drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ecryptfs / crypto.c
... / ...
CommitLineData
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37#include <asm/unaligned.h>
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
105
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
115 rc);
116 goto out;
117 }
118 crypt_stat->hash_tfm = desc.tfm;
119 }
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
124 __func__, rc);
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
131 __func__, rc);
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
138 __func__, rc);
139 goto out;
140 }
141out:
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 return rc;
144}
145
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233}
234
235/**
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242{
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
245 if (crypt_stat->tfm)
246 crypto_free_ablkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
257void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
299 sg_init_table(sg, sg_size);
300
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
304 sg_set_page(&sg[i], pg, 0, offset);
305 remainder_of_page = PAGE_CACHE_SIZE - offset;
306 if (size >= remainder_of_page) {
307 sg[i].length = remainder_of_page;
308 addr += remainder_of_page;
309 size -= remainder_of_page;
310 } else {
311 sg[i].length = size;
312 addr += size;
313 size = 0;
314 }
315 i++;
316 }
317 if (size > 0)
318 return -ENOMEM;
319 return i;
320}
321
322struct extent_crypt_result {
323 struct completion completion;
324 int rc;
325};
326
327static void extent_crypt_complete(struct crypto_async_request *req, int rc)
328{
329 struct extent_crypt_result *ecr = req->data;
330
331 if (rc == -EINPROGRESS)
332 return;
333
334 ecr->rc = rc;
335 complete(&ecr->completion);
336}
337
338/**
339 * encrypt_scatterlist
340 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
341 * @dest_sg: Destination of encrypted data
342 * @src_sg: Data to be encrypted
343 * @size: Length of data to be encrypted
344 * @iv: iv to use during encryption
345 *
346 * Returns the number of bytes encrypted; negative value on error
347 */
348static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
349 struct scatterlist *dest_sg,
350 struct scatterlist *src_sg, int size,
351 unsigned char *iv)
352{
353 struct ablkcipher_request *req = NULL;
354 struct extent_crypt_result ecr;
355 int rc = 0;
356
357 BUG_ON(!crypt_stat || !crypt_stat->tfm
358 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
359 if (unlikely(ecryptfs_verbosity > 0)) {
360 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
361 crypt_stat->key_size);
362 ecryptfs_dump_hex(crypt_stat->key,
363 crypt_stat->key_size);
364 }
365
366 init_completion(&ecr.completion);
367
368 mutex_lock(&crypt_stat->cs_tfm_mutex);
369 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
370 if (!req) {
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 rc = -ENOMEM;
373 goto out;
374 }
375
376 ablkcipher_request_set_callback(req,
377 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
378 extent_crypt_complete, &ecr);
379 /* Consider doing this once, when the file is opened */
380 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
381 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
382 crypt_stat->key_size);
383 if (rc) {
384 ecryptfs_printk(KERN_ERR,
385 "Error setting key; rc = [%d]\n",
386 rc);
387 mutex_unlock(&crypt_stat->cs_tfm_mutex);
388 rc = -EINVAL;
389 goto out;
390 }
391 crypt_stat->flags |= ECRYPTFS_KEY_SET;
392 }
393 mutex_unlock(&crypt_stat->cs_tfm_mutex);
394 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
395 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
396 rc = crypto_ablkcipher_encrypt(req);
397 if (rc == -EINPROGRESS || rc == -EBUSY) {
398 struct extent_crypt_result *ecr = req->base.data;
399
400 wait_for_completion(&ecr->completion);
401 rc = ecr->rc;
402 INIT_COMPLETION(ecr->completion);
403 }
404out:
405 ablkcipher_request_free(req);
406 return rc;
407}
408
409/**
410 * ecryptfs_lower_offset_for_extent
411 *
412 * Convert an eCryptfs page index into a lower byte offset
413 */
414static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
415 struct ecryptfs_crypt_stat *crypt_stat)
416{
417 (*offset) = ecryptfs_lower_header_size(crypt_stat)
418 + (crypt_stat->extent_size * extent_num);
419}
420
421/**
422 * ecryptfs_encrypt_extent
423 * @enc_extent_page: Allocated page into which to encrypt the data in
424 * @page
425 * @crypt_stat: crypt_stat containing cryptographic context for the
426 * encryption operation
427 * @page: Page containing plaintext data extent to encrypt
428 * @extent_offset: Page extent offset for use in generating IV
429 *
430 * Encrypts one extent of data.
431 *
432 * Return zero on success; non-zero otherwise
433 */
434static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
435 struct ecryptfs_crypt_stat *crypt_stat,
436 struct page *page,
437 unsigned long extent_offset)
438{
439 loff_t extent_base;
440 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
441 int rc;
442
443 extent_base = (((loff_t)page->index)
444 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
445 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
446 (extent_base + extent_offset));
447 if (rc) {
448 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
449 "extent [0x%.16llx]; rc = [%d]\n",
450 (unsigned long long)(extent_base + extent_offset), rc);
451 goto out;
452 }
453 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
454 page, (extent_offset
455 * crypt_stat->extent_size),
456 crypt_stat->extent_size, extent_iv);
457 if (rc < 0) {
458 printk(KERN_ERR "%s: Error attempting to encrypt page with "
459 "page->index = [%ld], extent_offset = [%ld]; "
460 "rc = [%d]\n", __func__, page->index, extent_offset,
461 rc);
462 goto out;
463 }
464 rc = 0;
465out:
466 return rc;
467}
468
469/**
470 * ecryptfs_encrypt_page
471 * @page: Page mapped from the eCryptfs inode for the file; contains
472 * decrypted content that needs to be encrypted (to a temporary
473 * page; not in place) and written out to the lower file
474 *
475 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476 * that eCryptfs pages may straddle the lower pages -- for instance,
477 * if the file was created on a machine with an 8K page size
478 * (resulting in an 8K header), and then the file is copied onto a
479 * host with a 32K page size, then when reading page 0 of the eCryptfs
480 * file, 24K of page 0 of the lower file will be read and decrypted,
481 * and then 8K of page 1 of the lower file will be read and decrypted.
482 *
483 * Returns zero on success; negative on error
484 */
485int ecryptfs_encrypt_page(struct page *page)
486{
487 struct inode *ecryptfs_inode;
488 struct ecryptfs_crypt_stat *crypt_stat;
489 char *enc_extent_virt;
490 struct page *enc_extent_page = NULL;
491 loff_t extent_offset;
492 int rc = 0;
493
494 ecryptfs_inode = page->mapping->host;
495 crypt_stat =
496 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
497 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
498 enc_extent_page = alloc_page(GFP_USER);
499 if (!enc_extent_page) {
500 rc = -ENOMEM;
501 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
502 "encrypted extent\n");
503 goto out;
504 }
505 enc_extent_virt = kmap(enc_extent_page);
506 for (extent_offset = 0;
507 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
508 extent_offset++) {
509 loff_t offset;
510
511 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
512 extent_offset);
513 if (rc) {
514 printk(KERN_ERR "%s: Error encrypting extent; "
515 "rc = [%d]\n", __func__, rc);
516 goto out;
517 }
518 ecryptfs_lower_offset_for_extent(
519 &offset, ((((loff_t)page->index)
520 * (PAGE_CACHE_SIZE
521 / crypt_stat->extent_size))
522 + extent_offset), crypt_stat);
523 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
524 offset, crypt_stat->extent_size);
525 if (rc < 0) {
526 ecryptfs_printk(KERN_ERR, "Error attempting "
527 "to write lower page; rc = [%d]"
528 "\n", rc);
529 goto out;
530 }
531 }
532 rc = 0;
533out:
534 if (enc_extent_page) {
535 kunmap(enc_extent_page);
536 __free_page(enc_extent_page);
537 }
538 return rc;
539}
540
541static int ecryptfs_decrypt_extent(struct page *page,
542 struct ecryptfs_crypt_stat *crypt_stat,
543 struct page *enc_extent_page,
544 unsigned long extent_offset)
545{
546 loff_t extent_base;
547 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
548 int rc;
549
550 extent_base = (((loff_t)page->index)
551 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
552 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
553 (extent_base + extent_offset));
554 if (rc) {
555 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
556 "extent [0x%.16llx]; rc = [%d]\n",
557 (unsigned long long)(extent_base + extent_offset), rc);
558 goto out;
559 }
560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 (extent_offset
562 * crypt_stat->extent_size),
563 enc_extent_page, 0,
564 crypt_stat->extent_size, extent_iv);
565 if (rc < 0) {
566 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
568 "rc = [%d]\n", __func__, page->index, extent_offset,
569 rc);
570 goto out;
571 }
572 rc = 0;
573out:
574 return rc;
575}
576
577/**
578 * ecryptfs_decrypt_page
579 * @page: Page mapped from the eCryptfs inode for the file; data read
580 * and decrypted from the lower file will be written into this
581 * page
582 *
583 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
584 * that eCryptfs pages may straddle the lower pages -- for instance,
585 * if the file was created on a machine with an 8K page size
586 * (resulting in an 8K header), and then the file is copied onto a
587 * host with a 32K page size, then when reading page 0 of the eCryptfs
588 * file, 24K of page 0 of the lower file will be read and decrypted,
589 * and then 8K of page 1 of the lower file will be read and decrypted.
590 *
591 * Returns zero on success; negative on error
592 */
593int ecryptfs_decrypt_page(struct page *page)
594{
595 struct inode *ecryptfs_inode;
596 struct ecryptfs_crypt_stat *crypt_stat;
597 char *enc_extent_virt;
598 struct page *enc_extent_page = NULL;
599 unsigned long extent_offset;
600 int rc = 0;
601
602 ecryptfs_inode = page->mapping->host;
603 crypt_stat =
604 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
605 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
606 enc_extent_page = alloc_page(GFP_USER);
607 if (!enc_extent_page) {
608 rc = -ENOMEM;
609 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
610 "encrypted extent\n");
611 goto out;
612 }
613 enc_extent_virt = kmap(enc_extent_page);
614 for (extent_offset = 0;
615 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
616 extent_offset++) {
617 loff_t offset;
618
619 ecryptfs_lower_offset_for_extent(
620 &offset, ((page->index * (PAGE_CACHE_SIZE
621 / crypt_stat->extent_size))
622 + extent_offset), crypt_stat);
623 rc = ecryptfs_read_lower(enc_extent_virt, offset,
624 crypt_stat->extent_size,
625 ecryptfs_inode);
626 if (rc < 0) {
627 ecryptfs_printk(KERN_ERR, "Error attempting "
628 "to read lower page; rc = [%d]"
629 "\n", rc);
630 goto out;
631 }
632 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
633 extent_offset);
634 if (rc) {
635 printk(KERN_ERR "%s: Error encrypting extent; "
636 "rc = [%d]\n", __func__, rc);
637 goto out;
638 }
639 }
640out:
641 if (enc_extent_page) {
642 kunmap(enc_extent_page);
643 __free_page(enc_extent_page);
644 }
645 return rc;
646}
647
648/**
649 * decrypt_scatterlist
650 * @crypt_stat: Cryptographic context
651 * @dest_sg: The destination scatterlist to decrypt into
652 * @src_sg: The source scatterlist to decrypt from
653 * @size: The number of bytes to decrypt
654 * @iv: The initialization vector to use for the decryption
655 *
656 * Returns the number of bytes decrypted; negative value on error
657 */
658static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
659 struct scatterlist *dest_sg,
660 struct scatterlist *src_sg, int size,
661 unsigned char *iv)
662{
663 struct ablkcipher_request *req = NULL;
664 struct extent_crypt_result ecr;
665 int rc = 0;
666
667 BUG_ON(!crypt_stat || !crypt_stat->tfm
668 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
669 if (unlikely(ecryptfs_verbosity > 0)) {
670 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
671 crypt_stat->key_size);
672 ecryptfs_dump_hex(crypt_stat->key,
673 crypt_stat->key_size);
674 }
675
676 init_completion(&ecr.completion);
677
678 mutex_lock(&crypt_stat->cs_tfm_mutex);
679 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
680 if (!req) {
681 mutex_unlock(&crypt_stat->cs_tfm_mutex);
682 rc = -ENOMEM;
683 goto out;
684 }
685
686 ablkcipher_request_set_callback(req,
687 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
688 extent_crypt_complete, &ecr);
689 /* Consider doing this once, when the file is opened */
690 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
691 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
692 crypt_stat->key_size);
693 if (rc) {
694 ecryptfs_printk(KERN_ERR,
695 "Error setting key; rc = [%d]\n",
696 rc);
697 mutex_unlock(&crypt_stat->cs_tfm_mutex);
698 rc = -EINVAL;
699 goto out;
700 }
701 crypt_stat->flags |= ECRYPTFS_KEY_SET;
702 }
703 mutex_unlock(&crypt_stat->cs_tfm_mutex);
704 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
705 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
706 rc = crypto_ablkcipher_decrypt(req);
707 if (rc == -EINPROGRESS || rc == -EBUSY) {
708 struct extent_crypt_result *ecr = req->base.data;
709
710 wait_for_completion(&ecr->completion);
711 rc = ecr->rc;
712 INIT_COMPLETION(ecr->completion);
713 }
714out:
715 ablkcipher_request_free(req);
716 return rc;
717
718}
719
720/**
721 * ecryptfs_encrypt_page_offset
722 * @crypt_stat: The cryptographic context
723 * @dst_page: The page to encrypt into
724 * @dst_offset: The offset in the page to encrypt into
725 * @src_page: The page to encrypt from
726 * @src_offset: The offset in the page to encrypt from
727 * @size: The number of bytes to encrypt
728 * @iv: The initialization vector to use for the encryption
729 *
730 * Returns the number of bytes encrypted
731 */
732static int
733ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
734 struct page *dst_page, int dst_offset,
735 struct page *src_page, int src_offset, int size,
736 unsigned char *iv)
737{
738 struct scatterlist src_sg, dst_sg;
739
740 sg_init_table(&src_sg, 1);
741 sg_init_table(&dst_sg, 1);
742
743 sg_set_page(&src_sg, src_page, size, src_offset);
744 sg_set_page(&dst_sg, dst_page, size, dst_offset);
745 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
746}
747
748/**
749 * ecryptfs_decrypt_page_offset
750 * @crypt_stat: The cryptographic context
751 * @dst_page: The page to decrypt into
752 * @dst_offset: The offset in the page to decrypt into
753 * @src_page: The page to decrypt from
754 * @src_offset: The offset in the page to decrypt from
755 * @size: The number of bytes to decrypt
756 * @iv: The initialization vector to use for the decryption
757 *
758 * Returns the number of bytes decrypted
759 */
760static int
761ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
762 struct page *dst_page, int dst_offset,
763 struct page *src_page, int src_offset, int size,
764 unsigned char *iv)
765{
766 struct scatterlist src_sg, dst_sg;
767
768 sg_init_table(&src_sg, 1);
769 sg_set_page(&src_sg, src_page, size, src_offset);
770
771 sg_init_table(&dst_sg, 1);
772 sg_set_page(&dst_sg, dst_page, size, dst_offset);
773
774 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
775}
776
777#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
778
779/**
780 * ecryptfs_init_crypt_ctx
781 * @crypt_stat: Uninitialized crypt stats structure
782 *
783 * Initialize the crypto context.
784 *
785 * TODO: Performance: Keep a cache of initialized cipher contexts;
786 * only init if needed
787 */
788int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
789{
790 char *full_alg_name;
791 int rc = -EINVAL;
792
793 if (!crypt_stat->cipher) {
794 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
795 goto out;
796 }
797 ecryptfs_printk(KERN_DEBUG,
798 "Initializing cipher [%s]; strlen = [%d]; "
799 "key_size_bits = [%zd]\n",
800 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
801 crypt_stat->key_size << 3);
802 if (crypt_stat->tfm) {
803 rc = 0;
804 goto out;
805 }
806 mutex_lock(&crypt_stat->cs_tfm_mutex);
807 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
808 crypt_stat->cipher, "cbc");
809 if (rc)
810 goto out_unlock;
811 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
812 kfree(full_alg_name);
813 if (IS_ERR(crypt_stat->tfm)) {
814 rc = PTR_ERR(crypt_stat->tfm);
815 crypt_stat->tfm = NULL;
816 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
817 "Error initializing cipher [%s]\n",
818 crypt_stat->cipher);
819 goto out_unlock;
820 }
821 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
822 rc = 0;
823out_unlock:
824 mutex_unlock(&crypt_stat->cs_tfm_mutex);
825out:
826 return rc;
827}
828
829static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
830{
831 int extent_size_tmp;
832
833 crypt_stat->extent_mask = 0xFFFFFFFF;
834 crypt_stat->extent_shift = 0;
835 if (crypt_stat->extent_size == 0)
836 return;
837 extent_size_tmp = crypt_stat->extent_size;
838 while ((extent_size_tmp & 0x01) == 0) {
839 extent_size_tmp >>= 1;
840 crypt_stat->extent_mask <<= 1;
841 crypt_stat->extent_shift++;
842 }
843}
844
845void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
846{
847 /* Default values; may be overwritten as we are parsing the
848 * packets. */
849 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
850 set_extent_mask_and_shift(crypt_stat);
851 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
852 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
853 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
854 else {
855 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
856 crypt_stat->metadata_size =
857 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
858 else
859 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
860 }
861}
862
863/**
864 * ecryptfs_compute_root_iv
865 * @crypt_stats
866 *
867 * On error, sets the root IV to all 0's.
868 */
869int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
870{
871 int rc = 0;
872 char dst[MD5_DIGEST_SIZE];
873
874 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
875 BUG_ON(crypt_stat->iv_bytes <= 0);
876 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
877 rc = -EINVAL;
878 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
879 "cannot generate root IV\n");
880 goto out;
881 }
882 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
883 crypt_stat->key_size);
884 if (rc) {
885 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
886 "MD5 while generating root IV\n");
887 goto out;
888 }
889 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
890out:
891 if (rc) {
892 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
893 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
894 }
895 return rc;
896}
897
898static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
899{
900 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
901 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
902 ecryptfs_compute_root_iv(crypt_stat);
903 if (unlikely(ecryptfs_verbosity > 0)) {
904 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
905 ecryptfs_dump_hex(crypt_stat->key,
906 crypt_stat->key_size);
907 }
908}
909
910/**
911 * ecryptfs_copy_mount_wide_flags_to_inode_flags
912 * @crypt_stat: The inode's cryptographic context
913 * @mount_crypt_stat: The mount point's cryptographic context
914 *
915 * This function propagates the mount-wide flags to individual inode
916 * flags.
917 */
918static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
919 struct ecryptfs_crypt_stat *crypt_stat,
920 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
921{
922 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
923 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
924 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
925 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
926 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
927 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
928 if (mount_crypt_stat->flags
929 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
930 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
931 else if (mount_crypt_stat->flags
932 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
933 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
934 }
935}
936
937static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
938 struct ecryptfs_crypt_stat *crypt_stat,
939 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
940{
941 struct ecryptfs_global_auth_tok *global_auth_tok;
942 int rc = 0;
943
944 mutex_lock(&crypt_stat->keysig_list_mutex);
945 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
946
947 list_for_each_entry(global_auth_tok,
948 &mount_crypt_stat->global_auth_tok_list,
949 mount_crypt_stat_list) {
950 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
951 continue;
952 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
953 if (rc) {
954 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
955 goto out;
956 }
957 }
958
959out:
960 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
961 mutex_unlock(&crypt_stat->keysig_list_mutex);
962 return rc;
963}
964
965/**
966 * ecryptfs_set_default_crypt_stat_vals
967 * @crypt_stat: The inode's cryptographic context
968 * @mount_crypt_stat: The mount point's cryptographic context
969 *
970 * Default values in the event that policy does not override them.
971 */
972static void ecryptfs_set_default_crypt_stat_vals(
973 struct ecryptfs_crypt_stat *crypt_stat,
974 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
975{
976 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
977 mount_crypt_stat);
978 ecryptfs_set_default_sizes(crypt_stat);
979 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
980 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
981 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
982 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
983 crypt_stat->mount_crypt_stat = mount_crypt_stat;
984}
985
986/**
987 * ecryptfs_new_file_context
988 * @ecryptfs_inode: The eCryptfs inode
989 *
990 * If the crypto context for the file has not yet been established,
991 * this is where we do that. Establishing a new crypto context
992 * involves the following decisions:
993 * - What cipher to use?
994 * - What set of authentication tokens to use?
995 * Here we just worry about getting enough information into the
996 * authentication tokens so that we know that they are available.
997 * We associate the available authentication tokens with the new file
998 * via the set of signatures in the crypt_stat struct. Later, when
999 * the headers are actually written out, we may again defer to
1000 * userspace to perform the encryption of the session key; for the
1001 * foreseeable future, this will be the case with public key packets.
1002 *
1003 * Returns zero on success; non-zero otherwise
1004 */
1005int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1006{
1007 struct ecryptfs_crypt_stat *crypt_stat =
1008 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1009 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1010 &ecryptfs_superblock_to_private(
1011 ecryptfs_inode->i_sb)->mount_crypt_stat;
1012 int cipher_name_len;
1013 int rc = 0;
1014
1015 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1016 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1017 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1018 mount_crypt_stat);
1019 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1020 mount_crypt_stat);
1021 if (rc) {
1022 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1023 "to the inode key sigs; rc = [%d]\n", rc);
1024 goto out;
1025 }
1026 cipher_name_len =
1027 strlen(mount_crypt_stat->global_default_cipher_name);
1028 memcpy(crypt_stat->cipher,
1029 mount_crypt_stat->global_default_cipher_name,
1030 cipher_name_len);
1031 crypt_stat->cipher[cipher_name_len] = '\0';
1032 crypt_stat->key_size =
1033 mount_crypt_stat->global_default_cipher_key_size;
1034 ecryptfs_generate_new_key(crypt_stat);
1035 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1036 if (rc)
1037 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1038 "context for cipher [%s]: rc = [%d]\n",
1039 crypt_stat->cipher, rc);
1040out:
1041 return rc;
1042}
1043
1044/**
1045 * ecryptfs_validate_marker - check for the ecryptfs marker
1046 * @data: The data block in which to check
1047 *
1048 * Returns zero if marker found; -EINVAL if not found
1049 */
1050static int ecryptfs_validate_marker(char *data)
1051{
1052 u32 m_1, m_2;
1053
1054 m_1 = get_unaligned_be32(data);
1055 m_2 = get_unaligned_be32(data + 4);
1056 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1057 return 0;
1058 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1059 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1060 MAGIC_ECRYPTFS_MARKER);
1061 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1062 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1063 return -EINVAL;
1064}
1065
1066struct ecryptfs_flag_map_elem {
1067 u32 file_flag;
1068 u32 local_flag;
1069};
1070
1071/* Add support for additional flags by adding elements here. */
1072static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1073 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1074 {0x00000002, ECRYPTFS_ENCRYPTED},
1075 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1076 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1077};
1078
1079/**
1080 * ecryptfs_process_flags
1081 * @crypt_stat: The cryptographic context
1082 * @page_virt: Source data to be parsed
1083 * @bytes_read: Updated with the number of bytes read
1084 *
1085 * Returns zero on success; non-zero if the flag set is invalid
1086 */
1087static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1088 char *page_virt, int *bytes_read)
1089{
1090 int rc = 0;
1091 int i;
1092 u32 flags;
1093
1094 flags = get_unaligned_be32(page_virt);
1095 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1096 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1097 if (flags & ecryptfs_flag_map[i].file_flag) {
1098 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1099 } else
1100 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1101 /* Version is in top 8 bits of the 32-bit flag vector */
1102 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1103 (*bytes_read) = 4;
1104 return rc;
1105}
1106
1107/**
1108 * write_ecryptfs_marker
1109 * @page_virt: The pointer to in a page to begin writing the marker
1110 * @written: Number of bytes written
1111 *
1112 * Marker = 0x3c81b7f5
1113 */
1114static void write_ecryptfs_marker(char *page_virt, size_t *written)
1115{
1116 u32 m_1, m_2;
1117
1118 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1119 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1120 put_unaligned_be32(m_1, page_virt);
1121 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1122 put_unaligned_be32(m_2, page_virt);
1123 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1124}
1125
1126void ecryptfs_write_crypt_stat_flags(char *page_virt,
1127 struct ecryptfs_crypt_stat *crypt_stat,
1128 size_t *written)
1129{
1130 u32 flags = 0;
1131 int i;
1132
1133 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1134 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1135 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1136 flags |= ecryptfs_flag_map[i].file_flag;
1137 /* Version is in top 8 bits of the 32-bit flag vector */
1138 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1139 put_unaligned_be32(flags, page_virt);
1140 (*written) = 4;
1141}
1142
1143struct ecryptfs_cipher_code_str_map_elem {
1144 char cipher_str[16];
1145 u8 cipher_code;
1146};
1147
1148/* Add support for additional ciphers by adding elements here. The
1149 * cipher_code is whatever OpenPGP applicatoins use to identify the
1150 * ciphers. List in order of probability. */
1151static struct ecryptfs_cipher_code_str_map_elem
1152ecryptfs_cipher_code_str_map[] = {
1153 {"aes",RFC2440_CIPHER_AES_128 },
1154 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1155 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1156 {"cast5", RFC2440_CIPHER_CAST_5},
1157 {"twofish", RFC2440_CIPHER_TWOFISH},
1158 {"cast6", RFC2440_CIPHER_CAST_6},
1159 {"aes", RFC2440_CIPHER_AES_192},
1160 {"aes", RFC2440_CIPHER_AES_256}
1161};
1162
1163/**
1164 * ecryptfs_code_for_cipher_string
1165 * @cipher_name: The string alias for the cipher
1166 * @key_bytes: Length of key in bytes; used for AES code selection
1167 *
1168 * Returns zero on no match, or the cipher code on match
1169 */
1170u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1171{
1172 int i;
1173 u8 code = 0;
1174 struct ecryptfs_cipher_code_str_map_elem *map =
1175 ecryptfs_cipher_code_str_map;
1176
1177 if (strcmp(cipher_name, "aes") == 0) {
1178 switch (key_bytes) {
1179 case 16:
1180 code = RFC2440_CIPHER_AES_128;
1181 break;
1182 case 24:
1183 code = RFC2440_CIPHER_AES_192;
1184 break;
1185 case 32:
1186 code = RFC2440_CIPHER_AES_256;
1187 }
1188 } else {
1189 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1190 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1191 code = map[i].cipher_code;
1192 break;
1193 }
1194 }
1195 return code;
1196}
1197
1198/**
1199 * ecryptfs_cipher_code_to_string
1200 * @str: Destination to write out the cipher name
1201 * @cipher_code: The code to convert to cipher name string
1202 *
1203 * Returns zero on success
1204 */
1205int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1206{
1207 int rc = 0;
1208 int i;
1209
1210 str[0] = '\0';
1211 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1212 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1213 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1214 if (str[0] == '\0') {
1215 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1216 "[%d]\n", cipher_code);
1217 rc = -EINVAL;
1218 }
1219 return rc;
1220}
1221
1222int ecryptfs_read_and_validate_header_region(struct inode *inode)
1223{
1224 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1225 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1226 int rc;
1227
1228 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1229 inode);
1230 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1231 return rc >= 0 ? -EINVAL : rc;
1232 rc = ecryptfs_validate_marker(marker);
1233 if (!rc)
1234 ecryptfs_i_size_init(file_size, inode);
1235 return rc;
1236}
1237
1238void
1239ecryptfs_write_header_metadata(char *virt,
1240 struct ecryptfs_crypt_stat *crypt_stat,
1241 size_t *written)
1242{
1243 u32 header_extent_size;
1244 u16 num_header_extents_at_front;
1245
1246 header_extent_size = (u32)crypt_stat->extent_size;
1247 num_header_extents_at_front =
1248 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1249 put_unaligned_be32(header_extent_size, virt);
1250 virt += 4;
1251 put_unaligned_be16(num_header_extents_at_front, virt);
1252 (*written) = 6;
1253}
1254
1255struct kmem_cache *ecryptfs_header_cache;
1256
1257/**
1258 * ecryptfs_write_headers_virt
1259 * @page_virt: The virtual address to write the headers to
1260 * @max: The size of memory allocated at page_virt
1261 * @size: Set to the number of bytes written by this function
1262 * @crypt_stat: The cryptographic context
1263 * @ecryptfs_dentry: The eCryptfs dentry
1264 *
1265 * Format version: 1
1266 *
1267 * Header Extent:
1268 * Octets 0-7: Unencrypted file size (big-endian)
1269 * Octets 8-15: eCryptfs special marker
1270 * Octets 16-19: Flags
1271 * Octet 16: File format version number (between 0 and 255)
1272 * Octets 17-18: Reserved
1273 * Octet 19: Bit 1 (lsb): Reserved
1274 * Bit 2: Encrypted?
1275 * Bits 3-8: Reserved
1276 * Octets 20-23: Header extent size (big-endian)
1277 * Octets 24-25: Number of header extents at front of file
1278 * (big-endian)
1279 * Octet 26: Begin RFC 2440 authentication token packet set
1280 * Data Extent 0:
1281 * Lower data (CBC encrypted)
1282 * Data Extent 1:
1283 * Lower data (CBC encrypted)
1284 * ...
1285 *
1286 * Returns zero on success
1287 */
1288static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1289 size_t *size,
1290 struct ecryptfs_crypt_stat *crypt_stat,
1291 struct dentry *ecryptfs_dentry)
1292{
1293 int rc;
1294 size_t written;
1295 size_t offset;
1296
1297 offset = ECRYPTFS_FILE_SIZE_BYTES;
1298 write_ecryptfs_marker((page_virt + offset), &written);
1299 offset += written;
1300 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1301 &written);
1302 offset += written;
1303 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1304 &written);
1305 offset += written;
1306 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1307 ecryptfs_dentry, &written,
1308 max - offset);
1309 if (rc)
1310 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1311 "set; rc = [%d]\n", rc);
1312 if (size) {
1313 offset += written;
1314 *size = offset;
1315 }
1316 return rc;
1317}
1318
1319static int
1320ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1321 char *virt, size_t virt_len)
1322{
1323 int rc;
1324
1325 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1326 0, virt_len);
1327 if (rc < 0)
1328 printk(KERN_ERR "%s: Error attempting to write header "
1329 "information to lower file; rc = [%d]\n", __func__, rc);
1330 else
1331 rc = 0;
1332 return rc;
1333}
1334
1335static int
1336ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1337 char *page_virt, size_t size)
1338{
1339 int rc;
1340
1341 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1342 size, 0);
1343 return rc;
1344}
1345
1346static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1347 unsigned int order)
1348{
1349 struct page *page;
1350
1351 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1352 if (page)
1353 return (unsigned long) page_address(page);
1354 return 0;
1355}
1356
1357/**
1358 * ecryptfs_write_metadata
1359 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1360 * @ecryptfs_inode: The newly created eCryptfs inode
1361 *
1362 * Write the file headers out. This will likely involve a userspace
1363 * callout, in which the session key is encrypted with one or more
1364 * public keys and/or the passphrase necessary to do the encryption is
1365 * retrieved via a prompt. Exactly what happens at this point should
1366 * be policy-dependent.
1367 *
1368 * Returns zero on success; non-zero on error
1369 */
1370int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1371 struct inode *ecryptfs_inode)
1372{
1373 struct ecryptfs_crypt_stat *crypt_stat =
1374 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1375 unsigned int order;
1376 char *virt;
1377 size_t virt_len;
1378 size_t size = 0;
1379 int rc = 0;
1380
1381 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1382 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1383 printk(KERN_ERR "Key is invalid; bailing out\n");
1384 rc = -EINVAL;
1385 goto out;
1386 }
1387 } else {
1388 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1389 __func__);
1390 rc = -EINVAL;
1391 goto out;
1392 }
1393 virt_len = crypt_stat->metadata_size;
1394 order = get_order(virt_len);
1395 /* Released in this function */
1396 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1397 if (!virt) {
1398 printk(KERN_ERR "%s: Out of memory\n", __func__);
1399 rc = -ENOMEM;
1400 goto out;
1401 }
1402 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1403 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1404 ecryptfs_dentry);
1405 if (unlikely(rc)) {
1406 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1407 __func__, rc);
1408 goto out_free;
1409 }
1410 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1411 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1412 size);
1413 else
1414 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1415 virt_len);
1416 if (rc) {
1417 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1418 "rc = [%d]\n", __func__, rc);
1419 goto out_free;
1420 }
1421out_free:
1422 free_pages((unsigned long)virt, order);
1423out:
1424 return rc;
1425}
1426
1427#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1428#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1429static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1430 char *virt, int *bytes_read,
1431 int validate_header_size)
1432{
1433 int rc = 0;
1434 u32 header_extent_size;
1435 u16 num_header_extents_at_front;
1436
1437 header_extent_size = get_unaligned_be32(virt);
1438 virt += sizeof(__be32);
1439 num_header_extents_at_front = get_unaligned_be16(virt);
1440 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1441 * (size_t)header_extent_size));
1442 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1443 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1444 && (crypt_stat->metadata_size
1445 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1446 rc = -EINVAL;
1447 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1448 crypt_stat->metadata_size);
1449 }
1450 return rc;
1451}
1452
1453/**
1454 * set_default_header_data
1455 * @crypt_stat: The cryptographic context
1456 *
1457 * For version 0 file format; this function is only for backwards
1458 * compatibility for files created with the prior versions of
1459 * eCryptfs.
1460 */
1461static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1462{
1463 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1464}
1465
1466void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1467{
1468 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1469 struct ecryptfs_crypt_stat *crypt_stat;
1470 u64 file_size;
1471
1472 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1473 mount_crypt_stat =
1474 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1475 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1476 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1477 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1478 file_size += crypt_stat->metadata_size;
1479 } else
1480 file_size = get_unaligned_be64(page_virt);
1481 i_size_write(inode, (loff_t)file_size);
1482 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1483}
1484
1485/**
1486 * ecryptfs_read_headers_virt
1487 * @page_virt: The virtual address into which to read the headers
1488 * @crypt_stat: The cryptographic context
1489 * @ecryptfs_dentry: The eCryptfs dentry
1490 * @validate_header_size: Whether to validate the header size while reading
1491 *
1492 * Read/parse the header data. The header format is detailed in the
1493 * comment block for the ecryptfs_write_headers_virt() function.
1494 *
1495 * Returns zero on success
1496 */
1497static int ecryptfs_read_headers_virt(char *page_virt,
1498 struct ecryptfs_crypt_stat *crypt_stat,
1499 struct dentry *ecryptfs_dentry,
1500 int validate_header_size)
1501{
1502 int rc = 0;
1503 int offset;
1504 int bytes_read;
1505
1506 ecryptfs_set_default_sizes(crypt_stat);
1507 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1508 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1509 offset = ECRYPTFS_FILE_SIZE_BYTES;
1510 rc = ecryptfs_validate_marker(page_virt + offset);
1511 if (rc)
1512 goto out;
1513 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1514 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1515 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1516 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1517 &bytes_read);
1518 if (rc) {
1519 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1520 goto out;
1521 }
1522 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1523 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1524 "file version [%d] is supported by this "
1525 "version of eCryptfs\n",
1526 crypt_stat->file_version,
1527 ECRYPTFS_SUPPORTED_FILE_VERSION);
1528 rc = -EINVAL;
1529 goto out;
1530 }
1531 offset += bytes_read;
1532 if (crypt_stat->file_version >= 1) {
1533 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1534 &bytes_read, validate_header_size);
1535 if (rc) {
1536 ecryptfs_printk(KERN_WARNING, "Error reading header "
1537 "metadata; rc = [%d]\n", rc);
1538 }
1539 offset += bytes_read;
1540 } else
1541 set_default_header_data(crypt_stat);
1542 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1543 ecryptfs_dentry);
1544out:
1545 return rc;
1546}
1547
1548/**
1549 * ecryptfs_read_xattr_region
1550 * @page_virt: The vitual address into which to read the xattr data
1551 * @ecryptfs_inode: The eCryptfs inode
1552 *
1553 * Attempts to read the crypto metadata from the extended attribute
1554 * region of the lower file.
1555 *
1556 * Returns zero on success; non-zero on error
1557 */
1558int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1559{
1560 struct dentry *lower_dentry =
1561 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1562 ssize_t size;
1563 int rc = 0;
1564
1565 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1566 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1567 if (size < 0) {
1568 if (unlikely(ecryptfs_verbosity > 0))
1569 printk(KERN_INFO "Error attempting to read the [%s] "
1570 "xattr from the lower file; return value = "
1571 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1572 rc = -EINVAL;
1573 goto out;
1574 }
1575out:
1576 return rc;
1577}
1578
1579int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1580 struct inode *inode)
1581{
1582 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1583 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1584 int rc;
1585
1586 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1587 ECRYPTFS_XATTR_NAME, file_size,
1588 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1589 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1590 return rc >= 0 ? -EINVAL : rc;
1591 rc = ecryptfs_validate_marker(marker);
1592 if (!rc)
1593 ecryptfs_i_size_init(file_size, inode);
1594 return rc;
1595}
1596
1597/**
1598 * ecryptfs_read_metadata
1599 *
1600 * Common entry point for reading file metadata. From here, we could
1601 * retrieve the header information from the header region of the file,
1602 * the xattr region of the file, or some other repostory that is
1603 * stored separately from the file itself. The current implementation
1604 * supports retrieving the metadata information from the file contents
1605 * and from the xattr region.
1606 *
1607 * Returns zero if valid headers found and parsed; non-zero otherwise
1608 */
1609int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1610{
1611 int rc;
1612 char *page_virt;
1613 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1614 struct ecryptfs_crypt_stat *crypt_stat =
1615 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1616 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1617 &ecryptfs_superblock_to_private(
1618 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1619
1620 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1621 mount_crypt_stat);
1622 /* Read the first page from the underlying file */
1623 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1624 if (!page_virt) {
1625 rc = -ENOMEM;
1626 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1627 __func__);
1628 goto out;
1629 }
1630 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1631 ecryptfs_inode);
1632 if (rc >= 0)
1633 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1634 ecryptfs_dentry,
1635 ECRYPTFS_VALIDATE_HEADER_SIZE);
1636 if (rc) {
1637 /* metadata is not in the file header, so try xattrs */
1638 memset(page_virt, 0, PAGE_CACHE_SIZE);
1639 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1640 if (rc) {
1641 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1642 "file header region or xattr region, inode %lu\n",
1643 ecryptfs_inode->i_ino);
1644 rc = -EINVAL;
1645 goto out;
1646 }
1647 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1648 ecryptfs_dentry,
1649 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1650 if (rc) {
1651 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1652 "file xattr region either, inode %lu\n",
1653 ecryptfs_inode->i_ino);
1654 rc = -EINVAL;
1655 }
1656 if (crypt_stat->mount_crypt_stat->flags
1657 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1658 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1659 } else {
1660 printk(KERN_WARNING "Attempt to access file with "
1661 "crypto metadata only in the extended attribute "
1662 "region, but eCryptfs was mounted without "
1663 "xattr support enabled. eCryptfs will not treat "
1664 "this like an encrypted file, inode %lu\n",
1665 ecryptfs_inode->i_ino);
1666 rc = -EINVAL;
1667 }
1668 }
1669out:
1670 if (page_virt) {
1671 memset(page_virt, 0, PAGE_CACHE_SIZE);
1672 kmem_cache_free(ecryptfs_header_cache, page_virt);
1673 }
1674 return rc;
1675}
1676
1677/**
1678 * ecryptfs_encrypt_filename - encrypt filename
1679 *
1680 * CBC-encrypts the filename. We do not want to encrypt the same
1681 * filename with the same key and IV, which may happen with hard
1682 * links, so we prepend random bits to each filename.
1683 *
1684 * Returns zero on success; non-zero otherwise
1685 */
1686static int
1687ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1688 struct ecryptfs_crypt_stat *crypt_stat,
1689 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1690{
1691 int rc = 0;
1692
1693 filename->encrypted_filename = NULL;
1694 filename->encrypted_filename_size = 0;
1695 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1696 || (mount_crypt_stat && (mount_crypt_stat->flags
1697 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1698 size_t packet_size;
1699 size_t remaining_bytes;
1700
1701 rc = ecryptfs_write_tag_70_packet(
1702 NULL, NULL,
1703 &filename->encrypted_filename_size,
1704 mount_crypt_stat, NULL,
1705 filename->filename_size);
1706 if (rc) {
1707 printk(KERN_ERR "%s: Error attempting to get packet "
1708 "size for tag 72; rc = [%d]\n", __func__,
1709 rc);
1710 filename->encrypted_filename_size = 0;
1711 goto out;
1712 }
1713 filename->encrypted_filename =
1714 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1715 if (!filename->encrypted_filename) {
1716 printk(KERN_ERR "%s: Out of memory whilst attempting "
1717 "to kmalloc [%zd] bytes\n", __func__,
1718 filename->encrypted_filename_size);
1719 rc = -ENOMEM;
1720 goto out;
1721 }
1722 remaining_bytes = filename->encrypted_filename_size;
1723 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1724 &remaining_bytes,
1725 &packet_size,
1726 mount_crypt_stat,
1727 filename->filename,
1728 filename->filename_size);
1729 if (rc) {
1730 printk(KERN_ERR "%s: Error attempting to generate "
1731 "tag 70 packet; rc = [%d]\n", __func__,
1732 rc);
1733 kfree(filename->encrypted_filename);
1734 filename->encrypted_filename = NULL;
1735 filename->encrypted_filename_size = 0;
1736 goto out;
1737 }
1738 filename->encrypted_filename_size = packet_size;
1739 } else {
1740 printk(KERN_ERR "%s: No support for requested filename "
1741 "encryption method in this release\n", __func__);
1742 rc = -EOPNOTSUPP;
1743 goto out;
1744 }
1745out:
1746 return rc;
1747}
1748
1749static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1750 const char *name, size_t name_size)
1751{
1752 int rc = 0;
1753
1754 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1755 if (!(*copied_name)) {
1756 rc = -ENOMEM;
1757 goto out;
1758 }
1759 memcpy((void *)(*copied_name), (void *)name, name_size);
1760 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1761 * in printing out the
1762 * string in debug
1763 * messages */
1764 (*copied_name_size) = name_size;
1765out:
1766 return rc;
1767}
1768
1769/**
1770 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1771 * @key_tfm: Crypto context for key material, set by this function
1772 * @cipher_name: Name of the cipher
1773 * @key_size: Size of the key in bytes
1774 *
1775 * Returns zero on success. Any crypto_tfm structs allocated here
1776 * should be released by other functions, such as on a superblock put
1777 * event, regardless of whether this function succeeds for fails.
1778 */
1779static int
1780ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1781 char *cipher_name, size_t *key_size)
1782{
1783 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1784 char *full_alg_name = NULL;
1785 int rc;
1786
1787 *key_tfm = NULL;
1788 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1789 rc = -EINVAL;
1790 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1791 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1792 goto out;
1793 }
1794 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1795 "ecb");
1796 if (rc)
1797 goto out;
1798 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1799 if (IS_ERR(*key_tfm)) {
1800 rc = PTR_ERR(*key_tfm);
1801 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1802 "[%s]; rc = [%d]\n", full_alg_name, rc);
1803 goto out;
1804 }
1805 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1806 if (*key_size == 0) {
1807 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1808
1809 *key_size = alg->max_keysize;
1810 }
1811 get_random_bytes(dummy_key, *key_size);
1812 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1813 if (rc) {
1814 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1815 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1816 rc);
1817 rc = -EINVAL;
1818 goto out;
1819 }
1820out:
1821 kfree(full_alg_name);
1822 return rc;
1823}
1824
1825struct kmem_cache *ecryptfs_key_tfm_cache;
1826static struct list_head key_tfm_list;
1827struct mutex key_tfm_list_mutex;
1828
1829int __init ecryptfs_init_crypto(void)
1830{
1831 mutex_init(&key_tfm_list_mutex);
1832 INIT_LIST_HEAD(&key_tfm_list);
1833 return 0;
1834}
1835
1836/**
1837 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1838 *
1839 * Called only at module unload time
1840 */
1841int ecryptfs_destroy_crypto(void)
1842{
1843 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1844
1845 mutex_lock(&key_tfm_list_mutex);
1846 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1847 key_tfm_list) {
1848 list_del(&key_tfm->key_tfm_list);
1849 if (key_tfm->key_tfm)
1850 crypto_free_blkcipher(key_tfm->key_tfm);
1851 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1852 }
1853 mutex_unlock(&key_tfm_list_mutex);
1854 return 0;
1855}
1856
1857int
1858ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1859 size_t key_size)
1860{
1861 struct ecryptfs_key_tfm *tmp_tfm;
1862 int rc = 0;
1863
1864 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1865
1866 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1867 if (key_tfm != NULL)
1868 (*key_tfm) = tmp_tfm;
1869 if (!tmp_tfm) {
1870 rc = -ENOMEM;
1871 printk(KERN_ERR "Error attempting to allocate from "
1872 "ecryptfs_key_tfm_cache\n");
1873 goto out;
1874 }
1875 mutex_init(&tmp_tfm->key_tfm_mutex);
1876 strncpy(tmp_tfm->cipher_name, cipher_name,
1877 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1878 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1879 tmp_tfm->key_size = key_size;
1880 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1881 tmp_tfm->cipher_name,
1882 &tmp_tfm->key_size);
1883 if (rc) {
1884 printk(KERN_ERR "Error attempting to initialize key TFM "
1885 "cipher with name = [%s]; rc = [%d]\n",
1886 tmp_tfm->cipher_name, rc);
1887 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1888 if (key_tfm != NULL)
1889 (*key_tfm) = NULL;
1890 goto out;
1891 }
1892 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1893out:
1894 return rc;
1895}
1896
1897/**
1898 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1899 * @cipher_name: the name of the cipher to search for
1900 * @key_tfm: set to corresponding tfm if found
1901 *
1902 * Searches for cached key_tfm matching @cipher_name
1903 * Must be called with &key_tfm_list_mutex held
1904 * Returns 1 if found, with @key_tfm set
1905 * Returns 0 if not found, with @key_tfm set to NULL
1906 */
1907int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1908{
1909 struct ecryptfs_key_tfm *tmp_key_tfm;
1910
1911 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1912
1913 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1914 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1915 if (key_tfm)
1916 (*key_tfm) = tmp_key_tfm;
1917 return 1;
1918 }
1919 }
1920 if (key_tfm)
1921 (*key_tfm) = NULL;
1922 return 0;
1923}
1924
1925/**
1926 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1927 *
1928 * @tfm: set to cached tfm found, or new tfm created
1929 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1930 * @cipher_name: the name of the cipher to search for and/or add
1931 *
1932 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1933 * Searches for cached item first, and creates new if not found.
1934 * Returns 0 on success, non-zero if adding new cipher failed
1935 */
1936int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1937 struct mutex **tfm_mutex,
1938 char *cipher_name)
1939{
1940 struct ecryptfs_key_tfm *key_tfm;
1941 int rc = 0;
1942
1943 (*tfm) = NULL;
1944 (*tfm_mutex) = NULL;
1945
1946 mutex_lock(&key_tfm_list_mutex);
1947 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1948 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1949 if (rc) {
1950 printk(KERN_ERR "Error adding new key_tfm to list; "
1951 "rc = [%d]\n", rc);
1952 goto out;
1953 }
1954 }
1955 (*tfm) = key_tfm->key_tfm;
1956 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1957out:
1958 mutex_unlock(&key_tfm_list_mutex);
1959 return rc;
1960}
1961
1962/* 64 characters forming a 6-bit target field */
1963static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1964 "EFGHIJKLMNOPQRST"
1965 "UVWXYZabcdefghij"
1966 "klmnopqrstuvwxyz");
1967
1968/* We could either offset on every reverse map or just pad some 0x00's
1969 * at the front here */
1970static const unsigned char filename_rev_map[256] = {
1971 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1972 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1973 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1975 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1976 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1977 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1978 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1979 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1980 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1981 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1982 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1983 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1984 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1985 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1986 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1987};
1988
1989/**
1990 * ecryptfs_encode_for_filename
1991 * @dst: Destination location for encoded filename
1992 * @dst_size: Size of the encoded filename in bytes
1993 * @src: Source location for the filename to encode
1994 * @src_size: Size of the source in bytes
1995 */
1996static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1997 unsigned char *src, size_t src_size)
1998{
1999 size_t num_blocks;
2000 size_t block_num = 0;
2001 size_t dst_offset = 0;
2002 unsigned char last_block[3];
2003
2004 if (src_size == 0) {
2005 (*dst_size) = 0;
2006 goto out;
2007 }
2008 num_blocks = (src_size / 3);
2009 if ((src_size % 3) == 0) {
2010 memcpy(last_block, (&src[src_size - 3]), 3);
2011 } else {
2012 num_blocks++;
2013 last_block[2] = 0x00;
2014 switch (src_size % 3) {
2015 case 1:
2016 last_block[0] = src[src_size - 1];
2017 last_block[1] = 0x00;
2018 break;
2019 case 2:
2020 last_block[0] = src[src_size - 2];
2021 last_block[1] = src[src_size - 1];
2022 }
2023 }
2024 (*dst_size) = (num_blocks * 4);
2025 if (!dst)
2026 goto out;
2027 while (block_num < num_blocks) {
2028 unsigned char *src_block;
2029 unsigned char dst_block[4];
2030
2031 if (block_num == (num_blocks - 1))
2032 src_block = last_block;
2033 else
2034 src_block = &src[block_num * 3];
2035 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2036 dst_block[1] = (((src_block[0] << 4) & 0x30)
2037 | ((src_block[1] >> 4) & 0x0F));
2038 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2039 | ((src_block[2] >> 6) & 0x03));
2040 dst_block[3] = (src_block[2] & 0x3F);
2041 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2042 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2043 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2044 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2045 block_num++;
2046 }
2047out:
2048 return;
2049}
2050
2051static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2052{
2053 /* Not exact; conservatively long. Every block of 4
2054 * encoded characters decodes into a block of 3
2055 * decoded characters. This segment of code provides
2056 * the caller with the maximum amount of allocated
2057 * space that @dst will need to point to in a
2058 * subsequent call. */
2059 return ((encoded_size + 1) * 3) / 4;
2060}
2061
2062/**
2063 * ecryptfs_decode_from_filename
2064 * @dst: If NULL, this function only sets @dst_size and returns. If
2065 * non-NULL, this function decodes the encoded octets in @src
2066 * into the memory that @dst points to.
2067 * @dst_size: Set to the size of the decoded string.
2068 * @src: The encoded set of octets to decode.
2069 * @src_size: The size of the encoded set of octets to decode.
2070 */
2071static void
2072ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2073 const unsigned char *src, size_t src_size)
2074{
2075 u8 current_bit_offset = 0;
2076 size_t src_byte_offset = 0;
2077 size_t dst_byte_offset = 0;
2078
2079 if (dst == NULL) {
2080 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2081 goto out;
2082 }
2083 while (src_byte_offset < src_size) {
2084 unsigned char src_byte =
2085 filename_rev_map[(int)src[src_byte_offset]];
2086
2087 switch (current_bit_offset) {
2088 case 0:
2089 dst[dst_byte_offset] = (src_byte << 2);
2090 current_bit_offset = 6;
2091 break;
2092 case 6:
2093 dst[dst_byte_offset++] |= (src_byte >> 4);
2094 dst[dst_byte_offset] = ((src_byte & 0xF)
2095 << 4);
2096 current_bit_offset = 4;
2097 break;
2098 case 4:
2099 dst[dst_byte_offset++] |= (src_byte >> 2);
2100 dst[dst_byte_offset] = (src_byte << 6);
2101 current_bit_offset = 2;
2102 break;
2103 case 2:
2104 dst[dst_byte_offset++] |= (src_byte);
2105 current_bit_offset = 0;
2106 break;
2107 }
2108 src_byte_offset++;
2109 }
2110 (*dst_size) = dst_byte_offset;
2111out:
2112 return;
2113}
2114
2115/**
2116 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2117 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2118 * @name: The plaintext name
2119 * @length: The length of the plaintext
2120 * @encoded_name: The encypted name
2121 *
2122 * Encrypts and encodes a filename into something that constitutes a
2123 * valid filename for a filesystem, with printable characters.
2124 *
2125 * We assume that we have a properly initialized crypto context,
2126 * pointed to by crypt_stat->tfm.
2127 *
2128 * Returns zero on success; non-zero on otherwise
2129 */
2130int ecryptfs_encrypt_and_encode_filename(
2131 char **encoded_name,
2132 size_t *encoded_name_size,
2133 struct ecryptfs_crypt_stat *crypt_stat,
2134 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2135 const char *name, size_t name_size)
2136{
2137 size_t encoded_name_no_prefix_size;
2138 int rc = 0;
2139
2140 (*encoded_name) = NULL;
2141 (*encoded_name_size) = 0;
2142 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2143 || (mount_crypt_stat && (mount_crypt_stat->flags
2144 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2145 struct ecryptfs_filename *filename;
2146
2147 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2148 if (!filename) {
2149 printk(KERN_ERR "%s: Out of memory whilst attempting "
2150 "to kzalloc [%zd] bytes\n", __func__,
2151 sizeof(*filename));
2152 rc = -ENOMEM;
2153 goto out;
2154 }
2155 filename->filename = (char *)name;
2156 filename->filename_size = name_size;
2157 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2158 mount_crypt_stat);
2159 if (rc) {
2160 printk(KERN_ERR "%s: Error attempting to encrypt "
2161 "filename; rc = [%d]\n", __func__, rc);
2162 kfree(filename);
2163 goto out;
2164 }
2165 ecryptfs_encode_for_filename(
2166 NULL, &encoded_name_no_prefix_size,
2167 filename->encrypted_filename,
2168 filename->encrypted_filename_size);
2169 if ((crypt_stat && (crypt_stat->flags
2170 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2171 || (mount_crypt_stat
2172 && (mount_crypt_stat->flags
2173 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2174 (*encoded_name_size) =
2175 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2176 + encoded_name_no_prefix_size);
2177 else
2178 (*encoded_name_size) =
2179 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2180 + encoded_name_no_prefix_size);
2181 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2182 if (!(*encoded_name)) {
2183 printk(KERN_ERR "%s: Out of memory whilst attempting "
2184 "to kzalloc [%zd] bytes\n", __func__,
2185 (*encoded_name_size));
2186 rc = -ENOMEM;
2187 kfree(filename->encrypted_filename);
2188 kfree(filename);
2189 goto out;
2190 }
2191 if ((crypt_stat && (crypt_stat->flags
2192 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2193 || (mount_crypt_stat
2194 && (mount_crypt_stat->flags
2195 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2196 memcpy((*encoded_name),
2197 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2198 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2199 ecryptfs_encode_for_filename(
2200 ((*encoded_name)
2201 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2202 &encoded_name_no_prefix_size,
2203 filename->encrypted_filename,
2204 filename->encrypted_filename_size);
2205 (*encoded_name_size) =
2206 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2207 + encoded_name_no_prefix_size);
2208 (*encoded_name)[(*encoded_name_size)] = '\0';
2209 } else {
2210 rc = -EOPNOTSUPP;
2211 }
2212 if (rc) {
2213 printk(KERN_ERR "%s: Error attempting to encode "
2214 "encrypted filename; rc = [%d]\n", __func__,
2215 rc);
2216 kfree((*encoded_name));
2217 (*encoded_name) = NULL;
2218 (*encoded_name_size) = 0;
2219 }
2220 kfree(filename->encrypted_filename);
2221 kfree(filename);
2222 } else {
2223 rc = ecryptfs_copy_filename(encoded_name,
2224 encoded_name_size,
2225 name, name_size);
2226 }
2227out:
2228 return rc;
2229}
2230
2231/**
2232 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2233 * @plaintext_name: The plaintext name
2234 * @plaintext_name_size: The plaintext name size
2235 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2236 * @name: The filename in cipher text
2237 * @name_size: The cipher text name size
2238 *
2239 * Decrypts and decodes the filename.
2240 *
2241 * Returns zero on error; non-zero otherwise
2242 */
2243int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2244 size_t *plaintext_name_size,
2245 struct dentry *ecryptfs_dir_dentry,
2246 const char *name, size_t name_size)
2247{
2248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2249 &ecryptfs_superblock_to_private(
2250 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2251 char *decoded_name;
2252 size_t decoded_name_size;
2253 size_t packet_size;
2254 int rc = 0;
2255
2256 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2257 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2258 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2259 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2260 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2261 const char *orig_name = name;
2262 size_t orig_name_size = name_size;
2263
2264 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2265 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2266 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2267 name, name_size);
2268 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2269 if (!decoded_name) {
2270 printk(KERN_ERR "%s: Out of memory whilst attempting "
2271 "to kmalloc [%zd] bytes\n", __func__,
2272 decoded_name_size);
2273 rc = -ENOMEM;
2274 goto out;
2275 }
2276 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2277 name, name_size);
2278 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2279 plaintext_name_size,
2280 &packet_size,
2281 mount_crypt_stat,
2282 decoded_name,
2283 decoded_name_size);
2284 if (rc) {
2285 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2286 "from filename; copying through filename "
2287 "as-is\n", __func__);
2288 rc = ecryptfs_copy_filename(plaintext_name,
2289 plaintext_name_size,
2290 orig_name, orig_name_size);
2291 goto out_free;
2292 }
2293 } else {
2294 rc = ecryptfs_copy_filename(plaintext_name,
2295 plaintext_name_size,
2296 name, name_size);
2297 goto out;
2298 }
2299out_free:
2300 kfree(decoded_name);
2301out:
2302 return rc;
2303}
2304
2305#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2306
2307int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2308 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2309{
2310 struct blkcipher_desc desc;
2311 struct mutex *tfm_mutex;
2312 size_t cipher_blocksize;
2313 int rc;
2314
2315 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2316 (*namelen) = lower_namelen;
2317 return 0;
2318 }
2319
2320 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2321 mount_crypt_stat->global_default_fn_cipher_name);
2322 if (unlikely(rc)) {
2323 (*namelen) = 0;
2324 return rc;
2325 }
2326
2327 mutex_lock(tfm_mutex);
2328 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2329 mutex_unlock(tfm_mutex);
2330
2331 /* Return an exact amount for the common cases */
2332 if (lower_namelen == NAME_MAX
2333 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2334 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2335 return 0;
2336 }
2337
2338 /* Return a safe estimate for the uncommon cases */
2339 (*namelen) = lower_namelen;
2340 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2341 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2342 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2343 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2344 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2345 /* Worst case is that the filename is padded nearly a full block size */
2346 (*namelen) -= cipher_blocksize - 1;
2347
2348 if ((*namelen) < 0)
2349 (*namelen) = 0;
2350
2351 return 0;
2352}