number of the block in the file corresponding to @bh
2306 *
2307 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2308 * the page for IO if all buffers in this page were mapped and there's no
2309 * accumulated extent of buffers to map or add buffers in the page to the
2310 * extent of buffers to map. The function returns 1 if the caller can continue
2311 * by processing the next page, 0 if it should stop adding buffers to the
2312 * extent to map because we cannot extend it anymore. It can also return value
2313 * < 0 in case of error during IO submission.
2314 */
2315static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2316 struct buffer_head *head,
2317 struct buffer_head *bh,
2318 ext4_lblk_t lblk)
2319{
2320 struct inode *inode = mpd->inode;
2321 int err;
2322 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2323 >> inode->i_blkbits;
2324
2325 do {
2326 BUG_ON(buffer_locked(bh));
2327
2328 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2329 /* Found extent to map? */
2330 if (mpd->map.m_len)
2331 return 0;
2332 /* Buffer needs mapping and handle is not started? */
2333 if (!mpd->do_map)
2334 return 0;
2335 /* Everything mapped so far and we hit EOF */
2336 break;
2337 }
2338 } while (lblk++, (bh = bh->b_this_page) != head);
2339 /* So far everything mapped? Submit the page for IO. */
2340 if (mpd->map.m_len == 0) {
2341 err = mpage_submit_page(mpd, head->b_page);
2342 if (err < 0)
2343 return err;
2344 }
2345 return lblk < blocks;
2346}
2347
2348/*
2349 * mpage_map_buffers - update buffers corresponding to changed extent and
2350 * submit fully mapped pages for IO
2351 *
2352 * @mpd - description of extent to map, on return next extent to map
2353 *
2354 * Scan buffers corresponding to changed extent (we expect corresponding pages
2355 * to be already locked) and update buffer state according to new extent state.
2356 * We map delalloc buffers to their physical location, clear unwritten bits,
2357 * and mark buffers as uninit when we perform writes to unwritten extents
2358 * and do extent conversion after IO is finished. If the last page is not fully
2359 * mapped, we update @map to the next extent in the last page that needs
2360 * mapping. Otherwise we submit the page for IO.
2361 */
2362static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2363{
2364 struct pagevec pvec;
2365 int nr_pages, i;
2366 struct inode *inode = mpd->inode;
2367 struct buffer_head *head, *bh;
2368 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2369 pgoff_t start, end;
2370 ext4_lblk_t lblk;
2371 sector_t pblock;
2372 int err;
2373
2374 start = mpd->map.m_lblk >> bpp_bits;
2375 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2376 lblk = start << bpp_bits;
2377 pblock = mpd->map.m_pblk;
2378
2379 pagevec_init(&pvec, 0);
2380 while (start <= end) {
2381 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2382 &start, end);
2383 if (nr_pages == 0)
2384 break;
2385 for (i = 0; i < nr_pages; i++) {
2386 struct page *page = pvec.pages[i];
2387
2388 bh = head = page_buffers(page);
2389 do {
2390 if (lblk < mpd->map.m_lblk)
2391 continue;
2392 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2393 /*
2394 * Buffer after end of mapped extent.
2395 * Find next buffer in the page to map.
2396 */
2397 mpd->map.m_len = 0;
2398 mpd->map.m_flags = 0;
2399 /*
2400 * FIXME: If dioread_nolock supports
2401 * blocksize < pagesize, we need to make
2402 * sure we add size mapped so far to
2403 * io_end->size as the following call
2404 * can submit the page for IO.
2405 */
2406 err = mpage_process_page_bufs(mpd, head,
2407 bh, lblk);
2408 pagevec_release(&pvec);
2409 if (err > 0)
2410 err = 0;
2411 return err;
2412 }
2413 if (buffer_delay(bh)) {
2414 clear_buffer_delay(bh);
2415 bh->b_blocknr = pblock++;
2416 }
2417 clear_buffer_unwritten(bh);
2418 } while (lblk++, (bh = bh->b_this_page) != head);
2419
2420 /*
2421 * FIXME: This is going to break if dioread_nolock
2422 * supports blocksize < pagesize as we will try to
2423 * convert potentially unmapped parts of inode.
2424 */
2425 mpd->io_submit.io_end->size += PAGE_SIZE;
2426 /* Page fully mapped - let IO run! */
2427 err = mpage_submit_page(mpd, page);
2428 if (err < 0) {
2429 pagevec_release(&pvec);
2430 return err;
2431 }
2432 }
2433 pagevec_release(&pvec);
2434 }
2435 /* Extent fully mapped and matches with page boundary. We are done. */
2436 mpd->map.m_len = 0;
2437 mpd->map.m_flags = 0;
2438 return 0;
2439}
2440
2441static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2442{
2443 struct inode *inode = mpd->inode;
2444 struct ext4_map_blocks *map = &mpd->map;
2445 int get_blocks_flags;
2446 int err, dioread_nolock;
2447
2448 trace_ext4_da_write_pages_extent(inode, map);
2449 /*
2450 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2451 * to convert an unwritten extent to be initialized (in the case
2452 * where we have written into one or more preallocated blocks). It is
2453 * possible that we're going to need more metadata blocks than
2454 * previously reserved. However we must not fail because we're in
2455 * writeback and there is nothing we can do about it so it might result
2456 * in data loss. So use reserved blocks to allocate metadata if
2457 * possible.
2458 *
2459 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2460 * the blocks in question are delalloc blocks. This indicates
2461 * that the blocks and quotas has already been checked when
2462 * the data was copied into the page cache.
2463 */
2464 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2465 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2466 EXT4_GET_BLOCKS_IO_SUBMIT;
2467 dioread_nolock = ext4_should_dioread_nolock(inode);
2468 if (dioread_nolock)
2469 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2470 if (map->m_flags & (1 << BH_Delay))
2471 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2472
2473 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2474 if (err < 0)
2475 return err;
2476 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2477 if (!mpd->io_submit.io_end->handle &&
2478 ext4_handle_valid(handle)) {
2479 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2480 handle->h_rsv_handle = NULL;
2481 }
2482 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2483 }
2484
2485 BUG_ON(map->m_len == 0);
2486 if (map->m_flags & EXT4_MAP_NEW) {
2487 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2488 map->m_len);
2489 }
2490 return 0;
2491}
2492
2493/*
2494 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2495 * mpd->len and submit pages underlying it for IO
2496 *
2497 * @handle - handle for journal operations
2498 * @mpd - extent to map
2499 * @give_up_on_write - we set this to true iff there is a fatal error and there
2500 * is no hope of writing the data. The caller should discard
2501 * dirty pages to avoid infinite loops.
2502 *
2503 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2504 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2505 * them to initialized or split the described range from larger unwritten
2506 * extent. Note that we need not map all the described range since allocation
2507 * can return less blocks or the range is covered by more unwritten extents. We
2508 * cannot map more because we are limited by reserved transaction credits. On
2509 * the other hand we always make sure that the last touched page is fully
2510 * mapped so that it can be written out (and thus forward progress is
2511 * guaranteed). After mapping we submit all mapped pages for IO.
2512 */
2513static int mpage_map_and_submit_extent(handle_t *handle,
2514 struct mpage_da_data *mpd,
2515 bool *give_up_on_write)
2516{
2517 struct inode *inode = mpd->inode;
2518 struct ext4_map_blocks *map = &mpd->map;
2519 int err;
2520 loff_t disksize;
2521 int progress = 0;
2522
2523 mpd->io_submit.io_end->offset =
2524 ((loff_t)map->m_lblk) << inode->i_blkbits;
2525 do {
2526 err = mpage_map_one_extent(handle, mpd);
2527 if (err < 0) {
2528 struct super_block *sb = inode->i_sb;
2529
2530 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2531 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2532 goto invalidate_dirty_pages;
2533 /*
2534 * Let the uper layers retry transient errors.
2535 * In the case of ENOSPC, if ext4_count_free_blocks()
2536 * is non-zero, a commit should free up blocks.
2537 */
2538 if ((err == -ENOMEM) ||
2539 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2540 if (progress)
2541 goto update_disksize;
2542 return err;
2543 }
2544 ext4_msg(sb, KERN_CRIT,
2545 "Delayed block allocation failed for "
2546 "inode %lu at logical offset %llu with"
2547 " max blocks %u with error %d",
2548 inode->i_ino,
2549 (unsigned long long)map->m_lblk,
2550 (unsigned)map->m_len, -err);
2551 ext4_msg(sb, KERN_CRIT,
2552 "This should not happen!! Data will "
2553 "be lost\n");
2554 if (err == -ENOSPC)
2555 ext4_print_free_blocks(inode);
2556 invalidate_dirty_pages:
2557 *give_up_on_write = true;
2558 return err;
2559 }
2560 progress = 1;
2561 /*
2562 * Update buffer state, submit mapped pages, and get us new
2563 * extent to map
2564 */
2565 err = mpage_map_and_submit_buffers(mpd);
2566 if (err < 0)
2567 goto update_disksize;
2568 } while (map->m_len);
2569
2570update_disksize:
2571 /*
2572 * Update on-disk size after IO is submitted. Races with
2573 * truncate are avoided by checking i_size under i_data_sem.
2574 */
2575 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2576 if (disksize > EXT4_I(inode)->i_disksize) {
2577 int err2;
2578 loff_t i_size;
2579
2580 down_write(&EXT4_I(inode)->i_data_sem);
2581 i_size = i_size_read(inode);
2582 if (disksize > i_size)
2583 disksize = i_size;
2584 if (disksize > EXT4_I(inode)->i_disksize)
2585 EXT4_I(inode)->i_disksize = disksize;
2586 up_write(&EXT4_I(inode)->i_data_sem);
2587 err2 = ext4_mark_inode_dirty(handle, inode);
2588 if (err2)
2589 ext4_error(inode->i_sb,
2590 "Failed to mark inode %lu dirty",
2591 inode->i_ino);
2592 if (!err)
2593 err = err2;
2594 }
2595 return err;
2596}
2597
2598/*
2599 * Calculate the total number of credits to reserve for one writepages
2600 * iteration. This is called from ext4_writepages(). We map an extent of
2601 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2602 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2603 * bpp - 1 blocks in bpp different extents.
2604 */
2605static int ext4_da_writepages_trans_blocks(struct inode *inode)
2606{
2607 int bpp = ext4_journal_blocks_per_page(inode);
2608
2609 return ext4_meta_trans_blocks(inode,
2610 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2611}
2612
2613/*
2614 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2615 * and underlying extent to map
2616 *
2617 * @mpd - where to look for pages
2618 *
2619 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2620 * IO immediately. When we find a page which isn't mapped we start accumulating
2621 * extent of buffers underlying these pages that needs mapping (formed by
2622 * either delayed or unwritten buffers). We also lock the pages containing
2623 * these buffers. The extent found is returned in @mpd structure (starting at
2624 * mpd->lblk with length mpd->len blocks).
2625 *
2626 * Note that this function can attach bios to one io_end structure which are
2627 * neither logically nor physically contiguous. Although it may seem as an
2628 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2629 * case as we need to track IO to all buffers underlying a page in one io_end.
2630 */
2631static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2632{
2633 struct address_space *mapping = mpd->inode->i_mapping;
2634 struct pagevec pvec;
2635 unsigned int nr_pages;
2636 long left = mpd->wbc->nr_to_write;
2637 pgoff_t index = mpd->first_page;
2638 pgoff_t end = mpd->last_page;
2639 int tag;
2640 int i, err = 0;
2641 int blkbits = mpd->inode->i_blkbits;
2642 ext4_lblk_t lblk;
2643 struct buffer_head *head;
2644
2645 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2646 tag = PAGECACHE_TAG_TOWRITE;
2647 else
2648 tag = PAGECACHE_TAG_DIRTY;
2649
2650 pagevec_init(&pvec, 0);
2651 mpd->map.m_len = 0;
2652 mpd->next_page = index;
2653 while (index <= end) {
2654 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2655 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2656 if (nr_pages == 0)
2657 goto out;
2658
2659 for (i = 0; i < nr_pages; i++) {
2660 struct page *page = pvec.pages[i];
2661
2662 /*
2663 * At this point, the page may be truncated or
2664 * invalidated (changing page->mapping to NULL), or
2665 * even swizzled back from swapper_space to tmpfs file
2666 * mapping. However, page->index will not change
2667 * because we have a reference on the page.
2668 */
2669 if (page->index > end)
2670 goto out;
2671
2672 /*
2673 * Accumulated enough dirty pages? This doesn't apply
2674 * to WB_SYNC_ALL mode. For integrity sync we have to
2675 * keep going because someone may be concurrently
2676 * dirtying pages, and we might have synced a lot of
2677 * newly appeared dirty pages, but have not synced all
2678 * of the old dirty pages.
2679 */
2680 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2681 goto out;
2682
2683 /* If we can't merge this page, we are done. */
2684 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2685 goto out;
2686
2687 lock_page(page);
2688 /*
2689 * If the page is no longer dirty, or its mapping no
2690 * longer corresponds to inode we are writing (which
2691 * means it has been truncated or invalidated), or the
2692 * page is already under writeback and we are not doing
2693 * a data integrity writeback, skip the page
2694 */
2695 if (!PageDirty(page) ||
2696 (PageWriteback(page) &&
2697 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2698 unlikely(page->mapping != mapping)) {
2699 unlock_page(page);
2700 continue;
2701 }
2702
2703 wait_on_page_writeback(page);
2704 BUG_ON(PageWriteback(page));
2705
2706 if (mpd->map.m_len == 0)
2707 mpd->first_page = page->index;
2708 mpd->next_page = page->index + 1;
2709 /* Add all dirty buffers to mpd */
2710 lblk = ((ext4_lblk_t)page->index) <<
2711 (PAGE_SHIFT - blkbits);
2712 head = page_buffers(page);
2713 err = mpage_process_page_bufs(mpd, head, head, lblk);
2714 if (err <= 0)
2715 goto out;
2716 err = 0;
2717 left--;
2718 }
2719 pagevec_release(&pvec);
2720 cond_resched();
2721 }
2722 return 0;
2723out:
2724 pagevec_release(&pvec);
2725 return err;
2726}
2727
2728static int __writepage(struct page *page, struct writeback_control *wbc,
2729 void *data)
2730{
2731 struct address_space *mapping = data;
2732 int ret = ext4_writepage(page, wbc);
2733 mapping_set_error(mapping, ret);
2734 return ret;
2735}
2736
2737static int ext4_writepages(struct address_space *mapping,
2738 struct writeback_control *wbc)
2739{
2740 pgoff_t writeback_index = 0;
2741 long nr_to_write = wbc->nr_to_write;
2742 int range_whole = 0;
2743 int cycled = 1;
2744 handle_t *handle = NULL;
2745 struct mpage_da_data mpd;
2746 struct inode *inode = mapping->host;
2747 int needed_blocks, rsv_blocks = 0, ret = 0;
2748 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2749 bool done;
2750 struct blk_plug plug;
2751 bool give_up_on_write = false;
2752
2753 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2754 return -EIO;
2755
2756 percpu_down_read(&sbi->s_journal_flag_rwsem);
2757 trace_ext4_writepages(inode, wbc);
2758
2759 if (dax_mapping(mapping)) {
2760 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2761 wbc);
2762 goto out_writepages;
2763 }
2764
2765 /*
2766 * No pages to write? This is mainly a kludge to avoid starting
2767 * a transaction for special inodes like journal inode on last iput()
2768 * because that could violate lock ordering on umount
2769 */
2770 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2771 goto out_writepages;
2772
2773 if (ext4_should_journal_data(inode)) {
2774 struct blk_plug plug;
2775
2776 blk_start_plug(&plug);
2777 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2778 blk_finish_plug(&plug);
2779 goto out_writepages;
2780 }
2781
2782 /*
2783 * If the filesystem has aborted, it is read-only, so return
2784 * right away instead of dumping stack traces later on that
2785 * will obscure the real source of the problem. We test
2786 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2787 * the latter could be true if the filesystem is mounted
2788 * read-only, and in that case, ext4_writepages should
2789 * *never* be called, so if that ever happens, we would want
2790 * the stack trace.
2791 */
2792 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2793 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2794 ret = -EROFS;
2795 goto out_writepages;
2796 }
2797
2798 if (ext4_should_dioread_nolock(inode)) {
2799 /*
2800 * We may need to convert up to one extent per block in
2801 * the page and we may dirty the inode.
2802 */
2803 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2804 PAGE_SIZE >> inode->i_blkbits);
2805 }
2806
2807 /*
2808 * If we have inline data and arrive here, it means that
2809 * we will soon create the block for the 1st page, so
2810 * we'd better clear the inline data here.
2811 */
2812 if (ext4_has_inline_data(inode)) {
2813 /* Just inode will be modified... */
2814 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2815 if (IS_ERR(handle)) {
2816 ret = PTR_ERR(handle);
2817 goto out_writepages;
2818 }
2819 BUG_ON(ext4_test_inode_state(inode,
2820 EXT4_STATE_MAY_INLINE_DATA));
2821 ext4_destroy_inline_data(handle, inode);
2822 ext4_journal_stop(handle);
2823 }
2824
2825 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2826 range_whole = 1;
2827
2828 if (wbc->range_cyclic) {
2829 writeback_index = mapping->writeback_index;
2830 if (writeback_index)
2831 cycled = 0;
2832 mpd.first_page = writeback_index;
2833 mpd.last_page = -1;
2834 } else {
2835 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2836 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2837 }
2838
2839 mpd.inode = inode;
2840 mpd.wbc = wbc;
2841 ext4_io_submit_init(&mpd.io_submit, wbc);
2842retry:
2843 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2844 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2845 done = false;
2846 blk_start_plug(&plug);
2847
2848 /*
2849 * First writeback pages that don't need mapping - we can avoid
2850 * starting a transaction unnecessarily and also avoid being blocked
2851 * in the block layer on device congestion while having transaction
2852 * started.
2853 */
2854 mpd.do_map = 0;
2855 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2856 if (!mpd.io_submit.io_end) {
2857 ret = -ENOMEM;
2858 goto unplug;
2859 }
2860 ret = mpage_prepare_extent_to_map(&mpd);
2861 /* Submit prepared bio */
2862 ext4_io_submit(&mpd.io_submit);
2863 ext4_put_io_end_defer(mpd.io_submit.io_end);
2864 mpd.io_submit.io_end = NULL;
2865 /* Unlock pages we didn't use */
2866 mpage_release_unused_pages(&mpd, false);
2867 if (ret < 0)
2868 goto unplug;
2869
2870 while (!done && mpd.first_page <= mpd.last_page) {
2871 /* For each extent of pages we use new io_end */
2872 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2873 if (!mpd.io_submit.io_end) {
2874 ret = -ENOMEM;
2875 break;
2876 }
2877
2878 /*
2879 * We have two constraints: We find one extent to map and we
2880 * must always write out whole page (makes a difference when
2881 * blocksize < pagesize) so that we don't block on IO when we
2882 * try to write out the rest of the page. Journalled mode is
2883 * not supported by delalloc.
2884 */
2885 BUG_ON(ext4_should_journal_data(inode));
2886 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2887
2888 /* start a new transaction */
2889 handle = ext4_journal_start_with_reserve(inode,
2890 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2891 if (IS_ERR(handle)) {
2892 ret = PTR_ERR(handle);
2893 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2894 "%ld pages, ino %lu; err %d", __func__,
2895 wbc->nr_to_write, inode->i_ino, ret);
2896 /* Release allocated io_end */
2897 ext4_put_io_end(mpd.io_submit.io_end);
2898 mpd.io_submit.io_end = NULL;
2899 break;
2900 }
2901 mpd.do_map = 1;
2902
2903 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2904 ret = mpage_prepare_extent_to_map(&mpd);
2905 if (!ret) {
2906 if (mpd.map.m_len)
2907 ret = mpage_map_and_submit_extent(handle, &mpd,
2908 &give_up_on_write);
2909 else {
2910 /*
2911 * We scanned the whole range (or exhausted
2912 * nr_to_write), submitted what was mapped and
2913 * didn't find anything needing mapping. We are
2914 * done.
2915 */
2916 done = true;
2917 }
2918 }
2919 /*
2920 * Caution: If the handle is synchronous,
2921 * ext4_journal_stop() can wait for transaction commit
2922 * to finish which may depend on writeback of pages to
2923 * complete or on page lock to be released. In that
2924 * case, we have to wait until after after we have
2925 * submitted all the IO, released page locks we hold,
2926 * and dropped io_end reference (for extent conversion
2927 * to be able to complete) before stopping the handle.
2928 */
2929 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2930 ext4_journal_stop(handle);
2931 handle = NULL;
2932 mpd.do_map = 0;
2933 }
2934 /* Submit prepared bio */
2935 ext4_io_submit(&mpd.io_submit);
2936 /* Unlock pages we didn't use */
2937 mpage_release_unused_pages(&mpd, give_up_on_write);
2938 /*
2939 * Drop our io_end reference we got from init. We have
2940 * to be careful and use deferred io_end finishing if
2941 * we are still holding the transaction as we can
2942 * release the last reference to io_end which may end
2943 * up doing unwritten extent conversion.
2944 */
2945 if (handle) {
2946 ext4_put_io_end_defer(mpd.io_submit.io_end);
2947 ext4_journal_stop(handle);
2948 } else
2949 ext4_put_io_end(mpd.io_submit.io_end);
2950 mpd.io_submit.io_end = NULL;
2951
2952 if (ret == -ENOSPC && sbi->s_journal) {
2953 /*
2954 * Commit the transaction which would
2955 * free blocks released in the transaction
2956 * and try again
2957 */
2958 jbd2_journal_force_commit_nested(sbi->s_journal);
2959 ret = 0;
2960 continue;
2961 }
2962 /* Fatal error - ENOMEM, EIO... */
2963 if (ret)
2964 break;
2965 }
2966unplug:
2967 blk_finish_plug(&plug);
2968 if (!ret && !cycled && wbc->nr_to_write > 0) {
2969 cycled = 1;
2970 mpd.last_page = writeback_index - 1;
2971 mpd.first_page = 0;
2972 goto retry;
2973 }
2974
2975 /* Update index */
2976 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2977 /*
2978 * Set the writeback_index so that range_cyclic
2979 * mode will write it back later
2980 */
2981 mapping->writeback_index = mpd.first_page;
2982
2983out_writepages:
2984 trace_ext4_writepages_result(inode, wbc, ret,
2985 nr_to_write - wbc->nr_to_write);
2986 percpu_up_read(&sbi->s_journal_flag_rwsem);
2987 return ret;
2988}
2989
2990static int ext4_nonda_switch(struct super_block *sb)
2991{
2992 s64 free_clusters, dirty_clusters;
2993 struct ext4_sb_info *sbi = EXT4_SB(sb);
2994
2995 /*
2996 * switch to non delalloc mode if we are running low
2997 * on free block. The free block accounting via percpu
2998 * counters can get slightly wrong with percpu_counter_batch getting
2999 * accumulated on each CPU without updating global counters
3000 * Delalloc need an accurate free block accounting. So switch
3001 * to non delalloc when we are near to error range.
3002 */
3003 free_clusters =
3004 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3005 dirty_clusters =
3006 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3007 /*
3008 * Start pushing delalloc when 1/2 of free blocks are dirty.
3009 */
3010 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3011 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3012
3013 if (2 * free_clusters < 3 * dirty_clusters ||
3014 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3015 /*
3016 * free block count is less than 150% of dirty blocks
3017 * or free blocks is less than watermark
3018 */
3019 return 1;
3020 }
3021 return 0;
3022}
3023
3024/* We always reserve for an inode update; the superblock could be there too */
3025static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3026{
3027 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3028 return 1;
3029
3030 if (pos + len <= 0x7fffffffULL)
3031 return 1;
3032
3033 /* We might need to update the superblock to set LARGE_FILE */
3034 return 2;
3035}
3036
3037static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3038 loff_t pos, unsigned len, unsigned flags,
3039 struct page **pagep, void **fsdata)
3040{
3041 int ret, retries = 0;
3042 struct page *page;
3043 pgoff_t index;
3044 struct inode *inode = mapping->host;
3045 handle_t *handle;
3046
3047 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3048 return -EIO;
3049
3050 index = pos >> PAGE_SHIFT;
3051
3052 if (ext4_nonda_switch(inode->i_sb) ||
3053 S_ISLNK(inode->i_mode)) {
3054 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3055 return ext4_write_begin(file, mapping, pos,
3056 len, flags, pagep, fsdata);
3057 }
3058 *fsdata = (void *)0;
3059 if (trace_android_fs_datawrite_start_enabled()) {
3060 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3061
3062 path = android_fstrace_get_pathname(pathbuf,
3063 MAX_TRACE_PATHBUF_LEN,
3064 inode);
3065 trace_android_fs_datawrite_start(inode, pos, len,
3066 current->pid,
3067 path, current->comm);
3068 }
3069 trace_ext4_da_write_begin(inode, pos, len, flags);
3070
3071 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3072 ret = ext4_da_write_inline_data_begin(mapping, inode,
3073 pos, len, flags,
3074 pagep, fsdata);
3075 if (ret < 0)
3076 return ret;
3077 if (ret == 1)
3078 return 0;
3079 }
3080
3081 /*
3082 * grab_cache_page_write_begin() can take a long time if the
3083 * system is thrashing due to memory pressure, or if the page
3084 * is being written back. So grab it first before we start
3085 * the transaction handle. This also allows us to allocate
3086 * the page (if needed) without using GFP_NOFS.
3087 */
3088retry_grab:
3089 page = grab_cache_page_write_begin(mapping, index, flags);
3090 if (!page)
3091 return -ENOMEM;
3092 unlock_page(page);
3093
3094 /*
3095 * With delayed allocation, we don't log the i_disksize update
3096 * if there is delayed block allocation. But we still need
3097 * to journalling the i_disksize update if writes to the end
3098 * of file which has an already mapped buffer.
3099 */
3100retry_journal:
3101 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3102 ext4_da_write_credits(inode, pos, len));
3103 if (IS_ERR(handle)) {
3104 put_page(page);
3105 return PTR_ERR(handle);
3106 }
3107
3108 lock_page(page);
3109 if (page->mapping != mapping) {
3110 /* The page got truncated from under us */
3111 unlock_page(page);
3112 put_page(page);
3113 ext4_journal_stop(handle);
3114 goto retry_grab;
3115 }
3116 /* In case writeback began while the page was unlocked */
3117 wait_for_stable_page(page);
3118
3119#ifdef CONFIG_EXT4_FS_ENCRYPTION
3120 ret = ext4_block_write_begin(page, pos, len,
3121 ext4_da_get_block_prep);
3122#else
3123 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3124#endif
3125 if (ret < 0) {
3126 unlock_page(page);
3127 ext4_journal_stop(handle);
3128 /*
3129 * block_write_begin may have instantiated a few blocks
3130 * outside i_size. Trim these off again. Don't need
3131 * i_size_read because we hold i_mutex.
3132 */
3133 if (pos + len > inode->i_size)
3134 ext4_truncate_failed_write(inode);
3135
3136 if (ret == -ENOSPC &&
3137 ext4_should_retry_alloc(inode->i_sb, &retries))
3138 goto retry_journal;
3139
3140 put_page(page);
3141 return ret;
3142 }
3143
3144 *pagep = page;
3145 return ret;
3146}
3147
3148/*
3149 * Check if we should update i_disksize
3150 * when write to the end of file but not require block allocation
3151 */
3152static int ext4_da_should_update_i_disksize(struct page *page,
3153 unsigned long offset)
3154{
3155 struct buffer_head *bh;
3156 struct inode *inode = page->mapping->host;
3157 unsigned int idx;
3158 int i;
3159
3160 bh = page_buffers(page);
3161 idx = offset >> inode->i_blkbits;
3162
3163 for (i = 0; i < idx; i++)
3164 bh = bh->b_this_page;
3165
3166 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3167 return 0;
3168 return 1;
3169}
3170
3171static int ext4_da_write_end(struct file *file,
3172 struct address_space *mapping,
3173 loff_t pos, unsigned len, unsigned copied,
3174 struct page *page, void *fsdata)
3175{
3176 struct inode *inode = mapping->host;
3177 int ret = 0, ret2;
3178 handle_t *handle = ext4_journal_current_handle();
3179 loff_t new_i_size;
3180 unsigned long start, end;
3181 int write_mode = (int)(unsigned long)fsdata;
3182
3183 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3184 return ext4_write_end(file, mapping, pos,
3185 len, copied, page, fsdata);
3186
3187 trace_android_fs_datawrite_end(inode, pos, len);
3188 trace_ext4_da_write_end(inode, pos, len, copied);
3189 start = pos & (PAGE_SIZE - 1);
3190 end = start + copied - 1;
3191
3192 /*
3193 * generic_write_end() will run mark_inode_dirty() if i_size
3194 * changes. So let's piggyback the i_disksize mark_inode_dirty
3195 * into that.
3196 */
3197 new_i_size = pos + copied;
3198 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3199 if (ext4_has_inline_data(inode) ||
3200 ext4_da_should_update_i_disksize(page, end)) {
3201 ext4_update_i_disksize(inode, new_i_size);
3202 /* We need to mark inode dirty even if
3203 * new_i_size is less that inode->i_size
3204 * bu greater than i_disksize.(hint delalloc)
3205 */
3206 ext4_mark_inode_dirty(handle, inode);
3207 }
3208 }
3209
3210 if (write_mode != CONVERT_INLINE_DATA &&
3211 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3212 ext4_has_inline_data(inode))
3213 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3214 page);
3215 else
3216 ret2 = generic_write_end(file, mapping, pos, len, copied,
3217 page, fsdata);
3218
3219 copied = ret2;
3220 if (ret2 < 0)
3221 ret = ret2;
3222 ret2 = ext4_journal_stop(handle);
3223 if (!ret)
3224 ret = ret2;
3225
3226 return ret ? ret : copied;
3227}
3228
3229static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3230 unsigned int length)
3231{
3232 /*
3233 * Drop reserved blocks
3234 */
3235 BUG_ON(!PageLocked(page));
3236 if (!page_has_buffers(page))
3237 goto out;
3238
3239 ext4_da_page_release_reservation(page, offset, length);
3240
3241out:
3242 ext4_invalidatepage(page, offset, length);
3243
3244 return;
3245}
3246
3247/*
3248 * Force all delayed allocation blocks to be allocated for a given inode.
3249 */
3250int ext4_alloc_da_blocks(struct inode *inode)
3251{
3252 trace_ext4_alloc_da_blocks(inode);
3253
3254 if (!EXT4_I(inode)->i_reserved_data_blocks)
3255 return 0;
3256
3257 /*
3258 * We do something simple for now. The filemap_flush() will
3259 * also start triggering a write of the data blocks, which is
3260 * not strictly speaking necessary (and for users of
3261 * laptop_mode, not even desirable). However, to do otherwise
3262 * would require replicating code paths in:
3263 *
3264 * ext4_writepages() ->
3265 * write_cache_pages() ---> (via passed in callback function)
3266 * __mpage_da_writepage() -->
3267 * mpage_add_bh_to_extent()
3268 * mpage_da_map_blocks()
3269 *
3270 * The problem is that write_cache_pages(), located in
3271 * mm/page-writeback.c, marks pages clean in preparation for
3272 * doing I/O, which is not desirable if we're not planning on
3273 * doing I/O at all.
3274 *
3275 * We could call write_cache_pages(), and then redirty all of
3276 * the pages by calling redirty_page_for_writepage() but that
3277 * would be ugly in the extreme. So instead we would need to
3278 * replicate parts of the code in the above functions,
3279 * simplifying them because we wouldn't actually intend to
3280 * write out the pages, but rather only collect contiguous
3281 * logical block extents, call the multi-block allocator, and
3282 * then update the buffer heads with the block allocations.
3283 *
3284 * For now, though, we'll cheat by calling filemap_flush(),
3285 * which will map the blocks, and start the I/O, but not
3286 * actually wait for the I/O to complete.
3287 */
3288 return filemap_flush(inode->i_mapping);
3289}
3290
3291/*
3292 * bmap() is special. It gets used by applications such as lilo and by
3293 * the swapper to find the on-disk block of a specific piece of data.
3294 *
3295 * Naturally, this is dangerous if the block concerned is still in the
3296 * journal. If somebody makes a swapfile on an ext4 data-journaling
3297 * filesystem and enables swap, then they may get a nasty shock when the
3298 * data getting swapped to that swapfile suddenly gets overwritten by
3299 * the original zero's written out previously to the journal and
3300 * awaiting writeback in the kernel's buffer cache.
3301 *
3302 * So, if we see any bmap calls here on a modified, data-journaled file,
3303 * take extra steps to flush any blocks which might be in the cache.
3304 */
3305static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3306{
3307 struct inode *inode = mapping->host;
3308 journal_t *journal;
3309 int err;
3310
3311 /*
3312 * We can get here for an inline file via the FIBMAP ioctl
3313 */
3314 if (ext4_has_inline_data(inode))
3315 return 0;
3316
3317 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3318 test_opt(inode->i_sb, DELALLOC)) {
3319 /*
3320 * With delalloc we want to sync the file
3321 * so that we can make sure we allocate
3322 * blocks for file
3323 */
3324 filemap_write_and_wait(mapping);
3325 }
3326
3327 if (EXT4_JOURNAL(inode) &&
3328 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3329 /*
3330 * This is a REALLY heavyweight approach, but the use of
3331 * bmap on dirty files is expected to be extremely rare:
3332 * only if we run lilo or swapon on a freshly made file
3333 * do we expect this to happen.
3334 *
3335 * (bmap requires CAP_SYS_RAWIO so this does not
3336 * represent an unprivileged user DOS attack --- we'd be
3337 * in trouble if mortal users could trigger this path at
3338 * will.)
3339 *
3340 * NB. EXT4_STATE_JDATA is not set on files other than
3341 * regular files. If somebody wants to bmap a directory
3342 * or symlink and gets confused because the buffer
3343 * hasn't yet been flushed to disk, they deserve
3344 * everything they get.
3345 */
3346
3347 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3348 journal = EXT4_JOURNAL(inode);
3349 jbd2_journal_lock_updates(journal);
3350 err = jbd2_journal_flush(journal);
3351 jbd2_journal_unlock_updates(journal);
3352
3353 if (err)
3354 return 0;
3355 }
3356
3357 return generic_block_bmap(mapping, block, ext4_get_block);
3358}
3359
3360static int ext4_readpage(struct file *file, struct page *page)
3361{
3362 int ret = -EAGAIN;
3363 struct inode *inode = page->mapping->host;
3364
3365 trace_ext4_readpage(page);
3366
3367 if (ext4_has_inline_data(inode))
3368 ret = ext4_readpage_inline(inode, page);
3369
3370 if (ret == -EAGAIN)
3371 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3372
3373 return ret;
3374}
3375
3376static int
3377ext4_readpages(struct file *file, struct address_space *mapping,
3378 struct list_head *pages, unsigned nr_pages)
3379{
3380 struct inode *inode = mapping->host;
3381
3382 /* If the file has inline data, no need to do readpages. */
3383 if (ext4_has_inline_data(inode))
3384 return 0;
3385
3386 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3387}
3388
3389static void ext4_invalidatepage(struct page *page, unsigned int offset,
3390 unsigned int length)
3391{
3392 trace_ext4_invalidatepage(page, offset, length);
3393
3394 /* No journalling happens on data buffers when this function is used */
3395 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3396
3397 block_invalidatepage(page, offset, length);
3398}
3399
3400static int __ext4_journalled_invalidatepage(struct page *page,
3401 unsigned int offset,
3402 unsigned int length)
3403{
3404 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3405
3406 trace_ext4_journalled_invalidatepage(page, offset, length);
3407
3408 /*
3409 * If it's a full truncate we just forget about the pending dirtying
3410 */
3411 if (offset == 0 && length == PAGE_SIZE)
3412 ClearPageChecked(page);
3413
3414 return jbd2_journal_invalidatepage(journal, page, offset, length);
3415}
3416
3417/* Wrapper for aops... */
3418static void ext4_journalled_invalidatepage(struct page *page,
3419 unsigned int offset,
3420 unsigned int length)
3421{
3422 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3423}
3424
3425static int ext4_releasepage(struct page *page, gfp_t wait)
3426{
3427 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3428
3429 trace_ext4_releasepage(page);
3430
3431 /* Page has dirty journalled data -> cannot release */
3432 if (PageChecked(page))
3433 return 0;
3434 if (journal)
3435 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3436 else
3437 return try_to_free_buffers(page);
3438}
3439
3440#ifdef CONFIG_FS_DAX
3441static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3442 unsigned flags, struct iomap *iomap)
3443{
3444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3445 unsigned int blkbits = inode->i_blkbits;
3446 unsigned long first_block, last_block;
3447 struct ext4_map_blocks map;
3448 int ret;
3449
3450 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3451 return -EINVAL;
3452 first_block = offset >> blkbits;
3453 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3454 EXT4_MAX_LOGICAL_BLOCK);
3455
3456 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3457 return -ERANGE;
3458
3459 map.m_lblk = first_block;
3460 map.m_len = last_block - first_block + 1;
3461
3462 if (!(flags & IOMAP_WRITE)) {
3463 ret = ext4_map_blocks(NULL, inode, &map, 0);
3464 } else {
3465 int dio_credits;
3466 handle_t *handle;
3467 int retries = 0;
3468
3469 /* Trim mapping request to maximum we can map at once for DIO */
3470 if (map.m_len > DIO_MAX_BLOCKS)
3471 map.m_len = DIO_MAX_BLOCKS;
3472 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3473retry:
3474 /*
3475 * Either we allocate blocks and then we don't get unwritten
3476 * extent so we have reserved enough credits, or the blocks
3477 * are already allocated and unwritten and in that case
3478 * extent conversion fits in the credits as well.
3479 */
3480 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3481 dio_credits);
3482 if (IS_ERR(handle))
3483 return PTR_ERR(handle);
3484
3485 ret = ext4_map_blocks(handle, inode, &map,
3486 EXT4_GET_BLOCKS_CREATE_ZERO);
3487 if (ret < 0) {
3488 ext4_journal_stop(handle);
3489 if (ret == -ENOSPC &&
3490 ext4_should_retry_alloc(inode->i_sb, &retries))
3491 goto retry;
3492 return ret;
3493 }
3494
3495 /*
3496 * If we added blocks beyond i_size, we need to make sure they
3497 * will get truncated if we crash before updating i_size in
3498 * ext4_iomap_end(). For faults we don't need to do that (and
3499 * even cannot because for orphan list operations inode_lock is
3500 * required) - if we happen to instantiate block beyond i_size,
3501 * it is because we race with truncate which has already added
3502 * the inode to the orphan list.
3503 */
3504 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3505 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3506 int err;
3507
3508 err = ext4_orphan_add(handle, inode);
3509 if (err < 0) {
3510 ext4_journal_stop(handle);
3511 return err;
3512 }
3513 }
3514 ext4_journal_stop(handle);
3515 }
3516
3517 iomap->flags = 0;
3518 iomap->bdev = inode->i_sb->s_bdev;
3519 iomap->dax_dev = sbi->s_daxdev;
3520 iomap->offset = first_block << blkbits;
3521
3522 if (ret == 0) {
3523 iomap->type = IOMAP_HOLE;
3524 iomap->blkno = IOMAP_NULL_BLOCK;
3525 iomap->length = (u64)map.m_len << blkbits;
3526 } else {
3527 if (map.m_flags & EXT4_MAP_MAPPED) {
3528 iomap->type = IOMAP_MAPPED;
3529 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3530 iomap->type = IOMAP_UNWRITTEN;
3531 } else {
3532 WARN_ON_ONCE(1);
3533 return -EIO;
3534 }
3535 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3536 iomap->length = (u64)map.m_len << blkbits;
3537 }
3538
3539 if (map.m_flags & EXT4_MAP_NEW)
3540 iomap->flags |= IOMAP_F_NEW;
3541 return 0;
3542}
3543
3544static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3545 ssize_t written, unsigned flags, struct iomap *iomap)
3546{
3547 int ret = 0;
3548 handle_t *handle;
3549 int blkbits = inode->i_blkbits;
3550 bool truncate = false;
3551
3552 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3553 return 0;
3554
3555 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3556 if (IS_ERR(handle)) {
3557 ret = PTR_ERR(handle);
3558 goto orphan_del;
3559 }
3560 if (ext4_update_inode_size(inode, offset + written))
3561 ext4_mark_inode_dirty(handle, inode);
3562 /*
3563 * We may need to truncate allocated but not written blocks beyond EOF.
3564 */
3565 if (iomap->offset + iomap->length >
3566 ALIGN(inode->i_size, 1 << blkbits)) {
3567 ext4_lblk_t written_blk, end_blk;
3568
3569 written_blk = (offset + written) >> blkbits;
3570 end_blk = (offset + length) >> blkbits;
3571 if (written_blk < end_blk && ext4_can_truncate(inode))
3572 truncate = true;
3573 }
3574 /*
3575 * Remove inode from orphan list if we were extending a inode and
3576 * everything went fine.
3577 */
3578 if (!truncate && inode->i_nlink &&
3579 !list_empty(&EXT4_I(inode)->i_orphan))
3580 ext4_orphan_del(handle, inode);
3581 ext4_journal_stop(handle);
3582 if (truncate) {
3583 ext4_truncate_failed_write(inode);
3584orphan_del:
3585 /*
3586 * If truncate failed early the inode might still be on the
3587 * orphan list; we need to make sure the inode is removed from
3588 * the orphan list in that case.
3589 */
3590 if (inode->i_nlink)
3591 ext4_orphan_del(NULL, inode);
3592 }
3593 return ret;
3594}
3595
3596const struct iomap_ops ext4_iomap_ops = {
3597 .iomap_begin = ext4_iomap_begin,
3598 .iomap_end = ext4_iomap_end,
3599};
3600
3601#endif
3602
3603static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3604 ssize_t size, void *private)
3605{
3606 ext4_io_end_t *io_end = private;
3607
3608 /* if not async direct IO just return */
3609 if (!io_end)
3610 return 0;
3611
3612 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3613 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3614 io_end, io_end->inode->i_ino, iocb, offset, size);
3615
3616 /*
3617 * Error during AIO DIO. We cannot convert unwritten extents as the
3618 * data was not written. Just clear the unwritten flag and drop io_end.
3619 */
3620 if (size <= 0) {
3621 ext4_clear_io_unwritten_flag(io_end);
3622 size = 0;
3623 }
3624 io_end->offset = offset;
3625 io_end->size = size;
3626 ext4_put_io_end(io_end);
3627
3628 return 0;
3629}
3630
3631/*
3632 * Handling of direct IO writes.
3633 *
3634 * For ext4 extent files, ext4 will do direct-io write even to holes,
3635 * preallocated extents, and those write extend the file, no need to
3636 * fall back to buffered IO.
3637 *
3638 * For holes, we fallocate those blocks, mark them as unwritten
3639 * If those blocks were preallocated, we mark sure they are split, but
3640 * still keep the range to write as unwritten.
3641 *
3642 * The unwritten extents will be converted to written when DIO is completed.
3643 * For async direct IO, since the IO may still pending when return, we
3644 * set up an end_io call back function, which will do the conversion
3645 * when async direct IO completed.
3646 *
3647 * If the O_DIRECT write will extend the file then add this inode to the
3648 * orphan list. So recovery will truncate it back to the original size
3649 * if the machine crashes during the write.
3650 *
3651 */
3652static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3653{
3654 struct file *file = iocb->ki_filp;
3655 struct inode *inode = file->f_mapping->host;
3656 ssize_t ret;
3657 loff_t offset = iocb->ki_pos;
3658 size_t count = iov_iter_count(iter);
3659 int overwrite = 0;
3660 get_block_t *get_block_func = NULL;
3661 int dio_flags = 0;
3662 loff_t final_size = offset + count;
3663 int orphan = 0;
3664 handle_t *handle;
3665
3666 if (final_size > inode->i_size) {
3667 /* Credits for sb + inode write */
3668 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3669 if (IS_ERR(handle)) {
3670 ret = PTR_ERR(handle);
3671 goto out;
3672 }
3673 ret = ext4_orphan_add(handle, inode);
3674 if (ret) {
3675 ext4_journal_stop(handle);
3676 goto out;
3677 }
3678 orphan = 1;
3679 ext4_update_i_disksize(inode, inode->i_size);
3680 ext4_journal_stop(handle);
3681 }
3682
3683 BUG_ON(iocb->private == NULL);
3684
3685 /*
3686 * Make all waiters for direct IO properly wait also for extent
3687 * conversion. This also disallows race between truncate() and
3688 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3689 */
3690 inode_dio_begin(inode);
3691
3692 /* If we do a overwrite dio, i_mutex locking can be released */
3693 overwrite = *((int *)iocb->private);
3694
3695 if (overwrite)
3696 inode_unlock(inode);
3697
3698 /*
3699 * For extent mapped files we could direct write to holes and fallocate.
3700 *
3701 * Allocated blocks to fill the hole are marked as unwritten to prevent
3702 * parallel buffered read to expose the stale data before DIO complete
3703 * the data IO.
3704 *
3705 * As to previously fallocated extents, ext4 get_block will just simply
3706 * mark the buffer mapped but still keep the extents unwritten.
3707 *
3708 * For non AIO case, we will convert those unwritten extents to written
3709 * after return back from blockdev_direct_IO. That way we save us from
3710 * allocating io_end structure and also the overhead of offloading
3711 * the extent convertion to a workqueue.
3712 *
3713 * For async DIO, the conversion needs to be deferred when the
3714 * IO is completed. The ext4 end_io callback function will be
3715 * called to take care of the conversion work. Here for async
3716 * case, we allocate an io_end structure to hook to the iocb.
3717 */
3718 iocb->private = NULL;
3719 if (overwrite)
3720 get_block_func = ext4_dio_get_block_overwrite;
3721 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3722 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3723 get_block_func = ext4_dio_get_block;
3724 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3725 } else if (is_sync_kiocb(iocb)) {
3726 get_block_func = ext4_dio_get_block_unwritten_sync;
3727 dio_flags = DIO_LOCKING;
3728 } else {
3729 get_block_func = ext4_dio_get_block_unwritten_async;
3730 dio_flags = DIO_LOCKING;
3731 }
3732 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3733 get_block_func, ext4_end_io_dio, NULL,
3734 dio_flags);
3735
3736 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3737 EXT4_STATE_DIO_UNWRITTEN)) {
3738 int err;
3739 /*
3740 * for non AIO case, since the IO is already
3741 * completed, we could do the conversion right here
3742 */
3743 err = ext4_convert_unwritten_extents(NULL, inode,
3744 offset, ret);
3745 if (err < 0)
3746 ret = err;
3747 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3748 }
3749
3750 inode_dio_end(inode);
3751 /* take i_mutex locking again if we do a ovewrite dio */
3752 if (overwrite)
3753 inode_lock(inode);
3754
3755 if (ret < 0 && final_size > inode->i_size)
3756 ext4_truncate_failed_write(inode);
3757
3758 /* Handle extending of i_size after direct IO write */
3759 if (orphan) {
3760 int err;
3761
3762 /* Credits for sb + inode write */
3763 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3764 if (IS_ERR(handle)) {
3765 /*
3766 * We wrote the data but cannot extend
3767 * i_size. Bail out. In async io case, we do
3768 * not return error here because we have
3769 * already submmitted the corresponding
3770 * bio. Returning error here makes the caller
3771 * think that this IO is done and failed
3772 * resulting in race with bio's completion
3773 * handler.
3774 */
3775 if (!ret)
3776 ret = PTR_ERR(handle);
3777 if (inode->i_nlink)
3778 ext4_orphan_del(NULL, inode);
3779
3780 goto out;
3781 }
3782 if (inode->i_nlink)
3783 ext4_orphan_del(handle, inode);
3784 if (ret > 0) {
3785 loff_t end = offset + ret;
3786 if (end > inode->i_size) {
3787 ext4_update_i_disksize(inode, end);
3788 i_size_write(inode, end);
3789 /*
3790 * We're going to return a positive `ret'
3791 * here due to non-zero-length I/O, so there's
3792 * no way of reporting error returns from
3793 * ext4_mark_inode_dirty() to userspace. So
3794 * ignore it.
3795 */
3796 ext4_mark_inode_dirty(handle, inode);
3797 }
3798 }
3799 err = ext4_journal_stop(handle);
3800 if (ret == 0)
3801 ret = err;
3802 }
3803out:
3804 return ret;
3805}
3806
3807static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3808{
3809 struct address_space *mapping = iocb->ki_filp->f_mapping;
3810 struct inode *inode = mapping->host;
3811 size_t count = iov_iter_count(iter);
3812 ssize_t ret;
3813
3814 /*
3815 * Shared inode_lock is enough for us - it protects against concurrent
3816 * writes & truncates and since we take care of writing back page cache,
3817 * we are protected against page writeback as well.
3818 */
3819 inode_lock_shared(inode);
3820 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3821 iocb->ki_pos + count - 1);
3822 if (ret)
3823 goto out_unlock;
3824 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3825 iter, ext4_dio_get_block, NULL, NULL, 0);
3826out_unlock:
3827 inode_unlock_shared(inode);
3828 return ret;
3829}
3830
3831static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3832{
3833 struct file *file = iocb->ki_filp;
3834 struct inode *inode = file->f_mapping->host;
3835 size_t count = iov_iter_count(iter);
3836 loff_t offset = iocb->ki_pos;
3837 ssize_t ret;
3838 int rw = iov_iter_rw(iter);
3839
3840#ifdef CONFIG_EXT4_FS_ENCRYPTION /* encrypt uses buffered-io for encryption, but, disk-encrypt can use direct-io */
3841 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)
3842 && !fscrypt_disk_encrypted(inode))
3843 return 0;
3844#endif
3845 /*
3846 * If we are doing data journalling we don't support O_DIRECT
3847 */
3848 if (ext4_should_journal_data(inode))
3849 return 0;
3850
3851 /* Let buffer I/O handle the inline data case. */
3852 if (ext4_has_inline_data(inode))
3853 return 0;
3854
3855 /* DAX uses iomap path now */
3856 if (WARN_ON_ONCE(IS_DAX(inode)))
3857 return 0;
3858
3859 if (trace_android_fs_dataread_start_enabled() &&
3860 (rw == READ)) {
3861 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3862
3863 path = android_fstrace_get_pathname(pathbuf,
3864 MAX_TRACE_PATHBUF_LEN,
3865 inode);
3866 trace_android_fs_dataread_start(inode, offset, count,
3867 current->pid, path,
3868 current->comm);
3869 }
3870 if (trace_android_fs_datawrite_start_enabled() &&
3871 (rw == WRITE)) {
3872 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3873
3874 path = android_fstrace_get_pathname(pathbuf,
3875 MAX_TRACE_PATHBUF_LEN,
3876 inode);
3877 trace_android_fs_datawrite_start(inode, offset, count,
3878 current->pid, path,
3879 current->comm);
3880 }
3881 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3882 if (iov_iter_rw(iter) == READ)
3883 ret = ext4_direct_IO_read(iocb, iter);
3884 else
3885 ret = ext4_direct_IO_write(iocb, iter);
3886 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3887
3888 if (trace_android_fs_dataread_start_enabled() &&
3889 (rw == READ))
3890 trace_android_fs_dataread_end(inode, offset, count);
3891 if (trace_android_fs_datawrite_start_enabled() &&
3892 (rw == WRITE))
3893 trace_android_fs_datawrite_end(inode, offset, count);
3894
3895 return ret;
3896}
3897
3898/*
3899 * Pages can be marked dirty completely asynchronously from ext4's journalling
3900 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3901 * much here because ->set_page_dirty is called under VFS locks. The page is
3902 * not necessarily locked.
3903 *
3904 * We cannot just dirty the page and leave attached buffers clean, because the
3905 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3906 * or jbddirty because all the journalling code will explode.
3907 *
3908 * So what we do is to mark the page "pending dirty" and next time writepage
3909 * is called, propagate that into the buffers appropriately.
3910 */
3911static int ext4_journalled_set_page_dirty(struct page *page)
3912{
3913 SetPageChecked(page);
3914 return __set_page_dirty_nobuffers(page);
3915}
3916
3917static int ext4_set_page_dirty(struct page *page)
3918{
3919 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3920 WARN_ON_ONCE(!page_has_buffers(page));
3921 return __set_page_dirty_buffers(page);
3922}
3923
3924static const struct address_space_operations ext4_aops = {
3925 .readpage = ext4_readpage,
3926 .readpages = ext4_readpages,
3927 .writepage = ext4_writepage,
3928 .writepages = ext4_writepages,
3929 .write_begin = ext4_write_begin,
3930 .write_end = ext4_write_end,
3931 .set_page_dirty = ext4_set_page_dirty,
3932 .bmap = ext4_bmap,
3933 .invalidatepage = ext4_invalidatepage,
3934 .releasepage = ext4_releasepage,
3935 .direct_IO = ext4_direct_IO,
3936 .migratepage = buffer_migrate_page,
3937 .is_partially_uptodate = block_is_partially_uptodate,
3938 .error_remove_page = generic_error_remove_page,
3939};
3940
3941static const struct address_space_operations ext4_journalled_aops = {
3942 .readpage = ext4_readpage,
3943 .readpages = ext4_readpages,
3944 .writepage = ext4_writepage,
3945 .writepages = ext4_writepages,
3946 .write_begin = ext4_write_begin,
3947 .write_end = ext4_journalled_write_end,
3948 .set_page_dirty = ext4_journalled_set_page_dirty,
3949 .bmap = ext4_bmap,
3950 .invalidatepage = ext4_journalled_invalidatepage,
3951 .releasepage = ext4_releasepage,
3952 .direct_IO = ext4_direct_IO,
3953 .is_partially_uptodate = block_is_partially_uptodate,
3954 .error_remove_page = generic_error_remove_page,
3955};
3956
3957static const struct address_space_operations ext4_da_aops = {
3958 .readpage = ext4_readpage,
3959 .readpages = ext4_readpages,
3960 .writepage = ext4_writepage,
3961 .writepages = ext4_writepages,
3962 .write_begin = ext4_da_write_begin,
3963 .write_end = ext4_da_write_end,
3964 .set_page_dirty = ext4_set_page_dirty,
3965 .bmap = ext4_bmap,
3966 .invalidatepage = ext4_da_invalidatepage,
3967 .releasepage = ext4_releasepage,
3968 .direct_IO = ext4_direct_IO,
3969 .migratepage = buffer_migrate_page,
3970 .is_partially_uptodate = block_is_partially_uptodate,
3971 .error_remove_page = generic_error_remove_page,
3972};
3973
3974void ext4_set_aops(struct inode *inode)
3975{
3976 switch (ext4_inode_journal_mode(inode)) {
3977 case EXT4_INODE_ORDERED_DATA_MODE:
3978 case EXT4_INODE_WRITEBACK_DATA_MODE:
3979 break;
3980 case EXT4_INODE_JOURNAL_DATA_MODE:
3981 inode->i_mapping->a_ops = &ext4_journalled_aops;
3982 return;
3983 default:
3984 BUG();
3985 }
3986 if (test_opt(inode->i_sb, DELALLOC))
3987 inode->i_mapping->a_ops = &ext4_da_aops;
3988 else
3989 inode->i_mapping->a_ops = &ext4_aops;
3990}
3991
3992static int __ext4_block_zero_page_range(handle_t *handle,
3993 struct address_space *mapping, loff_t from, loff_t length)
3994{
3995 ext4_fsblk_t index = from >> PAGE_SHIFT;
3996 unsigned offset = from & (PAGE_SIZE-1);
3997 unsigned blocksize, pos;
3998 ext4_lblk_t iblock;
3999 struct inode *inode = mapping->host;
4000 struct buffer_head *bh;
4001 struct page *page;
4002 bool decrypt;
4003 int err = 0;
4004
4005 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4006 mapping_gfp_constraint(mapping, ~__GFP_FS));
4007 if (!page)
4008 return -ENOMEM;
4009
4010 blocksize = inode->i_sb->s_blocksize;
4011
4012 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4013
4014 if (!page_has_buffers(page))
4015 create_empty_buffers(page, blocksize, 0);
4016
4017 /* Find the buffer that contains "offset" */
4018 bh = page_buffers(page);
4019 pos = blocksize;
4020 while (offset >= pos) {
4021 bh = bh->b_this_page;
4022 iblock++;
4023 pos += blocksize;
4024 }
4025 if (buffer_freed(bh)) {
4026 BUFFER_TRACE(bh, "freed: skip");
4027 goto unlock;
4028 }
4029 if (!buffer_mapped(bh)) {
4030 BUFFER_TRACE(bh, "unmapped");
4031 ext4_get_block(inode, iblock, bh, 0);
4032 /* unmapped? It's a hole - nothing to do */
4033 if (!buffer_mapped(bh)) {
4034 BUFFER_TRACE(bh, "still unmapped");
4035 goto unlock;
4036 }
4037 }
4038
4039 /* Ok, it's mapped. Make sure it's up-to-date */
4040 if (PageUptodate(page))
4041 set_buffer_uptodate(bh);
4042
4043 if (!buffer_uptodate(bh)) {
4044 err = -EIO;
4045 decrypt = S_ISREG(inode->i_mode) &&
4046 ext4_encrypted_inode(inode);
4047 if (decrypt && fscrypt_has_encryption_key(inode))
4048 bh->b_private = fscrypt_get_diskcipher(inode);
4049 else
4050 bh->b_private = NULL;
4051 if (bh->b_private)
4052 ll_rw_block(REQ_OP_READ, REQ_CRYPT | REQ_NOENCRYPT, 1, &bh);
4053 else
4054 ll_rw_block(REQ_OP_READ, (decrypt ? REQ_NOENCRYPT : 0), 1, &bh);
4055
4056 wait_on_buffer(bh);
4057 /* Uhhuh. Read error. Complain and punt. */
4058 if (!buffer_uptodate(bh))
4059 goto unlock;
4060 if (decrypt) {
4061 /* We expect the key to be set. */
4062 BUG_ON(!fscrypt_has_encryption_key(inode));
4063 BUG_ON(blocksize != PAGE_SIZE);
4064
4065 if (!bh->b_private)
4066 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4067 page, PAGE_SIZE, 0, page->index));
4068 }
4069 }
4070 if (ext4_should_journal_data(inode)) {
4071 BUFFER_TRACE(bh, "get write access");
4072 err = ext4_journal_get_write_access(handle, bh);
4073 if (err)
4074 goto unlock;
4075 }
4076 zero_user(page, offset, length);
4077 BUFFER_TRACE(bh, "zeroed end of block");
4078
4079 if (ext4_should_journal_data(inode)) {
4080 err = ext4_handle_dirty_metadata(handle, inode, bh);
4081 } else {
4082 err = 0;
4083 mark_buffer_dirty(bh);
4084 if (ext4_should_order_data(inode))
4085 err = ext4_jbd2_inode_add_write(handle, inode);
4086 }
4087
4088unlock:
4089 unlock_page(page);
4090 put_page(page);
4091 return err;
4092}
4093
4094/*
4095 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4096 * starting from file offset 'from'. The range to be zero'd must
4097 * be contained with in one block. If the specified range exceeds
4098 * the end of the block it will be shortened to end of the block
4099 * that cooresponds to 'from'
4100 */
4101static int ext4_block_zero_page_range(handle_t *handle,
4102 struct address_space *mapping, loff_t from, loff_t length)
4103{
4104 struct inode *inode = mapping->host;
4105 unsigned offset = from & (PAGE_SIZE-1);
4106 unsigned blocksize = inode->i_sb->s_blocksize;
4107 unsigned max = blocksize - (offset & (blocksize - 1));
4108
4109 /*
4110 * correct length if it does not fall between
4111 * 'from' and the end of the block
4112 */
4113 if (length > max || length < 0)
4114 length = max;
4115
4116 if (IS_DAX(inode)) {
4117 return iomap_zero_range(inode, from, length, NULL,
4118 &ext4_iomap_ops);
4119 }
4120 return __ext4_block_zero_page_range(handle, mapping, from, length);
4121}
4122
4123/*
4124 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4125 * up to the end of the block which corresponds to `from'.
4126 * This required during truncate. We need to physically zero the tail end
4127 * of that block so it doesn't yield old data if the file is later grown.
4128 */
4129static int ext4_block_truncate_page(handle_t *handle,
4130 struct address_space *mapping, loff_t from)
4131{
4132 unsigned offset = from & (PAGE_SIZE-1);
4133 unsigned length;
4134 unsigned blocksize;
4135 struct inode *inode = mapping->host;
4136
4137 /* If we are processing an encrypted inode during orphan list handling */
4138 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4139 return 0;
4140
4141 blocksize = inode->i_sb->s_blocksize;
4142 length = blocksize - (offset & (blocksize - 1));
4143
4144 return ext4_block_zero_page_range(handle, mapping, from, length);
4145}
4146
4147int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4148 loff_t lstart, loff_t length)
4149{
4150 struct super_block *sb = inode->i_sb;
4151 struct address_space *mapping = inode->i_mapping;
4152 unsigned partial_start, partial_end;
4153 ext4_fsblk_t start, end;
4154 loff_t byte_end = (lstart + length - 1);
4155 int err = 0;
4156
4157 partial_start = lstart & (sb->s_blocksize - 1);
4158 partial_end = byte_end & (sb->s_blocksize - 1);
4159
4160 start = lstart >> sb->s_blocksize_bits;
4161 end = byte_end >> sb->s_blocksize_bits;
4162
4163 /* Handle partial zero within the single block */
4164 if (start == end &&
4165 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4166 err = ext4_block_zero_page_range(handle, mapping,
4167 lstart, length);
4168 return err;
4169 }
4170 /* Handle partial zero out on the start of the range */
4171 if (partial_start) {
4172 err = ext4_block_zero_page_range(handle, mapping,
4173 lstart, sb->s_blocksize);
4174 if (err)
4175 return err;
4176 }
4177 /* Handle partial zero out on the end of the range */
4178 if (partial_end != sb->s_blocksize - 1)
4179 err = ext4_block_zero_page_range(handle, mapping,
4180 byte_end - partial_end,
4181 partial_end + 1);
4182 return err;
4183}
4184
4185int ext4_can_truncate(struct inode *inode)
4186{
4187 if (S_ISREG(inode->i_mode))
4188 return 1;
4189 if (S_ISDIR(inode->i_mode))
4190 return 1;
4191 if (S_ISLNK(inode->i_mode))
4192 return !ext4_inode_is_fast_symlink(inode);
4193 return 0;
4194}
4195
4196/*
4197 * We have to make sure i_disksize gets properly updated before we truncate
4198 * page cache due to hole punching or zero range. Otherwise i_disksize update
4199 * can get lost as it may have been postponed to submission of writeback but
4200 * that will never happen after we truncate page cache.
4201 */
4202int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4203 loff_t len)
4204{
4205 handle_t *handle;
4206 loff_t size = i_size_read(inode);
4207
4208 WARN_ON(!inode_is_locked(inode));
4209 if (offset > size || offset + len < size)
4210 return 0;
4211
4212 if (EXT4_I(inode)->i_disksize >= size)
4213 return 0;
4214
4215 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4216 if (IS_ERR(handle))
4217 return PTR_ERR(handle);
4218 ext4_update_i_disksize(inode, size);
4219 ext4_mark_inode_dirty(handle, inode);
4220 ext4_journal_stop(handle);
4221
4222 return 0;
4223}
4224
4225/*
4226 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4227 * associated with the given offset and length
4228 *
4229 * @inode: File inode
4230 * @offset: The offset where the hole will begin
4231 * @len: The length of the hole
4232 *
4233 * Returns: 0 on success or negative on failure
4234 */
4235
4236int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4237{
4238 struct super_block *sb = inode->i_sb;
4239 ext4_lblk_t first_block, stop_block;
4240 struct address_space *mapping = inode->i_mapping;
4241 loff_t first_block_offset, last_block_offset;
4242 handle_t *handle;
4243 unsigned int credits;
4244 int ret = 0;
4245
4246 if (!S_ISREG(inode->i_mode))
4247 return -EOPNOTSUPP;
4248
4249 trace_ext4_punch_hole(inode, offset, length, 0);
4250
4251 /*
4252 * Write out all dirty pages to avoid race conditions
4253 * Then release them.
4254 */
4255 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4256 ret = filemap_write_and_wait_range(mapping, offset,
4257 offset + length - 1);
4258 if (ret)
4259 return ret;
4260 }
4261
4262 inode_lock(inode);
4263
4264 /* No need to punch hole beyond i_size */
4265 if (offset >= inode->i_size)
4266 goto out_mutex;
4267
4268 /*
4269 * If the hole extends beyond i_size, set the hole
4270 * to end after the page that contains i_size
4271 */
4272 if (offset + length > inode->i_size) {
4273 length = inode->i_size +
4274 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4275 offset;
4276 }
4277
4278 if (offset & (sb->s_blocksize - 1) ||
4279 (offset + length) & (sb->s_blocksize - 1)) {
4280 /*
4281 * Attach jinode to inode for jbd2 if we do any zeroing of
4282 * partial block
4283 */
4284 ret = ext4_inode_attach_jinode(inode);
4285 if (ret < 0)
4286 goto out_mutex;
4287
4288 }
4289
4290 /* Wait all existing dio workers, newcomers will block on i_mutex */
4291 ext4_inode_block_unlocked_dio(inode);
4292 inode_dio_wait(inode);
4293
4294 /*
4295 * Prevent page faults from reinstantiating pages we have released from
4296 * page cache.
4297 */
4298 down_write(&EXT4_I(inode)->i_mmap_sem);
4299 first_block_offset = round_up(offset, sb->s_blocksize);
4300 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4301
4302 /* Now release the pages and zero block aligned part of pages*/
4303 if (last_block_offset > first_block_offset) {
4304 ret = ext4_update_disksize_before_punch(inode, offset, length);
4305 if (ret)
4306 goto out_dio;
4307 truncate_pagecache_range(inode, first_block_offset,
4308 last_block_offset);
4309 }
4310
4311 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4312 credits = ext4_writepage_trans_blocks(inode);
4313 else
4314 credits = ext4_blocks_for_truncate(inode);
4315 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316 if (IS_ERR(handle)) {
4317 ret = PTR_ERR(handle);
4318 ext4_std_error(sb, ret);
4319 goto out_dio;
4320 }
4321
4322 ret = ext4_zero_partial_blocks(handle, inode, offset,
4323 length);
4324 if (ret)
4325 goto out_stop;
4326
4327 first_block = (offset + sb->s_blocksize - 1) >>
4328 EXT4_BLOCK_SIZE_BITS(sb);
4329 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4330
4331 /* If there are blocks to remove, do it */
4332 if (stop_block > first_block) {
4333
4334 down_write(&EXT4_I(inode)->i_data_sem);
4335 ext4_discard_preallocations(inode);
4336
4337 ret = ext4_es_remove_extent(inode, first_block,
4338 stop_block - first_block);
4339 if (ret) {
4340 up_write(&EXT4_I(inode)->i_data_sem);
4341 goto out_stop;
4342 }
4343
4344 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4345 ret = ext4_ext_remove_space(inode, first_block,
4346 stop_block - 1);
4347 else
4348 ret = ext4_ind_remove_space(handle, inode, first_block,
4349 stop_block);
4350
4351 up_write(&EXT4_I(inode)->i_data_sem);
4352 }
4353 if (IS_SYNC(inode))
4354 ext4_handle_sync(handle);
4355
4356 inode->i_mtime = inode->i_ctime = current_time(inode);
4357 ext4_mark_inode_dirty(handle, inode);
4358 if (ret >= 0)
4359 ext4_update_inode_fsync_trans(handle, inode, 1);
4360out_stop:
4361 ext4_journal_stop(handle);
4362out_dio:
4363 up_write(&EXT4_I(inode)->i_mmap_sem);
4364 ext4_inode_resume_unlocked_dio(inode);
4365out_mutex:
4366 inode_unlock(inode);
4367 return ret;
4368}
4369
4370int ext4_inode_attach_jinode(struct inode *inode)
4371{
4372 struct ext4_inode_info *ei = EXT4_I(inode);
4373 struct jbd2_inode *jinode;
4374
4375 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4376 return 0;
4377
4378 jinode = jbd2_alloc_inode(GFP_KERNEL);
4379 spin_lock(&inode->i_lock);
4380 if (!ei->jinode) {
4381 if (!jinode) {
4382 spin_unlock(&inode->i_lock);
4383 return -ENOMEM;
4384 }
4385 ei->jinode = jinode;
4386 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4387 jinode = NULL;
4388 }
4389 spin_unlock(&inode->i_lock);
4390 if (unlikely(jinode != NULL))
4391 jbd2_free_inode(jinode);
4392 return 0;
4393}
4394
4395/*
4396 * ext4_truncate()
4397 *
4398 * We block out ext4_get_block() block instantiations across the entire
4399 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4400 * simultaneously on behalf of the same inode.
4401 *
4402 * As we work through the truncate and commit bits of it to the journal there
4403 * is one core, guiding principle: the file's tree must always be consistent on
4404 * disk. We must be able to restart the truncate after a crash.
4405 *
4406 * The file's tree may be transiently inconsistent in memory (although it
4407 * probably isn't), but whenever we close off and commit a journal transaction,
4408 * the contents of (the filesystem + the journal) must be consistent and
4409 * restartable. It's pretty simple, really: bottom up, right to left (although
4410 * left-to-right works OK too).
4411 *
4412 * Note that at recovery time, journal replay occurs *before* the restart of
4413 * truncate against the orphan inode list.
4414 *
4415 * The committed inode has the new, desired i_size (which is the same as
4416 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4417 * that this inode's truncate did not complete and it will again call
4418 * ext4_truncate() to have another go. So there will be instantiated blocks
4419 * to the right of the truncation point in a crashed ext4 filesystem. But
4420 * that's fine - as long as they are linked from the inode, the post-crash
4421 * ext4_truncate() run will find them and release them.
4422 */
4423int ext4_truncate(struct inode *inode)
4424{
4425 struct ext4_inode_info *ei = EXT4_I(inode);
4426 unsigned int credits;
4427 int err = 0;
4428 handle_t *handle;
4429 struct address_space *mapping = inode->i_mapping;
4430
4431 /*
4432 * There is a possibility that we're either freeing the inode
4433 * or it's a completely new inode. In those cases we might not
4434 * have i_mutex locked because it's not necessary.
4435 */
4436 if (!(inode->i_state & (I_NEW|I_FREEING)))
4437 WARN_ON(!inode_is_locked(inode));
4438 trace_ext4_truncate_enter(inode);
4439
4440 if (!ext4_can_truncate(inode))
4441 return 0;
4442
4443 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4444
4445 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4446 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4447
4448 if (ext4_has_inline_data(inode)) {
4449 int has_inline = 1;
4450
4451 err = ext4_inline_data_truncate(inode, &has_inline);
4452 if (err)
4453 return err;
4454 if (has_inline)
4455 return 0;
4456 }
4457
4458 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4459 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4460 if (ext4_inode_attach_jinode(inode) < 0)
4461 return 0;
4462 }
4463
4464 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4465 credits = ext4_writepage_trans_blocks(inode);
4466 else
4467 credits = ext4_blocks_for_truncate(inode);
4468
4469 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4470 if (IS_ERR(handle))
4471 return PTR_ERR(handle);
4472
4473 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4474 ext4_block_truncate_page(handle, mapping, inode->i_size);
4475
4476 /*
4477 * We add the inode to the orphan list, so that if this
4478 * truncate spans multiple transactions, and we crash, we will
4479 * resume the truncate when the filesystem recovers. It also
4480 * marks the inode dirty, to catch the new size.
4481 *
4482 * Implication: the file must always be in a sane, consistent
4483 * truncatable state while each transaction commits.
4484 */
4485 err = ext4_orphan_add(handle, inode);
4486 if (err)
4487 goto out_stop;
4488
4489 down_write(&EXT4_I(inode)->i_data_sem);
4490
4491 ext4_discard_preallocations(inode);
4492
4493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4494 err = ext4_ext_truncate(handle, inode);
4495 else
4496 ext4_ind_truncate(handle, inode);
4497
4498 up_write(&ei->i_data_sem);
4499 if (err)
4500 goto out_stop;
4501
4502 if (IS_SYNC(inode))
4503 ext4_handle_sync(handle);
4504
4505out_stop:
4506 /*
4507 * If this was a simple ftruncate() and the file will remain alive,
4508 * then we need to clear up the orphan record which we created above.
4509 * However, if this was a real unlink then we were called by
4510 * ext4_evict_inode(), and we allow that function to clean up the
4511 * orphan info for us.
4512 */
4513 if (inode->i_nlink)
4514 ext4_orphan_del(handle, inode);
4515
4516 inode->i_mtime = inode->i_ctime = current_time(inode);
4517 ext4_mark_inode_dirty(handle, inode);
4518 ext4_journal_stop(handle);
4519
4520 trace_ext4_truncate_exit(inode);
4521 return err;
4522}
4523
4524/*
4525 * ext4_get_inode_loc returns with an extra refcount against the inode's
4526 * underlying buffer_head on success. If 'in_mem' is true, we have all
4527 * data in memory that is needed to recreate the on-disk version of this
4528 * inode.
4529 */
4530static int __ext4_get_inode_loc(struct inode *inode,
4531 struct ext4_iloc *iloc, int in_mem)
4532{
4533 struct ext4_group_desc *gdp;
4534 struct buffer_head *bh;
4535 struct super_block *sb = inode->i_sb;
4536 ext4_fsblk_t block;
4537 int inodes_per_block, inode_offset;
4538
4539 iloc->bh = NULL;
4540 if (inode->i_ino < EXT4_ROOT_INO ||
4541 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4542 return -EFSCORRUPTED;
4543
4544 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4545 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4546 if (!gdp)
4547 return -EIO;
4548
4549 /*
4550 * Figure out the offset within the block group inode table
4551 */
4552 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4553 inode_offset = ((inode->i_ino - 1) %
4554 EXT4_INODES_PER_GROUP(sb));
4555 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4556 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4557
4558 bh = sb_getblk(sb, block);
4559 if (unlikely(!bh))
4560 return -ENOMEM;
4561 if (!buffer_uptodate(bh)) {
4562 lock_buffer(bh);
4563
4564 /*
4565 * If the buffer has the write error flag, we have failed
4566 * to write out another inode in the same block. In this
4567 * case, we don't have to read the block because we may
4568 * read the old inode data successfully.
4569 */
4570 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4571 set_buffer_uptodate(bh);
4572
4573 if (buffer_uptodate(bh)) {
4574 /* someone brought it uptodate while we waited */
4575 unlock_buffer(bh);
4576 goto has_buffer;
4577 }
4578
4579 /*
4580 * If we have all information of the inode in memory and this
4581 * is the only valid inode in the block, we need not read the
4582 * block.
4583 */
4584 if (in_mem) {
4585 struct buffer_head *bitmap_bh;
4586 int i, start;
4587
4588 start = inode_offset & ~(inodes_per_block - 1);
4589
4590 /* Is the inode bitmap in cache? */
4591 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4592 if (unlikely(!bitmap_bh))
4593 goto make_io;
4594
4595 /*
4596 * If the inode bitmap isn't in cache then the
4597 * optimisation may end up performing two reads instead
4598 * of one, so skip it.
4599 */
4600 if (!buffer_uptodate(bitmap_bh)) {
4601 brelse(bitmap_bh);
4602 goto make_io;
4603 }
4604 for (i = start; i < start + inodes_per_block; i++) {
4605 if (i == inode_offset)
4606 continue;
4607 if (ext4_test_bit(i, bitmap_bh->b_data))
4608 break;
4609 }
4610 brelse(bitmap_bh);
4611 if (i == start + inodes_per_block) {
4612 /* all other inodes are free, so skip I/O */
4613 memset(bh->b_data, 0, bh->b_size);
4614 set_buffer_uptodate(bh);
4615 unlock_buffer(bh);
4616 goto has_buffer;
4617 }
4618 }
4619
4620make_io:
4621 /*
4622 * If we need to do any I/O, try to pre-readahead extra
4623 * blocks from the inode table.
4624 */
4625 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4626 ext4_fsblk_t b, end, table;
4627 unsigned num;
4628 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4629
4630 table = ext4_inode_table(sb, gdp);
4631 /* s_inode_readahead_blks is always a power of 2 */
4632 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4633 if (table > b)
4634 b = table;
4635 end = b + ra_blks;
4636 num = EXT4_INODES_PER_GROUP(sb);
4637 if (ext4_has_group_desc_csum(sb))
4638 num -= ext4_itable_unused_count(sb, gdp);
4639 table += num / inodes_per_block;
4640 if (end > table)
4641 end = table;
4642 while (b <= end)
4643 sb_breadahead(sb, b++);
4644 }
4645
4646 /*
4647 * There are other valid inodes in the buffer, this inode
4648 * has in-inode xattrs, or we don't have this inode in memory.
4649 * Read the block from disk.
4650 */
4651 trace_ext4_load_inode(inode);
4652 get_bh(bh);
4653 bh->b_end_io = end_buffer_read_sync;
4654 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4655 wait_on_buffer(bh);
4656 if (!buffer_uptodate(bh)) {
4657 EXT4_ERROR_INODE_BLOCK(inode, block,
4658 "unable to read itable block");
4659 brelse(bh);
4660 return -EIO;
4661 }
4662 }
4663has_buffer:
4664 iloc->bh = bh;
4665 return 0;
4666}
4667
4668int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4669{
4670 /* We have all inode data except xattrs in memory here. */
4671 return __ext4_get_inode_loc(inode, iloc,
4672 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4673}
4674
4675void ext4_set_inode_flags(struct inode *inode)
4676{
4677 unsigned int flags = EXT4_I(inode)->i_flags;
4678 unsigned int new_fl = 0;
4679
4680 if (flags & EXT4_SYNC_FL)
4681 new_fl |= S_SYNC;
4682 if (flags & EXT4_APPEND_FL)
4683 new_fl |= S_APPEND;
4684 if (flags & EXT4_IMMUTABLE_FL)
4685 new_fl |= S_IMMUTABLE;
4686 if (flags & EXT4_NOATIME_FL)
4687 new_fl |= S_NOATIME;
4688 if (flags & EXT4_DIRSYNC_FL)
4689 new_fl |= S_DIRSYNC;
4690 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4691 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4692 !(flags & EXT4_ENCRYPT_FL))
4693 new_fl |= S_DAX;
4694 if (flags & EXT4_ENCRYPT_FL)
4695 new_fl |= S_ENCRYPTED;
4696 inode_set_flags(inode, new_fl,
4697 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4698 S_ENCRYPTED);
4699}
4700
4701static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4702 struct ext4_inode_info *ei)
4703{
4704 blkcnt_t i_blocks ;
4705 struct inode *inode = &(ei->vfs_inode);
4706 struct super_block *sb = inode->i_sb;
4707
4708 if (ext4_has_feature_huge_file(sb)) {
4709 /* we are using combined 48 bit field */
4710 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4711 le32_to_cpu(raw_inode->i_blocks_lo);
4712 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4713 /* i_blocks represent file system block size */
4714 return i_blocks << (inode->i_blkbits - 9);
4715 } else {
4716 return i_blocks;
4717 }
4718 } else {
4719 return le32_to_cpu(raw_inode->i_blocks_lo);
4720 }
4721}
4722
4723static inline int ext4_iget_extra_inode(struct inode *inode,
4724 struct ext4_inode *raw_inode,
4725 struct ext4_inode_info *ei)
4726{
4727 __le32 *magic = (void *)raw_inode +
4728 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4729
4730 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4731 EXT4_INODE_SIZE(inode->i_sb) &&
4732 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4733 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4734 return ext4_find_inline_data_nolock(inode);
4735 } else
4736 EXT4_I(inode)->i_inline_off = 0;
4737 return 0;
4738}
4739
4740int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4741{
4742 if (!ext4_has_feature_project(inode->i_sb))
4743 return -EOPNOTSUPP;
4744 *projid = EXT4_I(inode)->i_projid;
4745 return 0;
4746}
4747
4748struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4749{
4750 struct ext4_iloc iloc;
4751 struct ext4_inode *raw_inode;
4752 struct ext4_inode_info *ei;
4753 struct inode *inode;
4754 journal_t *journal = EXT4_SB(sb)->s_journal;
4755 long ret;
4756 loff_t size;
4757 int block;
4758 uid_t i_uid;
4759 gid_t i_gid;
4760 projid_t i_projid;
4761
4762 inode = iget_locked(sb, ino);
4763 if (!inode)
4764 return ERR_PTR(-ENOMEM);
4765 if (!(inode->i_state & I_NEW))
4766 return inode;
4767
4768 ei = EXT4_I(inode);
4769 iloc.bh = NULL;
4770
4771 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4772 if (ret < 0)
4773 goto bad_inode;
4774 raw_inode = ext4_raw_inode(&iloc);
4775
4776 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4777 EXT4_ERROR_INODE(inode, "root inode unallocated");
4778 ret = -EFSCORRUPTED;
4779 goto bad_inode;
4780 }
4781
4782 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4783 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4784 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4785 EXT4_INODE_SIZE(inode->i_sb) ||
4786 (ei->i_extra_isize & 3)) {
4787 EXT4_ERROR_INODE(inode,
4788 "bad extra_isize %u (inode size %u)",
4789 ei->i_extra_isize,
4790 EXT4_INODE_SIZE(inode->i_sb));
4791 ret = -EFSCORRUPTED;
4792 goto bad_inode;
4793 }
4794 } else
4795 ei->i_extra_isize = 0;
4796
4797 /* Precompute checksum seed for inode metadata */
4798 if (ext4_has_metadata_csum(sb)) {
4799 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4800 __u32 csum;
4801 __le32 inum = cpu_to_le32(inode->i_ino);
4802 __le32 gen = raw_inode->i_generation;
4803 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4804 sizeof(inum));
4805 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4806 sizeof(gen));
4807 }
4808
4809 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4810 EXT4_ERROR_INODE(inode, "checksum invalid");
4811 ret = -EFSBADCRC;
4812 goto bad_inode;
4813 }
4814
4815 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4816 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4817 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4818 if (ext4_has_feature_project(sb) &&
4819 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4820 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4821 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4822 else
4823 i_projid = EXT4_DEF_PROJID;
4824
4825 if (!(test_opt(inode->i_sb, NO_UID32))) {
4826 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4827 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4828 }
4829 i_uid_write(inode, i_uid);
4830 i_gid_write(inode, i_gid);
4831 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4832 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4833
4834 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4835 ei->i_inline_off = 0;
4836 ei->i_dir_start_lookup = 0;
4837 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4838 /* We now have enough fields to check if the inode was active or not.
4839 * This is needed because nfsd might try to access dead inodes
4840 * the test is that same one that e2fsck uses
4841 * NeilBrown 1999oct15
4842 */
4843 if (inode->i_nlink == 0) {
4844 if ((inode->i_mode == 0 ||
4845 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4846 ino != EXT4_BOOT_LOADER_INO) {
4847 /* this inode is deleted */
4848 ret = -ESTALE;
4849 goto bad_inode;
4850 }
4851 /* The only unlinked inodes we let through here have
4852 * valid i_mode and are being read by the orphan
4853 * recovery code: that's fine, we're about to complete
4854 * the process of deleting those.
4855 * OR it is the EXT4_BOOT_LOADER_INO which is
4856 * not initialized on a new filesystem. */
4857 }
4858 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4859 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4860 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4861 if (ext4_has_feature_64bit(sb))
4862 ei->i_file_acl |=
4863 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4864 inode->i_size = ext4_isize(sb, raw_inode);
4865 if ((size = i_size_read(inode)) < 0) {
4866 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4867 ret = -EFSCORRUPTED;
4868 goto bad_inode;
4869 }
4870 ei->i_disksize = inode->i_size;
4871#ifdef CONFIG_QUOTA
4872 ei->i_reserved_quota = 0;
4873#endif
4874 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4875 ei->i_block_group = iloc.block_group;
4876 ei->i_last_alloc_group = ~0;
4877 /*
4878 * NOTE! The in-memory inode i_data array is in little-endian order
4879 * even on big-endian machines: we do NOT byteswap the block numbers!
4880 */
4881 for (block = 0; block < EXT4_N_BLOCKS; block++)
4882 ei->i_data[block] = raw_inode->i_block[block];
4883 INIT_LIST_HEAD(&ei->i_orphan);
4884
4885 /*
4886 * Set transaction id's of transactions that have to be committed
4887 * to finish f[data]sync. We set them to currently running transaction
4888 * as we cannot be sure that the inode or some of its metadata isn't
4889 * part of the transaction - the inode could have been reclaimed and
4890 * now it is reread from disk.
4891 */
4892 if (journal) {
4893 transaction_t *transaction;
4894 tid_t tid;
4895
4896 read_lock(&journal->j_state_lock);
4897 if (journal->j_running_transaction)
4898 transaction = journal->j_running_transaction;
4899 else
4900 transaction = journal->j_committing_transaction;
4901 if (transaction)
4902 tid = transaction->t_tid;
4903 else
4904 tid = journal->j_commit_sequence;
4905 read_unlock(&journal->j_state_lock);
4906 ei->i_sync_tid = tid;
4907 ei->i_datasync_tid = tid;
4908 }
4909
4910 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911 if (ei->i_extra_isize == 0) {
4912 /* The extra space is currently unused. Use it. */
4913 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4914 ei->i_extra_isize = sizeof(struct ext4_inode) -
4915 EXT4_GOOD_OLD_INODE_SIZE;
4916 } else {
4917 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4918 if (ret)
4919 goto bad_inode;
4920 }
4921 }
4922
4923 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4924 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4925 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4926 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4927
4928 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4929 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4930 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4931 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4932 inode->i_version |=
4933 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4934 }
4935 }
4936
4937 ret = 0;
4938 if (ei->i_file_acl &&
4939 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4940 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4941 ei->i_file_acl);
4942 ret = -EFSCORRUPTED;
4943 goto bad_inode;
4944 } else if (!ext4_has_inline_data(inode)) {
4945 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4946 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4947 (S_ISLNK(inode->i_mode) &&
4948 !ext4_inode_is_fast_symlink(inode))))
4949 /* Validate extent which is part of inode */
4950 ret = ext4_ext_check_inode(inode);
4951 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4952 (S_ISLNK(inode->i_mode) &&
4953 !ext4_inode_is_fast_symlink(inode))) {
4954 /* Validate block references which are part of inode */
4955 ret = ext4_ind_check_inode(inode);
4956 }
4957 }
4958 if (ret)
4959 goto bad_inode;
4960
4961 if (S_ISREG(inode->i_mode)) {
4962 inode->i_op = &ext4_file_inode_operations;
4963 inode->i_fop = &ext4_file_operations;
4964 ext4_set_aops(inode);
4965 } else if (S_ISDIR(inode->i_mode)) {
4966 inode->i_op = &ext4_dir_inode_operations;
4967 inode->i_fop = &ext4_dir_operations;
4968 } else if (S_ISLNK(inode->i_mode)) {
4969 if (ext4_encrypted_inode(inode)) {
4970 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4971 ext4_set_aops(inode);
4972 } else if (ext4_inode_is_fast_symlink(inode)) {
4973 inode->i_link = (char *)ei->i_data;
4974 inode->i_op = &ext4_fast_symlink_inode_operations;
4975 nd_terminate_link(ei->i_data, inode->i_size,
4976 sizeof(ei->i_data) - 1);
4977 } else {
4978 inode->i_op = &ext4_symlink_inode_operations;
4979 ext4_set_aops(inode);
4980 }
4981 inode_nohighmem(inode);
4982 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4983 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4984 inode->i_op = &ext4_special_inode_operations;
4985 if (raw_inode->i_block[0])
4986 init_special_inode(inode, inode->i_mode,
4987 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4988 else
4989 init_special_inode(inode, inode->i_mode,
4990 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4991 } else if (ino == EXT4_BOOT_LOADER_INO) {
4992 make_bad_inode(inode);
4993 } else {
4994 ret = -EFSCORRUPTED;
4995 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4996 goto bad_inode;
4997 }
4998 brelse(iloc.bh);
4999 ext4_set_inode_flags(inode);
5000
5001 unlock_new_inode(inode);
5002 return inode;
5003
5004bad_inode:
5005 brelse(iloc.bh);
5006 iget_failed(inode);
5007 return ERR_PTR(ret);
5008}
5009
5010struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5011{
5012 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5013 return ERR_PTR(-EFSCORRUPTED);
5014 return ext4_iget(sb, ino);
5015}
5016
5017static int ext4_inode_blocks_set(handle_t *handle,
5018 struct ext4_inode *raw_inode,
5019 struct ext4_inode_info *ei)
5020{
5021 struct inode *inode = &(ei->vfs_inode);
5022 u64 i_blocks = inode->i_blocks;
5023 struct super_block *sb = inode->i_sb;
5024
5025 if (i_blocks <= ~0U) {
5026 /*
5027 * i_blocks can be represented in a 32 bit variable
5028 * as multiple of 512 bytes
5029 */
5030 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5031 raw_inode->i_blocks_high = 0;
5032 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5033 return 0;
5034 }
5035 if (!ext4_has_feature_huge_file(sb))
5036 return -EFBIG;
5037
5038 if (i_blocks <= 0xffffffffffffULL) {
5039 /*
5040 * i_blocks can be represented in a 48 bit variable
5041 * as multiple of 512 bytes
5042 */
5043 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5044 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5045 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5046 } else {
5047 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5048 /* i_block is stored in file system block size */
5049 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5050 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5051 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5052 }
5053 return 0;
5054}
5055
5056struct other_inode {
5057 unsigned long orig_ino;
5058 struct ext4_inode *raw_inode;
5059};
5060
5061static int other_inode_match(struct inode * inode, unsigned long ino,
5062 void *data)
5063{
5064 struct other_inode *oi = (struct other_inode *) data;
5065
5066 if ((inode->i_ino != ino) ||
5067 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5068 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5069 ((inode->i_state & I_DIRTY_TIME) == 0))
5070 return 0;
5071 spin_lock(&inode->i_lock);
5072 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5073 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5074 (inode->i_state & I_DIRTY_TIME)) {
5075 struct ext4_inode_info *ei = EXT4_I(inode);
5076
5077 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5078 spin_unlock(&inode->i_lock);
5079
5080 spin_lock(&ei->i_raw_lock);
5081 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5082 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5083 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5084 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5085 spin_unlock(&ei->i_raw_lock);
5086 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5087 return -1;
5088 }
5089 spin_unlock(&inode->i_lock);
5090 return -1;
5091}
5092
5093/*
5094 * Opportunistically update the other time fields for other inodes in
5095 * the same inode table block.
5096 */
5097static void ext4_update_other_inodes_time(struct super_block *sb,
5098 unsigned long orig_ino, char *buf)
5099{
5100 struct other_inode oi;
5101 unsigned long ino;
5102 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5103 int inode_size = EXT4_INODE_SIZE(sb);
5104
5105 oi.orig_ino = orig_ino;
5106 /*
5107 * Calculate the first inode in the inode table block. Inode
5108 * numbers are one-based. That is, the first inode in a block
5109 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5110 */
5111 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5112 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5113 if (ino == orig_ino)
5114 continue;
5115 oi.raw_inode = (struct ext4_inode *) buf;
5116 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5117 }
5118}
5119
5120/*
5121 * Post the struct inode info into an on-disk inode location in the
5122 * buffer-cache. This gobbles the caller's reference to the
5123 * buffer_head in the inode location struct.
5124 *
5125 * The caller must have write access to iloc->bh.
5126 */
5127static int ext4_do_update_inode(handle_t *handle,
5128 struct inode *inode,
5129 struct ext4_iloc *iloc)
5130{
5131 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5132 struct ext4_inode_info *ei = EXT4_I(inode);
5133 struct buffer_head *bh = iloc->bh;
5134 struct super_block *sb = inode->i_sb;
5135 int err = 0, rc, block;
5136 int need_datasync = 0, set_large_file = 0;
5137 uid_t i_uid;
5138 gid_t i_gid;
5139 projid_t i_projid;
5140
5141 spin_lock(&ei->i_raw_lock);
5142
5143 /* For fields not tracked in the in-memory inode,
5144 * initialise them to zero for new inodes. */
5145 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5146 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5147
5148 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5149 i_uid = i_uid_read(inode);
5150 i_gid = i_gid_read(inode);
5151 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5152 if (!(test_opt(inode->i_sb, NO_UID32))) {
5153 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5154 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5155/*
5156 * Fix up interoperability with old kernels. Otherwise, old inodes get
5157 * re-used with the upper 16 bits of the uid/gid intact
5158 */
5159 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5160 raw_inode->i_uid_high = 0;
5161 raw_inode->i_gid_high = 0;
5162 } else {
5163 raw_inode->i_uid_high =
5164 cpu_to_le16(high_16_bits(i_uid));
5165 raw_inode->i_gid_high =
5166 cpu_to_le16(high_16_bits(i_gid));
5167 }
5168 } else {
5169 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5170 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5171 raw_inode->i_uid_high = 0;
5172 raw_inode->i_gid_high = 0;
5173 }
5174 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5175
5176 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5177 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5178 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5179 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5180
5181 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5182 if (err) {
5183 spin_unlock(&ei->i_raw_lock);
5184 goto out_brelse;
5185 }
5186 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5187 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5188 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5189 raw_inode->i_file_acl_high =
5190 cpu_to_le16(ei->i_file_acl >> 32);
5191 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5192 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5193 ext4_isize_set(raw_inode, ei->i_disksize);
5194 need_datasync = 1;
5195 }
5196 if (ei->i_disksize > 0x7fffffffULL) {
5197 if (!ext4_has_feature_large_file(sb) ||
5198 EXT4_SB(sb)->s_es->s_rev_level ==
5199 cpu_to_le32(EXT4_GOOD_OLD_REV))
5200 set_large_file = 1;
5201 }
5202 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5203 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5204 if (old_valid_dev(inode->i_rdev)) {
5205 raw_inode->i_block[0] =
5206 cpu_to_le32(old_encode_dev(inode->i_rdev));
5207 raw_inode->i_block[1] = 0;
5208 } else {
5209 raw_inode->i_block[0] = 0;
5210 raw_inode->i_block[1] =
5211 cpu_to_le32(new_encode_dev(inode->i_rdev));
5212 raw_inode->i_block[2] = 0;
5213 }
5214 } else if (!ext4_has_inline_data(inode)) {
5215 for (block = 0; block < EXT4_N_BLOCKS; block++)
5216 raw_inode->i_block[block] = ei->i_data[block];
5217 }
5218
5219 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5220 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5221 if (ei->i_extra_isize) {
5222 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5223 raw_inode->i_version_hi =
5224 cpu_to_le32(inode->i_version >> 32);
5225 raw_inode->i_extra_isize =
5226 cpu_to_le16(ei->i_extra_isize);
5227 }
5228 }
5229
5230 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5231 i_projid != EXT4_DEF_PROJID);
5232
5233 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5234 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5235 raw_inode->i_projid = cpu_to_le32(i_projid);
5236
5237 ext4_inode_csum_set(inode, raw_inode, ei);
5238 spin_unlock(&ei->i_raw_lock);
5239 if (inode->i_sb->s_flags & MS_LAZYTIME)
5240 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5241 bh->b_data);
5242
5243 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5244 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5245 if (!err)
5246 err = rc;
5247 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5248 if (set_large_file) {
5249 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5250 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5251 if (err)
5252 goto out_brelse;
5253 ext4_update_dynamic_rev(sb);
5254 ext4_set_feature_large_file(sb);
5255 ext4_handle_sync(handle);
5256 err = ext4_handle_dirty_super(handle, sb);
5257 }
5258 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5259out_brelse:
5260 brelse(bh);
5261 ext4_std_error(inode->i_sb, err);
5262 return err;
5263}
5264
5265/*
5266 * ext4_write_inode()
5267 *
5268 * We are called from a few places:
5269 *
5270 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5271 * Here, there will be no transaction running. We wait for any running
5272 * transaction to commit.
5273 *
5274 * - Within flush work (sys_sync(), kupdate and such).
5275 * We wait on commit, if told to.
5276 *
5277 * - Within iput_final() -> write_inode_now()
5278 * We wait on commit, if told to.
5279 *
5280 * In all cases it is actually safe for us to return without doing anything,
5281 * because the inode has been copied into a raw inode buffer in
5282 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5283 * writeback.
5284 *
5285 * Note that we are absolutely dependent upon all inode dirtiers doing the
5286 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5287 * which we are interested.
5288 *
5289 * It would be a bug for them to not do this. The code:
5290 *
5291 * mark_inode_dirty(inode)
5292 * stuff();
5293 * inode->i_size = expr;
5294 *
5295 * is in error because write_inode() could occur while `stuff()' is running,
5296 * and the new i_size will be lost. Plus the inode will no longer be on the
5297 * superblock's dirty inode list.
5298 */
5299int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5300{
5301 int err;
5302
5303 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5304 sb_rdonly(inode->i_sb))
5305 return 0;
5306
5307 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5308 return -EIO;
5309
5310 if (EXT4_SB(inode->i_sb)->s_journal) {
5311 if (ext4_journal_current_handle()) {
5312 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5313 dump_stack();
5314 return -EIO;
5315 }
5316
5317 /*
5318 * No need to force transaction in WB_SYNC_NONE mode. Also
5319 * ext4_sync_fs() will force the commit after everything is
5320 * written.
5321 */
5322 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5323 return 0;
5324
5325 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5326 EXT4_I(inode)->i_sync_tid);
5327 } else {
5328 struct ext4_iloc iloc;
5329
5330 err = __ext4_get_inode_loc(inode, &iloc, 0);
5331 if (err)
5332 return err;
5333 /*
5334 * sync(2) will flush the whole buffer cache. No need to do
5335 * it here separately for each inode.
5336 */
5337 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5338 sync_dirty_buffer(iloc.bh);
5339 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5340 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5341 "IO error syncing inode");
5342 err = -EIO;
5343 }
5344 brelse(iloc.bh);
5345 }
5346 return err;
5347}
5348
5349/*
5350 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5351 * buffers that are attached to a page stradding i_size and are undergoing
5352 * commit. In that case we have to wait for commit to finish and try again.
5353 */
5354static void ext4_wait_for_tail_page_commit(struct inode *inode)
5355{
5356 struct page *page;
5357 unsigned offset;
5358 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5359 tid_t commit_tid = 0;
5360 int ret;
5361
5362 offset = inode->i_size & (PAGE_SIZE - 1);
5363 /*
5364 * All buffers in the last page remain valid? Then there's nothing to
5365 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5366 * blocksize case
5367 */
5368 if (offset > PAGE_SIZE - i_blocksize(inode))
5369 return;
5370 while (1) {
5371 page = find_lock_page(inode->i_mapping,
5372 inode->i_size >> PAGE_SHIFT);
5373 if (!page)
5374 return;
5375 ret = __ext4_journalled_invalidatepage(page, offset,
5376 PAGE_SIZE - offset);
5377 unlock_page(page);
5378 put_page(page);
5379 if (ret != -EBUSY)
5380 return;
5381 commit_tid = 0;
5382 read_lock(&journal->j_state_lock);
5383 if (journal->j_committing_transaction)
5384 commit_tid = journal->j_committing_transaction->t_tid;
5385 read_unlock(&journal->j_state_lock);
5386 if (commit_tid)
5387 jbd2_log_wait_commit(journal, commit_tid);
5388 }
5389}
5390
5391/*
5392 * ext4_setattr()
5393 *
5394 * Called from notify_change.
5395 *
5396 * We want to trap VFS attempts to truncate the file as soon as
5397 * possible. In particular, we want to make sure that when the VFS
5398 * shrinks i_size, we put the inode on the orphan list and modify
5399 * i_disksize immediately, so that during the subsequent flushing of
5400 * dirty pages and freeing of disk blocks, we can guarantee that any
5401 * commit will leave the blocks being flushed in an unused state on
5402 * disk. (On recovery, the inode will get truncated and the blocks will
5403 * be freed, so we have a strong guarantee that no future commit will
5404 * leave these blocks visible to the user.)
5405 *
5406 * Another thing we have to assure is that if we are in ordered mode
5407 * and inode is still attached to the committing transaction, we must
5408 * we start writeout of all the dirty pages which are being truncated.
5409 * This way we are sure that all the data written in the previous
5410 * transaction are already on disk (truncate waits for pages under
5411 * writeback).
5412 *
5413 * Called with inode->i_mutex down.
5414 */
5415int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5416{
5417 struct inode *inode = d_inode(dentry);
5418 int error, rc = 0;
5419 int orphan = 0;
5420 const unsigned int ia_valid = attr->ia_valid;
5421
5422 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5423 return -EIO;
5424
5425 error = setattr_prepare(dentry, attr);
5426 if (error)
5427 return error;
5428
5429 if (is_quota_modification(inode, attr)) {
5430 error = dquot_initialize(inode);
5431 if (error)
5432 return error;
5433 }
5434 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5435 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5436 handle_t *handle;
5437
5438 /* (user+group)*(old+new) structure, inode write (sb,
5439 * inode block, ? - but truncate inode update has it) */
5440 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5441 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5442 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5443 if (IS_ERR(handle)) {
5444 error = PTR_ERR(handle);
5445 goto err_out;
5446 }
5447
5448 /* dquot_transfer() calls back ext4_get_inode_usage() which
5449 * counts xattr inode references.
5450 */
5451 down_read(&EXT4_I(inode)->xattr_sem);
5452 error = dquot_transfer(inode, attr);
5453 up_read(&EXT4_I(inode)->xattr_sem);
5454
5455 if (error) {
5456 ext4_journal_stop(handle);
5457 return error;
5458 }
5459 /* Update corresponding info in inode so that everything is in
5460 * one transaction */
5461 if (attr->ia_valid & ATTR_UID)
5462 inode->i_uid = attr->ia_uid;
5463 if (attr->ia_valid & ATTR_GID)
5464 inode->i_gid = attr->ia_gid;
5465 error = ext4_mark_inode_dirty(handle, inode);
5466 ext4_journal_stop(handle);
5467 }
5468
5469 if (attr->ia_valid & ATTR_SIZE) {
5470 handle_t *handle;
5471 loff_t oldsize = inode->i_size;
5472 int shrink = (attr->ia_size <= inode->i_size);
5473
5474 if (ext4_encrypted_inode(inode)) {
5475 error = fscrypt_get_encryption_info(inode);
5476 if (error)
5477 return error;
5478 if (!fscrypt_has_encryption_key(inode))
5479 return -ENOKEY;
5480 }
5481
5482 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5483 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5484
5485 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5486 return -EFBIG;
5487 }
5488 if (!S_ISREG(inode->i_mode))
5489 return -EINVAL;
5490
5491 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5492 inode_inc_iversion(inode);
5493
5494 if (ext4_should_order_data(inode) &&
5495 (attr->ia_size < inode->i_size)) {
5496 error = ext4_begin_ordered_truncate(inode,
5497 attr->ia_size);
5498 if (error)
5499 goto err_out;
5500 }
5501 if (attr->ia_size != inode->i_size) {
5502 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5503 if (IS_ERR(handle)) {
5504 error = PTR_ERR(handle);
5505 goto err_out;
5506 }
5507 if (ext4_handle_valid(handle) && shrink) {
5508 error = ext4_orphan_add(handle, inode);
5509 orphan = 1;
5510 }
5511 /*
5512 * Update c/mtime on truncate up, ext4_truncate() will
5513 * update c/mtime in shrink case below
5514 */
5515 if (!shrink) {
5516 inode->i_mtime = current_time(inode);
5517 inode->i_ctime = inode->i_mtime;
5518 }
5519 down_write(&EXT4_I(inode)->i_data_sem);
5520 EXT4_I(inode)->i_disksize = attr->ia_size;
5521 rc = ext4_mark_inode_dirty(handle, inode);
5522 if (!error)
5523 error = rc;
5524 /*
5525 * We have to update i_size under i_data_sem together
5526 * with i_disksize to avoid races with writeback code
5527 * running ext4_wb_update_i_disksize().
5528 */
5529 if (!error)
5530 i_size_write(inode, attr->ia_size);
5531 up_write(&EXT4_I(inode)->i_data_sem);
5532 ext4_journal_stop(handle);
5533 if (error) {
5534 if (orphan)
5535 ext4_orphan_del(NULL, inode);
5536 goto err_out;
5537 }
5538 }
5539 if (!shrink)
5540 pagecache_isize_extended(inode, oldsize, inode->i_size);
5541
5542 /*
5543 * Blocks are going to be removed from the inode. Wait
5544 * for dio in flight. Temporarily disable
5545 * dioread_nolock to prevent livelock.
5546 */
5547 if (orphan) {
5548 if (!ext4_should_journal_data(inode)) {
5549 ext4_inode_block_unlocked_dio(inode);
5550 inode_dio_wait(inode);
5551 ext4_inode_resume_unlocked_dio(inode);
5552 } else
5553 ext4_wait_for_tail_page_commit(inode);
5554 }
5555 down_write(&EXT4_I(inode)->i_mmap_sem);
5556 /*
5557 * Truncate pagecache after we've waited for commit
5558 * in data=journal mode to make pages freeable.
5559 */
5560 truncate_pagecache(inode, inode->i_size);
5561 if (shrink) {
5562 rc = ext4_truncate(inode);
5563 if (rc)
5564 error = rc;
5565 }
5566 up_write(&EXT4_I(inode)->i_mmap_sem);
5567 }
5568
5569 if (!error) {
5570 setattr_copy(inode, attr);
5571 mark_inode_dirty(inode);
5572 }
5573
5574 /*
5575 * If the call to ext4_truncate failed to get a transaction handle at
5576 * all, we need to clean up the in-core orphan list manually.
5577 */
5578 if (orphan && inode->i_nlink)
5579 ext4_orphan_del(NULL, inode);
5580
5581 if (!error && (ia_valid & ATTR_MODE))
5582 rc = posix_acl_chmod(inode, inode->i_mode);
5583
5584err_out:
5585 ext4_std_error(inode->i_sb, error);
5586 if (!error)
5587 error = rc;
5588 return error;
5589}
5590
5591int ext4_getattr(const struct path *path, struct kstat *stat,
5592 u32 request_mask, unsigned int query_flags)
5593{
5594 struct inode *inode = d_inode(path->dentry);
5595 struct ext4_inode *raw_inode;
5596 struct ext4_inode_info *ei = EXT4_I(inode);
5597 unsigned int flags;
5598
5599 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600 stat->result_mask |= STATX_BTIME;
5601 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603 }
5604
5605 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5606 if (flags & EXT4_APPEND_FL)
5607 stat->attributes |= STATX_ATTR_APPEND;
5608 if (flags & EXT4_COMPR_FL)
5609 stat->attributes |= STATX_ATTR_COMPRESSED;
5610 if (flags & EXT4_ENCRYPT_FL)
5611 stat->attributes |= STATX_ATTR_ENCRYPTED;
5612 if (flags & EXT4_IMMUTABLE_FL)
5613 stat->attributes |= STATX_ATTR_IMMUTABLE;
5614 if (flags & EXT4_NODUMP_FL)
5615 stat->attributes |= STATX_ATTR_NODUMP;
5616
5617 stat->attributes_mask |= (STATX_ATTR_APPEND |
5618 STATX_ATTR_COMPRESSED |
5619 STATX_ATTR_ENCRYPTED |
5620 STATX_ATTR_IMMUTABLE |
5621 STATX_ATTR_NODUMP);
5622
5623 generic_fillattr(inode, stat);
5624 return 0;
5625}
5626
5627int ext4_file_getattr(const struct path *path, struct kstat *stat,
5628 u32 request_mask, unsigned int query_flags)
5629{
5630 struct inode *inode = d_inode(path->dentry);
5631 u64 delalloc_blocks;
5632
5633 ext4_getattr(path, stat, request_mask, query_flags);
5634
5635 /*
5636 * If there is inline data in the inode, the inode will normally not
5637 * have data blocks allocated (it may have an external xattr block).
5638 * Report at least one sector for such files, so tools like tar, rsync,
5639 * others don't incorrectly think the file is completely sparse.
5640 */
5641 if (unlikely(ext4_has_inline_data(inode)))
5642 stat->blocks += (stat->size + 511) >> 9;
5643
5644 /*
5645 * We can't update i_blocks if the block allocation is delayed
5646 * otherwise in the case of system crash before the real block
5647 * allocation is done, we will have i_blocks inconsistent with
5648 * on-disk file blocks.
5649 * We always keep i_blocks updated together with real
5650 * allocation. But to not confuse with user, stat
5651 * will return the blocks that include the delayed allocation
5652 * blocks for this file.
5653 */
5654 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5655 EXT4_I(inode)->i_reserved_data_blocks);
5656 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5657 return 0;
5658}
5659
5660static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5661 int pextents)
5662{
5663 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5664 return ext4_ind_trans_blocks(inode, lblocks);
5665 return ext4_ext_index_trans_blocks(inode, pextents);
5666}
5667
5668/*
5669 * Account for index blocks, block groups bitmaps and block group
5670 * descriptor blocks if modify datablocks and index blocks
5671 * worse case, the indexs blocks spread over different block groups
5672 *
5673 * If datablocks are discontiguous, they are possible to spread over
5674 * different block groups too. If they are contiguous, with flexbg,
5675 * they could still across block group boundary.
5676 *
5677 * Also account for superblock, inode, quota and xattr blocks
5678 */
5679static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5680 int pextents)
5681{
5682 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5683 int gdpblocks;
5684 int idxblocks;
5685 int ret = 0;
5686
5687 /*
5688 * How many index blocks need to touch to map @lblocks logical blocks
5689 * to @pextents physical extents?
5690 */
5691 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5692
5693 ret = idxblocks;
5694
5695 /*
5696 * Now let's see how many group bitmaps and group descriptors need
5697 * to account
5698 */
5699 groups = idxblocks + pextents;
5700 gdpblocks = groups;
5701 if (groups > ngroups)
5702 groups = ngroups;
5703 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5704 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5705
5706 /* bitmaps and block group descriptor blocks */
5707 ret += groups + gdpblocks;
5708
5709 /* Blocks for super block, inode, quota and xattr blocks */
5710 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5711
5712 return ret;
5713}
5714
5715/*
5716 * Calculate the total number of credits to reserve to fit
5717 * the modification of a single pages into a single transaction,
5718 * which may include multiple chunks of block allocations.
5719 *
5720 * This could be called via ext4_write_begin()
5721 *
5722 * We need to consider the worse case, when
5723 * one new block per extent.
5724 */
5725int ext4_writepage_trans_blocks(struct inode *inode)
5726{
5727 int bpp = ext4_journal_blocks_per_page(inode);
5728 int ret;
5729
5730 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5731
5732 /* Account for data blocks for journalled mode */
5733 if (ext4_should_journal_data(inode))
5734 ret += bpp;
5735 return ret;
5736}
5737
5738/*
5739 * Calculate the journal credits for a chunk of data modification.
5740 *
5741 * This is called from DIO, fallocate or whoever calling
5742 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5743 *
5744 * journal buffers for data blocks are not included here, as DIO
5745 * and fallocate do no need to journal data buffers.
5746 */
5747int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5748{
5749 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5750}
5751
5752/*
5753 * The caller must have previously called ext4_reserve_inode_write().
5754 * Give this, we know that the caller already has write access to iloc->bh.
5755 */
5756int ext4_mark_iloc_dirty(handle_t *handle,
5757 struct inode *inode, struct ext4_iloc *iloc)
5758{
5759 int err = 0;
5760
5761 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5762 put_bh(iloc->bh);
5763 return -EIO;
5764 }
5765 if (IS_I_VERSION(inode))
5766 inode_inc_iversion(inode);
5767
5768 /* the do_update_inode consumes one bh->b_count */
5769 get_bh(iloc->bh);
5770
5771 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5772 err = ext4_do_update_inode(handle, inode, iloc);
5773 put_bh(iloc->bh);
5774 return err;
5775}
5776
5777/*
5778 * On success, We end up with an outstanding reference count against
5779 * iloc->bh. This _must_ be cleaned up later.
5780 */
5781
5782int
5783ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5784 struct ext4_iloc *iloc)
5785{
5786 int err;
5787
5788 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5789 return -EIO;
5790
5791 err = ext4_get_inode_loc(inode, iloc);
5792 if (!err) {
5793 BUFFER_TRACE(iloc->bh, "get_write_access");
5794 err = ext4_journal_get_write_access(handle, iloc->bh);
5795 if (err) {
5796 brelse(iloc->bh);
5797 iloc->bh = NULL;
5798 }
5799 }
5800 ext4_std_error(inode->i_sb, err);
5801 return err;
5802}
5803
5804static int __ext4_expand_extra_isize(struct inode *inode,
5805 unsigned int new_extra_isize,
5806 struct ext4_iloc *iloc,
5807 handle_t *handle, int *no_expand)
5808{
5809 struct ext4_inode *raw_inode;
5810 struct ext4_xattr_ibody_header *header;
5811 int error;
5812
5813 raw_inode = ext4_raw_inode(iloc);
5814
5815 header = IHDR(inode, raw_inode);
5816
5817 /* No extended attributes present */
5818 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5819 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5820 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5821 EXT4_I(inode)->i_extra_isize, 0,
5822 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5823 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5824 return 0;
5825 }
5826
5827 /* try to expand with EAs present */
5828 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5829 raw_inode, handle);
5830 if (error) {
5831 /*
5832 * Inode size expansion failed; don't try again
5833 */
5834 *no_expand = 1;
5835 }
5836
5837 return error;
5838}
5839
5840/*
5841 * Expand an inode by new_extra_isize bytes.
5842 * Returns 0 on success or negative error number on failure.
5843 */
5844static int ext4_try_to_expand_extra_isize(struct inode *inode,
5845 unsigned int new_extra_isize,
5846 struct ext4_iloc iloc,
5847 handle_t *handle)
5848{
5849 int no_expand;
5850 int error;
5851
5852 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5853 return -EOVERFLOW;
5854
5855 /*
5856 * In nojournal mode, we can immediately attempt to expand
5857 * the inode. When journaled, we first need to obtain extra
5858 * buffer credits since we may write into the EA block
5859 * with this same handle. If journal_extend fails, then it will
5860 * only result in a minor loss of functionality for that inode.
5861 * If this is felt to be critical, then e2fsck should be run to
5862 * force a large enough s_min_extra_isize.
5863 */
5864 if (ext4_handle_valid(handle) &&
5865 jbd2_journal_extend(handle,
5866 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5867 return -ENOSPC;
5868
5869 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5870 return -EBUSY;
5871
5872 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5873 handle, &no_expand);
5874 ext4_write_unlock_xattr(inode, &no_expand);
5875
5876 return error;
5877}
5878
5879int ext4_expand_extra_isize(struct inode *inode,
5880 unsigned int new_extra_isize,
5881 struct ext4_iloc *iloc)
5882{
5883 handle_t *handle;
5884 int no_expand;
5885 int error, rc;
5886
5887 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5888 brelse(iloc->bh);
5889 return -EOVERFLOW;
5890 }
5891
5892 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5893 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5894 if (IS_ERR(handle)) {
5895 error = PTR_ERR(handle);
5896 brelse(iloc->bh);
5897 return error;
5898 }
5899
5900 ext4_write_lock_xattr(inode, &no_expand);
5901
5902 BUFFER_TRACE(iloc.bh, "get_write_access");
5903 error = ext4_journal_get_write_access(handle, iloc->bh);
5904 if (error) {
5905 brelse(iloc->bh);
5906 goto out_stop;
5907 }
5908
5909 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5910 handle, &no_expand);
5911
5912 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5913 if (!error)
5914 error = rc;
5915
5916 ext4_write_unlock_xattr(inode, &no_expand);
5917out_stop:
5918 ext4_journal_stop(handle);
5919 return error;
5920}
5921
5922/*
5923 * What we do here is to mark the in-core inode as clean with respect to inode
5924 * dirtiness (it may still be data-dirty).
5925 * This means that the in-core inode may be reaped by prune_icache
5926 * without having to perform any I/O. This is a very good thing,
5927 * because *any* task may call prune_icache - even ones which
5928 * have a transaction open against a different journal.
5929 *
5930 * Is this cheating? Not really. Sure, we haven't written the
5931 * inode out, but prune_icache isn't a user-visible syncing function.
5932 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5933 * we start and wait on commits.
5934 */
5935int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5936{
5937 struct ext4_iloc iloc;
5938 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5939 int err;
5940
5941 might_sleep();
5942 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5943 err = ext4_reserve_inode_write(handle, inode, &iloc);
5944 if (err)
5945 return err;
5946
5947 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5948 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5949 iloc, handle);
5950
5951 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5952}
5953
5954/*
5955 * ext4_dirty_inode() is called from __mark_inode_dirty()
5956 *
5957 * We're really interested in the case where a file is being extended.
5958 * i_size has been changed by generic_commit_write() and we thus need
5959 * to include the updated inode in the current transaction.
5960 *
5961 * Also, dquot_alloc_block() will always dirty the inode when blocks
5962 * are allocated to the file.
5963 *
5964 * If the inode is marked synchronous, we don't honour that here - doing
5965 * so would cause a commit on atime updates, which we don't bother doing.
5966 * We handle synchronous inodes at the highest possible level.
5967 *
5968 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5969 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5970 * to copy into the on-disk inode structure are the timestamp files.
5971 */
5972void ext4_dirty_inode(struct inode *inode, int flags)
5973{
5974 handle_t *handle;
5975
5976 if (flags == I_DIRTY_TIME)
5977 return;
5978 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5979 if (IS_ERR(handle))
5980 goto out;
5981
5982 ext4_mark_inode_dirty(handle, inode);
5983
5984 ext4_journal_stop(handle);
5985out:
5986 return;
5987}
5988
5989#if 0
5990/*
5991 * Bind an inode's backing buffer_head into this transaction, to prevent
5992 * it from being flushed to disk early. Unlike
5993 * ext4_reserve_inode_write, this leaves behind no bh reference and
5994 * returns no iloc structure, so the caller needs to repeat the iloc
5995 * lookup to mark the inode dirty later.
5996 */
5997static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5998{
5999 struct ext4_iloc iloc;
6000
6001 int err = 0;
6002 if (handle) {
6003 err = ext4_get_inode_loc(inode, &iloc);
6004 if (!err) {
6005 BUFFER_TRACE(iloc.bh, "get_write_access");
6006 err = jbd2_journal_get_write_access(handle, iloc.bh);
6007 if (!err)
6008 err = ext4_handle_dirty_metadata(handle,
6009 NULL,
6010 iloc.bh);
6011 brelse(iloc.bh);
6012 }
6013 }
6014 ext4_std_error(inode->i_sb, err);
6015 return err;
6016}
6017#endif
6018
6019int ext4_change_inode_journal_flag(struct inode *inode, int val)
6020{
6021 journal_t *journal;
6022 handle_t *handle;
6023 int err;
6024 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6025
6026 /*
6027 * We have to be very careful here: changing a data block's
6028 * journaling status dynamically is dangerous. If we write a
6029 * data block to the journal, change the status and then delete
6030 * that block, we risk forgetting to revoke the old log record
6031 * from the journal and so a subsequent replay can corrupt data.
6032 * So, first we make sure that the journal is empty and that
6033 * nobody is changing anything.
6034 */
6035
6036 journal = EXT4_JOURNAL(inode);
6037 if (!journal)
6038 return 0;
6039 if (is_journal_aborted(journal))
6040 return -EROFS;
6041
6042 /* Wait for all existing dio workers */
6043 ext4_inode_block_unlocked_dio(inode);
6044 inode_dio_wait(inode);
6045
6046 /*
6047 * Before flushing the journal and switching inode's aops, we have
6048 * to flush all dirty data the inode has. There can be outstanding
6049 * delayed allocations, there can be unwritten extents created by
6050 * fallocate or buffered writes in dioread_nolock mode covered by
6051 * dirty data which can be converted only after flushing the dirty
6052 * data (and journalled aops don't know how to handle these cases).
6053 */
6054 if (val) {
6055 down_write(&EXT4_I(inode)->i_mmap_sem);
6056 err = filemap_write_and_wait(inode->i_mapping);
6057 if (err < 0) {
6058 up_write(&EXT4_I(inode)->i_mmap_sem);
6059 ext4_inode_resume_unlocked_dio(inode);
6060 return err;
6061 }
6062 }
6063
6064 percpu_down_write(&sbi->s_journal_flag_rwsem);
6065 jbd2_journal_lock_updates(journal);
6066
6067 /*
6068 * OK, there are no updates running now, and all cached data is
6069 * synced to disk. We are now in a completely consistent state
6070 * which doesn't have anything in the journal, and we know that
6071 * no filesystem updates are running, so it is safe to modify
6072 * the inode's in-core data-journaling state flag now.
6073 */
6074
6075 if (val)
6076 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6077 else {
6078 err = jbd2_journal_flush(journal);
6079 if (err < 0) {
6080 jbd2_journal_unlock_updates(journal);
6081 percpu_up_write(&sbi->s_journal_flag_rwsem);
6082 ext4_inode_resume_unlocked_dio(inode);
6083 return err;
6084 }
6085 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6086 }
6087 ext4_set_aops(inode);
6088
6089 jbd2_journal_unlock_updates(journal);
6090 percpu_up_write(&sbi->s_journal_flag_rwsem);
6091
6092 if (val)
6093 up_write(&EXT4_I(inode)->i_mmap_sem);
6094 ext4_inode_resume_unlocked_dio(inode);
6095
6096 /* Finally we can mark the inode as dirty. */
6097
6098 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6099 if (IS_ERR(handle))
6100 return PTR_ERR(handle);
6101
6102 err = ext4_mark_inode_dirty(handle, inode);
6103 ext4_handle_sync(handle);
6104 ext4_journal_stop(handle);
6105 ext4_std_error(inode->i_sb, err);
6106
6107 return err;
6108}
6109
6110static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6111{
6112 return !buffer_mapped(bh);
6113}
6114
6115int ext4_page_mkwrite(struct vm_fault *vmf)
6116{
6117 struct vm_area_struct *vma = vmf->vma;
6118 struct page *page = vmf->page;
6119 loff_t size;
6120 unsigned long len;
6121 int ret;
6122 struct file *file = vma->vm_file;
6123 struct inode *inode = file_inode(file);
6124 struct address_space *mapping = inode->i_mapping;
6125 handle_t *handle;
6126 get_block_t *get_block;
6127 int retries = 0;
6128
6129 sb_start_pagefault(inode->i_sb);
6130 file_update_time(vma->vm_file);
6131
6132 down_read(&EXT4_I(inode)->i_mmap_sem);
6133
6134 ret = ext4_convert_inline_data(inode);
6135 if (ret)
6136 goto out_ret;
6137
6138 /* Delalloc case is easy... */
6139 if (test_opt(inode->i_sb, DELALLOC) &&
6140 !ext4_should_journal_data(inode) &&
6141 !ext4_nonda_switch(inode->i_sb)) {
6142 do {
6143 ret = block_page_mkwrite(vma, vmf,
6144 ext4_da_get_block_prep);
6145 } while (ret == -ENOSPC &&
6146 ext4_should_retry_alloc(inode->i_sb, &retries));
6147 goto out_ret;
6148 }
6149
6150 lock_page(page);
6151 size = i_size_read(inode);
6152 /* Page got truncated from under us? */
6153 if (page->mapping != mapping || page_offset(page) > size) {
6154 unlock_page(page);
6155 ret = VM_FAULT_NOPAGE;
6156 goto out;
6157 }
6158
6159 if (page->index == size >> PAGE_SHIFT)
6160 len = size & ~PAGE_MASK;
6161 else
6162 len = PAGE_SIZE;
6163 /*
6164 * Return if we have all the buffers mapped. This avoids the need to do
6165 * journal_start/journal_stop which can block and take a long time
6166 */
6167 if (page_has_buffers(page)) {
6168 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6169 0, len, NULL,
6170 ext4_bh_unmapped)) {
6171 /* Wait so that we don't change page under IO */
6172 wait_for_stable_page(page);
6173 ret = VM_FAULT_LOCKED;
6174 goto out;
6175 }
6176 }
6177 unlock_page(page);
6178 /* OK, we need to fill the hole... */
6179 if (ext4_should_dioread_nolock(inode))
6180 get_block = ext4_get_block_unwritten;
6181 else
6182 get_block = ext4_get_block;
6183retry_alloc:
6184 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6185 ext4_writepage_trans_blocks(inode));
6186 if (IS_ERR(handle)) {
6187 ret = VM_FAULT_SIGBUS;
6188 goto out;
6189 }
6190 ret = block_page_mkwrite(vma, vmf, get_block);
6191 if (!ret && ext4_should_journal_data(inode)) {
6192 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6193 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6194 unlock_page(page);
6195 ret = VM_FAULT_SIGBUS;
6196 ext4_journal_stop(handle);
6197 goto out;
6198 }
6199 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6200 }
6201 ext4_journal_stop(handle);
6202 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6203 goto retry_alloc;
6204out_ret:
6205 ret = block_page_mkwrite_return(ret);
6206out:
6207 up_read(&EXT4_I(inode)->i_mmap_sem);
6208 sb_end_pagefault(inode->i_sb);
6209 return ret;
6210}
6211
6212int ext4_filemap_fault(struct vm_fault *vmf)
6213{
6214 struct inode *inode = file_inode(vmf->vma->vm_file);
6215 int err;
6216
6217 down_read(&EXT4_I(inode)->i_mmap_sem);
6218 err = filemap_fault(vmf);
6219 up_read(&EXT4_I(inode)->i_mmap_sem);
6220
6221 return err;
6222}
6223
6224/*
6225 * Find the first extent at or after @lblk in an inode that is not a hole.
6226 * Search for @map_len blocks at most. The extent is returned in @result.
6227 *
6228 * The function returns 1 if we found an extent. The function returns 0 in
6229 * case there is no extent at or after @lblk and in that case also sets
6230 * @result->es_len to 0. In case of error, the error code is returned.
6231 */
6232int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6233 unsigned int map_len, struct extent_status *result)
6234{
6235 struct ext4_map_blocks map;
6236 struct extent_status es = {};
6237 int ret;
6238
6239 map.m_lblk = lblk;
6240 map.m_len = map_len;
6241
6242 /*
6243 * For non-extent based files this loop may iterate several times since
6244 * we do not determine full hole size.
6245 */
6246 while (map.m_len > 0) {
6247 ret = ext4_map_blocks(NULL, inode, &map, 0);
6248 if (ret < 0)
6249 return ret;
6250 /* There's extent covering m_lblk? Just return it. */
6251 if (ret > 0) {
6252 int status;
6253
6254 ext4_es_store_pblock(result, map.m_pblk);
6255 result->es_lblk = map.m_lblk;
6256 result->es_len = map.m_len;
6257 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6258 status = EXTENT_STATUS_UNWRITTEN;
6259 else
6260 status = EXTENT_STATUS_WRITTEN;
6261 ext4_es_store_status(result, status);
6262 return 1;
6263 }
6264 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6265 map.m_lblk + map.m_len - 1,
6266 &es);
6267 /* Is delalloc data before next block in extent tree? */
6268 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6269 ext4_lblk_t offset = 0;
6270
6271 if (es.es_lblk < lblk)
6272 offset = lblk - es.es_lblk;
6273 result->es_lblk = es.es_lblk + offset;
6274 ext4_es_store_pblock(result,
6275 ext4_es_pblock(&es) + offset);
6276 result->es_len = es.es_len - offset;
6277 ext4_es_store_status(result, ext4_es_status(&es));
6278
6279 return 1;
6280 }
6281 /* There's a hole at m_lblk, advance us after it */
6282 map.m_lblk += map.m_len;
6283 map_len -= map.m_len;
6284 map.m_len = map_len;
6285 cond_resched();
6286 }
6287 result->es_len = 0;
6288 return 0;
6289}