ext4: remove unnecessary argument from __ext4_handle_dirty_metadata()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
... / ...
CommitLineData
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/jbd2.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/ratelimit.h>
40
41#include "ext4_jbd2.h"
42#include "xattr.h"
43#include "acl.h"
44#include "truncate.h"
45
46#include <trace/events/ext4.h>
47
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132}
133
134static void ext4_invalidatepage(struct page *page, unsigned long offset);
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
144
145/*
146 * Test whether an inode is a fast symlink.
147 */
148static int ext4_inode_is_fast_symlink(struct inode *inode)
149{
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
163{
164 int ret;
165
166 /*
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178
179 return ret;
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
185void ext4_evict_inode(struct inode *inode)
186{
187 handle_t *handle;
188 int err;
189
190 trace_ext4_evict_inode(inode);
191
192 ext4_ioend_wait(inode);
193
194 if (inode->i_nlink) {
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
226 if (!is_bad_inode(inode))
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
244 ext4_orphan_del(NULL, inode);
245 goto no_delete;
246 }
247
248 if (IS_SYNC(inode))
249 ext4_handle_sync(handle);
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
257 if (inode->i_blocks)
258 ext4_truncate(inode);
259
260 /*
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
265 */
266 if (!ext4_handle_has_enough_credits(handle, 3)) {
267 err = ext4_journal_extend(handle, 3);
268 if (err > 0)
269 err = ext4_journal_restart(handle, 3);
270 if (err != 0) {
271 ext4_warning(inode->i_sb,
272 "couldn't extend journal (err %d)", err);
273 stop_handle:
274 ext4_journal_stop(handle);
275 ext4_orphan_del(NULL, inode);
276 goto no_delete;
277 }
278 }
279
280 /*
281 * Kill off the orphan record which ext4_truncate created.
282 * AKPM: I think this can be inside the above `if'.
283 * Note that ext4_orphan_del() has to be able to cope with the
284 * deletion of a non-existent orphan - this is because we don't
285 * know if ext4_truncate() actually created an orphan record.
286 * (Well, we could do this if we need to, but heck - it works)
287 */
288 ext4_orphan_del(handle, inode);
289 EXT4_I(inode)->i_dtime = get_seconds();
290
291 /*
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
296 * fails.
297 */
298 if (ext4_mark_inode_dirty(handle, inode))
299 /* If that failed, just do the required in-core inode clear. */
300 ext4_clear_inode(inode);
301 else
302 ext4_free_inode(handle, inode);
303 ext4_journal_stop(handle);
304 return;
305no_delete:
306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
307}
308
309#ifdef CONFIG_QUOTA
310qsize_t *ext4_get_reserved_space(struct inode *inode)
311{
312 return &EXT4_I(inode)->i_reserved_quota;
313}
314#endif
315
316/*
317 * Calculate the number of metadata blocks need to reserve
318 * to allocate a block located at @lblock
319 */
320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321{
322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323 return ext4_ext_calc_metadata_amount(inode, lblock);
324
325 return ext4_ind_calc_metadata_amount(inode, lblock);
326}
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334{
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353 used + ei->i_allocated_meta_blocks);
354 ei->i_allocated_meta_blocks = 0;
355
356 if (ei->i_reserved_data_blocks == 0) {
357 /*
358 * We can release all of the reserved metadata blocks
359 * only when we have written all of the delayed
360 * allocation blocks.
361 */
362 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363 ei->i_reserved_meta_blocks);
364 ei->i_reserved_meta_blocks = 0;
365 ei->i_da_metadata_calc_len = 0;
366 }
367 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368
369 /* Update quota subsystem for data blocks */
370 if (quota_claim)
371 dquot_claim_block(inode, EXT4_C2B(sbi, used));
372 else {
373 /*
374 * We did fallocate with an offset that is already delayed
375 * allocated. So on delayed allocated writeback we should
376 * not re-claim the quota for fallocated blocks.
377 */
378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379 }
380
381 /*
382 * If we have done all the pending block allocations and if
383 * there aren't any writers on the inode, we can discard the
384 * inode's preallocations.
385 */
386 if ((ei->i_reserved_data_blocks == 0) &&
387 (atomic_read(&inode->i_writecount) == 0))
388 ext4_discard_preallocations(inode);
389}
390
391static int __check_block_validity(struct inode *inode, const char *func,
392 unsigned int line,
393 struct ext4_map_blocks *map)
394{
395 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396 map->m_len)) {
397 ext4_error_inode(inode, func, line, map->m_pblk,
398 "lblock %lu mapped to illegal pblock "
399 "(length %d)", (unsigned long) map->m_lblk,
400 map->m_len);
401 return -EIO;
402 }
403 return 0;
404}
405
406#define check_block_validity(inode, map) \
407 __check_block_validity((inode), __func__, __LINE__, (map))
408
409/*
410 * Return the number of contiguous dirty pages in a given inode
411 * starting at page frame idx.
412 */
413static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414 unsigned int max_pages)
415{
416 struct address_space *mapping = inode->i_mapping;
417 pgoff_t index;
418 struct pagevec pvec;
419 pgoff_t num = 0;
420 int i, nr_pages, done = 0;
421
422 if (max_pages == 0)
423 return 0;
424 pagevec_init(&pvec, 0);
425 while (!done) {
426 index = idx;
427 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 PAGECACHE_TAG_DIRTY,
429 (pgoff_t)PAGEVEC_SIZE);
430 if (nr_pages == 0)
431 break;
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434 struct buffer_head *bh, *head;
435
436 lock_page(page);
437 if (unlikely(page->mapping != mapping) ||
438 !PageDirty(page) ||
439 PageWriteback(page) ||
440 page->index != idx) {
441 done = 1;
442 unlock_page(page);
443 break;
444 }
445 if (page_has_buffers(page)) {
446 bh = head = page_buffers(page);
447 do {
448 if (!buffer_delay(bh) &&
449 !buffer_unwritten(bh))
450 done = 1;
451 bh = bh->b_this_page;
452 } while (!done && (bh != head));
453 }
454 unlock_page(page);
455 if (done)
456 break;
457 idx++;
458 num++;
459 if (num >= max_pages) {
460 done = 1;
461 break;
462 }
463 }
464 pagevec_release(&pvec);
465 }
466 return num;
467}
468
469/*
470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
471 */
472static void set_buffers_da_mapped(struct inode *inode,
473 struct ext4_map_blocks *map)
474{
475 struct address_space *mapping = inode->i_mapping;
476 struct pagevec pvec;
477 int i, nr_pages;
478 pgoff_t index, end;
479
480 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481 end = (map->m_lblk + map->m_len - 1) >>
482 (PAGE_CACHE_SHIFT - inode->i_blkbits);
483
484 pagevec_init(&pvec, 0);
485 while (index <= end) {
486 nr_pages = pagevec_lookup(&pvec, mapping, index,
487 min(end - index + 1,
488 (pgoff_t)PAGEVEC_SIZE));
489 if (nr_pages == 0)
490 break;
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page = pvec.pages[i];
493 struct buffer_head *bh, *head;
494
495 if (unlikely(page->mapping != mapping) ||
496 !PageDirty(page))
497 break;
498
499 if (page_has_buffers(page)) {
500 bh = head = page_buffers(page);
501 do {
502 set_buffer_da_mapped(bh);
503 bh = bh->b_this_page;
504 } while (bh != head);
505 }
506 index++;
507 }
508 pagevec_release(&pvec);
509 }
510}
511
512/*
513 * The ext4_map_blocks() function tries to look up the requested blocks,
514 * and returns if the blocks are already mapped.
515 *
516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517 * and store the allocated blocks in the result buffer head and mark it
518 * mapped.
519 *
520 * If file type is extents based, it will call ext4_ext_map_blocks(),
521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522 * based files
523 *
524 * On success, it returns the number of blocks being mapped or allocate.
525 * if create==0 and the blocks are pre-allocated and uninitialized block,
526 * the result buffer head is unmapped. If the create ==1, it will make sure
527 * the buffer head is mapped.
528 *
529 * It returns 0 if plain look up failed (blocks have not been allocated), in
530 * that case, buffer head is unmapped
531 *
532 * It returns the error in case of allocation failure.
533 */
534int ext4_map_blocks(handle_t *handle, struct inode *inode,
535 struct ext4_map_blocks *map, int flags)
536{
537 int retval;
538
539 map->m_flags = 0;
540 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541 "logical block %lu\n", inode->i_ino, flags, map->m_len,
542 (unsigned long) map->m_lblk);
543 /*
544 * Try to see if we can get the block without requesting a new
545 * file system block.
546 */
547 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
548 down_read((&EXT4_I(inode)->i_data_sem));
549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550 retval = ext4_ext_map_blocks(handle, inode, map, flags &
551 EXT4_GET_BLOCKS_KEEP_SIZE);
552 } else {
553 retval = ext4_ind_map_blocks(handle, inode, map, flags &
554 EXT4_GET_BLOCKS_KEEP_SIZE);
555 }
556 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
557 up_read((&EXT4_I(inode)->i_data_sem));
558
559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560 int ret = check_block_validity(inode, map);
561 if (ret != 0)
562 return ret;
563 }
564
565 /* If it is only a block(s) look up */
566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 return retval;
568
569 /*
570 * Returns if the blocks have already allocated
571 *
572 * Note that if blocks have been preallocated
573 * ext4_ext_get_block() returns the create = 0
574 * with buffer head unmapped.
575 */
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 return retval;
578
579 /*
580 * When we call get_blocks without the create flag, the
581 * BH_Unwritten flag could have gotten set if the blocks
582 * requested were part of a uninitialized extent. We need to
583 * clear this flag now that we are committed to convert all or
584 * part of the uninitialized extent to be an initialized
585 * extent. This is because we need to avoid the combination
586 * of BH_Unwritten and BH_Mapped flags being simultaneously
587 * set on the buffer_head.
588 */
589 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
590
591 /*
592 * New blocks allocate and/or writing to uninitialized extent
593 * will possibly result in updating i_data, so we take
594 * the write lock of i_data_sem, and call get_blocks()
595 * with create == 1 flag.
596 */
597 down_write((&EXT4_I(inode)->i_data_sem));
598
599 /*
600 * if the caller is from delayed allocation writeout path
601 * we have already reserved fs blocks for allocation
602 * let the underlying get_block() function know to
603 * avoid double accounting
604 */
605 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
606 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
607 /*
608 * We need to check for EXT4 here because migrate
609 * could have changed the inode type in between
610 */
611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 } else {
614 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 /*
618 * We allocated new blocks which will result in
619 * i_data's format changing. Force the migrate
620 * to fail by clearing migrate flags
621 */
622 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 }
624
625 /*
626 * Update reserved blocks/metadata blocks after successful
627 * block allocation which had been deferred till now. We don't
628 * support fallocate for non extent files. So we can update
629 * reserve space here.
630 */
631 if ((retval > 0) &&
632 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 ext4_da_update_reserve_space(inode, retval, 1);
634 }
635 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
636 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
637
638 /* If we have successfully mapped the delayed allocated blocks,
639 * set the BH_Da_Mapped bit on them. Its important to do this
640 * under the protection of i_data_sem.
641 */
642 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
643 set_buffers_da_mapped(inode, map);
644 }
645
646 up_write((&EXT4_I(inode)->i_data_sem));
647 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
648 int ret = check_block_validity(inode, map);
649 if (ret != 0)
650 return ret;
651 }
652 return retval;
653}
654
655/* Maximum number of blocks we map for direct IO at once. */
656#define DIO_MAX_BLOCKS 4096
657
658static int _ext4_get_block(struct inode *inode, sector_t iblock,
659 struct buffer_head *bh, int flags)
660{
661 handle_t *handle = ext4_journal_current_handle();
662 struct ext4_map_blocks map;
663 int ret = 0, started = 0;
664 int dio_credits;
665
666 map.m_lblk = iblock;
667 map.m_len = bh->b_size >> inode->i_blkbits;
668
669 if (flags && !handle) {
670 /* Direct IO write... */
671 if (map.m_len > DIO_MAX_BLOCKS)
672 map.m_len = DIO_MAX_BLOCKS;
673 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
674 handle = ext4_journal_start(inode, dio_credits);
675 if (IS_ERR(handle)) {
676 ret = PTR_ERR(handle);
677 return ret;
678 }
679 started = 1;
680 }
681
682 ret = ext4_map_blocks(handle, inode, &map, flags);
683 if (ret > 0) {
684 map_bh(bh, inode->i_sb, map.m_pblk);
685 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
686 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
687 ret = 0;
688 }
689 if (started)
690 ext4_journal_stop(handle);
691 return ret;
692}
693
694int ext4_get_block(struct inode *inode, sector_t iblock,
695 struct buffer_head *bh, int create)
696{
697 return _ext4_get_block(inode, iblock, bh,
698 create ? EXT4_GET_BLOCKS_CREATE : 0);
699}
700
701/*
702 * `handle' can be NULL if create is zero
703 */
704struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
705 ext4_lblk_t block, int create, int *errp)
706{
707 struct ext4_map_blocks map;
708 struct buffer_head *bh;
709 int fatal = 0, err;
710
711 J_ASSERT(handle != NULL || create == 0);
712
713 map.m_lblk = block;
714 map.m_len = 1;
715 err = ext4_map_blocks(handle, inode, &map,
716 create ? EXT4_GET_BLOCKS_CREATE : 0);
717
718 if (err < 0)
719 *errp = err;
720 if (err <= 0)
721 return NULL;
722 *errp = 0;
723
724 bh = sb_getblk(inode->i_sb, map.m_pblk);
725 if (!bh) {
726 *errp = -EIO;
727 return NULL;
728 }
729 if (map.m_flags & EXT4_MAP_NEW) {
730 J_ASSERT(create != 0);
731 J_ASSERT(handle != NULL);
732
733 /*
734 * Now that we do not always journal data, we should
735 * keep in mind whether this should always journal the
736 * new buffer as metadata. For now, regular file
737 * writes use ext4_get_block instead, so it's not a
738 * problem.
739 */
740 lock_buffer(bh);
741 BUFFER_TRACE(bh, "call get_create_access");
742 fatal = ext4_journal_get_create_access(handle, bh);
743 if (!fatal && !buffer_uptodate(bh)) {
744 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
745 set_buffer_uptodate(bh);
746 }
747 unlock_buffer(bh);
748 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
749 err = ext4_handle_dirty_metadata(handle, inode, bh);
750 if (!fatal)
751 fatal = err;
752 } else {
753 BUFFER_TRACE(bh, "not a new buffer");
754 }
755 if (fatal) {
756 *errp = fatal;
757 brelse(bh);
758 bh = NULL;
759 }
760 return bh;
761}
762
763struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
764 ext4_lblk_t block, int create, int *err)
765{
766 struct buffer_head *bh;
767
768 bh = ext4_getblk(handle, inode, block, create, err);
769 if (!bh)
770 return bh;
771 if (buffer_uptodate(bh))
772 return bh;
773 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
774 wait_on_buffer(bh);
775 if (buffer_uptodate(bh))
776 return bh;
777 put_bh(bh);
778 *err = -EIO;
779 return NULL;
780}
781
782static int walk_page_buffers(handle_t *handle,
783 struct buffer_head *head,
784 unsigned from,
785 unsigned to,
786 int *partial,
787 int (*fn)(handle_t *handle,
788 struct buffer_head *bh))
789{
790 struct buffer_head *bh;
791 unsigned block_start, block_end;
792 unsigned blocksize = head->b_size;
793 int err, ret = 0;
794 struct buffer_head *next;
795
796 for (bh = head, block_start = 0;
797 ret == 0 && (bh != head || !block_start);
798 block_start = block_end, bh = next) {
799 next = bh->b_this_page;
800 block_end = block_start + blocksize;
801 if (block_end <= from || block_start >= to) {
802 if (partial && !buffer_uptodate(bh))
803 *partial = 1;
804 continue;
805 }
806 err = (*fn)(handle, bh);
807 if (!ret)
808 ret = err;
809 }
810 return ret;
811}
812
813/*
814 * To preserve ordering, it is essential that the hole instantiation and
815 * the data write be encapsulated in a single transaction. We cannot
816 * close off a transaction and start a new one between the ext4_get_block()
817 * and the commit_write(). So doing the jbd2_journal_start at the start of
818 * prepare_write() is the right place.
819 *
820 * Also, this function can nest inside ext4_writepage() ->
821 * block_write_full_page(). In that case, we *know* that ext4_writepage()
822 * has generated enough buffer credits to do the whole page. So we won't
823 * block on the journal in that case, which is good, because the caller may
824 * be PF_MEMALLOC.
825 *
826 * By accident, ext4 can be reentered when a transaction is open via
827 * quota file writes. If we were to commit the transaction while thus
828 * reentered, there can be a deadlock - we would be holding a quota
829 * lock, and the commit would never complete if another thread had a
830 * transaction open and was blocking on the quota lock - a ranking
831 * violation.
832 *
833 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
834 * will _not_ run commit under these circumstances because handle->h_ref
835 * is elevated. We'll still have enough credits for the tiny quotafile
836 * write.
837 */
838static int do_journal_get_write_access(handle_t *handle,
839 struct buffer_head *bh)
840{
841 int dirty = buffer_dirty(bh);
842 int ret;
843
844 if (!buffer_mapped(bh) || buffer_freed(bh))
845 return 0;
846 /*
847 * __block_write_begin() could have dirtied some buffers. Clean
848 * the dirty bit as jbd2_journal_get_write_access() could complain
849 * otherwise about fs integrity issues. Setting of the dirty bit
850 * by __block_write_begin() isn't a real problem here as we clear
851 * the bit before releasing a page lock and thus writeback cannot
852 * ever write the buffer.
853 */
854 if (dirty)
855 clear_buffer_dirty(bh);
856 ret = ext4_journal_get_write_access(handle, bh);
857 if (!ret && dirty)
858 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
859 return ret;
860}
861
862static int ext4_get_block_write(struct inode *inode, sector_t iblock,
863 struct buffer_head *bh_result, int create);
864static int ext4_write_begin(struct file *file, struct address_space *mapping,
865 loff_t pos, unsigned len, unsigned flags,
866 struct page **pagep, void **fsdata)
867{
868 struct inode *inode = mapping->host;
869 int ret, needed_blocks;
870 handle_t *handle;
871 int retries = 0;
872 struct page *page;
873 pgoff_t index;
874 unsigned from, to;
875
876 trace_ext4_write_begin(inode, pos, len, flags);
877 /*
878 * Reserve one block more for addition to orphan list in case
879 * we allocate blocks but write fails for some reason
880 */
881 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
882 index = pos >> PAGE_CACHE_SHIFT;
883 from = pos & (PAGE_CACHE_SIZE - 1);
884 to = from + len;
885
886retry:
887 handle = ext4_journal_start(inode, needed_blocks);
888 if (IS_ERR(handle)) {
889 ret = PTR_ERR(handle);
890 goto out;
891 }
892
893 /* We cannot recurse into the filesystem as the transaction is already
894 * started */
895 flags |= AOP_FLAG_NOFS;
896
897 page = grab_cache_page_write_begin(mapping, index, flags);
898 if (!page) {
899 ext4_journal_stop(handle);
900 ret = -ENOMEM;
901 goto out;
902 }
903 *pagep = page;
904
905 if (ext4_should_dioread_nolock(inode))
906 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907 else
908 ret = __block_write_begin(page, pos, len, ext4_get_block);
909
910 if (!ret && ext4_should_journal_data(inode)) {
911 ret = walk_page_buffers(handle, page_buffers(page),
912 from, to, NULL, do_journal_get_write_access);
913 }
914
915 if (ret) {
916 unlock_page(page);
917 page_cache_release(page);
918 /*
919 * __block_write_begin may have instantiated a few blocks
920 * outside i_size. Trim these off again. Don't need
921 * i_size_read because we hold i_mutex.
922 *
923 * Add inode to orphan list in case we crash before
924 * truncate finishes
925 */
926 if (pos + len > inode->i_size && ext4_can_truncate(inode))
927 ext4_orphan_add(handle, inode);
928
929 ext4_journal_stop(handle);
930 if (pos + len > inode->i_size) {
931 ext4_truncate_failed_write(inode);
932 /*
933 * If truncate failed early the inode might
934 * still be on the orphan list; we need to
935 * make sure the inode is removed from the
936 * orphan list in that case.
937 */
938 if (inode->i_nlink)
939 ext4_orphan_del(NULL, inode);
940 }
941 }
942
943 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
944 goto retry;
945out:
946 return ret;
947}
948
949/* For write_end() in data=journal mode */
950static int write_end_fn(handle_t *handle, struct buffer_head *bh)
951{
952 if (!buffer_mapped(bh) || buffer_freed(bh))
953 return 0;
954 set_buffer_uptodate(bh);
955 return ext4_handle_dirty_metadata(handle, NULL, bh);
956}
957
958static int ext4_generic_write_end(struct file *file,
959 struct address_space *mapping,
960 loff_t pos, unsigned len, unsigned copied,
961 struct page *page, void *fsdata)
962{
963 int i_size_changed = 0;
964 struct inode *inode = mapping->host;
965 handle_t *handle = ext4_journal_current_handle();
966
967 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
968
969 /*
970 * No need to use i_size_read() here, the i_size
971 * cannot change under us because we hold i_mutex.
972 *
973 * But it's important to update i_size while still holding page lock:
974 * page writeout could otherwise come in and zero beyond i_size.
975 */
976 if (pos + copied > inode->i_size) {
977 i_size_write(inode, pos + copied);
978 i_size_changed = 1;
979 }
980
981 if (pos + copied > EXT4_I(inode)->i_disksize) {
982 /* We need to mark inode dirty even if
983 * new_i_size is less that inode->i_size
984 * bu greater than i_disksize.(hint delalloc)
985 */
986 ext4_update_i_disksize(inode, (pos + copied));
987 i_size_changed = 1;
988 }
989 unlock_page(page);
990 page_cache_release(page);
991
992 /*
993 * Don't mark the inode dirty under page lock. First, it unnecessarily
994 * makes the holding time of page lock longer. Second, it forces lock
995 * ordering of page lock and transaction start for journaling
996 * filesystems.
997 */
998 if (i_size_changed)
999 ext4_mark_inode_dirty(handle, inode);
1000
1001 return copied;
1002}
1003
1004/*
1005 * We need to pick up the new inode size which generic_commit_write gave us
1006 * `file' can be NULL - eg, when called from page_symlink().
1007 *
1008 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1009 * buffers are managed internally.
1010 */
1011static int ext4_ordered_write_end(struct file *file,
1012 struct address_space *mapping,
1013 loff_t pos, unsigned len, unsigned copied,
1014 struct page *page, void *fsdata)
1015{
1016 handle_t *handle = ext4_journal_current_handle();
1017 struct inode *inode = mapping->host;
1018 int ret = 0, ret2;
1019
1020 trace_ext4_ordered_write_end(inode, pos, len, copied);
1021 ret = ext4_jbd2_file_inode(handle, inode);
1022
1023 if (ret == 0) {
1024 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1025 page, fsdata);
1026 copied = ret2;
1027 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1028 /* if we have allocated more blocks and copied
1029 * less. We will have blocks allocated outside
1030 * inode->i_size. So truncate them
1031 */
1032 ext4_orphan_add(handle, inode);
1033 if (ret2 < 0)
1034 ret = ret2;
1035 } else {
1036 unlock_page(page);
1037 page_cache_release(page);
1038 }
1039
1040 ret2 = ext4_journal_stop(handle);
1041 if (!ret)
1042 ret = ret2;
1043
1044 if (pos + len > inode->i_size) {
1045 ext4_truncate_failed_write(inode);
1046 /*
1047 * If truncate failed early the inode might still be
1048 * on the orphan list; we need to make sure the inode
1049 * is removed from the orphan list in that case.
1050 */
1051 if (inode->i_nlink)
1052 ext4_orphan_del(NULL, inode);
1053 }
1054
1055
1056 return ret ? ret : copied;
1057}
1058
1059static int ext4_writeback_write_end(struct file *file,
1060 struct address_space *mapping,
1061 loff_t pos, unsigned len, unsigned copied,
1062 struct page *page, void *fsdata)
1063{
1064 handle_t *handle = ext4_journal_current_handle();
1065 struct inode *inode = mapping->host;
1066 int ret = 0, ret2;
1067
1068 trace_ext4_writeback_write_end(inode, pos, len, copied);
1069 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1070 page, fsdata);
1071 copied = ret2;
1072 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1073 /* if we have allocated more blocks and copied
1074 * less. We will have blocks allocated outside
1075 * inode->i_size. So truncate them
1076 */
1077 ext4_orphan_add(handle, inode);
1078
1079 if (ret2 < 0)
1080 ret = ret2;
1081
1082 ret2 = ext4_journal_stop(handle);
1083 if (!ret)
1084 ret = ret2;
1085
1086 if (pos + len > inode->i_size) {
1087 ext4_truncate_failed_write(inode);
1088 /*
1089 * If truncate failed early the inode might still be
1090 * on the orphan list; we need to make sure the inode
1091 * is removed from the orphan list in that case.
1092 */
1093 if (inode->i_nlink)
1094 ext4_orphan_del(NULL, inode);
1095 }
1096
1097 return ret ? ret : copied;
1098}
1099
1100static int ext4_journalled_write_end(struct file *file,
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
1104{
1105 handle_t *handle = ext4_journal_current_handle();
1106 struct inode *inode = mapping->host;
1107 int ret = 0, ret2;
1108 int partial = 0;
1109 unsigned from, to;
1110 loff_t new_i_size;
1111
1112 trace_ext4_journalled_write_end(inode, pos, len, copied);
1113 from = pos & (PAGE_CACHE_SIZE - 1);
1114 to = from + len;
1115
1116 BUG_ON(!ext4_handle_valid(handle));
1117
1118 if (copied < len) {
1119 if (!PageUptodate(page))
1120 copied = 0;
1121 page_zero_new_buffers(page, from+copied, to);
1122 }
1123
1124 ret = walk_page_buffers(handle, page_buffers(page), from,
1125 to, &partial, write_end_fn);
1126 if (!partial)
1127 SetPageUptodate(page);
1128 new_i_size = pos + copied;
1129 if (new_i_size > inode->i_size)
1130 i_size_write(inode, pos+copied);
1131 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1132 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1133 if (new_i_size > EXT4_I(inode)->i_disksize) {
1134 ext4_update_i_disksize(inode, new_i_size);
1135 ret2 = ext4_mark_inode_dirty(handle, inode);
1136 if (!ret)
1137 ret = ret2;
1138 }
1139
1140 unlock_page(page);
1141 page_cache_release(page);
1142 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143 /* if we have allocated more blocks and copied
1144 * less. We will have blocks allocated outside
1145 * inode->i_size. So truncate them
1146 */
1147 ext4_orphan_add(handle, inode);
1148
1149 ret2 = ext4_journal_stop(handle);
1150 if (!ret)
1151 ret = ret2;
1152 if (pos + len > inode->i_size) {
1153 ext4_truncate_failed_write(inode);
1154 /*
1155 * If truncate failed early the inode might still be
1156 * on the orphan list; we need to make sure the inode
1157 * is removed from the orphan list in that case.
1158 */
1159 if (inode->i_nlink)
1160 ext4_orphan_del(NULL, inode);
1161 }
1162
1163 return ret ? ret : copied;
1164}
1165
1166/*
1167 * Reserve a single cluster located at lblock
1168 */
1169static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1170{
1171 int retries = 0;
1172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173 struct ext4_inode_info *ei = EXT4_I(inode);
1174 unsigned int md_needed;
1175 int ret;
1176
1177 /*
1178 * recalculate the amount of metadata blocks to reserve
1179 * in order to allocate nrblocks
1180 * worse case is one extent per block
1181 */
1182repeat:
1183 spin_lock(&ei->i_block_reservation_lock);
1184 md_needed = EXT4_NUM_B2C(sbi,
1185 ext4_calc_metadata_amount(inode, lblock));
1186 trace_ext4_da_reserve_space(inode, md_needed);
1187 spin_unlock(&ei->i_block_reservation_lock);
1188
1189 /*
1190 * We will charge metadata quota at writeout time; this saves
1191 * us from metadata over-estimation, though we may go over by
1192 * a small amount in the end. Here we just reserve for data.
1193 */
1194 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1195 if (ret)
1196 return ret;
1197 /*
1198 * We do still charge estimated metadata to the sb though;
1199 * we cannot afford to run out of free blocks.
1200 */
1201 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1202 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1203 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1204 yield();
1205 goto repeat;
1206 }
1207 return -ENOSPC;
1208 }
1209 spin_lock(&ei->i_block_reservation_lock);
1210 ei->i_reserved_data_blocks++;
1211 ei->i_reserved_meta_blocks += md_needed;
1212 spin_unlock(&ei->i_block_reservation_lock);
1213
1214 return 0; /* success */
1215}
1216
1217static void ext4_da_release_space(struct inode *inode, int to_free)
1218{
1219 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1220 struct ext4_inode_info *ei = EXT4_I(inode);
1221
1222 if (!to_free)
1223 return; /* Nothing to release, exit */
1224
1225 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1226
1227 trace_ext4_da_release_space(inode, to_free);
1228 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1229 /*
1230 * if there aren't enough reserved blocks, then the
1231 * counter is messed up somewhere. Since this
1232 * function is called from invalidate page, it's
1233 * harmless to return without any action.
1234 */
1235 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1236 "ino %lu, to_free %d with only %d reserved "
1237 "data blocks", inode->i_ino, to_free,
1238 ei->i_reserved_data_blocks);
1239 WARN_ON(1);
1240 to_free = ei->i_reserved_data_blocks;
1241 }
1242 ei->i_reserved_data_blocks -= to_free;
1243
1244 if (ei->i_reserved_data_blocks == 0) {
1245 /*
1246 * We can release all of the reserved metadata blocks
1247 * only when we have written all of the delayed
1248 * allocation blocks.
1249 * Note that in case of bigalloc, i_reserved_meta_blocks,
1250 * i_reserved_data_blocks, etc. refer to number of clusters.
1251 */
1252 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1253 ei->i_reserved_meta_blocks);
1254 ei->i_reserved_meta_blocks = 0;
1255 ei->i_da_metadata_calc_len = 0;
1256 }
1257
1258 /* update fs dirty data blocks counter */
1259 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1260
1261 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1262
1263 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1264}
1265
1266static void ext4_da_page_release_reservation(struct page *page,
1267 unsigned long offset)
1268{
1269 int to_release = 0;
1270 struct buffer_head *head, *bh;
1271 unsigned int curr_off = 0;
1272 struct inode *inode = page->mapping->host;
1273 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1274 int num_clusters;
1275
1276 head = page_buffers(page);
1277 bh = head;
1278 do {
1279 unsigned int next_off = curr_off + bh->b_size;
1280
1281 if ((offset <= curr_off) && (buffer_delay(bh))) {
1282 to_release++;
1283 clear_buffer_delay(bh);
1284 clear_buffer_da_mapped(bh);
1285 }
1286 curr_off = next_off;
1287 } while ((bh = bh->b_this_page) != head);
1288
1289 /* If we have released all the blocks belonging to a cluster, then we
1290 * need to release the reserved space for that cluster. */
1291 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1292 while (num_clusters > 0) {
1293 ext4_fsblk_t lblk;
1294 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1295 ((num_clusters - 1) << sbi->s_cluster_bits);
1296 if (sbi->s_cluster_ratio == 1 ||
1297 !ext4_find_delalloc_cluster(inode, lblk, 1))
1298 ext4_da_release_space(inode, 1);
1299
1300 num_clusters--;
1301 }
1302}
1303
1304/*
1305 * Delayed allocation stuff
1306 */
1307
1308/*
1309 * mpage_da_submit_io - walks through extent of pages and try to write
1310 * them with writepage() call back
1311 *
1312 * @mpd->inode: inode
1313 * @mpd->first_page: first page of the extent
1314 * @mpd->next_page: page after the last page of the extent
1315 *
1316 * By the time mpage_da_submit_io() is called we expect all blocks
1317 * to be allocated. this may be wrong if allocation failed.
1318 *
1319 * As pages are already locked by write_cache_pages(), we can't use it
1320 */
1321static int mpage_da_submit_io(struct mpage_da_data *mpd,
1322 struct ext4_map_blocks *map)
1323{
1324 struct pagevec pvec;
1325 unsigned long index, end;
1326 int ret = 0, err, nr_pages, i;
1327 struct inode *inode = mpd->inode;
1328 struct address_space *mapping = inode->i_mapping;
1329 loff_t size = i_size_read(inode);
1330 unsigned int len, block_start;
1331 struct buffer_head *bh, *page_bufs = NULL;
1332 int journal_data = ext4_should_journal_data(inode);
1333 sector_t pblock = 0, cur_logical = 0;
1334 struct ext4_io_submit io_submit;
1335
1336 BUG_ON(mpd->next_page <= mpd->first_page);
1337 memset(&io_submit, 0, sizeof(io_submit));
1338 /*
1339 * We need to start from the first_page to the next_page - 1
1340 * to make sure we also write the mapped dirty buffer_heads.
1341 * If we look at mpd->b_blocknr we would only be looking
1342 * at the currently mapped buffer_heads.
1343 */
1344 index = mpd->first_page;
1345 end = mpd->next_page - 1;
1346
1347 pagevec_init(&pvec, 0);
1348 while (index <= end) {
1349 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1350 if (nr_pages == 0)
1351 break;
1352 for (i = 0; i < nr_pages; i++) {
1353 int commit_write = 0, skip_page = 0;
1354 struct page *page = pvec.pages[i];
1355
1356 index = page->index;
1357 if (index > end)
1358 break;
1359
1360 if (index == size >> PAGE_CACHE_SHIFT)
1361 len = size & ~PAGE_CACHE_MASK;
1362 else
1363 len = PAGE_CACHE_SIZE;
1364 if (map) {
1365 cur_logical = index << (PAGE_CACHE_SHIFT -
1366 inode->i_blkbits);
1367 pblock = map->m_pblk + (cur_logical -
1368 map->m_lblk);
1369 }
1370 index++;
1371
1372 BUG_ON(!PageLocked(page));
1373 BUG_ON(PageWriteback(page));
1374
1375 /*
1376 * If the page does not have buffers (for
1377 * whatever reason), try to create them using
1378 * __block_write_begin. If this fails,
1379 * skip the page and move on.
1380 */
1381 if (!page_has_buffers(page)) {
1382 if (__block_write_begin(page, 0, len,
1383 noalloc_get_block_write)) {
1384 skip_page:
1385 unlock_page(page);
1386 continue;
1387 }
1388 commit_write = 1;
1389 }
1390
1391 bh = page_bufs = page_buffers(page);
1392 block_start = 0;
1393 do {
1394 if (!bh)
1395 goto skip_page;
1396 if (map && (cur_logical >= map->m_lblk) &&
1397 (cur_logical <= (map->m_lblk +
1398 (map->m_len - 1)))) {
1399 if (buffer_delay(bh)) {
1400 clear_buffer_delay(bh);
1401 bh->b_blocknr = pblock;
1402 }
1403 if (buffer_da_mapped(bh))
1404 clear_buffer_da_mapped(bh);
1405 if (buffer_unwritten(bh) ||
1406 buffer_mapped(bh))
1407 BUG_ON(bh->b_blocknr != pblock);
1408 if (map->m_flags & EXT4_MAP_UNINIT)
1409 set_buffer_uninit(bh);
1410 clear_buffer_unwritten(bh);
1411 }
1412
1413 /*
1414 * skip page if block allocation undone and
1415 * block is dirty
1416 */
1417 if (ext4_bh_delay_or_unwritten(NULL, bh))
1418 skip_page = 1;
1419 bh = bh->b_this_page;
1420 block_start += bh->b_size;
1421 cur_logical++;
1422 pblock++;
1423 } while (bh != page_bufs);
1424
1425 if (skip_page)
1426 goto skip_page;
1427
1428 if (commit_write)
1429 /* mark the buffer_heads as dirty & uptodate */
1430 block_commit_write(page, 0, len);
1431
1432 clear_page_dirty_for_io(page);
1433 /*
1434 * Delalloc doesn't support data journalling,
1435 * but eventually maybe we'll lift this
1436 * restriction.
1437 */
1438 if (unlikely(journal_data && PageChecked(page)))
1439 err = __ext4_journalled_writepage(page, len);
1440 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1441 err = ext4_bio_write_page(&io_submit, page,
1442 len, mpd->wbc);
1443 else if (buffer_uninit(page_bufs)) {
1444 ext4_set_bh_endio(page_bufs, inode);
1445 err = block_write_full_page_endio(page,
1446 noalloc_get_block_write,
1447 mpd->wbc, ext4_end_io_buffer_write);
1448 } else
1449 err = block_write_full_page(page,
1450 noalloc_get_block_write, mpd->wbc);
1451
1452 if (!err)
1453 mpd->pages_written++;
1454 /*
1455 * In error case, we have to continue because
1456 * remaining pages are still locked
1457 */
1458 if (ret == 0)
1459 ret = err;
1460 }
1461 pagevec_release(&pvec);
1462 }
1463 ext4_io_submit(&io_submit);
1464 return ret;
1465}
1466
1467static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1468{
1469 int nr_pages, i;
1470 pgoff_t index, end;
1471 struct pagevec pvec;
1472 struct inode *inode = mpd->inode;
1473 struct address_space *mapping = inode->i_mapping;
1474
1475 index = mpd->first_page;
1476 end = mpd->next_page - 1;
1477 while (index <= end) {
1478 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1479 if (nr_pages == 0)
1480 break;
1481 for (i = 0; i < nr_pages; i++) {
1482 struct page *page = pvec.pages[i];
1483 if (page->index > end)
1484 break;
1485 BUG_ON(!PageLocked(page));
1486 BUG_ON(PageWriteback(page));
1487 block_invalidatepage(page, 0);
1488 ClearPageUptodate(page);
1489 unlock_page(page);
1490 }
1491 index = pvec.pages[nr_pages - 1]->index + 1;
1492 pagevec_release(&pvec);
1493 }
1494 return;
1495}
1496
1497static void ext4_print_free_blocks(struct inode *inode)
1498{
1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 struct super_block *sb = inode->i_sb;
1501
1502 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1503 EXT4_C2B(EXT4_SB(inode->i_sb),
1504 ext4_count_free_clusters(inode->i_sb)));
1505 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1506 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1507 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1508 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1509 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1510 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1511 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1512 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1513 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1514 EXT4_I(inode)->i_reserved_data_blocks);
1515 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1516 EXT4_I(inode)->i_reserved_meta_blocks);
1517 return;
1518}
1519
1520/*
1521 * mpage_da_map_and_submit - go through given space, map them
1522 * if necessary, and then submit them for I/O
1523 *
1524 * @mpd - bh describing space
1525 *
1526 * The function skips space we know is already mapped to disk blocks.
1527 *
1528 */
1529static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1530{
1531 int err, blks, get_blocks_flags;
1532 struct ext4_map_blocks map, *mapp = NULL;
1533 sector_t next = mpd->b_blocknr;
1534 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1535 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1536 handle_t *handle = NULL;
1537
1538 /*
1539 * If the blocks are mapped already, or we couldn't accumulate
1540 * any blocks, then proceed immediately to the submission stage.
1541 */
1542 if ((mpd->b_size == 0) ||
1543 ((mpd->b_state & (1 << BH_Mapped)) &&
1544 !(mpd->b_state & (1 << BH_Delay)) &&
1545 !(mpd->b_state & (1 << BH_Unwritten))))
1546 goto submit_io;
1547
1548 handle = ext4_journal_current_handle();
1549 BUG_ON(!handle);
1550
1551 /*
1552 * Call ext4_map_blocks() to allocate any delayed allocation
1553 * blocks, or to convert an uninitialized extent to be
1554 * initialized (in the case where we have written into
1555 * one or more preallocated blocks).
1556 *
1557 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1558 * indicate that we are on the delayed allocation path. This
1559 * affects functions in many different parts of the allocation
1560 * call path. This flag exists primarily because we don't
1561 * want to change *many* call functions, so ext4_map_blocks()
1562 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1563 * inode's allocation semaphore is taken.
1564 *
1565 * If the blocks in questions were delalloc blocks, set
1566 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1567 * variables are updated after the blocks have been allocated.
1568 */
1569 map.m_lblk = next;
1570 map.m_len = max_blocks;
1571 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1572 if (ext4_should_dioread_nolock(mpd->inode))
1573 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1574 if (mpd->b_state & (1 << BH_Delay))
1575 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1576
1577 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1578 if (blks < 0) {
1579 struct super_block *sb = mpd->inode->i_sb;
1580
1581 err = blks;
1582 /*
1583 * If get block returns EAGAIN or ENOSPC and there
1584 * appears to be free blocks we will just let
1585 * mpage_da_submit_io() unlock all of the pages.
1586 */
1587 if (err == -EAGAIN)
1588 goto submit_io;
1589
1590 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1591 mpd->retval = err;
1592 goto submit_io;
1593 }
1594
1595 /*
1596 * get block failure will cause us to loop in
1597 * writepages, because a_ops->writepage won't be able
1598 * to make progress. The page will be redirtied by
1599 * writepage and writepages will again try to write
1600 * the same.
1601 */
1602 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1603 ext4_msg(sb, KERN_CRIT,
1604 "delayed block allocation failed for inode %lu "
1605 "at logical offset %llu with max blocks %zd "
1606 "with error %d", mpd->inode->i_ino,
1607 (unsigned long long) next,
1608 mpd->b_size >> mpd->inode->i_blkbits, err);
1609 ext4_msg(sb, KERN_CRIT,
1610 "This should not happen!! Data will be lost\n");
1611 if (err == -ENOSPC)
1612 ext4_print_free_blocks(mpd->inode);
1613 }
1614 /* invalidate all the pages */
1615 ext4_da_block_invalidatepages(mpd);
1616
1617 /* Mark this page range as having been completed */
1618 mpd->io_done = 1;
1619 return;
1620 }
1621 BUG_ON(blks == 0);
1622
1623 mapp = &map;
1624 if (map.m_flags & EXT4_MAP_NEW) {
1625 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1626 int i;
1627
1628 for (i = 0; i < map.m_len; i++)
1629 unmap_underlying_metadata(bdev, map.m_pblk + i);
1630
1631 if (ext4_should_order_data(mpd->inode)) {
1632 err = ext4_jbd2_file_inode(handle, mpd->inode);
1633 if (err) {
1634 /* Only if the journal is aborted */
1635 mpd->retval = err;
1636 goto submit_io;
1637 }
1638 }
1639 }
1640
1641 /*
1642 * Update on-disk size along with block allocation.
1643 */
1644 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1645 if (disksize > i_size_read(mpd->inode))
1646 disksize = i_size_read(mpd->inode);
1647 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1648 ext4_update_i_disksize(mpd->inode, disksize);
1649 err = ext4_mark_inode_dirty(handle, mpd->inode);
1650 if (err)
1651 ext4_error(mpd->inode->i_sb,
1652 "Failed to mark inode %lu dirty",
1653 mpd->inode->i_ino);
1654 }
1655
1656submit_io:
1657 mpage_da_submit_io(mpd, mapp);
1658 mpd->io_done = 1;
1659}
1660
1661#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1662 (1 << BH_Delay) | (1 << BH_Unwritten))
1663
1664/*
1665 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1666 *
1667 * @mpd->lbh - extent of blocks
1668 * @logical - logical number of the block in the file
1669 * @bh - bh of the block (used to access block's state)
1670 *
1671 * the function is used to collect contig. blocks in same state
1672 */
1673static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1674 sector_t logical, size_t b_size,
1675 unsigned long b_state)
1676{
1677 sector_t next;
1678 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1679
1680 /*
1681 * XXX Don't go larger than mballoc is willing to allocate
1682 * This is a stopgap solution. We eventually need to fold
1683 * mpage_da_submit_io() into this function and then call
1684 * ext4_map_blocks() multiple times in a loop
1685 */
1686 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1687 goto flush_it;
1688
1689 /* check if thereserved journal credits might overflow */
1690 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1691 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1692 /*
1693 * With non-extent format we are limited by the journal
1694 * credit available. Total credit needed to insert
1695 * nrblocks contiguous blocks is dependent on the
1696 * nrblocks. So limit nrblocks.
1697 */
1698 goto flush_it;
1699 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1700 EXT4_MAX_TRANS_DATA) {
1701 /*
1702 * Adding the new buffer_head would make it cross the
1703 * allowed limit for which we have journal credit
1704 * reserved. So limit the new bh->b_size
1705 */
1706 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1707 mpd->inode->i_blkbits;
1708 /* we will do mpage_da_submit_io in the next loop */
1709 }
1710 }
1711 /*
1712 * First block in the extent
1713 */
1714 if (mpd->b_size == 0) {
1715 mpd->b_blocknr = logical;
1716 mpd->b_size = b_size;
1717 mpd->b_state = b_state & BH_FLAGS;
1718 return;
1719 }
1720
1721 next = mpd->b_blocknr + nrblocks;
1722 /*
1723 * Can we merge the block to our big extent?
1724 */
1725 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1726 mpd->b_size += b_size;
1727 return;
1728 }
1729
1730flush_it:
1731 /*
1732 * We couldn't merge the block to our extent, so we
1733 * need to flush current extent and start new one
1734 */
1735 mpage_da_map_and_submit(mpd);
1736 return;
1737}
1738
1739static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1740{
1741 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1742}
1743
1744/*
1745 * This function is grabs code from the very beginning of
1746 * ext4_map_blocks, but assumes that the caller is from delayed write
1747 * time. This function looks up the requested blocks and sets the
1748 * buffer delay bit under the protection of i_data_sem.
1749 */
1750static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1751 struct ext4_map_blocks *map,
1752 struct buffer_head *bh)
1753{
1754 int retval;
1755 sector_t invalid_block = ~((sector_t) 0xffff);
1756
1757 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1758 invalid_block = ~0;
1759
1760 map->m_flags = 0;
1761 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1762 "logical block %lu\n", inode->i_ino, map->m_len,
1763 (unsigned long) map->m_lblk);
1764 /*
1765 * Try to see if we can get the block without requesting a new
1766 * file system block.
1767 */
1768 down_read((&EXT4_I(inode)->i_data_sem));
1769 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1770 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1771 else
1772 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1773
1774 if (retval == 0) {
1775 /*
1776 * XXX: __block_prepare_write() unmaps passed block,
1777 * is it OK?
1778 */
1779 /* If the block was allocated from previously allocated cluster,
1780 * then we dont need to reserve it again. */
1781 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1782 retval = ext4_da_reserve_space(inode, iblock);
1783 if (retval)
1784 /* not enough space to reserve */
1785 goto out_unlock;
1786 }
1787
1788 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1789 * and it should not appear on the bh->b_state.
1790 */
1791 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1792
1793 map_bh(bh, inode->i_sb, invalid_block);
1794 set_buffer_new(bh);
1795 set_buffer_delay(bh);
1796 }
1797
1798out_unlock:
1799 up_read((&EXT4_I(inode)->i_data_sem));
1800
1801 return retval;
1802}
1803
1804/*
1805 * This is a special get_blocks_t callback which is used by
1806 * ext4_da_write_begin(). It will either return mapped block or
1807 * reserve space for a single block.
1808 *
1809 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1810 * We also have b_blocknr = -1 and b_bdev initialized properly
1811 *
1812 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1813 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1814 * initialized properly.
1815 */
1816static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1817 struct buffer_head *bh, int create)
1818{
1819 struct ext4_map_blocks map;
1820 int ret = 0;
1821
1822 BUG_ON(create == 0);
1823 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1824
1825 map.m_lblk = iblock;
1826 map.m_len = 1;
1827
1828 /*
1829 * first, we need to know whether the block is allocated already
1830 * preallocated blocks are unmapped but should treated
1831 * the same as allocated blocks.
1832 */
1833 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1834 if (ret <= 0)
1835 return ret;
1836
1837 map_bh(bh, inode->i_sb, map.m_pblk);
1838 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1839
1840 if (buffer_unwritten(bh)) {
1841 /* A delayed write to unwritten bh should be marked
1842 * new and mapped. Mapped ensures that we don't do
1843 * get_block multiple times when we write to the same
1844 * offset and new ensures that we do proper zero out
1845 * for partial write.
1846 */
1847 set_buffer_new(bh);
1848 set_buffer_mapped(bh);
1849 }
1850 return 0;
1851}
1852
1853/*
1854 * This function is used as a standard get_block_t calback function
1855 * when there is no desire to allocate any blocks. It is used as a
1856 * callback function for block_write_begin() and block_write_full_page().
1857 * These functions should only try to map a single block at a time.
1858 *
1859 * Since this function doesn't do block allocations even if the caller
1860 * requests it by passing in create=1, it is critically important that
1861 * any caller checks to make sure that any buffer heads are returned
1862 * by this function are either all already mapped or marked for
1863 * delayed allocation before calling block_write_full_page(). Otherwise,
1864 * b_blocknr could be left unitialized, and the page write functions will
1865 * be taken by surprise.
1866 */
1867static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1868 struct buffer_head *bh_result, int create)
1869{
1870 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1871 return _ext4_get_block(inode, iblock, bh_result, 0);
1872}
1873
1874static int bget_one(handle_t *handle, struct buffer_head *bh)
1875{
1876 get_bh(bh);
1877 return 0;
1878}
1879
1880static int bput_one(handle_t *handle, struct buffer_head *bh)
1881{
1882 put_bh(bh);
1883 return 0;
1884}
1885
1886static int __ext4_journalled_writepage(struct page *page,
1887 unsigned int len)
1888{
1889 struct address_space *mapping = page->mapping;
1890 struct inode *inode = mapping->host;
1891 struct buffer_head *page_bufs;
1892 handle_t *handle = NULL;
1893 int ret = 0;
1894 int err;
1895
1896 ClearPageChecked(page);
1897 page_bufs = page_buffers(page);
1898 BUG_ON(!page_bufs);
1899 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1900 /* As soon as we unlock the page, it can go away, but we have
1901 * references to buffers so we are safe */
1902 unlock_page(page);
1903
1904 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1905 if (IS_ERR(handle)) {
1906 ret = PTR_ERR(handle);
1907 goto out;
1908 }
1909
1910 BUG_ON(!ext4_handle_valid(handle));
1911
1912 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1913 do_journal_get_write_access);
1914
1915 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1916 write_end_fn);
1917 if (ret == 0)
1918 ret = err;
1919 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1920 err = ext4_journal_stop(handle);
1921 if (!ret)
1922 ret = err;
1923
1924 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1925 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1926out:
1927 return ret;
1928}
1929
1930static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1931static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1932
1933/*
1934 * Note that we don't need to start a transaction unless we're journaling data
1935 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1936 * need to file the inode to the transaction's list in ordered mode because if
1937 * we are writing back data added by write(), the inode is already there and if
1938 * we are writing back data modified via mmap(), no one guarantees in which
1939 * transaction the data will hit the disk. In case we are journaling data, we
1940 * cannot start transaction directly because transaction start ranks above page
1941 * lock so we have to do some magic.
1942 *
1943 * This function can get called via...
1944 * - ext4_da_writepages after taking page lock (have journal handle)
1945 * - journal_submit_inode_data_buffers (no journal handle)
1946 * - shrink_page_list via pdflush (no journal handle)
1947 * - grab_page_cache when doing write_begin (have journal handle)
1948 *
1949 * We don't do any block allocation in this function. If we have page with
1950 * multiple blocks we need to write those buffer_heads that are mapped. This
1951 * is important for mmaped based write. So if we do with blocksize 1K
1952 * truncate(f, 1024);
1953 * a = mmap(f, 0, 4096);
1954 * a[0] = 'a';
1955 * truncate(f, 4096);
1956 * we have in the page first buffer_head mapped via page_mkwrite call back
1957 * but other buffer_heads would be unmapped but dirty (dirty done via the
1958 * do_wp_page). So writepage should write the first block. If we modify
1959 * the mmap area beyond 1024 we will again get a page_fault and the
1960 * page_mkwrite callback will do the block allocation and mark the
1961 * buffer_heads mapped.
1962 *
1963 * We redirty the page if we have any buffer_heads that is either delay or
1964 * unwritten in the page.
1965 *
1966 * We can get recursively called as show below.
1967 *
1968 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1969 * ext4_writepage()
1970 *
1971 * But since we don't do any block allocation we should not deadlock.
1972 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1973 */
1974static int ext4_writepage(struct page *page,
1975 struct writeback_control *wbc)
1976{
1977 int ret = 0, commit_write = 0;
1978 loff_t size;
1979 unsigned int len;
1980 struct buffer_head *page_bufs = NULL;
1981 struct inode *inode = page->mapping->host;
1982
1983 trace_ext4_writepage(page);
1984 size = i_size_read(inode);
1985 if (page->index == size >> PAGE_CACHE_SHIFT)
1986 len = size & ~PAGE_CACHE_MASK;
1987 else
1988 len = PAGE_CACHE_SIZE;
1989
1990 /*
1991 * If the page does not have buffers (for whatever reason),
1992 * try to create them using __block_write_begin. If this
1993 * fails, redirty the page and move on.
1994 */
1995 if (!page_has_buffers(page)) {
1996 if (__block_write_begin(page, 0, len,
1997 noalloc_get_block_write)) {
1998 redirty_page:
1999 redirty_page_for_writepage(wbc, page);
2000 unlock_page(page);
2001 return 0;
2002 }
2003 commit_write = 1;
2004 }
2005 page_bufs = page_buffers(page);
2006 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2007 ext4_bh_delay_or_unwritten)) {
2008 /*
2009 * We don't want to do block allocation, so redirty
2010 * the page and return. We may reach here when we do
2011 * a journal commit via journal_submit_inode_data_buffers.
2012 * We can also reach here via shrink_page_list but it
2013 * should never be for direct reclaim so warn if that
2014 * happens
2015 */
2016 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2017 PF_MEMALLOC);
2018 goto redirty_page;
2019 }
2020 if (commit_write)
2021 /* now mark the buffer_heads as dirty and uptodate */
2022 block_commit_write(page, 0, len);
2023
2024 if (PageChecked(page) && ext4_should_journal_data(inode))
2025 /*
2026 * It's mmapped pagecache. Add buffers and journal it. There
2027 * doesn't seem much point in redirtying the page here.
2028 */
2029 return __ext4_journalled_writepage(page, len);
2030
2031 if (buffer_uninit(page_bufs)) {
2032 ext4_set_bh_endio(page_bufs, inode);
2033 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2034 wbc, ext4_end_io_buffer_write);
2035 } else
2036 ret = block_write_full_page(page, noalloc_get_block_write,
2037 wbc);
2038
2039 return ret;
2040}
2041
2042/*
2043 * This is called via ext4_da_writepages() to
2044 * calculate the total number of credits to reserve to fit
2045 * a single extent allocation into a single transaction,
2046 * ext4_da_writpeages() will loop calling this before
2047 * the block allocation.
2048 */
2049
2050static int ext4_da_writepages_trans_blocks(struct inode *inode)
2051{
2052 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2053
2054 /*
2055 * With non-extent format the journal credit needed to
2056 * insert nrblocks contiguous block is dependent on
2057 * number of contiguous block. So we will limit
2058 * number of contiguous block to a sane value
2059 */
2060 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2061 (max_blocks > EXT4_MAX_TRANS_DATA))
2062 max_blocks = EXT4_MAX_TRANS_DATA;
2063
2064 return ext4_chunk_trans_blocks(inode, max_blocks);
2065}
2066
2067/*
2068 * write_cache_pages_da - walk the list of dirty pages of the given
2069 * address space and accumulate pages that need writing, and call
2070 * mpage_da_map_and_submit to map a single contiguous memory region
2071 * and then write them.
2072 */
2073static int write_cache_pages_da(struct address_space *mapping,
2074 struct writeback_control *wbc,
2075 struct mpage_da_data *mpd,
2076 pgoff_t *done_index)
2077{
2078 struct buffer_head *bh, *head;
2079 struct inode *inode = mapping->host;
2080 struct pagevec pvec;
2081 unsigned int nr_pages;
2082 sector_t logical;
2083 pgoff_t index, end;
2084 long nr_to_write = wbc->nr_to_write;
2085 int i, tag, ret = 0;
2086
2087 memset(mpd, 0, sizeof(struct mpage_da_data));
2088 mpd->wbc = wbc;
2089 mpd->inode = inode;
2090 pagevec_init(&pvec, 0);
2091 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2092 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2093
2094 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2095 tag = PAGECACHE_TAG_TOWRITE;
2096 else
2097 tag = PAGECACHE_TAG_DIRTY;
2098
2099 *done_index = index;
2100 while (index <= end) {
2101 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2102 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2103 if (nr_pages == 0)
2104 return 0;
2105
2106 for (i = 0; i < nr_pages; i++) {
2107 struct page *page = pvec.pages[i];
2108
2109 /*
2110 * At this point, the page may be truncated or
2111 * invalidated (changing page->mapping to NULL), or
2112 * even swizzled back from swapper_space to tmpfs file
2113 * mapping. However, page->index will not change
2114 * because we have a reference on the page.
2115 */
2116 if (page->index > end)
2117 goto out;
2118
2119 *done_index = page->index + 1;
2120
2121 /*
2122 * If we can't merge this page, and we have
2123 * accumulated an contiguous region, write it
2124 */
2125 if ((mpd->next_page != page->index) &&
2126 (mpd->next_page != mpd->first_page)) {
2127 mpage_da_map_and_submit(mpd);
2128 goto ret_extent_tail;
2129 }
2130
2131 lock_page(page);
2132
2133 /*
2134 * If the page is no longer dirty, or its
2135 * mapping no longer corresponds to inode we
2136 * are writing (which means it has been
2137 * truncated or invalidated), or the page is
2138 * already under writeback and we are not
2139 * doing a data integrity writeback, skip the page
2140 */
2141 if (!PageDirty(page) ||
2142 (PageWriteback(page) &&
2143 (wbc->sync_mode == WB_SYNC_NONE)) ||
2144 unlikely(page->mapping != mapping)) {
2145 unlock_page(page);
2146 continue;
2147 }
2148
2149 wait_on_page_writeback(page);
2150 BUG_ON(PageWriteback(page));
2151
2152 if (mpd->next_page != page->index)
2153 mpd->first_page = page->index;
2154 mpd->next_page = page->index + 1;
2155 logical = (sector_t) page->index <<
2156 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157
2158 if (!page_has_buffers(page)) {
2159 mpage_add_bh_to_extent(mpd, logical,
2160 PAGE_CACHE_SIZE,
2161 (1 << BH_Dirty) | (1 << BH_Uptodate));
2162 if (mpd->io_done)
2163 goto ret_extent_tail;
2164 } else {
2165 /*
2166 * Page with regular buffer heads,
2167 * just add all dirty ones
2168 */
2169 head = page_buffers(page);
2170 bh = head;
2171 do {
2172 BUG_ON(buffer_locked(bh));
2173 /*
2174 * We need to try to allocate
2175 * unmapped blocks in the same page.
2176 * Otherwise we won't make progress
2177 * with the page in ext4_writepage
2178 */
2179 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2180 mpage_add_bh_to_extent(mpd, logical,
2181 bh->b_size,
2182 bh->b_state);
2183 if (mpd->io_done)
2184 goto ret_extent_tail;
2185 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2186 /*
2187 * mapped dirty buffer. We need
2188 * to update the b_state
2189 * because we look at b_state
2190 * in mpage_da_map_blocks. We
2191 * don't update b_size because
2192 * if we find an unmapped
2193 * buffer_head later we need to
2194 * use the b_state flag of that
2195 * buffer_head.
2196 */
2197 if (mpd->b_size == 0)
2198 mpd->b_state = bh->b_state & BH_FLAGS;
2199 }
2200 logical++;
2201 } while ((bh = bh->b_this_page) != head);
2202 }
2203
2204 if (nr_to_write > 0) {
2205 nr_to_write--;
2206 if (nr_to_write == 0 &&
2207 wbc->sync_mode == WB_SYNC_NONE)
2208 /*
2209 * We stop writing back only if we are
2210 * not doing integrity sync. In case of
2211 * integrity sync we have to keep going
2212 * because someone may be concurrently
2213 * dirtying pages, and we might have
2214 * synced a lot of newly appeared dirty
2215 * pages, but have not synced all of the
2216 * old dirty pages.
2217 */
2218 goto out;
2219 }
2220 }
2221 pagevec_release(&pvec);
2222 cond_resched();
2223 }
2224 return 0;
2225ret_extent_tail:
2226 ret = MPAGE_DA_EXTENT_TAIL;
2227out:
2228 pagevec_release(&pvec);
2229 cond_resched();
2230 return ret;
2231}
2232
2233
2234static int ext4_da_writepages(struct address_space *mapping,
2235 struct writeback_control *wbc)
2236{
2237 pgoff_t index;
2238 int range_whole = 0;
2239 handle_t *handle = NULL;
2240 struct mpage_da_data mpd;
2241 struct inode *inode = mapping->host;
2242 int pages_written = 0;
2243 unsigned int max_pages;
2244 int range_cyclic, cycled = 1, io_done = 0;
2245 int needed_blocks, ret = 0;
2246 long desired_nr_to_write, nr_to_writebump = 0;
2247 loff_t range_start = wbc->range_start;
2248 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2249 pgoff_t done_index = 0;
2250 pgoff_t end;
2251 struct blk_plug plug;
2252
2253 trace_ext4_da_writepages(inode, wbc);
2254
2255 /*
2256 * No pages to write? This is mainly a kludge to avoid starting
2257 * a transaction for special inodes like journal inode on last iput()
2258 * because that could violate lock ordering on umount
2259 */
2260 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2261 return 0;
2262
2263 /*
2264 * If the filesystem has aborted, it is read-only, so return
2265 * right away instead of dumping stack traces later on that
2266 * will obscure the real source of the problem. We test
2267 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2268 * the latter could be true if the filesystem is mounted
2269 * read-only, and in that case, ext4_da_writepages should
2270 * *never* be called, so if that ever happens, we would want
2271 * the stack trace.
2272 */
2273 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2274 return -EROFS;
2275
2276 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2277 range_whole = 1;
2278
2279 range_cyclic = wbc->range_cyclic;
2280 if (wbc->range_cyclic) {
2281 index = mapping->writeback_index;
2282 if (index)
2283 cycled = 0;
2284 wbc->range_start = index << PAGE_CACHE_SHIFT;
2285 wbc->range_end = LLONG_MAX;
2286 wbc->range_cyclic = 0;
2287 end = -1;
2288 } else {
2289 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2290 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2291 }
2292
2293 /*
2294 * This works around two forms of stupidity. The first is in
2295 * the writeback code, which caps the maximum number of pages
2296 * written to be 1024 pages. This is wrong on multiple
2297 * levels; different architectues have a different page size,
2298 * which changes the maximum amount of data which gets
2299 * written. Secondly, 4 megabytes is way too small. XFS
2300 * forces this value to be 16 megabytes by multiplying
2301 * nr_to_write parameter by four, and then relies on its
2302 * allocator to allocate larger extents to make them
2303 * contiguous. Unfortunately this brings us to the second
2304 * stupidity, which is that ext4's mballoc code only allocates
2305 * at most 2048 blocks. So we force contiguous writes up to
2306 * the number of dirty blocks in the inode, or
2307 * sbi->max_writeback_mb_bump whichever is smaller.
2308 */
2309 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2310 if (!range_cyclic && range_whole) {
2311 if (wbc->nr_to_write == LONG_MAX)
2312 desired_nr_to_write = wbc->nr_to_write;
2313 else
2314 desired_nr_to_write = wbc->nr_to_write * 8;
2315 } else
2316 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2317 max_pages);
2318 if (desired_nr_to_write > max_pages)
2319 desired_nr_to_write = max_pages;
2320
2321 if (wbc->nr_to_write < desired_nr_to_write) {
2322 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2323 wbc->nr_to_write = desired_nr_to_write;
2324 }
2325
2326retry:
2327 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2328 tag_pages_for_writeback(mapping, index, end);
2329
2330 blk_start_plug(&plug);
2331 while (!ret && wbc->nr_to_write > 0) {
2332
2333 /*
2334 * we insert one extent at a time. So we need
2335 * credit needed for single extent allocation.
2336 * journalled mode is currently not supported
2337 * by delalloc
2338 */
2339 BUG_ON(ext4_should_journal_data(inode));
2340 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2341
2342 /* start a new transaction*/
2343 handle = ext4_journal_start(inode, needed_blocks);
2344 if (IS_ERR(handle)) {
2345 ret = PTR_ERR(handle);
2346 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2347 "%ld pages, ino %lu; err %d", __func__,
2348 wbc->nr_to_write, inode->i_ino, ret);
2349 blk_finish_plug(&plug);
2350 goto out_writepages;
2351 }
2352
2353 /*
2354 * Now call write_cache_pages_da() to find the next
2355 * contiguous region of logical blocks that need
2356 * blocks to be allocated by ext4 and submit them.
2357 */
2358 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2359 /*
2360 * If we have a contiguous extent of pages and we
2361 * haven't done the I/O yet, map the blocks and submit
2362 * them for I/O.
2363 */
2364 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2365 mpage_da_map_and_submit(&mpd);
2366 ret = MPAGE_DA_EXTENT_TAIL;
2367 }
2368 trace_ext4_da_write_pages(inode, &mpd);
2369 wbc->nr_to_write -= mpd.pages_written;
2370
2371 ext4_journal_stop(handle);
2372
2373 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2374 /* commit the transaction which would
2375 * free blocks released in the transaction
2376 * and try again
2377 */
2378 jbd2_journal_force_commit_nested(sbi->s_journal);
2379 ret = 0;
2380 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2381 /*
2382 * Got one extent now try with rest of the pages.
2383 * If mpd.retval is set -EIO, journal is aborted.
2384 * So we don't need to write any more.
2385 */
2386 pages_written += mpd.pages_written;
2387 ret = mpd.retval;
2388 io_done = 1;
2389 } else if (wbc->nr_to_write)
2390 /*
2391 * There is no more writeout needed
2392 * or we requested for a noblocking writeout
2393 * and we found the device congested
2394 */
2395 break;
2396 }
2397 blk_finish_plug(&plug);
2398 if (!io_done && !cycled) {
2399 cycled = 1;
2400 index = 0;
2401 wbc->range_start = index << PAGE_CACHE_SHIFT;
2402 wbc->range_end = mapping->writeback_index - 1;
2403 goto retry;
2404 }
2405
2406 /* Update index */
2407 wbc->range_cyclic = range_cyclic;
2408 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2409 /*
2410 * set the writeback_index so that range_cyclic
2411 * mode will write it back later
2412 */
2413 mapping->writeback_index = done_index;
2414
2415out_writepages:
2416 wbc->nr_to_write -= nr_to_writebump;
2417 wbc->range_start = range_start;
2418 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2419 return ret;
2420}
2421
2422#define FALL_BACK_TO_NONDELALLOC 1
2423static int ext4_nonda_switch(struct super_block *sb)
2424{
2425 s64 free_blocks, dirty_blocks;
2426 struct ext4_sb_info *sbi = EXT4_SB(sb);
2427
2428 /*
2429 * switch to non delalloc mode if we are running low
2430 * on free block. The free block accounting via percpu
2431 * counters can get slightly wrong with percpu_counter_batch getting
2432 * accumulated on each CPU without updating global counters
2433 * Delalloc need an accurate free block accounting. So switch
2434 * to non delalloc when we are near to error range.
2435 */
2436 free_blocks = EXT4_C2B(sbi,
2437 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2438 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2439 if (2 * free_blocks < 3 * dirty_blocks ||
2440 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2441 /*
2442 * free block count is less than 150% of dirty blocks
2443 * or free blocks is less than watermark
2444 */
2445 return 1;
2446 }
2447 /*
2448 * Even if we don't switch but are nearing capacity,
2449 * start pushing delalloc when 1/2 of free blocks are dirty.
2450 */
2451 if (free_blocks < 2 * dirty_blocks)
2452 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2453
2454 return 0;
2455}
2456
2457static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned flags,
2459 struct page **pagep, void **fsdata)
2460{
2461 int ret, retries = 0;
2462 struct page *page;
2463 pgoff_t index;
2464 struct inode *inode = mapping->host;
2465 handle_t *handle;
2466
2467 index = pos >> PAGE_CACHE_SHIFT;
2468
2469 if (ext4_nonda_switch(inode->i_sb)) {
2470 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2471 return ext4_write_begin(file, mapping, pos,
2472 len, flags, pagep, fsdata);
2473 }
2474 *fsdata = (void *)0;
2475 trace_ext4_da_write_begin(inode, pos, len, flags);
2476retry:
2477 /*
2478 * With delayed allocation, we don't log the i_disksize update
2479 * if there is delayed block allocation. But we still need
2480 * to journalling the i_disksize update if writes to the end
2481 * of file which has an already mapped buffer.
2482 */
2483 handle = ext4_journal_start(inode, 1);
2484 if (IS_ERR(handle)) {
2485 ret = PTR_ERR(handle);
2486 goto out;
2487 }
2488 /* We cannot recurse into the filesystem as the transaction is already
2489 * started */
2490 flags |= AOP_FLAG_NOFS;
2491
2492 page = grab_cache_page_write_begin(mapping, index, flags);
2493 if (!page) {
2494 ext4_journal_stop(handle);
2495 ret = -ENOMEM;
2496 goto out;
2497 }
2498 *pagep = page;
2499
2500 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2501 if (ret < 0) {
2502 unlock_page(page);
2503 ext4_journal_stop(handle);
2504 page_cache_release(page);
2505 /*
2506 * block_write_begin may have instantiated a few blocks
2507 * outside i_size. Trim these off again. Don't need
2508 * i_size_read because we hold i_mutex.
2509 */
2510 if (pos + len > inode->i_size)
2511 ext4_truncate_failed_write(inode);
2512 }
2513
2514 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2515 goto retry;
2516out:
2517 return ret;
2518}
2519
2520/*
2521 * Check if we should update i_disksize
2522 * when write to the end of file but not require block allocation
2523 */
2524static int ext4_da_should_update_i_disksize(struct page *page,
2525 unsigned long offset)
2526{
2527 struct buffer_head *bh;
2528 struct inode *inode = page->mapping->host;
2529 unsigned int idx;
2530 int i;
2531
2532 bh = page_buffers(page);
2533 idx = offset >> inode->i_blkbits;
2534
2535 for (i = 0; i < idx; i++)
2536 bh = bh->b_this_page;
2537
2538 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2539 return 0;
2540 return 1;
2541}
2542
2543static int ext4_da_write_end(struct file *file,
2544 struct address_space *mapping,
2545 loff_t pos, unsigned len, unsigned copied,
2546 struct page *page, void *fsdata)
2547{
2548 struct inode *inode = mapping->host;
2549 int ret = 0, ret2;
2550 handle_t *handle = ext4_journal_current_handle();
2551 loff_t new_i_size;
2552 unsigned long start, end;
2553 int write_mode = (int)(unsigned long)fsdata;
2554
2555 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2556 switch (ext4_inode_journal_mode(inode)) {
2557 case EXT4_INODE_ORDERED_DATA_MODE:
2558 return ext4_ordered_write_end(file, mapping, pos,
2559 len, copied, page, fsdata);
2560 case EXT4_INODE_WRITEBACK_DATA_MODE:
2561 return ext4_writeback_write_end(file, mapping, pos,
2562 len, copied, page, fsdata);
2563 default:
2564 BUG();
2565 }
2566 }
2567
2568 trace_ext4_da_write_end(inode, pos, len, copied);
2569 start = pos & (PAGE_CACHE_SIZE - 1);
2570 end = start + copied - 1;
2571
2572 /*
2573 * generic_write_end() will run mark_inode_dirty() if i_size
2574 * changes. So let's piggyback the i_disksize mark_inode_dirty
2575 * into that.
2576 */
2577
2578 new_i_size = pos + copied;
2579 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2580 if (ext4_da_should_update_i_disksize(page, end)) {
2581 down_write(&EXT4_I(inode)->i_data_sem);
2582 if (new_i_size > EXT4_I(inode)->i_disksize) {
2583 /*
2584 * Updating i_disksize when extending file
2585 * without needing block allocation
2586 */
2587 if (ext4_should_order_data(inode))
2588 ret = ext4_jbd2_file_inode(handle,
2589 inode);
2590
2591 EXT4_I(inode)->i_disksize = new_i_size;
2592 }
2593 up_write(&EXT4_I(inode)->i_data_sem);
2594 /* We need to mark inode dirty even if
2595 * new_i_size is less that inode->i_size
2596 * bu greater than i_disksize.(hint delalloc)
2597 */
2598 ext4_mark_inode_dirty(handle, inode);
2599 }
2600 }
2601 ret2 = generic_write_end(file, mapping, pos, len, copied,
2602 page, fsdata);
2603 copied = ret2;
2604 if (ret2 < 0)
2605 ret = ret2;
2606 ret2 = ext4_journal_stop(handle);
2607 if (!ret)
2608 ret = ret2;
2609
2610 return ret ? ret : copied;
2611}
2612
2613static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2614{
2615 /*
2616 * Drop reserved blocks
2617 */
2618 BUG_ON(!PageLocked(page));
2619 if (!page_has_buffers(page))
2620 goto out;
2621
2622 ext4_da_page_release_reservation(page, offset);
2623
2624out:
2625 ext4_invalidatepage(page, offset);
2626
2627 return;
2628}
2629
2630/*
2631 * Force all delayed allocation blocks to be allocated for a given inode.
2632 */
2633int ext4_alloc_da_blocks(struct inode *inode)
2634{
2635 trace_ext4_alloc_da_blocks(inode);
2636
2637 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2638 !EXT4_I(inode)->i_reserved_meta_blocks)
2639 return 0;
2640
2641 /*
2642 * We do something simple for now. The filemap_flush() will
2643 * also start triggering a write of the data blocks, which is
2644 * not strictly speaking necessary (and for users of
2645 * laptop_mode, not even desirable). However, to do otherwise
2646 * would require replicating code paths in:
2647 *
2648 * ext4_da_writepages() ->
2649 * write_cache_pages() ---> (via passed in callback function)
2650 * __mpage_da_writepage() -->
2651 * mpage_add_bh_to_extent()
2652 * mpage_da_map_blocks()
2653 *
2654 * The problem is that write_cache_pages(), located in
2655 * mm/page-writeback.c, marks pages clean in preparation for
2656 * doing I/O, which is not desirable if we're not planning on
2657 * doing I/O at all.
2658 *
2659 * We could call write_cache_pages(), and then redirty all of
2660 * the pages by calling redirty_page_for_writepage() but that
2661 * would be ugly in the extreme. So instead we would need to
2662 * replicate parts of the code in the above functions,
2663 * simplifying them because we wouldn't actually intend to
2664 * write out the pages, but rather only collect contiguous
2665 * logical block extents, call the multi-block allocator, and
2666 * then update the buffer heads with the block allocations.
2667 *
2668 * For now, though, we'll cheat by calling filemap_flush(),
2669 * which will map the blocks, and start the I/O, but not
2670 * actually wait for the I/O to complete.
2671 */
2672 return filemap_flush(inode->i_mapping);
2673}
2674
2675/*
2676 * bmap() is special. It gets used by applications such as lilo and by
2677 * the swapper to find the on-disk block of a specific piece of data.
2678 *
2679 * Naturally, this is dangerous if the block concerned is still in the
2680 * journal. If somebody makes a swapfile on an ext4 data-journaling
2681 * filesystem and enables swap, then they may get a nasty shock when the
2682 * data getting swapped to that swapfile suddenly gets overwritten by
2683 * the original zero's written out previously to the journal and
2684 * awaiting writeback in the kernel's buffer cache.
2685 *
2686 * So, if we see any bmap calls here on a modified, data-journaled file,
2687 * take extra steps to flush any blocks which might be in the cache.
2688 */
2689static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2690{
2691 struct inode *inode = mapping->host;
2692 journal_t *journal;
2693 int err;
2694
2695 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2696 test_opt(inode->i_sb, DELALLOC)) {
2697 /*
2698 * With delalloc we want to sync the file
2699 * so that we can make sure we allocate
2700 * blocks for file
2701 */
2702 filemap_write_and_wait(mapping);
2703 }
2704
2705 if (EXT4_JOURNAL(inode) &&
2706 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2707 /*
2708 * This is a REALLY heavyweight approach, but the use of
2709 * bmap on dirty files is expected to be extremely rare:
2710 * only if we run lilo or swapon on a freshly made file
2711 * do we expect this to happen.
2712 *
2713 * (bmap requires CAP_SYS_RAWIO so this does not
2714 * represent an unprivileged user DOS attack --- we'd be
2715 * in trouble if mortal users could trigger this path at
2716 * will.)
2717 *
2718 * NB. EXT4_STATE_JDATA is not set on files other than
2719 * regular files. If somebody wants to bmap a directory
2720 * or symlink and gets confused because the buffer
2721 * hasn't yet been flushed to disk, they deserve
2722 * everything they get.
2723 */
2724
2725 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2726 journal = EXT4_JOURNAL(inode);
2727 jbd2_journal_lock_updates(journal);
2728 err = jbd2_journal_flush(journal);
2729 jbd2_journal_unlock_updates(journal);
2730
2731 if (err)
2732 return 0;
2733 }
2734
2735 return generic_block_bmap(mapping, block, ext4_get_block);
2736}
2737
2738static int ext4_readpage(struct file *file, struct page *page)
2739{
2740 trace_ext4_readpage(page);
2741 return mpage_readpage(page, ext4_get_block);
2742}
2743
2744static int
2745ext4_readpages(struct file *file, struct address_space *mapping,
2746 struct list_head *pages, unsigned nr_pages)
2747{
2748 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2749}
2750
2751static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2752{
2753 struct buffer_head *head, *bh;
2754 unsigned int curr_off = 0;
2755
2756 if (!page_has_buffers(page))
2757 return;
2758 head = bh = page_buffers(page);
2759 do {
2760 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2761 && bh->b_private) {
2762 ext4_free_io_end(bh->b_private);
2763 bh->b_private = NULL;
2764 bh->b_end_io = NULL;
2765 }
2766 curr_off = curr_off + bh->b_size;
2767 bh = bh->b_this_page;
2768 } while (bh != head);
2769}
2770
2771static void ext4_invalidatepage(struct page *page, unsigned long offset)
2772{
2773 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2774
2775 trace_ext4_invalidatepage(page, offset);
2776
2777 /*
2778 * free any io_end structure allocated for buffers to be discarded
2779 */
2780 if (ext4_should_dioread_nolock(page->mapping->host))
2781 ext4_invalidatepage_free_endio(page, offset);
2782 /*
2783 * If it's a full truncate we just forget about the pending dirtying
2784 */
2785 if (offset == 0)
2786 ClearPageChecked(page);
2787
2788 if (journal)
2789 jbd2_journal_invalidatepage(journal, page, offset);
2790 else
2791 block_invalidatepage(page, offset);
2792}
2793
2794static int ext4_releasepage(struct page *page, gfp_t wait)
2795{
2796 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2797
2798 trace_ext4_releasepage(page);
2799
2800 WARN_ON(PageChecked(page));
2801 if (!page_has_buffers(page))
2802 return 0;
2803 if (journal)
2804 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2805 else
2806 return try_to_free_buffers(page);
2807}
2808
2809/*
2810 * ext4_get_block used when preparing for a DIO write or buffer write.
2811 * We allocate an uinitialized extent if blocks haven't been allocated.
2812 * The extent will be converted to initialized after the IO is complete.
2813 */
2814static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2815 struct buffer_head *bh_result, int create)
2816{
2817 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2818 inode->i_ino, create);
2819 return _ext4_get_block(inode, iblock, bh_result,
2820 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2821}
2822
2823static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2824 struct buffer_head *bh_result, int flags)
2825{
2826 handle_t *handle = ext4_journal_current_handle();
2827 struct ext4_map_blocks map;
2828 int ret = 0;
2829
2830 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2831 inode->i_ino, flags);
2832
2833 flags = EXT4_GET_BLOCKS_NO_LOCK;
2834
2835 map.m_lblk = iblock;
2836 map.m_len = bh_result->b_size >> inode->i_blkbits;
2837
2838 ret = ext4_map_blocks(handle, inode, &map, flags);
2839 if (ret > 0) {
2840 map_bh(bh_result, inode->i_sb, map.m_pblk);
2841 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2842 map.m_flags;
2843 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2844 ret = 0;
2845 }
2846 return ret;
2847}
2848
2849static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2850 ssize_t size, void *private, int ret,
2851 bool is_async)
2852{
2853 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2854 ext4_io_end_t *io_end = iocb->private;
2855 struct workqueue_struct *wq;
2856 unsigned long flags;
2857 struct ext4_inode_info *ei;
2858
2859 /* if not async direct IO or dio with 0 bytes write, just return */
2860 if (!io_end || !size)
2861 goto out;
2862
2863 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2864 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2865 iocb->private, io_end->inode->i_ino, iocb, offset,
2866 size);
2867
2868 iocb->private = NULL;
2869
2870 /* if not aio dio with unwritten extents, just free io and return */
2871 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2872 ext4_free_io_end(io_end);
2873out:
2874 if (is_async)
2875 aio_complete(iocb, ret, 0);
2876 inode_dio_done(inode);
2877 return;
2878 }
2879
2880 io_end->offset = offset;
2881 io_end->size = size;
2882 if (is_async) {
2883 io_end->iocb = iocb;
2884 io_end->result = ret;
2885 }
2886 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2887
2888 /* Add the io_end to per-inode completed aio dio list*/
2889 ei = EXT4_I(io_end->inode);
2890 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2891 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2892 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2893
2894 /* queue the work to convert unwritten extents to written */
2895 queue_work(wq, &io_end->work);
2896}
2897
2898static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2899{
2900 ext4_io_end_t *io_end = bh->b_private;
2901 struct workqueue_struct *wq;
2902 struct inode *inode;
2903 unsigned long flags;
2904
2905 if (!test_clear_buffer_uninit(bh) || !io_end)
2906 goto out;
2907
2908 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2909 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2910 "sb umounted, discard end_io request for inode %lu",
2911 io_end->inode->i_ino);
2912 ext4_free_io_end(io_end);
2913 goto out;
2914 }
2915
2916 /*
2917 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2918 * but being more careful is always safe for the future change.
2919 */
2920 inode = io_end->inode;
2921 ext4_set_io_unwritten_flag(inode, io_end);
2922
2923 /* Add the io_end to per-inode completed io list*/
2924 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2925 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2926 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2927
2928 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2929 /* queue the work to convert unwritten extents to written */
2930 queue_work(wq, &io_end->work);
2931out:
2932 bh->b_private = NULL;
2933 bh->b_end_io = NULL;
2934 clear_buffer_uninit(bh);
2935 end_buffer_async_write(bh, uptodate);
2936}
2937
2938static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2939{
2940 ext4_io_end_t *io_end;
2941 struct page *page = bh->b_page;
2942 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2943 size_t size = bh->b_size;
2944
2945retry:
2946 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2947 if (!io_end) {
2948 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2949 schedule();
2950 goto retry;
2951 }
2952 io_end->offset = offset;
2953 io_end->size = size;
2954 /*
2955 * We need to hold a reference to the page to make sure it
2956 * doesn't get evicted before ext4_end_io_work() has a chance
2957 * to convert the extent from written to unwritten.
2958 */
2959 io_end->page = page;
2960 get_page(io_end->page);
2961
2962 bh->b_private = io_end;
2963 bh->b_end_io = ext4_end_io_buffer_write;
2964 return 0;
2965}
2966
2967/*
2968 * For ext4 extent files, ext4 will do direct-io write to holes,
2969 * preallocated extents, and those write extend the file, no need to
2970 * fall back to buffered IO.
2971 *
2972 * For holes, we fallocate those blocks, mark them as uninitialized
2973 * If those blocks were preallocated, we mark sure they are splited, but
2974 * still keep the range to write as uninitialized.
2975 *
2976 * The unwrritten extents will be converted to written when DIO is completed.
2977 * For async direct IO, since the IO may still pending when return, we
2978 * set up an end_io call back function, which will do the conversion
2979 * when async direct IO completed.
2980 *
2981 * If the O_DIRECT write will extend the file then add this inode to the
2982 * orphan list. So recovery will truncate it back to the original size
2983 * if the machine crashes during the write.
2984 *
2985 */
2986static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2987 const struct iovec *iov, loff_t offset,
2988 unsigned long nr_segs)
2989{
2990 struct file *file = iocb->ki_filp;
2991 struct inode *inode = file->f_mapping->host;
2992 ssize_t ret;
2993 size_t count = iov_length(iov, nr_segs);
2994
2995 loff_t final_size = offset + count;
2996 if (rw == WRITE && final_size <= inode->i_size) {
2997 int overwrite = 0;
2998
2999 BUG_ON(iocb->private == NULL);
3000
3001 /* If we do a overwrite dio, i_mutex locking can be released */
3002 overwrite = *((int *)iocb->private);
3003
3004 if (overwrite) {
3005 down_read(&EXT4_I(inode)->i_data_sem);
3006 mutex_unlock(&inode->i_mutex);
3007 }
3008
3009 /*
3010 * We could direct write to holes and fallocate.
3011 *
3012 * Allocated blocks to fill the hole are marked as uninitialized
3013 * to prevent parallel buffered read to expose the stale data
3014 * before DIO complete the data IO.
3015 *
3016 * As to previously fallocated extents, ext4 get_block
3017 * will just simply mark the buffer mapped but still
3018 * keep the extents uninitialized.
3019 *
3020 * for non AIO case, we will convert those unwritten extents
3021 * to written after return back from blockdev_direct_IO.
3022 *
3023 * for async DIO, the conversion needs to be defered when
3024 * the IO is completed. The ext4 end_io callback function
3025 * will be called to take care of the conversion work.
3026 * Here for async case, we allocate an io_end structure to
3027 * hook to the iocb.
3028 */
3029 iocb->private = NULL;
3030 EXT4_I(inode)->cur_aio_dio = NULL;
3031 if (!is_sync_kiocb(iocb)) {
3032 ext4_io_end_t *io_end =
3033 ext4_init_io_end(inode, GFP_NOFS);
3034 if (!io_end) {
3035 ret = -ENOMEM;
3036 goto retake_lock;
3037 }
3038 io_end->flag |= EXT4_IO_END_DIRECT;
3039 iocb->private = io_end;
3040 /*
3041 * we save the io structure for current async
3042 * direct IO, so that later ext4_map_blocks()
3043 * could flag the io structure whether there
3044 * is a unwritten extents needs to be converted
3045 * when IO is completed.
3046 */
3047 EXT4_I(inode)->cur_aio_dio = iocb->private;
3048 }
3049
3050 if (overwrite)
3051 ret = __blockdev_direct_IO(rw, iocb, inode,
3052 inode->i_sb->s_bdev, iov,
3053 offset, nr_segs,
3054 ext4_get_block_write_nolock,
3055 ext4_end_io_dio,
3056 NULL,
3057 0);
3058 else
3059 ret = __blockdev_direct_IO(rw, iocb, inode,
3060 inode->i_sb->s_bdev, iov,
3061 offset, nr_segs,
3062 ext4_get_block_write,
3063 ext4_end_io_dio,
3064 NULL,
3065 DIO_LOCKING);
3066 if (iocb->private)
3067 EXT4_I(inode)->cur_aio_dio = NULL;
3068 /*
3069 * The io_end structure takes a reference to the inode,
3070 * that structure needs to be destroyed and the
3071 * reference to the inode need to be dropped, when IO is
3072 * complete, even with 0 byte write, or failed.
3073 *
3074 * In the successful AIO DIO case, the io_end structure will be
3075 * desctroyed and the reference to the inode will be dropped
3076 * after the end_io call back function is called.
3077 *
3078 * In the case there is 0 byte write, or error case, since
3079 * VFS direct IO won't invoke the end_io call back function,
3080 * we need to free the end_io structure here.
3081 */
3082 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3083 ext4_free_io_end(iocb->private);
3084 iocb->private = NULL;
3085 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3086 EXT4_STATE_DIO_UNWRITTEN)) {
3087 int err;
3088 /*
3089 * for non AIO case, since the IO is already
3090 * completed, we could do the conversion right here
3091 */
3092 err = ext4_convert_unwritten_extents(inode,
3093 offset, ret);
3094 if (err < 0)
3095 ret = err;
3096 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3097 }
3098
3099 retake_lock:
3100 /* take i_mutex locking again if we do a ovewrite dio */
3101 if (overwrite) {
3102 up_read(&EXT4_I(inode)->i_data_sem);
3103 mutex_lock(&inode->i_mutex);
3104 }
3105
3106 return ret;
3107 }
3108
3109 /* for write the the end of file case, we fall back to old way */
3110 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3111}
3112
3113static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3114 const struct iovec *iov, loff_t offset,
3115 unsigned long nr_segs)
3116{
3117 struct file *file = iocb->ki_filp;
3118 struct inode *inode = file->f_mapping->host;
3119 ssize_t ret;
3120
3121 /*
3122 * If we are doing data journalling we don't support O_DIRECT
3123 */
3124 if (ext4_should_journal_data(inode))
3125 return 0;
3126
3127 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3128 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3129 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3130 else
3131 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3132 trace_ext4_direct_IO_exit(inode, offset,
3133 iov_length(iov, nr_segs), rw, ret);
3134 return ret;
3135}
3136
3137/*
3138 * Pages can be marked dirty completely asynchronously from ext4's journalling
3139 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3140 * much here because ->set_page_dirty is called under VFS locks. The page is
3141 * not necessarily locked.
3142 *
3143 * We cannot just dirty the page and leave attached buffers clean, because the
3144 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3145 * or jbddirty because all the journalling code will explode.
3146 *
3147 * So what we do is to mark the page "pending dirty" and next time writepage
3148 * is called, propagate that into the buffers appropriately.
3149 */
3150static int ext4_journalled_set_page_dirty(struct page *page)
3151{
3152 SetPageChecked(page);
3153 return __set_page_dirty_nobuffers(page);
3154}
3155
3156static const struct address_space_operations ext4_ordered_aops = {
3157 .readpage = ext4_readpage,
3158 .readpages = ext4_readpages,
3159 .writepage = ext4_writepage,
3160 .write_begin = ext4_write_begin,
3161 .write_end = ext4_ordered_write_end,
3162 .bmap = ext4_bmap,
3163 .invalidatepage = ext4_invalidatepage,
3164 .releasepage = ext4_releasepage,
3165 .direct_IO = ext4_direct_IO,
3166 .migratepage = buffer_migrate_page,
3167 .is_partially_uptodate = block_is_partially_uptodate,
3168 .error_remove_page = generic_error_remove_page,
3169};
3170
3171static const struct address_space_operations ext4_writeback_aops = {
3172 .readpage = ext4_readpage,
3173 .readpages = ext4_readpages,
3174 .writepage = ext4_writepage,
3175 .write_begin = ext4_write_begin,
3176 .write_end = ext4_writeback_write_end,
3177 .bmap = ext4_bmap,
3178 .invalidatepage = ext4_invalidatepage,
3179 .releasepage = ext4_releasepage,
3180 .direct_IO = ext4_direct_IO,
3181 .migratepage = buffer_migrate_page,
3182 .is_partially_uptodate = block_is_partially_uptodate,
3183 .error_remove_page = generic_error_remove_page,
3184};
3185
3186static const struct address_space_operations ext4_journalled_aops = {
3187 .readpage = ext4_readpage,
3188 .readpages = ext4_readpages,
3189 .writepage = ext4_writepage,
3190 .write_begin = ext4_write_begin,
3191 .write_end = ext4_journalled_write_end,
3192 .set_page_dirty = ext4_journalled_set_page_dirty,
3193 .bmap = ext4_bmap,
3194 .invalidatepage = ext4_invalidatepage,
3195 .releasepage = ext4_releasepage,
3196 .direct_IO = ext4_direct_IO,
3197 .is_partially_uptodate = block_is_partially_uptodate,
3198 .error_remove_page = generic_error_remove_page,
3199};
3200
3201static const struct address_space_operations ext4_da_aops = {
3202 .readpage = ext4_readpage,
3203 .readpages = ext4_readpages,
3204 .writepage = ext4_writepage,
3205 .writepages = ext4_da_writepages,
3206 .write_begin = ext4_da_write_begin,
3207 .write_end = ext4_da_write_end,
3208 .bmap = ext4_bmap,
3209 .invalidatepage = ext4_da_invalidatepage,
3210 .releasepage = ext4_releasepage,
3211 .direct_IO = ext4_direct_IO,
3212 .migratepage = buffer_migrate_page,
3213 .is_partially_uptodate = block_is_partially_uptodate,
3214 .error_remove_page = generic_error_remove_page,
3215};
3216
3217void ext4_set_aops(struct inode *inode)
3218{
3219 switch (ext4_inode_journal_mode(inode)) {
3220 case EXT4_INODE_ORDERED_DATA_MODE:
3221 if (test_opt(inode->i_sb, DELALLOC))
3222 inode->i_mapping->a_ops = &ext4_da_aops;
3223 else
3224 inode->i_mapping->a_ops = &ext4_ordered_aops;
3225 break;
3226 case EXT4_INODE_WRITEBACK_DATA_MODE:
3227 if (test_opt(inode->i_sb, DELALLOC))
3228 inode->i_mapping->a_ops = &ext4_da_aops;
3229 else
3230 inode->i_mapping->a_ops = &ext4_writeback_aops;
3231 break;
3232 case EXT4_INODE_JOURNAL_DATA_MODE:
3233 inode->i_mapping->a_ops = &ext4_journalled_aops;
3234 break;
3235 default:
3236 BUG();
3237 }
3238}
3239
3240
3241/*
3242 * ext4_discard_partial_page_buffers()
3243 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3244 * This function finds and locks the page containing the offset
3245 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3246 * Calling functions that already have the page locked should call
3247 * ext4_discard_partial_page_buffers_no_lock directly.
3248 */
3249int ext4_discard_partial_page_buffers(handle_t *handle,
3250 struct address_space *mapping, loff_t from,
3251 loff_t length, int flags)
3252{
3253 struct inode *inode = mapping->host;
3254 struct page *page;
3255 int err = 0;
3256
3257 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3258 mapping_gfp_mask(mapping) & ~__GFP_FS);
3259 if (!page)
3260 return -ENOMEM;
3261
3262 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3263 from, length, flags);
3264
3265 unlock_page(page);
3266 page_cache_release(page);
3267 return err;
3268}
3269
3270/*
3271 * ext4_discard_partial_page_buffers_no_lock()
3272 * Zeros a page range of length 'length' starting from offset 'from'.
3273 * Buffer heads that correspond to the block aligned regions of the
3274 * zeroed range will be unmapped. Unblock aligned regions
3275 * will have the corresponding buffer head mapped if needed so that
3276 * that region of the page can be updated with the partial zero out.
3277 *
3278 * This function assumes that the page has already been locked. The
3279 * The range to be discarded must be contained with in the given page.
3280 * If the specified range exceeds the end of the page it will be shortened
3281 * to the end of the page that corresponds to 'from'. This function is
3282 * appropriate for updating a page and it buffer heads to be unmapped and
3283 * zeroed for blocks that have been either released, or are going to be
3284 * released.
3285 *
3286 * handle: The journal handle
3287 * inode: The files inode
3288 * page: A locked page that contains the offset "from"
3289 * from: The starting byte offset (from the begining of the file)
3290 * to begin discarding
3291 * len: The length of bytes to discard
3292 * flags: Optional flags that may be used:
3293 *
3294 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3295 * Only zero the regions of the page whose buffer heads
3296 * have already been unmapped. This flag is appropriate
3297 * for updateing the contents of a page whose blocks may
3298 * have already been released, and we only want to zero
3299 * out the regions that correspond to those released blocks.
3300 *
3301 * Returns zero on sucess or negative on failure.
3302 */
3303static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3304 struct inode *inode, struct page *page, loff_t from,
3305 loff_t length, int flags)
3306{
3307 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3308 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3309 unsigned int blocksize, max, pos;
3310 ext4_lblk_t iblock;
3311 struct buffer_head *bh;
3312 int err = 0;
3313
3314 blocksize = inode->i_sb->s_blocksize;
3315 max = PAGE_CACHE_SIZE - offset;
3316
3317 if (index != page->index)
3318 return -EINVAL;
3319
3320 /*
3321 * correct length if it does not fall between
3322 * 'from' and the end of the page
3323 */
3324 if (length > max || length < 0)
3325 length = max;
3326
3327 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3328
3329 if (!page_has_buffers(page))
3330 create_empty_buffers(page, blocksize, 0);
3331
3332 /* Find the buffer that contains "offset" */
3333 bh = page_buffers(page);
3334 pos = blocksize;
3335 while (offset >= pos) {
3336 bh = bh->b_this_page;
3337 iblock++;
3338 pos += blocksize;
3339 }
3340
3341 pos = offset;
3342 while (pos < offset + length) {
3343 unsigned int end_of_block, range_to_discard;
3344
3345 err = 0;
3346
3347 /* The length of space left to zero and unmap */
3348 range_to_discard = offset + length - pos;
3349
3350 /* The length of space until the end of the block */
3351 end_of_block = blocksize - (pos & (blocksize-1));
3352
3353 /*
3354 * Do not unmap or zero past end of block
3355 * for this buffer head
3356 */
3357 if (range_to_discard > end_of_block)
3358 range_to_discard = end_of_block;
3359
3360
3361 /*
3362 * Skip this buffer head if we are only zeroing unampped
3363 * regions of the page
3364 */
3365 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3366 buffer_mapped(bh))
3367 goto next;
3368
3369 /* If the range is block aligned, unmap */
3370 if (range_to_discard == blocksize) {
3371 clear_buffer_dirty(bh);
3372 bh->b_bdev = NULL;
3373 clear_buffer_mapped(bh);
3374 clear_buffer_req(bh);
3375 clear_buffer_new(bh);
3376 clear_buffer_delay(bh);
3377 clear_buffer_unwritten(bh);
3378 clear_buffer_uptodate(bh);
3379 zero_user(page, pos, range_to_discard);
3380 BUFFER_TRACE(bh, "Buffer discarded");
3381 goto next;
3382 }
3383
3384 /*
3385 * If this block is not completely contained in the range
3386 * to be discarded, then it is not going to be released. Because
3387 * we need to keep this block, we need to make sure this part
3388 * of the page is uptodate before we modify it by writeing
3389 * partial zeros on it.
3390 */
3391 if (!buffer_mapped(bh)) {
3392 /*
3393 * Buffer head must be mapped before we can read
3394 * from the block
3395 */
3396 BUFFER_TRACE(bh, "unmapped");
3397 ext4_get_block(inode, iblock, bh, 0);
3398 /* unmapped? It's a hole - nothing to do */
3399 if (!buffer_mapped(bh)) {
3400 BUFFER_TRACE(bh, "still unmapped");
3401 goto next;
3402 }
3403 }
3404
3405 /* Ok, it's mapped. Make sure it's up-to-date */
3406 if (PageUptodate(page))
3407 set_buffer_uptodate(bh);
3408
3409 if (!buffer_uptodate(bh)) {
3410 err = -EIO;
3411 ll_rw_block(READ, 1, &bh);
3412 wait_on_buffer(bh);
3413 /* Uhhuh. Read error. Complain and punt.*/
3414 if (!buffer_uptodate(bh))
3415 goto next;
3416 }
3417
3418 if (ext4_should_journal_data(inode)) {
3419 BUFFER_TRACE(bh, "get write access");
3420 err = ext4_journal_get_write_access(handle, bh);
3421 if (err)
3422 goto next;
3423 }
3424
3425 zero_user(page, pos, range_to_discard);
3426
3427 err = 0;
3428 if (ext4_should_journal_data(inode)) {
3429 err = ext4_handle_dirty_metadata(handle, inode, bh);
3430 } else
3431 mark_buffer_dirty(bh);
3432
3433 BUFFER_TRACE(bh, "Partial buffer zeroed");
3434next:
3435 bh = bh->b_this_page;
3436 iblock++;
3437 pos += range_to_discard;
3438 }
3439
3440 return err;
3441}
3442
3443int ext4_can_truncate(struct inode *inode)
3444{
3445 if (S_ISREG(inode->i_mode))
3446 return 1;
3447 if (S_ISDIR(inode->i_mode))
3448 return 1;
3449 if (S_ISLNK(inode->i_mode))
3450 return !ext4_inode_is_fast_symlink(inode);
3451 return 0;
3452}
3453
3454/*
3455 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3456 * associated with the given offset and length
3457 *
3458 * @inode: File inode
3459 * @offset: The offset where the hole will begin
3460 * @len: The length of the hole
3461 *
3462 * Returns: 0 on sucess or negative on failure
3463 */
3464
3465int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3466{
3467 struct inode *inode = file->f_path.dentry->d_inode;
3468 if (!S_ISREG(inode->i_mode))
3469 return -EOPNOTSUPP;
3470
3471 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3472 /* TODO: Add support for non extent hole punching */
3473 return -EOPNOTSUPP;
3474 }
3475
3476 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3477 /* TODO: Add support for bigalloc file systems */
3478 return -EOPNOTSUPP;
3479 }
3480
3481 return ext4_ext_punch_hole(file, offset, length);
3482}
3483
3484/*
3485 * ext4_truncate()
3486 *
3487 * We block out ext4_get_block() block instantiations across the entire
3488 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3489 * simultaneously on behalf of the same inode.
3490 *
3491 * As we work through the truncate and commit bits of it to the journal there
3492 * is one core, guiding principle: the file's tree must always be consistent on
3493 * disk. We must be able to restart the truncate after a crash.
3494 *
3495 * The file's tree may be transiently inconsistent in memory (although it
3496 * probably isn't), but whenever we close off and commit a journal transaction,
3497 * the contents of (the filesystem + the journal) must be consistent and
3498 * restartable. It's pretty simple, really: bottom up, right to left (although
3499 * left-to-right works OK too).
3500 *
3501 * Note that at recovery time, journal replay occurs *before* the restart of
3502 * truncate against the orphan inode list.
3503 *
3504 * The committed inode has the new, desired i_size (which is the same as
3505 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3506 * that this inode's truncate did not complete and it will again call
3507 * ext4_truncate() to have another go. So there will be instantiated blocks
3508 * to the right of the truncation point in a crashed ext4 filesystem. But
3509 * that's fine - as long as they are linked from the inode, the post-crash
3510 * ext4_truncate() run will find them and release them.
3511 */
3512void ext4_truncate(struct inode *inode)
3513{
3514 trace_ext4_truncate_enter(inode);
3515
3516 if (!ext4_can_truncate(inode))
3517 return;
3518
3519 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3520
3521 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3522 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3523
3524 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3525 ext4_ext_truncate(inode);
3526 else
3527 ext4_ind_truncate(inode);
3528
3529 trace_ext4_truncate_exit(inode);
3530}
3531
3532/*
3533 * ext4_get_inode_loc returns with an extra refcount against the inode's
3534 * underlying buffer_head on success. If 'in_mem' is true, we have all
3535 * data in memory that is needed to recreate the on-disk version of this
3536 * inode.
3537 */
3538static int __ext4_get_inode_loc(struct inode *inode,
3539 struct ext4_iloc *iloc, int in_mem)
3540{
3541 struct ext4_group_desc *gdp;
3542 struct buffer_head *bh;
3543 struct super_block *sb = inode->i_sb;
3544 ext4_fsblk_t block;
3545 int inodes_per_block, inode_offset;
3546
3547 iloc->bh = NULL;
3548 if (!ext4_valid_inum(sb, inode->i_ino))
3549 return -EIO;
3550
3551 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3552 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3553 if (!gdp)
3554 return -EIO;
3555
3556 /*
3557 * Figure out the offset within the block group inode table
3558 */
3559 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3560 inode_offset = ((inode->i_ino - 1) %
3561 EXT4_INODES_PER_GROUP(sb));
3562 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3563 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3564
3565 bh = sb_getblk(sb, block);
3566 if (!bh) {
3567 EXT4_ERROR_INODE_BLOCK(inode, block,
3568 "unable to read itable block");
3569 return -EIO;
3570 }
3571 if (!buffer_uptodate(bh)) {
3572 lock_buffer(bh);
3573
3574 /*
3575 * If the buffer has the write error flag, we have failed
3576 * to write out another inode in the same block. In this
3577 * case, we don't have to read the block because we may
3578 * read the old inode data successfully.
3579 */
3580 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3581 set_buffer_uptodate(bh);
3582
3583 if (buffer_uptodate(bh)) {
3584 /* someone brought it uptodate while we waited */
3585 unlock_buffer(bh);
3586 goto has_buffer;
3587 }
3588
3589 /*
3590 * If we have all information of the inode in memory and this
3591 * is the only valid inode in the block, we need not read the
3592 * block.
3593 */
3594 if (in_mem) {
3595 struct buffer_head *bitmap_bh;
3596 int i, start;
3597
3598 start = inode_offset & ~(inodes_per_block - 1);
3599
3600 /* Is the inode bitmap in cache? */
3601 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3602 if (!bitmap_bh)
3603 goto make_io;
3604
3605 /*
3606 * If the inode bitmap isn't in cache then the
3607 * optimisation may end up performing two reads instead
3608 * of one, so skip it.
3609 */
3610 if (!buffer_uptodate(bitmap_bh)) {
3611 brelse(bitmap_bh);
3612 goto make_io;
3613 }
3614 for (i = start; i < start + inodes_per_block; i++) {
3615 if (i == inode_offset)
3616 continue;
3617 if (ext4_test_bit(i, bitmap_bh->b_data))
3618 break;
3619 }
3620 brelse(bitmap_bh);
3621 if (i == start + inodes_per_block) {
3622 /* all other inodes are free, so skip I/O */
3623 memset(bh->b_data, 0, bh->b_size);
3624 set_buffer_uptodate(bh);
3625 unlock_buffer(bh);
3626 goto has_buffer;
3627 }
3628 }
3629
3630make_io:
3631 /*
3632 * If we need to do any I/O, try to pre-readahead extra
3633 * blocks from the inode table.
3634 */
3635 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3636 ext4_fsblk_t b, end, table;
3637 unsigned num;
3638
3639 table = ext4_inode_table(sb, gdp);
3640 /* s_inode_readahead_blks is always a power of 2 */
3641 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3642 if (table > b)
3643 b = table;
3644 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3645 num = EXT4_INODES_PER_GROUP(sb);
3646 if (ext4_has_group_desc_csum(sb))
3647 num -= ext4_itable_unused_count(sb, gdp);
3648 table += num / inodes_per_block;
3649 if (end > table)
3650 end = table;
3651 while (b <= end)
3652 sb_breadahead(sb, b++);
3653 }
3654
3655 /*
3656 * There are other valid inodes in the buffer, this inode
3657 * has in-inode xattrs, or we don't have this inode in memory.
3658 * Read the block from disk.
3659 */
3660 trace_ext4_load_inode(inode);
3661 get_bh(bh);
3662 bh->b_end_io = end_buffer_read_sync;
3663 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3664 wait_on_buffer(bh);
3665 if (!buffer_uptodate(bh)) {
3666 EXT4_ERROR_INODE_BLOCK(inode, block,
3667 "unable to read itable block");
3668 brelse(bh);
3669 return -EIO;
3670 }
3671 }
3672has_buffer:
3673 iloc->bh = bh;
3674 return 0;
3675}
3676
3677int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3678{
3679 /* We have all inode data except xattrs in memory here. */
3680 return __ext4_get_inode_loc(inode, iloc,
3681 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3682}
3683
3684void ext4_set_inode_flags(struct inode *inode)
3685{
3686 unsigned int flags = EXT4_I(inode)->i_flags;
3687
3688 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3689 if (flags & EXT4_SYNC_FL)
3690 inode->i_flags |= S_SYNC;
3691 if (flags & EXT4_APPEND_FL)
3692 inode->i_flags |= S_APPEND;
3693 if (flags & EXT4_IMMUTABLE_FL)
3694 inode->i_flags |= S_IMMUTABLE;
3695 if (flags & EXT4_NOATIME_FL)
3696 inode->i_flags |= S_NOATIME;
3697 if (flags & EXT4_DIRSYNC_FL)
3698 inode->i_flags |= S_DIRSYNC;
3699}
3700
3701/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3702void ext4_get_inode_flags(struct ext4_inode_info *ei)
3703{
3704 unsigned int vfs_fl;
3705 unsigned long old_fl, new_fl;
3706
3707 do {
3708 vfs_fl = ei->vfs_inode.i_flags;
3709 old_fl = ei->i_flags;
3710 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3711 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3712 EXT4_DIRSYNC_FL);
3713 if (vfs_fl & S_SYNC)
3714 new_fl |= EXT4_SYNC_FL;
3715 if (vfs_fl & S_APPEND)
3716 new_fl |= EXT4_APPEND_FL;
3717 if (vfs_fl & S_IMMUTABLE)
3718 new_fl |= EXT4_IMMUTABLE_FL;
3719 if (vfs_fl & S_NOATIME)
3720 new_fl |= EXT4_NOATIME_FL;
3721 if (vfs_fl & S_DIRSYNC)
3722 new_fl |= EXT4_DIRSYNC_FL;
3723 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3724}
3725
3726static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3727 struct ext4_inode_info *ei)
3728{
3729 blkcnt_t i_blocks ;
3730 struct inode *inode = &(ei->vfs_inode);
3731 struct super_block *sb = inode->i_sb;
3732
3733 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3734 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3735 /* we are using combined 48 bit field */
3736 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3737 le32_to_cpu(raw_inode->i_blocks_lo);
3738 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3739 /* i_blocks represent file system block size */
3740 return i_blocks << (inode->i_blkbits - 9);
3741 } else {
3742 return i_blocks;
3743 }
3744 } else {
3745 return le32_to_cpu(raw_inode->i_blocks_lo);
3746 }
3747}
3748
3749struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3750{
3751 struct ext4_iloc iloc;
3752 struct ext4_inode *raw_inode;
3753 struct ext4_inode_info *ei;
3754 struct inode *inode;
3755 journal_t *journal = EXT4_SB(sb)->s_journal;
3756 long ret;
3757 int block;
3758 uid_t i_uid;
3759 gid_t i_gid;
3760
3761 inode = iget_locked(sb, ino);
3762 if (!inode)
3763 return ERR_PTR(-ENOMEM);
3764 if (!(inode->i_state & I_NEW))
3765 return inode;
3766
3767 ei = EXT4_I(inode);
3768 iloc.bh = NULL;
3769
3770 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3771 if (ret < 0)
3772 goto bad_inode;
3773 raw_inode = ext4_raw_inode(&iloc);
3774
3775 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3776 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3777 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3778 EXT4_INODE_SIZE(inode->i_sb)) {
3779 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3780 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3781 EXT4_INODE_SIZE(inode->i_sb));
3782 ret = -EIO;
3783 goto bad_inode;
3784 }
3785 } else
3786 ei->i_extra_isize = 0;
3787
3788 /* Precompute checksum seed for inode metadata */
3789 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3790 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3792 __u32 csum;
3793 __le32 inum = cpu_to_le32(inode->i_ino);
3794 __le32 gen = raw_inode->i_generation;
3795 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3796 sizeof(inum));
3797 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3798 sizeof(gen));
3799 }
3800
3801 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3802 EXT4_ERROR_INODE(inode, "checksum invalid");
3803 ret = -EIO;
3804 goto bad_inode;
3805 }
3806
3807 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3808 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3809 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3810 if (!(test_opt(inode->i_sb, NO_UID32))) {
3811 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3812 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3813 }
3814 i_uid_write(inode, i_uid);
3815 i_gid_write(inode, i_gid);
3816 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3817
3818 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3819 ei->i_dir_start_lookup = 0;
3820 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3821 /* We now have enough fields to check if the inode was active or not.
3822 * This is needed because nfsd might try to access dead inodes
3823 * the test is that same one that e2fsck uses
3824 * NeilBrown 1999oct15
3825 */
3826 if (inode->i_nlink == 0) {
3827 if (inode->i_mode == 0 ||
3828 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3829 /* this inode is deleted */
3830 ret = -ESTALE;
3831 goto bad_inode;
3832 }
3833 /* The only unlinked inodes we let through here have
3834 * valid i_mode and are being read by the orphan
3835 * recovery code: that's fine, we're about to complete
3836 * the process of deleting those. */
3837 }
3838 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3839 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3840 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3841 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3842 ei->i_file_acl |=
3843 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3844 inode->i_size = ext4_isize(raw_inode);
3845 ei->i_disksize = inode->i_size;
3846#ifdef CONFIG_QUOTA
3847 ei->i_reserved_quota = 0;
3848#endif
3849 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3850 ei->i_block_group = iloc.block_group;
3851 ei->i_last_alloc_group = ~0;
3852 /*
3853 * NOTE! The in-memory inode i_data array is in little-endian order
3854 * even on big-endian machines: we do NOT byteswap the block numbers!
3855 */
3856 for (block = 0; block < EXT4_N_BLOCKS; block++)
3857 ei->i_data[block] = raw_inode->i_block[block];
3858 INIT_LIST_HEAD(&ei->i_orphan);
3859
3860 /*
3861 * Set transaction id's of transactions that have to be committed
3862 * to finish f[data]sync. We set them to currently running transaction
3863 * as we cannot be sure that the inode or some of its metadata isn't
3864 * part of the transaction - the inode could have been reclaimed and
3865 * now it is reread from disk.
3866 */
3867 if (journal) {
3868 transaction_t *transaction;
3869 tid_t tid;
3870
3871 read_lock(&journal->j_state_lock);
3872 if (journal->j_running_transaction)
3873 transaction = journal->j_running_transaction;
3874 else
3875 transaction = journal->j_committing_transaction;
3876 if (transaction)
3877 tid = transaction->t_tid;
3878 else
3879 tid = journal->j_commit_sequence;
3880 read_unlock(&journal->j_state_lock);
3881 ei->i_sync_tid = tid;
3882 ei->i_datasync_tid = tid;
3883 }
3884
3885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886 if (ei->i_extra_isize == 0) {
3887 /* The extra space is currently unused. Use it. */
3888 ei->i_extra_isize = sizeof(struct ext4_inode) -
3889 EXT4_GOOD_OLD_INODE_SIZE;
3890 } else {
3891 __le32 *magic = (void *)raw_inode +
3892 EXT4_GOOD_OLD_INODE_SIZE +
3893 ei->i_extra_isize;
3894 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3895 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3896 }
3897 }
3898
3899 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3900 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3901 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3902 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3903
3904 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3905 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3906 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3907 inode->i_version |=
3908 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3909 }
3910
3911 ret = 0;
3912 if (ei->i_file_acl &&
3913 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3914 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3915 ei->i_file_acl);
3916 ret = -EIO;
3917 goto bad_inode;
3918 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3919 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3920 (S_ISLNK(inode->i_mode) &&
3921 !ext4_inode_is_fast_symlink(inode)))
3922 /* Validate extent which is part of inode */
3923 ret = ext4_ext_check_inode(inode);
3924 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3925 (S_ISLNK(inode->i_mode) &&
3926 !ext4_inode_is_fast_symlink(inode))) {
3927 /* Validate block references which are part of inode */
3928 ret = ext4_ind_check_inode(inode);
3929 }
3930 if (ret)
3931 goto bad_inode;
3932
3933 if (S_ISREG(inode->i_mode)) {
3934 inode->i_op = &ext4_file_inode_operations;
3935 inode->i_fop = &ext4_file_operations;
3936 ext4_set_aops(inode);
3937 } else if (S_ISDIR(inode->i_mode)) {
3938 inode->i_op = &ext4_dir_inode_operations;
3939 inode->i_fop = &ext4_dir_operations;
3940 } else if (S_ISLNK(inode->i_mode)) {
3941 if (ext4_inode_is_fast_symlink(inode)) {
3942 inode->i_op = &ext4_fast_symlink_inode_operations;
3943 nd_terminate_link(ei->i_data, inode->i_size,
3944 sizeof(ei->i_data) - 1);
3945 } else {
3946 inode->i_op = &ext4_symlink_inode_operations;
3947 ext4_set_aops(inode);
3948 }
3949 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3950 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3951 inode->i_op = &ext4_special_inode_operations;
3952 if (raw_inode->i_block[0])
3953 init_special_inode(inode, inode->i_mode,
3954 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3955 else
3956 init_special_inode(inode, inode->i_mode,
3957 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3958 } else {
3959 ret = -EIO;
3960 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3961 goto bad_inode;
3962 }
3963 brelse(iloc.bh);
3964 ext4_set_inode_flags(inode);
3965 unlock_new_inode(inode);
3966 return inode;
3967
3968bad_inode:
3969 brelse(iloc.bh);
3970 iget_failed(inode);
3971 return ERR_PTR(ret);
3972}
3973
3974static int ext4_inode_blocks_set(handle_t *handle,
3975 struct ext4_inode *raw_inode,
3976 struct ext4_inode_info *ei)
3977{
3978 struct inode *inode = &(ei->vfs_inode);
3979 u64 i_blocks = inode->i_blocks;
3980 struct super_block *sb = inode->i_sb;
3981
3982 if (i_blocks <= ~0U) {
3983 /*
3984 * i_blocks can be represnted in a 32 bit variable
3985 * as multiple of 512 bytes
3986 */
3987 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3988 raw_inode->i_blocks_high = 0;
3989 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3990 return 0;
3991 }
3992 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3993 return -EFBIG;
3994
3995 if (i_blocks <= 0xffffffffffffULL) {
3996 /*
3997 * i_blocks can be represented in a 48 bit variable
3998 * as multiple of 512 bytes
3999 */
4000 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4001 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4002 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4003 } else {
4004 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4005 /* i_block is stored in file system block size */
4006 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4007 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4008 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4009 }
4010 return 0;
4011}
4012
4013/*
4014 * Post the struct inode info into an on-disk inode location in the
4015 * buffer-cache. This gobbles the caller's reference to the
4016 * buffer_head in the inode location struct.
4017 *
4018 * The caller must have write access to iloc->bh.
4019 */
4020static int ext4_do_update_inode(handle_t *handle,
4021 struct inode *inode,
4022 struct ext4_iloc *iloc)
4023{
4024 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4025 struct ext4_inode_info *ei = EXT4_I(inode);
4026 struct buffer_head *bh = iloc->bh;
4027 int err = 0, rc, block;
4028 uid_t i_uid;
4029 gid_t i_gid;
4030
4031 /* For fields not not tracking in the in-memory inode,
4032 * initialise them to zero for new inodes. */
4033 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4034 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4035
4036 ext4_get_inode_flags(ei);
4037 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4038 i_uid = i_uid_read(inode);
4039 i_gid = i_gid_read(inode);
4040 if (!(test_opt(inode->i_sb, NO_UID32))) {
4041 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4042 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4043/*
4044 * Fix up interoperability with old kernels. Otherwise, old inodes get
4045 * re-used with the upper 16 bits of the uid/gid intact
4046 */
4047 if (!ei->i_dtime) {
4048 raw_inode->i_uid_high =
4049 cpu_to_le16(high_16_bits(i_uid));
4050 raw_inode->i_gid_high =
4051 cpu_to_le16(high_16_bits(i_gid));
4052 } else {
4053 raw_inode->i_uid_high = 0;
4054 raw_inode->i_gid_high = 0;
4055 }
4056 } else {
4057 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4058 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4059 raw_inode->i_uid_high = 0;
4060 raw_inode->i_gid_high = 0;
4061 }
4062 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4063
4064 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4065 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4066 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4067 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4068
4069 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4070 goto out_brelse;
4071 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4072 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4073 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4074 cpu_to_le32(EXT4_OS_HURD))
4075 raw_inode->i_file_acl_high =
4076 cpu_to_le16(ei->i_file_acl >> 32);
4077 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4078 ext4_isize_set(raw_inode, ei->i_disksize);
4079 if (ei->i_disksize > 0x7fffffffULL) {
4080 struct super_block *sb = inode->i_sb;
4081 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4082 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4083 EXT4_SB(sb)->s_es->s_rev_level ==
4084 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4085 /* If this is the first large file
4086 * created, add a flag to the superblock.
4087 */
4088 err = ext4_journal_get_write_access(handle,
4089 EXT4_SB(sb)->s_sbh);
4090 if (err)
4091 goto out_brelse;
4092 ext4_update_dynamic_rev(sb);
4093 EXT4_SET_RO_COMPAT_FEATURE(sb,
4094 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4095 ext4_handle_sync(handle);
4096 err = ext4_handle_dirty_super(handle, sb);
4097 }
4098 }
4099 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4100 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4101 if (old_valid_dev(inode->i_rdev)) {
4102 raw_inode->i_block[0] =
4103 cpu_to_le32(old_encode_dev(inode->i_rdev));
4104 raw_inode->i_block[1] = 0;
4105 } else {
4106 raw_inode->i_block[0] = 0;
4107 raw_inode->i_block[1] =
4108 cpu_to_le32(new_encode_dev(inode->i_rdev));
4109 raw_inode->i_block[2] = 0;
4110 }
4111 } else
4112 for (block = 0; block < EXT4_N_BLOCKS; block++)
4113 raw_inode->i_block[block] = ei->i_data[block];
4114
4115 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4116 if (ei->i_extra_isize) {
4117 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4118 raw_inode->i_version_hi =
4119 cpu_to_le32(inode->i_version >> 32);
4120 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4121 }
4122
4123 ext4_inode_csum_set(inode, raw_inode, ei);
4124
4125 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4127 if (!err)
4128 err = rc;
4129 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4130
4131 ext4_update_inode_fsync_trans(handle, inode, 0);
4132out_brelse:
4133 brelse(bh);
4134 ext4_std_error(inode->i_sb, err);
4135 return err;
4136}
4137
4138/*
4139 * ext4_write_inode()
4140 *
4141 * We are called from a few places:
4142 *
4143 * - Within generic_file_write() for O_SYNC files.
4144 * Here, there will be no transaction running. We wait for any running
4145 * trasnaction to commit.
4146 *
4147 * - Within sys_sync(), kupdate and such.
4148 * We wait on commit, if tol to.
4149 *
4150 * - Within prune_icache() (PF_MEMALLOC == true)
4151 * Here we simply return. We can't afford to block kswapd on the
4152 * journal commit.
4153 *
4154 * In all cases it is actually safe for us to return without doing anything,
4155 * because the inode has been copied into a raw inode buffer in
4156 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4157 * knfsd.
4158 *
4159 * Note that we are absolutely dependent upon all inode dirtiers doing the
4160 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4161 * which we are interested.
4162 *
4163 * It would be a bug for them to not do this. The code:
4164 *
4165 * mark_inode_dirty(inode)
4166 * stuff();
4167 * inode->i_size = expr;
4168 *
4169 * is in error because a kswapd-driven write_inode() could occur while
4170 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4171 * will no longer be on the superblock's dirty inode list.
4172 */
4173int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4174{
4175 int err;
4176
4177 if (current->flags & PF_MEMALLOC)
4178 return 0;
4179
4180 if (EXT4_SB(inode->i_sb)->s_journal) {
4181 if (ext4_journal_current_handle()) {
4182 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4183 dump_stack();
4184 return -EIO;
4185 }
4186
4187 if (wbc->sync_mode != WB_SYNC_ALL)
4188 return 0;
4189
4190 err = ext4_force_commit(inode->i_sb);
4191 } else {
4192 struct ext4_iloc iloc;
4193
4194 err = __ext4_get_inode_loc(inode, &iloc, 0);
4195 if (err)
4196 return err;
4197 if (wbc->sync_mode == WB_SYNC_ALL)
4198 sync_dirty_buffer(iloc.bh);
4199 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4200 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4201 "IO error syncing inode");
4202 err = -EIO;
4203 }
4204 brelse(iloc.bh);
4205 }
4206 return err;
4207}
4208
4209/*
4210 * ext4_setattr()
4211 *
4212 * Called from notify_change.
4213 *
4214 * We want to trap VFS attempts to truncate the file as soon as
4215 * possible. In particular, we want to make sure that when the VFS
4216 * shrinks i_size, we put the inode on the orphan list and modify
4217 * i_disksize immediately, so that during the subsequent flushing of
4218 * dirty pages and freeing of disk blocks, we can guarantee that any
4219 * commit will leave the blocks being flushed in an unused state on
4220 * disk. (On recovery, the inode will get truncated and the blocks will
4221 * be freed, so we have a strong guarantee that no future commit will
4222 * leave these blocks visible to the user.)
4223 *
4224 * Another thing we have to assure is that if we are in ordered mode
4225 * and inode is still attached to the committing transaction, we must
4226 * we start writeout of all the dirty pages which are being truncated.
4227 * This way we are sure that all the data written in the previous
4228 * transaction are already on disk (truncate waits for pages under
4229 * writeback).
4230 *
4231 * Called with inode->i_mutex down.
4232 */
4233int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4234{
4235 struct inode *inode = dentry->d_inode;
4236 int error, rc = 0;
4237 int orphan = 0;
4238 const unsigned int ia_valid = attr->ia_valid;
4239
4240 error = inode_change_ok(inode, attr);
4241 if (error)
4242 return error;
4243
4244 if (is_quota_modification(inode, attr))
4245 dquot_initialize(inode);
4246 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4247 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4248 handle_t *handle;
4249
4250 /* (user+group)*(old+new) structure, inode write (sb,
4251 * inode block, ? - but truncate inode update has it) */
4252 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4253 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4254 if (IS_ERR(handle)) {
4255 error = PTR_ERR(handle);
4256 goto err_out;
4257 }
4258 error = dquot_transfer(inode, attr);
4259 if (error) {
4260 ext4_journal_stop(handle);
4261 return error;
4262 }
4263 /* Update corresponding info in inode so that everything is in
4264 * one transaction */
4265 if (attr->ia_valid & ATTR_UID)
4266 inode->i_uid = attr->ia_uid;
4267 if (attr->ia_valid & ATTR_GID)
4268 inode->i_gid = attr->ia_gid;
4269 error = ext4_mark_inode_dirty(handle, inode);
4270 ext4_journal_stop(handle);
4271 }
4272
4273 if (attr->ia_valid & ATTR_SIZE) {
4274 inode_dio_wait(inode);
4275
4276 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4277 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4278
4279 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4280 return -EFBIG;
4281 }
4282 }
4283
4284 if (S_ISREG(inode->i_mode) &&
4285 attr->ia_valid & ATTR_SIZE &&
4286 (attr->ia_size < inode->i_size)) {
4287 handle_t *handle;
4288
4289 handle = ext4_journal_start(inode, 3);
4290 if (IS_ERR(handle)) {
4291 error = PTR_ERR(handle);
4292 goto err_out;
4293 }
4294 if (ext4_handle_valid(handle)) {
4295 error = ext4_orphan_add(handle, inode);
4296 orphan = 1;
4297 }
4298 EXT4_I(inode)->i_disksize = attr->ia_size;
4299 rc = ext4_mark_inode_dirty(handle, inode);
4300 if (!error)
4301 error = rc;
4302 ext4_journal_stop(handle);
4303
4304 if (ext4_should_order_data(inode)) {
4305 error = ext4_begin_ordered_truncate(inode,
4306 attr->ia_size);
4307 if (error) {
4308 /* Do as much error cleanup as possible */
4309 handle = ext4_journal_start(inode, 3);
4310 if (IS_ERR(handle)) {
4311 ext4_orphan_del(NULL, inode);
4312 goto err_out;
4313 }
4314 ext4_orphan_del(handle, inode);
4315 orphan = 0;
4316 ext4_journal_stop(handle);
4317 goto err_out;
4318 }
4319 }
4320 }
4321
4322 if (attr->ia_valid & ATTR_SIZE) {
4323 if (attr->ia_size != i_size_read(inode))
4324 truncate_setsize(inode, attr->ia_size);
4325 ext4_truncate(inode);
4326 }
4327
4328 if (!rc) {
4329 setattr_copy(inode, attr);
4330 mark_inode_dirty(inode);
4331 }
4332
4333 /*
4334 * If the call to ext4_truncate failed to get a transaction handle at
4335 * all, we need to clean up the in-core orphan list manually.
4336 */
4337 if (orphan && inode->i_nlink)
4338 ext4_orphan_del(NULL, inode);
4339
4340 if (!rc && (ia_valid & ATTR_MODE))
4341 rc = ext4_acl_chmod(inode);
4342
4343err_out:
4344 ext4_std_error(inode->i_sb, error);
4345 if (!error)
4346 error = rc;
4347 return error;
4348}
4349
4350int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4351 struct kstat *stat)
4352{
4353 struct inode *inode;
4354 unsigned long delalloc_blocks;
4355
4356 inode = dentry->d_inode;
4357 generic_fillattr(inode, stat);
4358
4359 /*
4360 * We can't update i_blocks if the block allocation is delayed
4361 * otherwise in the case of system crash before the real block
4362 * allocation is done, we will have i_blocks inconsistent with
4363 * on-disk file blocks.
4364 * We always keep i_blocks updated together with real
4365 * allocation. But to not confuse with user, stat
4366 * will return the blocks that include the delayed allocation
4367 * blocks for this file.
4368 */
4369 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4370 EXT4_I(inode)->i_reserved_data_blocks);
4371
4372 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4373 return 0;
4374}
4375
4376static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4377{
4378 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4379 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4380 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4381}
4382
4383/*
4384 * Account for index blocks, block groups bitmaps and block group
4385 * descriptor blocks if modify datablocks and index blocks
4386 * worse case, the indexs blocks spread over different block groups
4387 *
4388 * If datablocks are discontiguous, they are possible to spread over
4389 * different block groups too. If they are contiuguous, with flexbg,
4390 * they could still across block group boundary.
4391 *
4392 * Also account for superblock, inode, quota and xattr blocks
4393 */
4394static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4395{
4396 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4397 int gdpblocks;
4398 int idxblocks;
4399 int ret = 0;
4400
4401 /*
4402 * How many index blocks need to touch to modify nrblocks?
4403 * The "Chunk" flag indicating whether the nrblocks is
4404 * physically contiguous on disk
4405 *
4406 * For Direct IO and fallocate, they calls get_block to allocate
4407 * one single extent at a time, so they could set the "Chunk" flag
4408 */
4409 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4410
4411 ret = idxblocks;
4412
4413 /*
4414 * Now let's see how many group bitmaps and group descriptors need
4415 * to account
4416 */
4417 groups = idxblocks;
4418 if (chunk)
4419 groups += 1;
4420 else
4421 groups += nrblocks;
4422
4423 gdpblocks = groups;
4424 if (groups > ngroups)
4425 groups = ngroups;
4426 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4427 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4428
4429 /* bitmaps and block group descriptor blocks */
4430 ret += groups + gdpblocks;
4431
4432 /* Blocks for super block, inode, quota and xattr blocks */
4433 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4434
4435 return ret;
4436}
4437
4438/*
4439 * Calculate the total number of credits to reserve to fit
4440 * the modification of a single pages into a single transaction,
4441 * which may include multiple chunks of block allocations.
4442 *
4443 * This could be called via ext4_write_begin()
4444 *
4445 * We need to consider the worse case, when
4446 * one new block per extent.
4447 */
4448int ext4_writepage_trans_blocks(struct inode *inode)
4449{
4450 int bpp = ext4_journal_blocks_per_page(inode);
4451 int ret;
4452
4453 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4454
4455 /* Account for data blocks for journalled mode */
4456 if (ext4_should_journal_data(inode))
4457 ret += bpp;
4458 return ret;
4459}
4460
4461/*
4462 * Calculate the journal credits for a chunk of data modification.
4463 *
4464 * This is called from DIO, fallocate or whoever calling
4465 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4466 *
4467 * journal buffers for data blocks are not included here, as DIO
4468 * and fallocate do no need to journal data buffers.
4469 */
4470int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4471{
4472 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4473}
4474
4475/*
4476 * The caller must have previously called ext4_reserve_inode_write().
4477 * Give this, we know that the caller already has write access to iloc->bh.
4478 */
4479int ext4_mark_iloc_dirty(handle_t *handle,
4480 struct inode *inode, struct ext4_iloc *iloc)
4481{
4482 int err = 0;
4483
4484 if (IS_I_VERSION(inode))
4485 inode_inc_iversion(inode);
4486
4487 /* the do_update_inode consumes one bh->b_count */
4488 get_bh(iloc->bh);
4489
4490 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4491 err = ext4_do_update_inode(handle, inode, iloc);
4492 put_bh(iloc->bh);
4493 return err;
4494}
4495
4496/*
4497 * On success, We end up with an outstanding reference count against
4498 * iloc->bh. This _must_ be cleaned up later.
4499 */
4500
4501int
4502ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4503 struct ext4_iloc *iloc)
4504{
4505 int err;
4506
4507 err = ext4_get_inode_loc(inode, iloc);
4508 if (!err) {
4509 BUFFER_TRACE(iloc->bh, "get_write_access");
4510 err = ext4_journal_get_write_access(handle, iloc->bh);
4511 if (err) {
4512 brelse(iloc->bh);
4513 iloc->bh = NULL;
4514 }
4515 }
4516 ext4_std_error(inode->i_sb, err);
4517 return err;
4518}
4519
4520/*
4521 * Expand an inode by new_extra_isize bytes.
4522 * Returns 0 on success or negative error number on failure.
4523 */
4524static int ext4_expand_extra_isize(struct inode *inode,
4525 unsigned int new_extra_isize,
4526 struct ext4_iloc iloc,
4527 handle_t *handle)
4528{
4529 struct ext4_inode *raw_inode;
4530 struct ext4_xattr_ibody_header *header;
4531
4532 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4533 return 0;
4534
4535 raw_inode = ext4_raw_inode(&iloc);
4536
4537 header = IHDR(inode, raw_inode);
4538
4539 /* No extended attributes present */
4540 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4541 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4542 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4543 new_extra_isize);
4544 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4545 return 0;
4546 }
4547
4548 /* try to expand with EAs present */
4549 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4550 raw_inode, handle);
4551}
4552
4553/*
4554 * What we do here is to mark the in-core inode as clean with respect to inode
4555 * dirtiness (it may still be data-dirty).
4556 * This means that the in-core inode may be reaped by prune_icache
4557 * without having to perform any I/O. This is a very good thing,
4558 * because *any* task may call prune_icache - even ones which
4559 * have a transaction open against a different journal.
4560 *
4561 * Is this cheating? Not really. Sure, we haven't written the
4562 * inode out, but prune_icache isn't a user-visible syncing function.
4563 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4564 * we start and wait on commits.
4565 *
4566 * Is this efficient/effective? Well, we're being nice to the system
4567 * by cleaning up our inodes proactively so they can be reaped
4568 * without I/O. But we are potentially leaving up to five seconds'
4569 * worth of inodes floating about which prune_icache wants us to
4570 * write out. One way to fix that would be to get prune_icache()
4571 * to do a write_super() to free up some memory. It has the desired
4572 * effect.
4573 */
4574int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4575{
4576 struct ext4_iloc iloc;
4577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4578 static unsigned int mnt_count;
4579 int err, ret;
4580
4581 might_sleep();
4582 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4583 err = ext4_reserve_inode_write(handle, inode, &iloc);
4584 if (ext4_handle_valid(handle) &&
4585 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4586 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4587 /*
4588 * We need extra buffer credits since we may write into EA block
4589 * with this same handle. If journal_extend fails, then it will
4590 * only result in a minor loss of functionality for that inode.
4591 * If this is felt to be critical, then e2fsck should be run to
4592 * force a large enough s_min_extra_isize.
4593 */
4594 if ((jbd2_journal_extend(handle,
4595 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4596 ret = ext4_expand_extra_isize(inode,
4597 sbi->s_want_extra_isize,
4598 iloc, handle);
4599 if (ret) {
4600 ext4_set_inode_state(inode,
4601 EXT4_STATE_NO_EXPAND);
4602 if (mnt_count !=
4603 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4604 ext4_warning(inode->i_sb,
4605 "Unable to expand inode %lu. Delete"
4606 " some EAs or run e2fsck.",
4607 inode->i_ino);
4608 mnt_count =
4609 le16_to_cpu(sbi->s_es->s_mnt_count);
4610 }
4611 }
4612 }
4613 }
4614 if (!err)
4615 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4616 return err;
4617}
4618
4619/*
4620 * ext4_dirty_inode() is called from __mark_inode_dirty()
4621 *
4622 * We're really interested in the case where a file is being extended.
4623 * i_size has been changed by generic_commit_write() and we thus need
4624 * to include the updated inode in the current transaction.
4625 *
4626 * Also, dquot_alloc_block() will always dirty the inode when blocks
4627 * are allocated to the file.
4628 *
4629 * If the inode is marked synchronous, we don't honour that here - doing
4630 * so would cause a commit on atime updates, which we don't bother doing.
4631 * We handle synchronous inodes at the highest possible level.
4632 */
4633void ext4_dirty_inode(struct inode *inode, int flags)
4634{
4635 handle_t *handle;
4636
4637 handle = ext4_journal_start(inode, 2);
4638 if (IS_ERR(handle))
4639 goto out;
4640
4641 ext4_mark_inode_dirty(handle, inode);
4642
4643 ext4_journal_stop(handle);
4644out:
4645 return;
4646}
4647
4648#if 0
4649/*
4650 * Bind an inode's backing buffer_head into this transaction, to prevent
4651 * it from being flushed to disk early. Unlike
4652 * ext4_reserve_inode_write, this leaves behind no bh reference and
4653 * returns no iloc structure, so the caller needs to repeat the iloc
4654 * lookup to mark the inode dirty later.
4655 */
4656static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4657{
4658 struct ext4_iloc iloc;
4659
4660 int err = 0;
4661 if (handle) {
4662 err = ext4_get_inode_loc(inode, &iloc);
4663 if (!err) {
4664 BUFFER_TRACE(iloc.bh, "get_write_access");
4665 err = jbd2_journal_get_write_access(handle, iloc.bh);
4666 if (!err)
4667 err = ext4_handle_dirty_metadata(handle,
4668 NULL,
4669 iloc.bh);
4670 brelse(iloc.bh);
4671 }
4672 }
4673 ext4_std_error(inode->i_sb, err);
4674 return err;
4675}
4676#endif
4677
4678int ext4_change_inode_journal_flag(struct inode *inode, int val)
4679{
4680 journal_t *journal;
4681 handle_t *handle;
4682 int err;
4683
4684 /*
4685 * We have to be very careful here: changing a data block's
4686 * journaling status dynamically is dangerous. If we write a
4687 * data block to the journal, change the status and then delete
4688 * that block, we risk forgetting to revoke the old log record
4689 * from the journal and so a subsequent replay can corrupt data.
4690 * So, first we make sure that the journal is empty and that
4691 * nobody is changing anything.
4692 */
4693
4694 journal = EXT4_JOURNAL(inode);
4695 if (!journal)
4696 return 0;
4697 if (is_journal_aborted(journal))
4698 return -EROFS;
4699 /* We have to allocate physical blocks for delalloc blocks
4700 * before flushing journal. otherwise delalloc blocks can not
4701 * be allocated any more. even more truncate on delalloc blocks
4702 * could trigger BUG by flushing delalloc blocks in journal.
4703 * There is no delalloc block in non-journal data mode.
4704 */
4705 if (val && test_opt(inode->i_sb, DELALLOC)) {
4706 err = ext4_alloc_da_blocks(inode);
4707 if (err < 0)
4708 return err;
4709 }
4710
4711 jbd2_journal_lock_updates(journal);
4712
4713 /*
4714 * OK, there are no updates running now, and all cached data is
4715 * synced to disk. We are now in a completely consistent state
4716 * which doesn't have anything in the journal, and we know that
4717 * no filesystem updates are running, so it is safe to modify
4718 * the inode's in-core data-journaling state flag now.
4719 */
4720
4721 if (val)
4722 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4723 else {
4724 jbd2_journal_flush(journal);
4725 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4726 }
4727 ext4_set_aops(inode);
4728
4729 jbd2_journal_unlock_updates(journal);
4730
4731 /* Finally we can mark the inode as dirty. */
4732
4733 handle = ext4_journal_start(inode, 1);
4734 if (IS_ERR(handle))
4735 return PTR_ERR(handle);
4736
4737 err = ext4_mark_inode_dirty(handle, inode);
4738 ext4_handle_sync(handle);
4739 ext4_journal_stop(handle);
4740 ext4_std_error(inode->i_sb, err);
4741
4742 return err;
4743}
4744
4745static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4746{
4747 return !buffer_mapped(bh);
4748}
4749
4750int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4751{
4752 struct page *page = vmf->page;
4753 loff_t size;
4754 unsigned long len;
4755 int ret;
4756 struct file *file = vma->vm_file;
4757 struct inode *inode = file->f_path.dentry->d_inode;
4758 struct address_space *mapping = inode->i_mapping;
4759 handle_t *handle;
4760 get_block_t *get_block;
4761 int retries = 0;
4762
4763 /*
4764 * This check is racy but catches the common case. We rely on
4765 * __block_page_mkwrite() to do a reliable check.
4766 */
4767 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4768 /* Delalloc case is easy... */
4769 if (test_opt(inode->i_sb, DELALLOC) &&
4770 !ext4_should_journal_data(inode) &&
4771 !ext4_nonda_switch(inode->i_sb)) {
4772 do {
4773 ret = __block_page_mkwrite(vma, vmf,
4774 ext4_da_get_block_prep);
4775 } while (ret == -ENOSPC &&
4776 ext4_should_retry_alloc(inode->i_sb, &retries));
4777 goto out_ret;
4778 }
4779
4780 lock_page(page);
4781 size = i_size_read(inode);
4782 /* Page got truncated from under us? */
4783 if (page->mapping != mapping || page_offset(page) > size) {
4784 unlock_page(page);
4785 ret = VM_FAULT_NOPAGE;
4786 goto out;
4787 }
4788
4789 if (page->index == size >> PAGE_CACHE_SHIFT)
4790 len = size & ~PAGE_CACHE_MASK;
4791 else
4792 len = PAGE_CACHE_SIZE;
4793 /*
4794 * Return if we have all the buffers mapped. This avoids the need to do
4795 * journal_start/journal_stop which can block and take a long time
4796 */
4797 if (page_has_buffers(page)) {
4798 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4799 ext4_bh_unmapped)) {
4800 /* Wait so that we don't change page under IO */
4801 wait_on_page_writeback(page);
4802 ret = VM_FAULT_LOCKED;
4803 goto out;
4804 }
4805 }
4806 unlock_page(page);
4807 /* OK, we need to fill the hole... */
4808 if (ext4_should_dioread_nolock(inode))
4809 get_block = ext4_get_block_write;
4810 else
4811 get_block = ext4_get_block;
4812retry_alloc:
4813 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4814 if (IS_ERR(handle)) {
4815 ret = VM_FAULT_SIGBUS;
4816 goto out;
4817 }
4818 ret = __block_page_mkwrite(vma, vmf, get_block);
4819 if (!ret && ext4_should_journal_data(inode)) {
4820 if (walk_page_buffers(handle, page_buffers(page), 0,
4821 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4822 unlock_page(page);
4823 ret = VM_FAULT_SIGBUS;
4824 ext4_journal_stop(handle);
4825 goto out;
4826 }
4827 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4828 }
4829 ext4_journal_stop(handle);
4830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4831 goto retry_alloc;
4832out_ret:
4833 ret = block_page_mkwrite_return(ret);
4834out:
4835 return ret;
4836}