drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / gadget / pch_udc.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/pci.h>
12#include <linux/delay.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/interrupt.h>
16#include <linux/usb/ch9.h>
17#include <linux/usb/gadget.h>
18#include <linux/gpio.h>
19#include <linux/irq.h>
20
21/* GPIO port for VBUS detecting */
22static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
23
24#define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
25#define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
26
27/* Address offset of Registers */
28#define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
29
30#define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
31#define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
32#define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
33#define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
34#define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
35#define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
36#define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
37
38#define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
39#define UDC_DEVCTL_ADDR 0x404 /* Device control */
40#define UDC_DEVSTS_ADDR 0x408 /* Device status */
41#define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
42#define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
43#define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
44#define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
45#define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
46#define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
47#define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
48#define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
49
50/* Endpoint control register */
51/* Bit position */
52#define UDC_EPCTL_MRXFLUSH (1 << 12)
53#define UDC_EPCTL_RRDY (1 << 9)
54#define UDC_EPCTL_CNAK (1 << 8)
55#define UDC_EPCTL_SNAK (1 << 7)
56#define UDC_EPCTL_NAK (1 << 6)
57#define UDC_EPCTL_P (1 << 3)
58#define UDC_EPCTL_F (1 << 1)
59#define UDC_EPCTL_S (1 << 0)
60#define UDC_EPCTL_ET_SHIFT 4
61/* Mask patern */
62#define UDC_EPCTL_ET_MASK 0x00000030
63/* Value for ET field */
64#define UDC_EPCTL_ET_CONTROL 0
65#define UDC_EPCTL_ET_ISO 1
66#define UDC_EPCTL_ET_BULK 2
67#define UDC_EPCTL_ET_INTERRUPT 3
68
69/* Endpoint status register */
70/* Bit position */
71#define UDC_EPSTS_XFERDONE (1 << 27)
72#define UDC_EPSTS_RSS (1 << 26)
73#define UDC_EPSTS_RCS (1 << 25)
74#define UDC_EPSTS_TXEMPTY (1 << 24)
75#define UDC_EPSTS_TDC (1 << 10)
76#define UDC_EPSTS_HE (1 << 9)
77#define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
78#define UDC_EPSTS_BNA (1 << 7)
79#define UDC_EPSTS_IN (1 << 6)
80#define UDC_EPSTS_OUT_SHIFT 4
81/* Mask patern */
82#define UDC_EPSTS_OUT_MASK 0x00000030
83#define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
84/* Value for OUT field */
85#define UDC_EPSTS_OUT_SETUP 2
86#define UDC_EPSTS_OUT_DATA 1
87
88/* Device configuration register */
89/* Bit position */
90#define UDC_DEVCFG_CSR_PRG (1 << 17)
91#define UDC_DEVCFG_SP (1 << 3)
92/* SPD Valee */
93#define UDC_DEVCFG_SPD_HS 0x0
94#define UDC_DEVCFG_SPD_FS 0x1
95#define UDC_DEVCFG_SPD_LS 0x2
96
97/* Device control register */
98/* Bit position */
99#define UDC_DEVCTL_THLEN_SHIFT 24
100#define UDC_DEVCTL_BRLEN_SHIFT 16
101#define UDC_DEVCTL_CSR_DONE (1 << 13)
102#define UDC_DEVCTL_SD (1 << 10)
103#define UDC_DEVCTL_MODE (1 << 9)
104#define UDC_DEVCTL_BREN (1 << 8)
105#define UDC_DEVCTL_THE (1 << 7)
106#define UDC_DEVCTL_DU (1 << 4)
107#define UDC_DEVCTL_TDE (1 << 3)
108#define UDC_DEVCTL_RDE (1 << 2)
109#define UDC_DEVCTL_RES (1 << 0)
110
111/* Device status register */
112/* Bit position */
113#define UDC_DEVSTS_TS_SHIFT 18
114#define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
115#define UDC_DEVSTS_ALT_SHIFT 8
116#define UDC_DEVSTS_INTF_SHIFT 4
117#define UDC_DEVSTS_CFG_SHIFT 0
118/* Mask patern */
119#define UDC_DEVSTS_TS_MASK 0xfffc0000
120#define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
121#define UDC_DEVSTS_ALT_MASK 0x00000f00
122#define UDC_DEVSTS_INTF_MASK 0x000000f0
123#define UDC_DEVSTS_CFG_MASK 0x0000000f
124/* value for maximum speed for SPEED field */
125#define UDC_DEVSTS_ENUM_SPEED_FULL 1
126#define UDC_DEVSTS_ENUM_SPEED_HIGH 0
127#define UDC_DEVSTS_ENUM_SPEED_LOW 2
128#define UDC_DEVSTS_ENUM_SPEED_FULLX 3
129
130/* Device irq register */
131/* Bit position */
132#define UDC_DEVINT_RWKP (1 << 7)
133#define UDC_DEVINT_ENUM (1 << 6)
134#define UDC_DEVINT_SOF (1 << 5)
135#define UDC_DEVINT_US (1 << 4)
136#define UDC_DEVINT_UR (1 << 3)
137#define UDC_DEVINT_ES (1 << 2)
138#define UDC_DEVINT_SI (1 << 1)
139#define UDC_DEVINT_SC (1 << 0)
140/* Mask patern */
141#define UDC_DEVINT_MSK 0x7f
142
143/* Endpoint irq register */
144/* Bit position */
145#define UDC_EPINT_IN_SHIFT 0
146#define UDC_EPINT_OUT_SHIFT 16
147#define UDC_EPINT_IN_EP0 (1 << 0)
148#define UDC_EPINT_OUT_EP0 (1 << 16)
149/* Mask patern */
150#define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
151
152/* UDC_CSR_BUSY Status register */
153/* Bit position */
154#define UDC_CSR_BUSY (1 << 0)
155
156/* SOFT RESET register */
157/* Bit position */
158#define UDC_PSRST (1 << 1)
159#define UDC_SRST (1 << 0)
160
161/* USB_DEVICE endpoint register */
162/* Bit position */
163#define UDC_CSR_NE_NUM_SHIFT 0
164#define UDC_CSR_NE_DIR_SHIFT 4
165#define UDC_CSR_NE_TYPE_SHIFT 5
166#define UDC_CSR_NE_CFG_SHIFT 7
167#define UDC_CSR_NE_INTF_SHIFT 11
168#define UDC_CSR_NE_ALT_SHIFT 15
169#define UDC_CSR_NE_MAX_PKT_SHIFT 19
170/* Mask patern */
171#define UDC_CSR_NE_NUM_MASK 0x0000000f
172#define UDC_CSR_NE_DIR_MASK 0x00000010
173#define UDC_CSR_NE_TYPE_MASK 0x00000060
174#define UDC_CSR_NE_CFG_MASK 0x00000780
175#define UDC_CSR_NE_INTF_MASK 0x00007800
176#define UDC_CSR_NE_ALT_MASK 0x00078000
177#define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
178
179#define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180#define PCH_UDC_EPINT(in, num)\
181 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183/* Index of endpoint */
184#define UDC_EP0IN_IDX 0
185#define UDC_EP0OUT_IDX 1
186#define UDC_EPIN_IDX(ep) (ep * 2)
187#define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
188#define PCH_UDC_EP0 0
189#define PCH_UDC_EP1 1
190#define PCH_UDC_EP2 2
191#define PCH_UDC_EP3 3
192
193/* Number of endpoint */
194#define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
195#define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
196/* Length Value */
197#define PCH_UDC_BRLEN 0x0F /* Burst length */
198#define PCH_UDC_THLEN 0x1F /* Threshold length */
199/* Value of EP Buffer Size */
200#define UDC_EP0IN_BUFF_SIZE 16
201#define UDC_EPIN_BUFF_SIZE 256
202#define UDC_EP0OUT_BUFF_SIZE 16
203#define UDC_EPOUT_BUFF_SIZE 256
204/* Value of EP maximum packet size */
205#define UDC_EP0IN_MAX_PKT_SIZE 64
206#define UDC_EP0OUT_MAX_PKT_SIZE 64
207#define UDC_BULK_MAX_PKT_SIZE 512
208
209/* DMA */
210#define DMA_DIR_RX 1 /* DMA for data receive */
211#define DMA_DIR_TX 2 /* DMA for data transmit */
212#define DMA_ADDR_INVALID (~(dma_addr_t)0)
213#define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
214
215/**
216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217 * for data
218 * @status: Status quadlet
219 * @reserved: Reserved
220 * @dataptr: Buffer descriptor
221 * @next: Next descriptor
222 */
223struct pch_udc_data_dma_desc {
224 u32 status;
225 u32 reserved;
226 u32 dataptr;
227 u32 next;
228};
229
230/**
231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232 * for control data
233 * @status: Status
234 * @reserved: Reserved
235 * @data12: First setup word
236 * @data34: Second setup word
237 */
238struct pch_udc_stp_dma_desc {
239 u32 status;
240 u32 reserved;
241 struct usb_ctrlrequest request;
242} __attribute((packed));
243
244/* DMA status definitions */
245/* Buffer status */
246#define PCH_UDC_BUFF_STS 0xC0000000
247#define PCH_UDC_BS_HST_RDY 0x00000000
248#define PCH_UDC_BS_DMA_BSY 0x40000000
249#define PCH_UDC_BS_DMA_DONE 0x80000000
250#define PCH_UDC_BS_HST_BSY 0xC0000000
251/* Rx/Tx Status */
252#define PCH_UDC_RXTX_STS 0x30000000
253#define PCH_UDC_RTS_SUCC 0x00000000
254#define PCH_UDC_RTS_DESERR 0x10000000
255#define PCH_UDC_RTS_BUFERR 0x30000000
256/* Last Descriptor Indication */
257#define PCH_UDC_DMA_LAST 0x08000000
258/* Number of Rx/Tx Bytes Mask */
259#define PCH_UDC_RXTX_BYTES 0x0000ffff
260
261/**
262 * struct pch_udc_cfg_data - Structure to hold current configuration
263 * and interface information
264 * @cur_cfg: current configuration in use
265 * @cur_intf: current interface in use
266 * @cur_alt: current alt interface in use
267 */
268struct pch_udc_cfg_data {
269 u16 cur_cfg;
270 u16 cur_intf;
271 u16 cur_alt;
272};
273
274/**
275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276 * @ep: embedded ep request
277 * @td_stp_phys: for setup request
278 * @td_data_phys: for data request
279 * @td_stp: for setup request
280 * @td_data: for data request
281 * @dev: reference to device struct
282 * @offset_addr: offset address of ep register
283 * @desc: for this ep
284 * @queue: queue for requests
285 * @num: endpoint number
286 * @in: endpoint is IN
287 * @halted: endpoint halted?
288 * @epsts: Endpoint status
289 */
290struct pch_udc_ep {
291 struct usb_ep ep;
292 dma_addr_t td_stp_phys;
293 dma_addr_t td_data_phys;
294 struct pch_udc_stp_dma_desc *td_stp;
295 struct pch_udc_data_dma_desc *td_data;
296 struct pch_udc_dev *dev;
297 unsigned long offset_addr;
298 struct list_head queue;
299 unsigned num:5,
300 in:1,
301 halted:1;
302 unsigned long epsts;
303};
304
305/**
306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307 * for detecting VBUS
308 * @port: gpio port number
309 * @intr: gpio interrupt number
310 * @irq_work_fall Structure for WorkQueue
311 * @irq_work_rise Structure for WorkQueue
312 */
313struct pch_vbus_gpio_data {
314 int port;
315 int intr;
316 struct work_struct irq_work_fall;
317 struct work_struct irq_work_rise;
318};
319
320/**
321 * struct pch_udc_dev - Structure holding complete information
322 * of the PCH USB device
323 * @gadget: gadget driver data
324 * @driver: reference to gadget driver bound
325 * @pdev: reference to the PCI device
326 * @ep: array of endpoints
327 * @lock: protects all state
328 * @active: enabled the PCI device
329 * @stall: stall requested
330 * @prot_stall: protcol stall requested
331 * @irq_registered: irq registered with system
332 * @mem_region: device memory mapped
333 * @registered: driver regsitered with system
334 * @suspended: driver in suspended state
335 * @connected: gadget driver associated
336 * @vbus_session: required vbus_session state
337 * @set_cfg_not_acked: pending acknowledgement 4 setup
338 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
339 * @data_requests: DMA pool for data requests
340 * @stp_requests: DMA pool for setup requests
341 * @dma_addr: DMA pool for received
342 * @ep0out_buf: Buffer for DMA
343 * @setup_data: Received setup data
344 * @phys_addr: of device memory
345 * @base_addr: for mapped device memory
346 * @irq: IRQ line for the device
347 * @cfg_data: current cfg, intf, and alt in use
348 * @vbus_gpio: GPIO informaton for detecting VBUS
349 */
350struct pch_udc_dev {
351 struct usb_gadget gadget;
352 struct usb_gadget_driver *driver;
353 struct pci_dev *pdev;
354 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
355 spinlock_t lock; /* protects all state */
356 unsigned active:1,
357 stall:1,
358 prot_stall:1,
359 irq_registered:1,
360 mem_region:1,
361 suspended:1,
362 connected:1,
363 vbus_session:1,
364 set_cfg_not_acked:1,
365 waiting_zlp_ack:1;
366 struct pci_pool *data_requests;
367 struct pci_pool *stp_requests;
368 dma_addr_t dma_addr;
369 void *ep0out_buf;
370 struct usb_ctrlrequest setup_data;
371 unsigned long phys_addr;
372 void __iomem *base_addr;
373 unsigned irq;
374 struct pch_udc_cfg_data cfg_data;
375 struct pch_vbus_gpio_data vbus_gpio;
376};
377#define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
378
379#define PCH_UDC_PCI_BAR 1
380#define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
381#define PCI_VENDOR_ID_ROHM 0x10DB
382#define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
383#define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
384
385static const char ep0_string[] = "ep0in";
386static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
387static bool speed_fs;
388module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
389MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
390
391/**
392 * struct pch_udc_request - Structure holding a PCH USB device request packet
393 * @req: embedded ep request
394 * @td_data_phys: phys. address
395 * @td_data: first dma desc. of chain
396 * @td_data_last: last dma desc. of chain
397 * @queue: associated queue
398 * @dma_going: DMA in progress for request
399 * @dma_mapped: DMA memory mapped for request
400 * @dma_done: DMA completed for request
401 * @chain_len: chain length
402 * @buf: Buffer memory for align adjustment
403 * @dma: DMA memory for align adjustment
404 */
405struct pch_udc_request {
406 struct usb_request req;
407 dma_addr_t td_data_phys;
408 struct pch_udc_data_dma_desc *td_data;
409 struct pch_udc_data_dma_desc *td_data_last;
410 struct list_head queue;
411 unsigned dma_going:1,
412 dma_mapped:1,
413 dma_done:1;
414 unsigned chain_len;
415 void *buf;
416 dma_addr_t dma;
417};
418
419static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
420{
421 return ioread32(dev->base_addr + reg);
422}
423
424static inline void pch_udc_writel(struct pch_udc_dev *dev,
425 unsigned long val, unsigned long reg)
426{
427 iowrite32(val, dev->base_addr + reg);
428}
429
430static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
431 unsigned long reg,
432 unsigned long bitmask)
433{
434 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
435}
436
437static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
438 unsigned long reg,
439 unsigned long bitmask)
440{
441 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
442}
443
444static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
445{
446 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
447}
448
449static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
450 unsigned long val, unsigned long reg)
451{
452 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
453}
454
455static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
456 unsigned long reg,
457 unsigned long bitmask)
458{
459 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
460}
461
462static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
463 unsigned long reg,
464 unsigned long bitmask)
465{
466 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
467}
468
469/**
470 * pch_udc_csr_busy() - Wait till idle.
471 * @dev: Reference to pch_udc_dev structure
472 */
473static void pch_udc_csr_busy(struct pch_udc_dev *dev)
474{
475 unsigned int count = 200;
476
477 /* Wait till idle */
478 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
479 && --count)
480 cpu_relax();
481 if (!count)
482 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
483}
484
485/**
486 * pch_udc_write_csr() - Write the command and status registers.
487 * @dev: Reference to pch_udc_dev structure
488 * @val: value to be written to CSR register
489 * @addr: address of CSR register
490 */
491static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
492 unsigned int ep)
493{
494 unsigned long reg = PCH_UDC_CSR(ep);
495
496 pch_udc_csr_busy(dev); /* Wait till idle */
497 pch_udc_writel(dev, val, reg);
498 pch_udc_csr_busy(dev); /* Wait till idle */
499}
500
501/**
502 * pch_udc_read_csr() - Read the command and status registers.
503 * @dev: Reference to pch_udc_dev structure
504 * @addr: address of CSR register
505 *
506 * Return codes: content of CSR register
507 */
508static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
509{
510 unsigned long reg = PCH_UDC_CSR(ep);
511
512 pch_udc_csr_busy(dev); /* Wait till idle */
513 pch_udc_readl(dev, reg); /* Dummy read */
514 pch_udc_csr_busy(dev); /* Wait till idle */
515 return pch_udc_readl(dev, reg);
516}
517
518/**
519 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
520 * @dev: Reference to pch_udc_dev structure
521 */
522static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
523{
524 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
525 mdelay(1);
526 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
527}
528
529/**
530 * pch_udc_get_frame() - Get the current frame from device status register
531 * @dev: Reference to pch_udc_dev structure
532 * Retern current frame
533 */
534static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
535{
536 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
537 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
538}
539
540/**
541 * pch_udc_clear_selfpowered() - Clear the self power control
542 * @dev: Reference to pch_udc_regs structure
543 */
544static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
545{
546 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
547}
548
549/**
550 * pch_udc_set_selfpowered() - Set the self power control
551 * @dev: Reference to pch_udc_regs structure
552 */
553static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
554{
555 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
556}
557
558/**
559 * pch_udc_set_disconnect() - Set the disconnect status.
560 * @dev: Reference to pch_udc_regs structure
561 */
562static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
563{
564 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
565}
566
567/**
568 * pch_udc_clear_disconnect() - Clear the disconnect status.
569 * @dev: Reference to pch_udc_regs structure
570 */
571static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
572{
573 /* Clear the disconnect */
574 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
575 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
576 mdelay(1);
577 /* Resume USB signalling */
578 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
579}
580
581/**
582 * pch_udc_reconnect() - This API initializes usb device controller,
583 * and clear the disconnect status.
584 * @dev: Reference to pch_udc_regs structure
585 */
586static void pch_udc_init(struct pch_udc_dev *dev);
587static void pch_udc_reconnect(struct pch_udc_dev *dev)
588{
589 pch_udc_init(dev);
590
591 /* enable device interrupts */
592 /* pch_udc_enable_interrupts() */
593 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
594 UDC_DEVINT_UR | UDC_DEVINT_ENUM);
595
596 /* Clear the disconnect */
597 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
598 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
599 mdelay(1);
600 /* Resume USB signalling */
601 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
602}
603
604/**
605 * pch_udc_vbus_session() - set or clearr the disconnect status.
606 * @dev: Reference to pch_udc_regs structure
607 * @is_active: Parameter specifying the action
608 * 0: indicating VBUS power is ending
609 * !0: indicating VBUS power is starting
610 */
611static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
612 int is_active)
613{
614 if (is_active) {
615 pch_udc_reconnect(dev);
616 dev->vbus_session = 1;
617 } else {
618 if (dev->driver && dev->driver->disconnect) {
619 spin_unlock(&dev->lock);
620 dev->driver->disconnect(&dev->gadget);
621 spin_lock(&dev->lock);
622 }
623 pch_udc_set_disconnect(dev);
624 dev->vbus_session = 0;
625 }
626}
627
628/**
629 * pch_udc_ep_set_stall() - Set the stall of endpoint
630 * @ep: Reference to structure of type pch_udc_ep_regs
631 */
632static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
633{
634 if (ep->in) {
635 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
636 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
637 } else {
638 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
639 }
640}
641
642/**
643 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
644 * @ep: Reference to structure of type pch_udc_ep_regs
645 */
646static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
647{
648 /* Clear the stall */
649 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
650 /* Clear NAK by writing CNAK */
651 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
652}
653
654/**
655 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
656 * @ep: Reference to structure of type pch_udc_ep_regs
657 * @type: Type of endpoint
658 */
659static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
660 u8 type)
661{
662 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
663 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
664}
665
666/**
667 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
668 * @ep: Reference to structure of type pch_udc_ep_regs
669 * @buf_size: The buffer word size
670 */
671static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
672 u32 buf_size, u32 ep_in)
673{
674 u32 data;
675 if (ep_in) {
676 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
677 data = (data & 0xffff0000) | (buf_size & 0xffff);
678 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
679 } else {
680 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
681 data = (buf_size << 16) | (data & 0xffff);
682 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
683 }
684}
685
686/**
687 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
688 * @ep: Reference to structure of type pch_udc_ep_regs
689 * @pkt_size: The packet byte size
690 */
691static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
692{
693 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
694 data = (data & 0xffff0000) | (pkt_size & 0xffff);
695 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
696}
697
698/**
699 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
700 * @ep: Reference to structure of type pch_udc_ep_regs
701 * @addr: Address of the register
702 */
703static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
704{
705 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
706}
707
708/**
709 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
710 * @ep: Reference to structure of type pch_udc_ep_regs
711 * @addr: Address of the register
712 */
713static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
714{
715 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
716}
717
718/**
719 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
720 * @ep: Reference to structure of type pch_udc_ep_regs
721 */
722static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
723{
724 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
725}
726
727/**
728 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
729 * @ep: Reference to structure of type pch_udc_ep_regs
730 */
731static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
732{
733 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
734}
735
736/**
737 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
738 * @ep: Reference to structure of type pch_udc_ep_regs
739 */
740static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
741{
742 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
743}
744
745/**
746 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
747 * register depending on the direction specified
748 * @dev: Reference to structure of type pch_udc_regs
749 * @dir: whether Tx or Rx
750 * DMA_DIR_RX: Receive
751 * DMA_DIR_TX: Transmit
752 */
753static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
754{
755 if (dir == DMA_DIR_RX)
756 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
757 else if (dir == DMA_DIR_TX)
758 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
759}
760
761/**
762 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
763 * register depending on the direction specified
764 * @dev: Reference to structure of type pch_udc_regs
765 * @dir: Whether Tx or Rx
766 * DMA_DIR_RX: Receive
767 * DMA_DIR_TX: Transmit
768 */
769static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
770{
771 if (dir == DMA_DIR_RX)
772 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
773 else if (dir == DMA_DIR_TX)
774 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
775}
776
777/**
778 * pch_udc_set_csr_done() - Set the device control register
779 * CSR done field (bit 13)
780 * @dev: reference to structure of type pch_udc_regs
781 */
782static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
783{
784 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
785}
786
787/**
788 * pch_udc_disable_interrupts() - Disables the specified interrupts
789 * @dev: Reference to structure of type pch_udc_regs
790 * @mask: Mask to disable interrupts
791 */
792static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
793 u32 mask)
794{
795 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
796}
797
798/**
799 * pch_udc_enable_interrupts() - Enable the specified interrupts
800 * @dev: Reference to structure of type pch_udc_regs
801 * @mask: Mask to enable interrupts
802 */
803static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
804 u32 mask)
805{
806 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
807}
808
809/**
810 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
811 * @dev: Reference to structure of type pch_udc_regs
812 * @mask: Mask to disable interrupts
813 */
814static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
815 u32 mask)
816{
817 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
818}
819
820/**
821 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
822 * @dev: Reference to structure of type pch_udc_regs
823 * @mask: Mask to enable interrupts
824 */
825static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
826 u32 mask)
827{
828 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
829}
830
831/**
832 * pch_udc_read_device_interrupts() - Read the device interrupts
833 * @dev: Reference to structure of type pch_udc_regs
834 * Retern The device interrupts
835 */
836static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
837{
838 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
839}
840
841/**
842 * pch_udc_write_device_interrupts() - Write device interrupts
843 * @dev: Reference to structure of type pch_udc_regs
844 * @val: The value to be written to interrupt register
845 */
846static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
847 u32 val)
848{
849 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
850}
851
852/**
853 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
854 * @dev: Reference to structure of type pch_udc_regs
855 * Retern The endpoint interrupt
856 */
857static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
858{
859 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
860}
861
862/**
863 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
864 * @dev: Reference to structure of type pch_udc_regs
865 * @val: The value to be written to interrupt register
866 */
867static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
868 u32 val)
869{
870 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
871}
872
873/**
874 * pch_udc_read_device_status() - Read the device status
875 * @dev: Reference to structure of type pch_udc_regs
876 * Retern The device status
877 */
878static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
879{
880 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
881}
882
883/**
884 * pch_udc_read_ep_control() - Read the endpoint control
885 * @ep: Reference to structure of type pch_udc_ep_regs
886 * Retern The endpoint control register value
887 */
888static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
889{
890 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
891}
892
893/**
894 * pch_udc_clear_ep_control() - Clear the endpoint control register
895 * @ep: Reference to structure of type pch_udc_ep_regs
896 * Retern The endpoint control register value
897 */
898static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
899{
900 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
901}
902
903/**
904 * pch_udc_read_ep_status() - Read the endpoint status
905 * @ep: Reference to structure of type pch_udc_ep_regs
906 * Retern The endpoint status
907 */
908static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
909{
910 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
911}
912
913/**
914 * pch_udc_clear_ep_status() - Clear the endpoint status
915 * @ep: Reference to structure of type pch_udc_ep_regs
916 * @stat: Endpoint status
917 */
918static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
919 u32 stat)
920{
921 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
922}
923
924/**
925 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
926 * of the endpoint control register
927 * @ep: Reference to structure of type pch_udc_ep_regs
928 */
929static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
930{
931 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
932}
933
934/**
935 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
936 * of the endpoint control register
937 * @ep: reference to structure of type pch_udc_ep_regs
938 */
939static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
940{
941 unsigned int loopcnt = 0;
942 struct pch_udc_dev *dev = ep->dev;
943
944 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
945 return;
946 if (!ep->in) {
947 loopcnt = 10000;
948 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
949 --loopcnt)
950 udelay(5);
951 if (!loopcnt)
952 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
953 __func__);
954 }
955 loopcnt = 10000;
956 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
957 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
958 udelay(5);
959 }
960 if (!loopcnt)
961 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
962 __func__, ep->num, (ep->in ? "in" : "out"));
963}
964
965/**
966 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
967 * @ep: reference to structure of type pch_udc_ep_regs
968 * @dir: direction of endpoint
969 * 0: endpoint is OUT
970 * !0: endpoint is IN
971 */
972static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
973{
974 if (dir) { /* IN ep */
975 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
976 return;
977 }
978}
979
980/**
981 * pch_udc_ep_enable() - This api enables endpoint
982 * @regs: Reference to structure pch_udc_ep_regs
983 * @desc: endpoint descriptor
984 */
985static void pch_udc_ep_enable(struct pch_udc_ep *ep,
986 struct pch_udc_cfg_data *cfg,
987 const struct usb_endpoint_descriptor *desc)
988{
989 u32 val = 0;
990 u32 buff_size = 0;
991
992 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
993 if (ep->in)
994 buff_size = UDC_EPIN_BUFF_SIZE;
995 else
996 buff_size = UDC_EPOUT_BUFF_SIZE;
997 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
998 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
999 pch_udc_ep_set_nak(ep);
1000 pch_udc_ep_fifo_flush(ep, ep->in);
1001 /* Configure the endpoint */
1002 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
1003 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
1004 UDC_CSR_NE_TYPE_SHIFT) |
1005 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
1006 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1007 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1008 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1009
1010 if (ep->in)
1011 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1012 else
1013 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1014}
1015
1016/**
1017 * pch_udc_ep_disable() - This api disables endpoint
1018 * @regs: Reference to structure pch_udc_ep_regs
1019 */
1020static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1021{
1022 if (ep->in) {
1023 /* flush the fifo */
1024 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1025 /* set NAK */
1026 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1027 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1028 } else {
1029 /* set NAK */
1030 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1031 }
1032 /* reset desc pointer */
1033 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1034}
1035
1036/**
1037 * pch_udc_wait_ep_stall() - Wait EP stall.
1038 * @dev: Reference to pch_udc_dev structure
1039 */
1040static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1041{
1042 unsigned int count = 10000;
1043
1044 /* Wait till idle */
1045 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1046 udelay(5);
1047 if (!count)
1048 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1049}
1050
1051/**
1052 * pch_udc_init() - This API initializes usb device controller
1053 * @dev: Rreference to pch_udc_regs structure
1054 */
1055static void pch_udc_init(struct pch_udc_dev *dev)
1056{
1057 if (NULL == dev) {
1058 pr_err("%s: Invalid address\n", __func__);
1059 return;
1060 }
1061 /* Soft Reset and Reset PHY */
1062 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1063 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1064 mdelay(1);
1065 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1066 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1067 mdelay(1);
1068 /* mask and clear all device interrupts */
1069 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1070 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1071
1072 /* mask and clear all ep interrupts */
1073 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1074 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1075
1076 /* enable dynamic CSR programmingi, self powered and device speed */
1077 if (speed_fs)
1078 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1079 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1080 else /* defaul high speed */
1081 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1082 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1083 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1084 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1085 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1086 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1087 UDC_DEVCTL_THE);
1088}
1089
1090/**
1091 * pch_udc_exit() - This API exit usb device controller
1092 * @dev: Reference to pch_udc_regs structure
1093 */
1094static void pch_udc_exit(struct pch_udc_dev *dev)
1095{
1096 /* mask all device interrupts */
1097 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1098 /* mask all ep interrupts */
1099 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1100 /* put device in disconnected state */
1101 pch_udc_set_disconnect(dev);
1102}
1103
1104/**
1105 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1106 * @gadget: Reference to the gadget driver
1107 *
1108 * Return codes:
1109 * 0: Success
1110 * -EINVAL: If the gadget passed is NULL
1111 */
1112static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1113{
1114 struct pch_udc_dev *dev;
1115
1116 if (!gadget)
1117 return -EINVAL;
1118 dev = container_of(gadget, struct pch_udc_dev, gadget);
1119 return pch_udc_get_frame(dev);
1120}
1121
1122/**
1123 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1124 * @gadget: Reference to the gadget driver
1125 *
1126 * Return codes:
1127 * 0: Success
1128 * -EINVAL: If the gadget passed is NULL
1129 */
1130static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1131{
1132 struct pch_udc_dev *dev;
1133 unsigned long flags;
1134
1135 if (!gadget)
1136 return -EINVAL;
1137 dev = container_of(gadget, struct pch_udc_dev, gadget);
1138 spin_lock_irqsave(&dev->lock, flags);
1139 pch_udc_rmt_wakeup(dev);
1140 spin_unlock_irqrestore(&dev->lock, flags);
1141 return 0;
1142}
1143
1144/**
1145 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1146 * is self powered or not
1147 * @gadget: Reference to the gadget driver
1148 * @value: Specifies self powered or not
1149 *
1150 * Return codes:
1151 * 0: Success
1152 * -EINVAL: If the gadget passed is NULL
1153 */
1154static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1155{
1156 struct pch_udc_dev *dev;
1157
1158 if (!gadget)
1159 return -EINVAL;
1160 dev = container_of(gadget, struct pch_udc_dev, gadget);
1161 if (value)
1162 pch_udc_set_selfpowered(dev);
1163 else
1164 pch_udc_clear_selfpowered(dev);
1165 return 0;
1166}
1167
1168/**
1169 * pch_udc_pcd_pullup() - This API is invoked to make the device
1170 * visible/invisible to the host
1171 * @gadget: Reference to the gadget driver
1172 * @is_on: Specifies whether the pull up is made active or inactive
1173 *
1174 * Return codes:
1175 * 0: Success
1176 * -EINVAL: If the gadget passed is NULL
1177 */
1178static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1179{
1180 struct pch_udc_dev *dev;
1181
1182 if (!gadget)
1183 return -EINVAL;
1184 dev = container_of(gadget, struct pch_udc_dev, gadget);
1185 if (is_on) {
1186 pch_udc_reconnect(dev);
1187 } else {
1188 if (dev->driver && dev->driver->disconnect) {
1189 spin_unlock(&dev->lock);
1190 dev->driver->disconnect(&dev->gadget);
1191 spin_lock(&dev->lock);
1192 }
1193 pch_udc_set_disconnect(dev);
1194 }
1195
1196 return 0;
1197}
1198
1199/**
1200 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1201 * transceiver (or GPIO) that
1202 * detects a VBUS power session starting/ending
1203 * @gadget: Reference to the gadget driver
1204 * @is_active: specifies whether the session is starting or ending
1205 *
1206 * Return codes:
1207 * 0: Success
1208 * -EINVAL: If the gadget passed is NULL
1209 */
1210static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1211{
1212 struct pch_udc_dev *dev;
1213
1214 if (!gadget)
1215 return -EINVAL;
1216 dev = container_of(gadget, struct pch_udc_dev, gadget);
1217 pch_udc_vbus_session(dev, is_active);
1218 return 0;
1219}
1220
1221/**
1222 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1223 * SET_CONFIGURATION calls to
1224 * specify how much power the device can consume
1225 * @gadget: Reference to the gadget driver
1226 * @mA: specifies the current limit in 2mA unit
1227 *
1228 * Return codes:
1229 * -EINVAL: If the gadget passed is NULL
1230 * -EOPNOTSUPP:
1231 */
1232static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1233{
1234 return -EOPNOTSUPP;
1235}
1236
1237static int pch_udc_start(struct usb_gadget *g,
1238 struct usb_gadget_driver *driver);
1239static int pch_udc_stop(struct usb_gadget *g,
1240 struct usb_gadget_driver *driver);
1241static const struct usb_gadget_ops pch_udc_ops = {
1242 .get_frame = pch_udc_pcd_get_frame,
1243 .wakeup = pch_udc_pcd_wakeup,
1244 .set_selfpowered = pch_udc_pcd_selfpowered,
1245 .pullup = pch_udc_pcd_pullup,
1246 .vbus_session = pch_udc_pcd_vbus_session,
1247 .vbus_draw = pch_udc_pcd_vbus_draw,
1248 .udc_start = pch_udc_start,
1249 .udc_stop = pch_udc_stop,
1250};
1251
1252/**
1253 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1254 * @dev: Reference to the driver structure
1255 *
1256 * Return value:
1257 * 1: VBUS is high
1258 * 0: VBUS is low
1259 * -1: It is not enable to detect VBUS using GPIO
1260 */
1261static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1262{
1263 int vbus = 0;
1264
1265 if (dev->vbus_gpio.port)
1266 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1267 else
1268 vbus = -1;
1269
1270 return vbus;
1271}
1272
1273/**
1274 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1275 * If VBUS is Low, disconnect is processed
1276 * @irq_work: Structure for WorkQueue
1277 *
1278 */
1279static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1280{
1281 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1282 struct pch_vbus_gpio_data, irq_work_fall);
1283 struct pch_udc_dev *dev =
1284 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1285 int vbus_saved = -1;
1286 int vbus;
1287 int count;
1288
1289 if (!dev->vbus_gpio.port)
1290 return;
1291
1292 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1293 count++) {
1294 vbus = pch_vbus_gpio_get_value(dev);
1295
1296 if ((vbus_saved == vbus) && (vbus == 0)) {
1297 dev_dbg(&dev->pdev->dev, "VBUS fell");
1298 if (dev->driver
1299 && dev->driver->disconnect) {
1300 dev->driver->disconnect(
1301 &dev->gadget);
1302 }
1303 if (dev->vbus_gpio.intr)
1304 pch_udc_init(dev);
1305 else
1306 pch_udc_reconnect(dev);
1307 return;
1308 }
1309 vbus_saved = vbus;
1310 mdelay(PCH_VBUS_INTERVAL);
1311 }
1312}
1313
1314/**
1315 * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1316 * If VBUS is High, connect is processed
1317 * @irq_work: Structure for WorkQueue
1318 *
1319 */
1320static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1321{
1322 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1323 struct pch_vbus_gpio_data, irq_work_rise);
1324 struct pch_udc_dev *dev =
1325 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1326 int vbus;
1327
1328 if (!dev->vbus_gpio.port)
1329 return;
1330
1331 mdelay(PCH_VBUS_INTERVAL);
1332 vbus = pch_vbus_gpio_get_value(dev);
1333
1334 if (vbus == 1) {
1335 dev_dbg(&dev->pdev->dev, "VBUS rose");
1336 pch_udc_reconnect(dev);
1337 return;
1338 }
1339}
1340
1341/**
1342 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1343 * @irq: Interrupt request number
1344 * @dev: Reference to the device structure
1345 *
1346 * Return codes:
1347 * 0: Success
1348 * -EINVAL: GPIO port is invalid or can't be initialized.
1349 */
1350static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1351{
1352 struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1353
1354 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1355 return IRQ_NONE;
1356
1357 if (pch_vbus_gpio_get_value(dev))
1358 schedule_work(&dev->vbus_gpio.irq_work_rise);
1359 else
1360 schedule_work(&dev->vbus_gpio.irq_work_fall);
1361
1362 return IRQ_HANDLED;
1363}
1364
1365/**
1366 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1367 * @dev: Reference to the driver structure
1368 * @vbus_gpio Number of GPIO port to detect gpio
1369 *
1370 * Return codes:
1371 * 0: Success
1372 * -EINVAL: GPIO port is invalid or can't be initialized.
1373 */
1374static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1375{
1376 int err;
1377 int irq_num = 0;
1378
1379 dev->vbus_gpio.port = 0;
1380 dev->vbus_gpio.intr = 0;
1381
1382 if (vbus_gpio_port <= -1)
1383 return -EINVAL;
1384
1385 err = gpio_is_valid(vbus_gpio_port);
1386 if (!err) {
1387 pr_err("%s: gpio port %d is invalid\n",
1388 __func__, vbus_gpio_port);
1389 return -EINVAL;
1390 }
1391
1392 err = gpio_request(vbus_gpio_port, "pch_vbus");
1393 if (err) {
1394 pr_err("%s: can't request gpio port %d, err: %d\n",
1395 __func__, vbus_gpio_port, err);
1396 return -EINVAL;
1397 }
1398
1399 dev->vbus_gpio.port = vbus_gpio_port;
1400 gpio_direction_input(vbus_gpio_port);
1401 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1402
1403 irq_num = gpio_to_irq(vbus_gpio_port);
1404 if (irq_num > 0) {
1405 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1406 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1407 "vbus_detect", dev);
1408 if (!err) {
1409 dev->vbus_gpio.intr = irq_num;
1410 INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1411 pch_vbus_gpio_work_rise);
1412 } else {
1413 pr_err("%s: can't request irq %d, err: %d\n",
1414 __func__, irq_num, err);
1415 }
1416 }
1417
1418 return 0;
1419}
1420
1421/**
1422 * pch_vbus_gpio_free() - This API frees resources of GPIO port
1423 * @dev: Reference to the driver structure
1424 */
1425static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1426{
1427 if (dev->vbus_gpio.intr)
1428 free_irq(dev->vbus_gpio.intr, dev);
1429
1430 if (dev->vbus_gpio.port)
1431 gpio_free(dev->vbus_gpio.port);
1432}
1433
1434/**
1435 * complete_req() - This API is invoked from the driver when processing
1436 * of a request is complete
1437 * @ep: Reference to the endpoint structure
1438 * @req: Reference to the request structure
1439 * @status: Indicates the success/failure of completion
1440 */
1441static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1442 int status)
1443 __releases(&dev->lock)
1444 __acquires(&dev->lock)
1445{
1446 struct pch_udc_dev *dev;
1447 unsigned halted = ep->halted;
1448
1449 list_del_init(&req->queue);
1450
1451 /* set new status if pending */
1452 if (req->req.status == -EINPROGRESS)
1453 req->req.status = status;
1454 else
1455 status = req->req.status;
1456
1457 dev = ep->dev;
1458 if (req->dma_mapped) {
1459 if (req->dma == DMA_ADDR_INVALID) {
1460 if (ep->in)
1461 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1462 req->req.length,
1463 DMA_TO_DEVICE);
1464 else
1465 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1466 req->req.length,
1467 DMA_FROM_DEVICE);
1468 req->req.dma = DMA_ADDR_INVALID;
1469 } else {
1470 if (ep->in)
1471 dma_unmap_single(&dev->pdev->dev, req->dma,
1472 req->req.length,
1473 DMA_TO_DEVICE);
1474 else {
1475 dma_unmap_single(&dev->pdev->dev, req->dma,
1476 req->req.length,
1477 DMA_FROM_DEVICE);
1478 memcpy(req->req.buf, req->buf, req->req.length);
1479 }
1480 kfree(req->buf);
1481 req->dma = DMA_ADDR_INVALID;
1482 }
1483 req->dma_mapped = 0;
1484 }
1485 ep->halted = 1;
1486 spin_unlock(&dev->lock);
1487 if (!ep->in)
1488 pch_udc_ep_clear_rrdy(ep);
1489 req->req.complete(&ep->ep, &req->req);
1490 spin_lock(&dev->lock);
1491 ep->halted = halted;
1492}
1493
1494/**
1495 * empty_req_queue() - This API empties the request queue of an endpoint
1496 * @ep: Reference to the endpoint structure
1497 */
1498static void empty_req_queue(struct pch_udc_ep *ep)
1499{
1500 struct pch_udc_request *req;
1501
1502 ep->halted = 1;
1503 while (!list_empty(&ep->queue)) {
1504 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1505 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1506 }
1507}
1508
1509/**
1510 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1511 * for the request
1512 * @dev Reference to the driver structure
1513 * @req Reference to the request to be freed
1514 *
1515 * Return codes:
1516 * 0: Success
1517 */
1518static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1519 struct pch_udc_request *req)
1520{
1521 struct pch_udc_data_dma_desc *td = req->td_data;
1522 unsigned i = req->chain_len;
1523
1524 dma_addr_t addr2;
1525 dma_addr_t addr = (dma_addr_t)td->next;
1526 td->next = 0x00;
1527 for (; i > 1; --i) {
1528 /* do not free first desc., will be done by free for request */
1529 td = phys_to_virt(addr);
1530 addr2 = (dma_addr_t)td->next;
1531 pci_pool_free(dev->data_requests, td, addr);
1532 td->next = 0x00;
1533 addr = addr2;
1534 }
1535 req->chain_len = 1;
1536}
1537
1538/**
1539 * pch_udc_create_dma_chain() - This function creates or reinitializes
1540 * a DMA chain
1541 * @ep: Reference to the endpoint structure
1542 * @req: Reference to the request
1543 * @buf_len: The buffer length
1544 * @gfp_flags: Flags to be used while mapping the data buffer
1545 *
1546 * Return codes:
1547 * 0: success,
1548 * -ENOMEM: pci_pool_alloc invocation fails
1549 */
1550static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1551 struct pch_udc_request *req,
1552 unsigned long buf_len,
1553 gfp_t gfp_flags)
1554{
1555 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1556 unsigned long bytes = req->req.length, i = 0;
1557 dma_addr_t dma_addr;
1558 unsigned len = 1;
1559
1560 if (req->chain_len > 1)
1561 pch_udc_free_dma_chain(ep->dev, req);
1562
1563 if (req->dma == DMA_ADDR_INVALID)
1564 td->dataptr = req->req.dma;
1565 else
1566 td->dataptr = req->dma;
1567
1568 td->status = PCH_UDC_BS_HST_BSY;
1569 for (; ; bytes -= buf_len, ++len) {
1570 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1571 if (bytes <= buf_len)
1572 break;
1573 last = td;
1574 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1575 &dma_addr);
1576 if (!td)
1577 goto nomem;
1578 i += buf_len;
1579 td->dataptr = req->td_data->dataptr + i;
1580 last->next = dma_addr;
1581 }
1582
1583 req->td_data_last = td;
1584 td->status |= PCH_UDC_DMA_LAST;
1585 td->next = req->td_data_phys;
1586 req->chain_len = len;
1587 return 0;
1588
1589nomem:
1590 if (len > 1) {
1591 req->chain_len = len;
1592 pch_udc_free_dma_chain(ep->dev, req);
1593 }
1594 req->chain_len = 1;
1595 return -ENOMEM;
1596}
1597
1598/**
1599 * prepare_dma() - This function creates and initializes the DMA chain
1600 * for the request
1601 * @ep: Reference to the endpoint structure
1602 * @req: Reference to the request
1603 * @gfp: Flag to be used while mapping the data buffer
1604 *
1605 * Return codes:
1606 * 0: Success
1607 * Other 0: linux error number on failure
1608 */
1609static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1610 gfp_t gfp)
1611{
1612 int retval;
1613
1614 /* Allocate and create a DMA chain */
1615 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1616 if (retval) {
1617 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1618 return retval;
1619 }
1620 if (ep->in)
1621 req->td_data->status = (req->td_data->status &
1622 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1623 return 0;
1624}
1625
1626/**
1627 * process_zlp() - This function process zero length packets
1628 * from the gadget driver
1629 * @ep: Reference to the endpoint structure
1630 * @req: Reference to the request
1631 */
1632static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1633{
1634 struct pch_udc_dev *dev = ep->dev;
1635
1636 /* IN zlp's are handled by hardware */
1637 complete_req(ep, req, 0);
1638
1639 /* if set_config or set_intf is waiting for ack by zlp
1640 * then set CSR_DONE
1641 */
1642 if (dev->set_cfg_not_acked) {
1643 pch_udc_set_csr_done(dev);
1644 dev->set_cfg_not_acked = 0;
1645 }
1646 /* setup command is ACK'ed now by zlp */
1647 if (!dev->stall && dev->waiting_zlp_ack) {
1648 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1649 dev->waiting_zlp_ack = 0;
1650 }
1651}
1652
1653/**
1654 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1655 * @ep: Reference to the endpoint structure
1656 * @req: Reference to the request structure
1657 */
1658static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1659 struct pch_udc_request *req)
1660{
1661 struct pch_udc_data_dma_desc *td_data;
1662
1663 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1664 td_data = req->td_data;
1665 /* Set the status bits for all descriptors */
1666 while (1) {
1667 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1668 PCH_UDC_BS_HST_RDY;
1669 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1670 break;
1671 td_data = phys_to_virt(td_data->next);
1672 }
1673 /* Write the descriptor pointer */
1674 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1675 req->dma_going = 1;
1676 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1677 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1678 pch_udc_ep_clear_nak(ep);
1679 pch_udc_ep_set_rrdy(ep);
1680}
1681
1682/**
1683 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1684 * from gadget driver
1685 * @usbep: Reference to the USB endpoint structure
1686 * @desc: Reference to the USB endpoint descriptor structure
1687 *
1688 * Return codes:
1689 * 0: Success
1690 * -EINVAL:
1691 * -ESHUTDOWN:
1692 */
1693static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1694 const struct usb_endpoint_descriptor *desc)
1695{
1696 struct pch_udc_ep *ep;
1697 struct pch_udc_dev *dev;
1698 unsigned long iflags;
1699
1700 if (!usbep || (usbep->name == ep0_string) || !desc ||
1701 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1702 return -EINVAL;
1703
1704 ep = container_of(usbep, struct pch_udc_ep, ep);
1705 dev = ep->dev;
1706 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1707 return -ESHUTDOWN;
1708 spin_lock_irqsave(&dev->lock, iflags);
1709 ep->ep.desc = desc;
1710 ep->halted = 0;
1711 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1712 ep->ep.maxpacket = usb_endpoint_maxp(desc);
1713 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1714 spin_unlock_irqrestore(&dev->lock, iflags);
1715 return 0;
1716}
1717
1718/**
1719 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1720 * from gadget driver
1721 * @usbep Reference to the USB endpoint structure
1722 *
1723 * Return codes:
1724 * 0: Success
1725 * -EINVAL:
1726 */
1727static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1728{
1729 struct pch_udc_ep *ep;
1730 struct pch_udc_dev *dev;
1731 unsigned long iflags;
1732
1733 if (!usbep)
1734 return -EINVAL;
1735
1736 ep = container_of(usbep, struct pch_udc_ep, ep);
1737 dev = ep->dev;
1738 if ((usbep->name == ep0_string) || !ep->ep.desc)
1739 return -EINVAL;
1740
1741 spin_lock_irqsave(&ep->dev->lock, iflags);
1742 empty_req_queue(ep);
1743 ep->halted = 1;
1744 pch_udc_ep_disable(ep);
1745 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1746 ep->ep.desc = NULL;
1747 INIT_LIST_HEAD(&ep->queue);
1748 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1749 return 0;
1750}
1751
1752/**
1753 * pch_udc_alloc_request() - This function allocates request structure.
1754 * It is called by gadget driver
1755 * @usbep: Reference to the USB endpoint structure
1756 * @gfp: Flag to be used while allocating memory
1757 *
1758 * Return codes:
1759 * NULL: Failure
1760 * Allocated address: Success
1761 */
1762static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1763 gfp_t gfp)
1764{
1765 struct pch_udc_request *req;
1766 struct pch_udc_ep *ep;
1767 struct pch_udc_data_dma_desc *dma_desc;
1768 struct pch_udc_dev *dev;
1769
1770 if (!usbep)
1771 return NULL;
1772 ep = container_of(usbep, struct pch_udc_ep, ep);
1773 dev = ep->dev;
1774 req = kzalloc(sizeof *req, gfp);
1775 if (!req)
1776 return NULL;
1777 req->req.dma = DMA_ADDR_INVALID;
1778 req->dma = DMA_ADDR_INVALID;
1779 INIT_LIST_HEAD(&req->queue);
1780 if (!ep->dev->dma_addr)
1781 return &req->req;
1782 /* ep0 in requests are allocated from data pool here */
1783 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1784 &req->td_data_phys);
1785 if (NULL == dma_desc) {
1786 kfree(req);
1787 return NULL;
1788 }
1789 /* prevent from using desc. - set HOST BUSY */
1790 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1791 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1792 req->td_data = dma_desc;
1793 req->td_data_last = dma_desc;
1794 req->chain_len = 1;
1795 return &req->req;
1796}
1797
1798/**
1799 * pch_udc_free_request() - This function frees request structure.
1800 * It is called by gadget driver
1801 * @usbep: Reference to the USB endpoint structure
1802 * @usbreq: Reference to the USB request
1803 */
1804static void pch_udc_free_request(struct usb_ep *usbep,
1805 struct usb_request *usbreq)
1806{
1807 struct pch_udc_ep *ep;
1808 struct pch_udc_request *req;
1809 struct pch_udc_dev *dev;
1810
1811 if (!usbep || !usbreq)
1812 return;
1813 ep = container_of(usbep, struct pch_udc_ep, ep);
1814 req = container_of(usbreq, struct pch_udc_request, req);
1815 dev = ep->dev;
1816 if (!list_empty(&req->queue))
1817 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1818 __func__, usbep->name, req);
1819 if (req->td_data != NULL) {
1820 if (req->chain_len > 1)
1821 pch_udc_free_dma_chain(ep->dev, req);
1822 pci_pool_free(ep->dev->data_requests, req->td_data,
1823 req->td_data_phys);
1824 }
1825 kfree(req);
1826}
1827
1828/**
1829 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1830 * by gadget driver
1831 * @usbep: Reference to the USB endpoint structure
1832 * @usbreq: Reference to the USB request
1833 * @gfp: Flag to be used while mapping the data buffer
1834 *
1835 * Return codes:
1836 * 0: Success
1837 * linux error number: Failure
1838 */
1839static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1840 gfp_t gfp)
1841{
1842 int retval = 0;
1843 struct pch_udc_ep *ep;
1844 struct pch_udc_dev *dev;
1845 struct pch_udc_request *req;
1846 unsigned long iflags;
1847
1848 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1849 return -EINVAL;
1850 ep = container_of(usbep, struct pch_udc_ep, ep);
1851 dev = ep->dev;
1852 if (!ep->ep.desc && ep->num)
1853 return -EINVAL;
1854 req = container_of(usbreq, struct pch_udc_request, req);
1855 if (!list_empty(&req->queue))
1856 return -EINVAL;
1857 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1858 return -ESHUTDOWN;
1859 spin_lock_irqsave(&dev->lock, iflags);
1860 /* map the buffer for dma */
1861 if (usbreq->length &&
1862 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1863 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1864 if (ep->in)
1865 usbreq->dma = dma_map_single(&dev->pdev->dev,
1866 usbreq->buf,
1867 usbreq->length,
1868 DMA_TO_DEVICE);
1869 else
1870 usbreq->dma = dma_map_single(&dev->pdev->dev,
1871 usbreq->buf,
1872 usbreq->length,
1873 DMA_FROM_DEVICE);
1874 } else {
1875 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1876 if (!req->buf) {
1877 retval = -ENOMEM;
1878 goto probe_end;
1879 }
1880 if (ep->in) {
1881 memcpy(req->buf, usbreq->buf, usbreq->length);
1882 req->dma = dma_map_single(&dev->pdev->dev,
1883 req->buf,
1884 usbreq->length,
1885 DMA_TO_DEVICE);
1886 } else
1887 req->dma = dma_map_single(&dev->pdev->dev,
1888 req->buf,
1889 usbreq->length,
1890 DMA_FROM_DEVICE);
1891 }
1892 req->dma_mapped = 1;
1893 }
1894 if (usbreq->length > 0) {
1895 retval = prepare_dma(ep, req, GFP_ATOMIC);
1896 if (retval)
1897 goto probe_end;
1898 }
1899 usbreq->actual = 0;
1900 usbreq->status = -EINPROGRESS;
1901 req->dma_done = 0;
1902 if (list_empty(&ep->queue) && !ep->halted) {
1903 /* no pending transfer, so start this req */
1904 if (!usbreq->length) {
1905 process_zlp(ep, req);
1906 retval = 0;
1907 goto probe_end;
1908 }
1909 if (!ep->in) {
1910 pch_udc_start_rxrequest(ep, req);
1911 } else {
1912 /*
1913 * For IN trfr the descriptors will be programmed and
1914 * P bit will be set when
1915 * we get an IN token
1916 */
1917 pch_udc_wait_ep_stall(ep);
1918 pch_udc_ep_clear_nak(ep);
1919 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1920 }
1921 }
1922 /* Now add this request to the ep's pending requests */
1923 if (req != NULL)
1924 list_add_tail(&req->queue, &ep->queue);
1925
1926probe_end:
1927 spin_unlock_irqrestore(&dev->lock, iflags);
1928 return retval;
1929}
1930
1931/**
1932 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1933 * It is called by gadget driver
1934 * @usbep: Reference to the USB endpoint structure
1935 * @usbreq: Reference to the USB request
1936 *
1937 * Return codes:
1938 * 0: Success
1939 * linux error number: Failure
1940 */
1941static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1942 struct usb_request *usbreq)
1943{
1944 struct pch_udc_ep *ep;
1945 struct pch_udc_request *req;
1946 struct pch_udc_dev *dev;
1947 unsigned long flags;
1948 int ret = -EINVAL;
1949
1950 ep = container_of(usbep, struct pch_udc_ep, ep);
1951 dev = ep->dev;
1952 if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1953 return ret;
1954 req = container_of(usbreq, struct pch_udc_request, req);
1955 spin_lock_irqsave(&ep->dev->lock, flags);
1956 /* make sure it's still queued on this endpoint */
1957 list_for_each_entry(req, &ep->queue, queue) {
1958 if (&req->req == usbreq) {
1959 pch_udc_ep_set_nak(ep);
1960 if (!list_empty(&req->queue))
1961 complete_req(ep, req, -ECONNRESET);
1962 ret = 0;
1963 break;
1964 }
1965 }
1966 spin_unlock_irqrestore(&ep->dev->lock, flags);
1967 return ret;
1968}
1969
1970/**
1971 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1972 * feature
1973 * @usbep: Reference to the USB endpoint structure
1974 * @halt: Specifies whether to set or clear the feature
1975 *
1976 * Return codes:
1977 * 0: Success
1978 * linux error number: Failure
1979 */
1980static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1981{
1982 struct pch_udc_ep *ep;
1983 struct pch_udc_dev *dev;
1984 unsigned long iflags;
1985 int ret;
1986
1987 if (!usbep)
1988 return -EINVAL;
1989 ep = container_of(usbep, struct pch_udc_ep, ep);
1990 dev = ep->dev;
1991 if (!ep->ep.desc && !ep->num)
1992 return -EINVAL;
1993 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1994 return -ESHUTDOWN;
1995 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1996 if (list_empty(&ep->queue)) {
1997 if (halt) {
1998 if (ep->num == PCH_UDC_EP0)
1999 ep->dev->stall = 1;
2000 pch_udc_ep_set_stall(ep);
2001 pch_udc_enable_ep_interrupts(ep->dev,
2002 PCH_UDC_EPINT(ep->in,
2003 ep->num));
2004 } else {
2005 pch_udc_ep_clear_stall(ep);
2006 }
2007 ret = 0;
2008 } else {
2009 ret = -EAGAIN;
2010 }
2011 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2012 return ret;
2013}
2014
2015/**
2016 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2017 * halt feature
2018 * @usbep: Reference to the USB endpoint structure
2019 * @halt: Specifies whether to set or clear the feature
2020 *
2021 * Return codes:
2022 * 0: Success
2023 * linux error number: Failure
2024 */
2025static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2026{
2027 struct pch_udc_ep *ep;
2028 struct pch_udc_dev *dev;
2029 unsigned long iflags;
2030 int ret;
2031
2032 if (!usbep)
2033 return -EINVAL;
2034 ep = container_of(usbep, struct pch_udc_ep, ep);
2035 dev = ep->dev;
2036 if (!ep->ep.desc && !ep->num)
2037 return -EINVAL;
2038 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2039 return -ESHUTDOWN;
2040 spin_lock_irqsave(&udc_stall_spinlock, iflags);
2041 if (!list_empty(&ep->queue)) {
2042 ret = -EAGAIN;
2043 } else {
2044 if (ep->num == PCH_UDC_EP0)
2045 ep->dev->stall = 1;
2046 pch_udc_ep_set_stall(ep);
2047 pch_udc_enable_ep_interrupts(ep->dev,
2048 PCH_UDC_EPINT(ep->in, ep->num));
2049 ep->dev->prot_stall = 1;
2050 ret = 0;
2051 }
2052 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2053 return ret;
2054}
2055
2056/**
2057 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2058 * @usbep: Reference to the USB endpoint structure
2059 */
2060static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2061{
2062 struct pch_udc_ep *ep;
2063
2064 if (!usbep)
2065 return;
2066
2067 ep = container_of(usbep, struct pch_udc_ep, ep);
2068 if (ep->ep.desc || !ep->num)
2069 pch_udc_ep_fifo_flush(ep, ep->in);
2070}
2071
2072static const struct usb_ep_ops pch_udc_ep_ops = {
2073 .enable = pch_udc_pcd_ep_enable,
2074 .disable = pch_udc_pcd_ep_disable,
2075 .alloc_request = pch_udc_alloc_request,
2076 .free_request = pch_udc_free_request,
2077 .queue = pch_udc_pcd_queue,
2078 .dequeue = pch_udc_pcd_dequeue,
2079 .set_halt = pch_udc_pcd_set_halt,
2080 .set_wedge = pch_udc_pcd_set_wedge,
2081 .fifo_status = NULL,
2082 .fifo_flush = pch_udc_pcd_fifo_flush,
2083};
2084
2085/**
2086 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2087 * @td_stp: Reference to the SETP buffer structure
2088 */
2089static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2090{
2091 static u32 pky_marker;
2092
2093 if (!td_stp)
2094 return;
2095 td_stp->reserved = ++pky_marker;
2096 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2097 td_stp->status = PCH_UDC_BS_HST_RDY;
2098}
2099
2100/**
2101 * pch_udc_start_next_txrequest() - This function starts
2102 * the next transmission requirement
2103 * @ep: Reference to the endpoint structure
2104 */
2105static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2106{
2107 struct pch_udc_request *req;
2108 struct pch_udc_data_dma_desc *td_data;
2109
2110 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2111 return;
2112
2113 if (list_empty(&ep->queue))
2114 return;
2115
2116 /* next request */
2117 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2118 if (req->dma_going)
2119 return;
2120 if (!req->td_data)
2121 return;
2122 pch_udc_wait_ep_stall(ep);
2123 req->dma_going = 1;
2124 pch_udc_ep_set_ddptr(ep, 0);
2125 td_data = req->td_data;
2126 while (1) {
2127 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2128 PCH_UDC_BS_HST_RDY;
2129 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2130 break;
2131 td_data = phys_to_virt(td_data->next);
2132 }
2133 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2134 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2135 pch_udc_ep_set_pd(ep);
2136 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2137 pch_udc_ep_clear_nak(ep);
2138}
2139
2140/**
2141 * pch_udc_complete_transfer() - This function completes a transfer
2142 * @ep: Reference to the endpoint structure
2143 */
2144static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2145{
2146 struct pch_udc_request *req;
2147 struct pch_udc_dev *dev = ep->dev;
2148
2149 if (list_empty(&ep->queue))
2150 return;
2151 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2152 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2153 PCH_UDC_BS_DMA_DONE)
2154 return;
2155 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2156 PCH_UDC_RTS_SUCC) {
2157 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2158 "epstatus=0x%08x\n",
2159 (req->td_data_last->status & PCH_UDC_RXTX_STS),
2160 (int)(ep->epsts));
2161 return;
2162 }
2163
2164 req->req.actual = req->req.length;
2165 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2166 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2167 complete_req(ep, req, 0);
2168 req->dma_going = 0;
2169 if (!list_empty(&ep->queue)) {
2170 pch_udc_wait_ep_stall(ep);
2171 pch_udc_ep_clear_nak(ep);
2172 pch_udc_enable_ep_interrupts(ep->dev,
2173 PCH_UDC_EPINT(ep->in, ep->num));
2174 } else {
2175 pch_udc_disable_ep_interrupts(ep->dev,
2176 PCH_UDC_EPINT(ep->in, ep->num));
2177 }
2178}
2179
2180/**
2181 * pch_udc_complete_receiver() - This function completes a receiver
2182 * @ep: Reference to the endpoint structure
2183 */
2184static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2185{
2186 struct pch_udc_request *req;
2187 struct pch_udc_dev *dev = ep->dev;
2188 unsigned int count;
2189 struct pch_udc_data_dma_desc *td;
2190 dma_addr_t addr;
2191
2192 if (list_empty(&ep->queue))
2193 return;
2194 /* next request */
2195 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2196 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2197 pch_udc_ep_set_ddptr(ep, 0);
2198 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2199 PCH_UDC_BS_DMA_DONE)
2200 td = req->td_data_last;
2201 else
2202 td = req->td_data;
2203
2204 while (1) {
2205 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2206 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2207 "epstatus=0x%08x\n",
2208 (req->td_data->status & PCH_UDC_RXTX_STS),
2209 (int)(ep->epsts));
2210 return;
2211 }
2212 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2213 if (td->status & PCH_UDC_DMA_LAST) {
2214 count = td->status & PCH_UDC_RXTX_BYTES;
2215 break;
2216 }
2217 if (td == req->td_data_last) {
2218 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2219 return;
2220 }
2221 addr = (dma_addr_t)td->next;
2222 td = phys_to_virt(addr);
2223 }
2224 /* on 64k packets the RXBYTES field is zero */
2225 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2226 count = UDC_DMA_MAXPACKET;
2227 req->td_data->status |= PCH_UDC_DMA_LAST;
2228 td->status |= PCH_UDC_BS_HST_BSY;
2229
2230 req->dma_going = 0;
2231 req->req.actual = count;
2232 complete_req(ep, req, 0);
2233 /* If there is a new/failed requests try that now */
2234 if (!list_empty(&ep->queue)) {
2235 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2236 pch_udc_start_rxrequest(ep, req);
2237 }
2238}
2239
2240/**
2241 * pch_udc_svc_data_in() - This function process endpoint interrupts
2242 * for IN endpoints
2243 * @dev: Reference to the device structure
2244 * @ep_num: Endpoint that generated the interrupt
2245 */
2246static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2247{
2248 u32 epsts;
2249 struct pch_udc_ep *ep;
2250
2251 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2252 epsts = ep->epsts;
2253 ep->epsts = 0;
2254
2255 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2256 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2257 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2258 return;
2259 if ((epsts & UDC_EPSTS_BNA))
2260 return;
2261 if (epsts & UDC_EPSTS_HE)
2262 return;
2263 if (epsts & UDC_EPSTS_RSS) {
2264 pch_udc_ep_set_stall(ep);
2265 pch_udc_enable_ep_interrupts(ep->dev,
2266 PCH_UDC_EPINT(ep->in, ep->num));
2267 }
2268 if (epsts & UDC_EPSTS_RCS) {
2269 if (!dev->prot_stall) {
2270 pch_udc_ep_clear_stall(ep);
2271 } else {
2272 pch_udc_ep_set_stall(ep);
2273 pch_udc_enable_ep_interrupts(ep->dev,
2274 PCH_UDC_EPINT(ep->in, ep->num));
2275 }
2276 }
2277 if (epsts & UDC_EPSTS_TDC)
2278 pch_udc_complete_transfer(ep);
2279 /* On IN interrupt, provide data if we have any */
2280 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2281 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2282 pch_udc_start_next_txrequest(ep);
2283}
2284
2285/**
2286 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2287 * @dev: Reference to the device structure
2288 * @ep_num: Endpoint that generated the interrupt
2289 */
2290static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2291{
2292 u32 epsts;
2293 struct pch_udc_ep *ep;
2294 struct pch_udc_request *req = NULL;
2295
2296 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2297 epsts = ep->epsts;
2298 ep->epsts = 0;
2299
2300 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2301 /* next request */
2302 req = list_entry(ep->queue.next, struct pch_udc_request,
2303 queue);
2304 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2305 PCH_UDC_BS_DMA_DONE) {
2306 if (!req->dma_going)
2307 pch_udc_start_rxrequest(ep, req);
2308 return;
2309 }
2310 }
2311 if (epsts & UDC_EPSTS_HE)
2312 return;
2313 if (epsts & UDC_EPSTS_RSS) {
2314 pch_udc_ep_set_stall(ep);
2315 pch_udc_enable_ep_interrupts(ep->dev,
2316 PCH_UDC_EPINT(ep->in, ep->num));
2317 }
2318 if (epsts & UDC_EPSTS_RCS) {
2319 if (!dev->prot_stall) {
2320 pch_udc_ep_clear_stall(ep);
2321 } else {
2322 pch_udc_ep_set_stall(ep);
2323 pch_udc_enable_ep_interrupts(ep->dev,
2324 PCH_UDC_EPINT(ep->in, ep->num));
2325 }
2326 }
2327 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2328 UDC_EPSTS_OUT_DATA) {
2329 if (ep->dev->prot_stall == 1) {
2330 pch_udc_ep_set_stall(ep);
2331 pch_udc_enable_ep_interrupts(ep->dev,
2332 PCH_UDC_EPINT(ep->in, ep->num));
2333 } else {
2334 pch_udc_complete_receiver(ep);
2335 }
2336 }
2337 if (list_empty(&ep->queue))
2338 pch_udc_set_dma(dev, DMA_DIR_RX);
2339}
2340
2341/**
2342 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2343 * @dev: Reference to the device structure
2344 */
2345static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2346{
2347 u32 epsts;
2348 struct pch_udc_ep *ep;
2349 struct pch_udc_ep *ep_out;
2350
2351 ep = &dev->ep[UDC_EP0IN_IDX];
2352 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2353 epsts = ep->epsts;
2354 ep->epsts = 0;
2355
2356 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2357 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2358 UDC_EPSTS_XFERDONE)))
2359 return;
2360 if ((epsts & UDC_EPSTS_BNA))
2361 return;
2362 if (epsts & UDC_EPSTS_HE)
2363 return;
2364 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2365 pch_udc_complete_transfer(ep);
2366 pch_udc_clear_dma(dev, DMA_DIR_RX);
2367 ep_out->td_data->status = (ep_out->td_data->status &
2368 ~PCH_UDC_BUFF_STS) |
2369 PCH_UDC_BS_HST_RDY;
2370 pch_udc_ep_clear_nak(ep_out);
2371 pch_udc_set_dma(dev, DMA_DIR_RX);
2372 pch_udc_ep_set_rrdy(ep_out);
2373 }
2374 /* On IN interrupt, provide data if we have any */
2375 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2376 !(epsts & UDC_EPSTS_TXEMPTY))
2377 pch_udc_start_next_txrequest(ep);
2378}
2379
2380/**
2381 * pch_udc_svc_control_out() - Routine that handle Control
2382 * OUT endpoint interrupts
2383 * @dev: Reference to the device structure
2384 */
2385static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2386 __releases(&dev->lock)
2387 __acquires(&dev->lock)
2388{
2389 u32 stat;
2390 int setup_supported;
2391 struct pch_udc_ep *ep;
2392
2393 ep = &dev->ep[UDC_EP0OUT_IDX];
2394 stat = ep->epsts;
2395 ep->epsts = 0;
2396
2397 /* If setup data */
2398 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2399 UDC_EPSTS_OUT_SETUP) {
2400 dev->stall = 0;
2401 dev->ep[UDC_EP0IN_IDX].halted = 0;
2402 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2403 dev->setup_data = ep->td_stp->request;
2404 pch_udc_init_setup_buff(ep->td_stp);
2405 pch_udc_clear_dma(dev, DMA_DIR_RX);
2406 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2407 dev->ep[UDC_EP0IN_IDX].in);
2408 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2409 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2410 else /* OUT */
2411 dev->gadget.ep0 = &ep->ep;
2412 spin_unlock(&dev->lock);
2413 /* If Mass storage Reset */
2414 if ((dev->setup_data.bRequestType == 0x21) &&
2415 (dev->setup_data.bRequest == 0xFF))
2416 dev->prot_stall = 0;
2417 /* call gadget with setup data received */
2418 setup_supported = dev->driver->setup(&dev->gadget,
2419 &dev->setup_data);
2420 spin_lock(&dev->lock);
2421
2422 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2423 ep->td_data->status = (ep->td_data->status &
2424 ~PCH_UDC_BUFF_STS) |
2425 PCH_UDC_BS_HST_RDY;
2426 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2427 }
2428 /* ep0 in returns data on IN phase */
2429 if (setup_supported >= 0 && setup_supported <
2430 UDC_EP0IN_MAX_PKT_SIZE) {
2431 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2432 /* Gadget would have queued a request when
2433 * we called the setup */
2434 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2435 pch_udc_set_dma(dev, DMA_DIR_RX);
2436 pch_udc_ep_clear_nak(ep);
2437 }
2438 } else if (setup_supported < 0) {
2439 /* if unsupported request, then stall */
2440 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2441 pch_udc_enable_ep_interrupts(ep->dev,
2442 PCH_UDC_EPINT(ep->in, ep->num));
2443 dev->stall = 0;
2444 pch_udc_set_dma(dev, DMA_DIR_RX);
2445 } else {
2446 dev->waiting_zlp_ack = 1;
2447 }
2448 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2449 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2450 pch_udc_clear_dma(dev, DMA_DIR_RX);
2451 pch_udc_ep_set_ddptr(ep, 0);
2452 if (!list_empty(&ep->queue)) {
2453 ep->epsts = stat;
2454 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2455 }
2456 pch_udc_set_dma(dev, DMA_DIR_RX);
2457 }
2458 pch_udc_ep_set_rrdy(ep);
2459}
2460
2461
2462/**
2463 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2464 * and clears NAK status
2465 * @dev: Reference to the device structure
2466 * @ep_num: End point number
2467 */
2468static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2469{
2470 struct pch_udc_ep *ep;
2471 struct pch_udc_request *req;
2472
2473 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2474 if (!list_empty(&ep->queue)) {
2475 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2476 pch_udc_enable_ep_interrupts(ep->dev,
2477 PCH_UDC_EPINT(ep->in, ep->num));
2478 pch_udc_ep_clear_nak(ep);
2479 }
2480}
2481
2482/**
2483 * pch_udc_read_all_epstatus() - This function read all endpoint status
2484 * @dev: Reference to the device structure
2485 * @ep_intr: Status of endpoint interrupt
2486 */
2487static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2488{
2489 int i;
2490 struct pch_udc_ep *ep;
2491
2492 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2493 /* IN */
2494 if (ep_intr & (0x1 << i)) {
2495 ep = &dev->ep[UDC_EPIN_IDX(i)];
2496 ep->epsts = pch_udc_read_ep_status(ep);
2497 pch_udc_clear_ep_status(ep, ep->epsts);
2498 }
2499 /* OUT */
2500 if (ep_intr & (0x10000 << i)) {
2501 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2502 ep->epsts = pch_udc_read_ep_status(ep);
2503 pch_udc_clear_ep_status(ep, ep->epsts);
2504 }
2505 }
2506}
2507
2508/**
2509 * pch_udc_activate_control_ep() - This function enables the control endpoints
2510 * for traffic after a reset
2511 * @dev: Reference to the device structure
2512 */
2513static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2514{
2515 struct pch_udc_ep *ep;
2516 u32 val;
2517
2518 /* Setup the IN endpoint */
2519 ep = &dev->ep[UDC_EP0IN_IDX];
2520 pch_udc_clear_ep_control(ep);
2521 pch_udc_ep_fifo_flush(ep, ep->in);
2522 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2523 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2524 /* Initialize the IN EP Descriptor */
2525 ep->td_data = NULL;
2526 ep->td_stp = NULL;
2527 ep->td_data_phys = 0;
2528 ep->td_stp_phys = 0;
2529
2530 /* Setup the OUT endpoint */
2531 ep = &dev->ep[UDC_EP0OUT_IDX];
2532 pch_udc_clear_ep_control(ep);
2533 pch_udc_ep_fifo_flush(ep, ep->in);
2534 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2535 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2536 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2537 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2538
2539 /* Initialize the SETUP buffer */
2540 pch_udc_init_setup_buff(ep->td_stp);
2541 /* Write the pointer address of dma descriptor */
2542 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2543 /* Write the pointer address of Setup descriptor */
2544 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2545
2546 /* Initialize the dma descriptor */
2547 ep->td_data->status = PCH_UDC_DMA_LAST;
2548 ep->td_data->dataptr = dev->dma_addr;
2549 ep->td_data->next = ep->td_data_phys;
2550
2551 pch_udc_ep_clear_nak(ep);
2552}
2553
2554
2555/**
2556 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2557 * @dev: Reference to driver structure
2558 */
2559static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2560{
2561 struct pch_udc_ep *ep;
2562 int i;
2563
2564 pch_udc_clear_dma(dev, DMA_DIR_TX);
2565 pch_udc_clear_dma(dev, DMA_DIR_RX);
2566 /* Mask all endpoint interrupts */
2567 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2568 /* clear all endpoint interrupts */
2569 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2570
2571 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2572 ep = &dev->ep[i];
2573 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2574 pch_udc_clear_ep_control(ep);
2575 pch_udc_ep_set_ddptr(ep, 0);
2576 pch_udc_write_csr(ep->dev, 0x00, i);
2577 }
2578 dev->stall = 0;
2579 dev->prot_stall = 0;
2580 dev->waiting_zlp_ack = 0;
2581 dev->set_cfg_not_acked = 0;
2582
2583 /* disable ep to empty req queue. Skip the control EP's */
2584 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2585 ep = &dev->ep[i];
2586 pch_udc_ep_set_nak(ep);
2587 pch_udc_ep_fifo_flush(ep, ep->in);
2588 /* Complete request queue */
2589 empty_req_queue(ep);
2590 }
2591 if (dev->driver && dev->driver->disconnect) {
2592 spin_unlock(&dev->lock);
2593 dev->driver->disconnect(&dev->gadget);
2594 spin_lock(&dev->lock);
2595 }
2596}
2597
2598/**
2599 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2600 * done interrupt
2601 * @dev: Reference to driver structure
2602 */
2603static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2604{
2605 u32 dev_stat, dev_speed;
2606 u32 speed = USB_SPEED_FULL;
2607
2608 dev_stat = pch_udc_read_device_status(dev);
2609 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2610 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2611 switch (dev_speed) {
2612 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2613 speed = USB_SPEED_HIGH;
2614 break;
2615 case UDC_DEVSTS_ENUM_SPEED_FULL:
2616 speed = USB_SPEED_FULL;
2617 break;
2618 case UDC_DEVSTS_ENUM_SPEED_LOW:
2619 speed = USB_SPEED_LOW;
2620 break;
2621 default:
2622 BUG();
2623 }
2624 dev->gadget.speed = speed;
2625 pch_udc_activate_control_ep(dev);
2626 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2627 pch_udc_set_dma(dev, DMA_DIR_TX);
2628 pch_udc_set_dma(dev, DMA_DIR_RX);
2629 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2630
2631 /* enable device interrupts */
2632 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2633 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2634 UDC_DEVINT_SI | UDC_DEVINT_SC);
2635}
2636
2637/**
2638 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2639 * interrupt
2640 * @dev: Reference to driver structure
2641 */
2642static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2643{
2644 u32 reg, dev_stat = 0;
2645 int i, ret;
2646
2647 dev_stat = pch_udc_read_device_status(dev);
2648 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2649 UDC_DEVSTS_INTF_SHIFT;
2650 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2651 UDC_DEVSTS_ALT_SHIFT;
2652 dev->set_cfg_not_acked = 1;
2653 /* Construct the usb request for gadget driver and inform it */
2654 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2655 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2656 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2657 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2658 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2659 /* programm the Endpoint Cfg registers */
2660 /* Only one end point cfg register */
2661 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2662 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2663 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2664 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2665 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2666 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2667 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2668 /* clear stall bits */
2669 pch_udc_ep_clear_stall(&(dev->ep[i]));
2670 dev->ep[i].halted = 0;
2671 }
2672 dev->stall = 0;
2673 spin_unlock(&dev->lock);
2674 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2675 spin_lock(&dev->lock);
2676}
2677
2678/**
2679 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2680 * interrupt
2681 * @dev: Reference to driver structure
2682 */
2683static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2684{
2685 int i, ret;
2686 u32 reg, dev_stat = 0;
2687
2688 dev_stat = pch_udc_read_device_status(dev);
2689 dev->set_cfg_not_acked = 1;
2690 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2691 UDC_DEVSTS_CFG_SHIFT;
2692 /* make usb request for gadget driver */
2693 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2694 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2695 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2696 /* program the NE registers */
2697 /* Only one end point cfg register */
2698 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2699 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2700 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2701 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2702 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2703 /* clear stall bits */
2704 pch_udc_ep_clear_stall(&(dev->ep[i]));
2705 dev->ep[i].halted = 0;
2706 }
2707 dev->stall = 0;
2708
2709 /* call gadget zero with setup data received */
2710 spin_unlock(&dev->lock);
2711 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2712 spin_lock(&dev->lock);
2713}
2714
2715/**
2716 * pch_udc_dev_isr() - This function services device interrupts
2717 * by invoking appropriate routines.
2718 * @dev: Reference to the device structure
2719 * @dev_intr: The Device interrupt status.
2720 */
2721static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2722{
2723 int vbus;
2724
2725 /* USB Reset Interrupt */
2726 if (dev_intr & UDC_DEVINT_UR) {
2727 pch_udc_svc_ur_interrupt(dev);
2728 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2729 }
2730 /* Enumeration Done Interrupt */
2731 if (dev_intr & UDC_DEVINT_ENUM) {
2732 pch_udc_svc_enum_interrupt(dev);
2733 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2734 }
2735 /* Set Interface Interrupt */
2736 if (dev_intr & UDC_DEVINT_SI)
2737 pch_udc_svc_intf_interrupt(dev);
2738 /* Set Config Interrupt */
2739 if (dev_intr & UDC_DEVINT_SC)
2740 pch_udc_svc_cfg_interrupt(dev);
2741 /* USB Suspend interrupt */
2742 if (dev_intr & UDC_DEVINT_US) {
2743 if (dev->driver
2744 && dev->driver->suspend) {
2745 spin_unlock(&dev->lock);
2746 dev->driver->suspend(&dev->gadget);
2747 spin_lock(&dev->lock);
2748 }
2749
2750 vbus = pch_vbus_gpio_get_value(dev);
2751 if ((dev->vbus_session == 0)
2752 && (vbus != 1)) {
2753 if (dev->driver && dev->driver->disconnect) {
2754 spin_unlock(&dev->lock);
2755 dev->driver->disconnect(&dev->gadget);
2756 spin_lock(&dev->lock);
2757 }
2758 pch_udc_reconnect(dev);
2759 } else if ((dev->vbus_session == 0)
2760 && (vbus == 1)
2761 && !dev->vbus_gpio.intr)
2762 schedule_work(&dev->vbus_gpio.irq_work_fall);
2763
2764 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2765 }
2766 /* Clear the SOF interrupt, if enabled */
2767 if (dev_intr & UDC_DEVINT_SOF)
2768 dev_dbg(&dev->pdev->dev, "SOF\n");
2769 /* ES interrupt, IDLE > 3ms on the USB */
2770 if (dev_intr & UDC_DEVINT_ES)
2771 dev_dbg(&dev->pdev->dev, "ES\n");
2772 /* RWKP interrupt */
2773 if (dev_intr & UDC_DEVINT_RWKP)
2774 dev_dbg(&dev->pdev->dev, "RWKP\n");
2775}
2776
2777/**
2778 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2779 * @irq: Interrupt request number
2780 * @dev: Reference to the device structure
2781 */
2782static irqreturn_t pch_udc_isr(int irq, void *pdev)
2783{
2784 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2785 u32 dev_intr, ep_intr;
2786 int i;
2787
2788 dev_intr = pch_udc_read_device_interrupts(dev);
2789 ep_intr = pch_udc_read_ep_interrupts(dev);
2790
2791 /* For a hot plug, this find that the controller is hung up. */
2792 if (dev_intr == ep_intr)
2793 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2794 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2795 /* The controller is reset */
2796 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2797 return IRQ_HANDLED;
2798 }
2799 if (dev_intr)
2800 /* Clear device interrupts */
2801 pch_udc_write_device_interrupts(dev, dev_intr);
2802 if (ep_intr)
2803 /* Clear ep interrupts */
2804 pch_udc_write_ep_interrupts(dev, ep_intr);
2805 if (!dev_intr && !ep_intr)
2806 return IRQ_NONE;
2807 spin_lock(&dev->lock);
2808 if (dev_intr)
2809 pch_udc_dev_isr(dev, dev_intr);
2810 if (ep_intr) {
2811 pch_udc_read_all_epstatus(dev, ep_intr);
2812 /* Process Control In interrupts, if present */
2813 if (ep_intr & UDC_EPINT_IN_EP0) {
2814 pch_udc_svc_control_in(dev);
2815 pch_udc_postsvc_epinters(dev, 0);
2816 }
2817 /* Process Control Out interrupts, if present */
2818 if (ep_intr & UDC_EPINT_OUT_EP0)
2819 pch_udc_svc_control_out(dev);
2820 /* Process data in end point interrupts */
2821 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2822 if (ep_intr & (1 << i)) {
2823 pch_udc_svc_data_in(dev, i);
2824 pch_udc_postsvc_epinters(dev, i);
2825 }
2826 }
2827 /* Process data out end point interrupts */
2828 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2829 PCH_UDC_USED_EP_NUM); i++)
2830 if (ep_intr & (1 << i))
2831 pch_udc_svc_data_out(dev, i -
2832 UDC_EPINT_OUT_SHIFT);
2833 }
2834 spin_unlock(&dev->lock);
2835 return IRQ_HANDLED;
2836}
2837
2838/**
2839 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2840 * @dev: Reference to the device structure
2841 */
2842static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2843{
2844 /* enable ep0 interrupts */
2845 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2846 UDC_EPINT_OUT_EP0);
2847 /* enable device interrupts */
2848 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2849 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2850 UDC_DEVINT_SI | UDC_DEVINT_SC);
2851}
2852
2853/**
2854 * gadget_release() - Free the gadget driver private data
2855 * @pdev reference to struct pci_dev
2856 */
2857static void gadget_release(struct device *pdev)
2858{
2859 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2860
2861 kfree(dev);
2862}
2863
2864/**
2865 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2866 * @dev: Reference to the driver structure
2867 */
2868static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2869{
2870 const char *const ep_string[] = {
2871 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2872 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2873 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2874 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2875 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2876 "ep15in", "ep15out",
2877 };
2878 int i;
2879
2880 dev->gadget.speed = USB_SPEED_UNKNOWN;
2881 INIT_LIST_HEAD(&dev->gadget.ep_list);
2882
2883 /* Initialize the endpoints structures */
2884 memset(dev->ep, 0, sizeof dev->ep);
2885 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2886 struct pch_udc_ep *ep = &dev->ep[i];
2887 ep->dev = dev;
2888 ep->halted = 1;
2889 ep->num = i / 2;
2890 ep->in = ~i & 1;
2891 ep->ep.name = ep_string[i];
2892 ep->ep.ops = &pch_udc_ep_ops;
2893 if (ep->in)
2894 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2895 else
2896 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2897 UDC_EP_REG_SHIFT;
2898 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2899 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2900 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2901 INIT_LIST_HEAD(&ep->queue);
2902 }
2903 dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2904 dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2905
2906 /* remove ep0 in and out from the list. They have own pointer */
2907 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2908 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2909
2910 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2911 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2912}
2913
2914/**
2915 * pch_udc_pcd_init() - This API initializes the driver structure
2916 * @dev: Reference to the driver structure
2917 *
2918 * Return codes:
2919 * 0: Success
2920 */
2921static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2922{
2923 pch_udc_init(dev);
2924 pch_udc_pcd_reinit(dev);
2925 pch_vbus_gpio_init(dev, vbus_gpio_port);
2926 return 0;
2927}
2928
2929/**
2930 * init_dma_pools() - create dma pools during initialization
2931 * @pdev: reference to struct pci_dev
2932 */
2933static int init_dma_pools(struct pch_udc_dev *dev)
2934{
2935 struct pch_udc_stp_dma_desc *td_stp;
2936 struct pch_udc_data_dma_desc *td_data;
2937
2938 /* DMA setup */
2939 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2940 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2941 if (!dev->data_requests) {
2942 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2943 __func__);
2944 return -ENOMEM;
2945 }
2946
2947 /* dma desc for setup data */
2948 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2949 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2950 if (!dev->stp_requests) {
2951 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2952 __func__);
2953 return -ENOMEM;
2954 }
2955 /* setup */
2956 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2957 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2958 if (!td_stp) {
2959 dev_err(&dev->pdev->dev,
2960 "%s: can't allocate setup dma descriptor\n", __func__);
2961 return -ENOMEM;
2962 }
2963 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2964
2965 /* data: 0 packets !? */
2966 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2967 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2968 if (!td_data) {
2969 dev_err(&dev->pdev->dev,
2970 "%s: can't allocate data dma descriptor\n", __func__);
2971 return -ENOMEM;
2972 }
2973 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2974 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2975 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2976 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2977 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2978
2979 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2980 if (!dev->ep0out_buf)
2981 return -ENOMEM;
2982 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2983 UDC_EP0OUT_BUFF_SIZE * 4,
2984 DMA_FROM_DEVICE);
2985 return 0;
2986}
2987
2988static int pch_udc_start(struct usb_gadget *g,
2989 struct usb_gadget_driver *driver)
2990{
2991 struct pch_udc_dev *dev = to_pch_udc(g);
2992
2993 driver->driver.bus = NULL;
2994 dev->driver = driver;
2995
2996 /* get ready for ep0 traffic */
2997 pch_udc_setup_ep0(dev);
2998
2999 /* clear SD */
3000 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
3001 pch_udc_clear_disconnect(dev);
3002
3003 dev->connected = 1;
3004 return 0;
3005}
3006
3007static int pch_udc_stop(struct usb_gadget *g,
3008 struct usb_gadget_driver *driver)
3009{
3010 struct pch_udc_dev *dev = to_pch_udc(g);
3011
3012 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3013
3014 /* Assures that there are no pending requests with this driver */
3015 dev->driver = NULL;
3016 dev->connected = 0;
3017
3018 /* set SD */
3019 pch_udc_set_disconnect(dev);
3020
3021 return 0;
3022}
3023
3024static void pch_udc_shutdown(struct pci_dev *pdev)
3025{
3026 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3027
3028 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3029 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3030
3031 /* disable the pullup so the host will think we're gone */
3032 pch_udc_set_disconnect(dev);
3033}
3034
3035static void pch_udc_remove(struct pci_dev *pdev)
3036{
3037 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3038
3039 usb_del_gadget_udc(&dev->gadget);
3040
3041 /* gadget driver must not be registered */
3042 if (dev->driver)
3043 dev_err(&pdev->dev,
3044 "%s: gadget driver still bound!!!\n", __func__);
3045 /* dma pool cleanup */
3046 if (dev->data_requests)
3047 pci_pool_destroy(dev->data_requests);
3048
3049 if (dev->stp_requests) {
3050 /* cleanup DMA desc's for ep0in */
3051 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3052 pci_pool_free(dev->stp_requests,
3053 dev->ep[UDC_EP0OUT_IDX].td_stp,
3054 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3055 }
3056 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3057 pci_pool_free(dev->stp_requests,
3058 dev->ep[UDC_EP0OUT_IDX].td_data,
3059 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3060 }
3061 pci_pool_destroy(dev->stp_requests);
3062 }
3063
3064 if (dev->dma_addr)
3065 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3066 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3067 kfree(dev->ep0out_buf);
3068
3069 pch_vbus_gpio_free(dev);
3070
3071 pch_udc_exit(dev);
3072
3073 if (dev->irq_registered)
3074 free_irq(pdev->irq, dev);
3075 if (dev->base_addr)
3076 iounmap(dev->base_addr);
3077 if (dev->mem_region)
3078 release_mem_region(dev->phys_addr,
3079 pci_resource_len(pdev, PCH_UDC_PCI_BAR));
3080 if (dev->active)
3081 pci_disable_device(pdev);
3082 kfree(dev);
3083 pci_set_drvdata(pdev, NULL);
3084}
3085
3086#ifdef CONFIG_PM
3087static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
3088{
3089 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3090
3091 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3092 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3093
3094 pci_disable_device(pdev);
3095 pci_enable_wake(pdev, PCI_D3hot, 0);
3096
3097 if (pci_save_state(pdev)) {
3098 dev_err(&pdev->dev,
3099 "%s: could not save PCI config state\n", __func__);
3100 return -ENOMEM;
3101 }
3102 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3103 return 0;
3104}
3105
3106static int pch_udc_resume(struct pci_dev *pdev)
3107{
3108 int ret;
3109
3110 pci_set_power_state(pdev, PCI_D0);
3111 pci_restore_state(pdev);
3112 ret = pci_enable_device(pdev);
3113 if (ret) {
3114 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
3115 return ret;
3116 }
3117 pci_enable_wake(pdev, PCI_D3hot, 0);
3118 return 0;
3119}
3120#else
3121#define pch_udc_suspend NULL
3122#define pch_udc_resume NULL
3123#endif /* CONFIG_PM */
3124
3125static int pch_udc_probe(struct pci_dev *pdev,
3126 const struct pci_device_id *id)
3127{
3128 unsigned long resource;
3129 unsigned long len;
3130 int retval;
3131 struct pch_udc_dev *dev;
3132
3133 /* init */
3134 dev = kzalloc(sizeof *dev, GFP_KERNEL);
3135 if (!dev) {
3136 pr_err("%s: no memory for device structure\n", __func__);
3137 return -ENOMEM;
3138 }
3139 /* pci setup */
3140 if (pci_enable_device(pdev) < 0) {
3141 kfree(dev);
3142 pr_err("%s: pci_enable_device failed\n", __func__);
3143 return -ENODEV;
3144 }
3145 dev->active = 1;
3146 pci_set_drvdata(pdev, dev);
3147
3148 /* PCI resource allocation */
3149 resource = pci_resource_start(pdev, 1);
3150 len = pci_resource_len(pdev, 1);
3151
3152 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
3153 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
3154 retval = -EBUSY;
3155 goto finished;
3156 }
3157 dev->phys_addr = resource;
3158 dev->mem_region = 1;
3159
3160 dev->base_addr = ioremap_nocache(resource, len);
3161 if (!dev->base_addr) {
3162 pr_err("%s: device memory cannot be mapped\n", __func__);
3163 retval = -ENOMEM;
3164 goto finished;
3165 }
3166 if (!pdev->irq) {
3167 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
3168 retval = -ENODEV;
3169 goto finished;
3170 }
3171 /* initialize the hardware */
3172 if (pch_udc_pcd_init(dev)) {
3173 retval = -ENODEV;
3174 goto finished;
3175 }
3176 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
3177 dev)) {
3178 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3179 pdev->irq);
3180 retval = -ENODEV;
3181 goto finished;
3182 }
3183 dev->irq = pdev->irq;
3184 dev->irq_registered = 1;
3185
3186 pci_set_master(pdev);
3187 pci_try_set_mwi(pdev);
3188
3189 /* device struct setup */
3190 spin_lock_init(&dev->lock);
3191 dev->pdev = pdev;
3192 dev->gadget.ops = &pch_udc_ops;
3193
3194 retval = init_dma_pools(dev);
3195 if (retval)
3196 goto finished;
3197
3198 dev->gadget.name = KBUILD_MODNAME;
3199 dev->gadget.max_speed = USB_SPEED_HIGH;
3200
3201 /* Put the device in disconnected state till a driver is bound */
3202 pch_udc_set_disconnect(dev);
3203 retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget,
3204 gadget_release);
3205 if (retval)
3206 goto finished;
3207 return 0;
3208
3209finished:
3210 pch_udc_remove(pdev);
3211 return retval;
3212}
3213
3214static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
3215 {
3216 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3217 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3218 .class_mask = 0xffffffff,
3219 },
3220 {
3221 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3222 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3223 .class_mask = 0xffffffff,
3224 },
3225 {
3226 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3227 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3228 .class_mask = 0xffffffff,
3229 },
3230 { 0 },
3231};
3232
3233MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3234
3235static struct pci_driver pch_udc_driver = {
3236 .name = KBUILD_MODNAME,
3237 .id_table = pch_udc_pcidev_id,
3238 .probe = pch_udc_probe,
3239 .remove = pch_udc_remove,
3240 .suspend = pch_udc_suspend,
3241 .resume = pch_udc_resume,
3242 .shutdown = pch_udc_shutdown,
3243};
3244
3245module_pci_driver(pch_udc_driver);
3246
3247MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3248MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3249MODULE_LICENSE("GPL");