| 1 | /****************************************************************************** |
| 2 | * |
| 3 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 4 | * redistributing this file, you may do so under either license. |
| 5 | * |
| 6 | * GPL LICENSE SUMMARY |
| 7 | * |
| 8 | * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of version 2 of the GNU General Public License as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but |
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | * General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| 22 | * USA |
| 23 | * |
| 24 | * The full GNU General Public License is included in this distribution |
| 25 | * in the file called LICENSE.GPL. |
| 26 | * |
| 27 | * Contact Information: |
| 28 | * Intel Linux Wireless <ilw@linux.intel.com> |
| 29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 30 | * |
| 31 | * BSD LICENSE |
| 32 | * |
| 33 | * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * |
| 40 | * * Redistributions of source code must retain the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer. |
| 42 | * * Redistributions in binary form must reproduce the above copyright |
| 43 | * notice, this list of conditions and the following disclaimer in |
| 44 | * the documentation and/or other materials provided with the |
| 45 | * distribution. |
| 46 | * * Neither the name Intel Corporation nor the names of its |
| 47 | * contributors may be used to endorse or promote products derived |
| 48 | * from this software without specific prior written permission. |
| 49 | * |
| 50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 61 | *****************************************************************************/ |
| 62 | |
| 63 | #include <linux/slab.h> |
| 64 | #include <net/mac80211.h> |
| 65 | |
| 66 | #include "common.h" |
| 67 | #include "4965.h" |
| 68 | |
| 69 | /***************************************************************************** |
| 70 | * INIT calibrations framework |
| 71 | *****************************************************************************/ |
| 72 | |
| 73 | struct stats_general_data { |
| 74 | u32 beacon_silence_rssi_a; |
| 75 | u32 beacon_silence_rssi_b; |
| 76 | u32 beacon_silence_rssi_c; |
| 77 | u32 beacon_energy_a; |
| 78 | u32 beacon_energy_b; |
| 79 | u32 beacon_energy_c; |
| 80 | }; |
| 81 | |
| 82 | /***************************************************************************** |
| 83 | * RUNTIME calibrations framework |
| 84 | *****************************************************************************/ |
| 85 | |
| 86 | /* "false alarms" are signals that our DSP tries to lock onto, |
| 87 | * but then determines that they are either noise, or transmissions |
| 88 | * from a distant wireless network (also "noise", really) that get |
| 89 | * "stepped on" by stronger transmissions within our own network. |
| 90 | * This algorithm attempts to set a sensitivity level that is high |
| 91 | * enough to receive all of our own network traffic, but not so |
| 92 | * high that our DSP gets too busy trying to lock onto non-network |
| 93 | * activity/noise. */ |
| 94 | static int |
| 95 | il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time, |
| 96 | struct stats_general_data *rx_info) |
| 97 | { |
| 98 | u32 max_nrg_cck = 0; |
| 99 | int i = 0; |
| 100 | u8 max_silence_rssi = 0; |
| 101 | u32 silence_ref = 0; |
| 102 | u8 silence_rssi_a = 0; |
| 103 | u8 silence_rssi_b = 0; |
| 104 | u8 silence_rssi_c = 0; |
| 105 | u32 val; |
| 106 | |
| 107 | /* "false_alarms" values below are cross-multiplications to assess the |
| 108 | * numbers of false alarms within the measured period of actual Rx |
| 109 | * (Rx is off when we're txing), vs the min/max expected false alarms |
| 110 | * (some should be expected if rx is sensitive enough) in a |
| 111 | * hypothetical listening period of 200 time units (TU), 204.8 msec: |
| 112 | * |
| 113 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time |
| 114 | * |
| 115 | * */ |
| 116 | u32 false_alarms = norm_fa * 200 * 1024; |
| 117 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; |
| 118 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; |
| 119 | struct il_sensitivity_data *data = NULL; |
| 120 | const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| 121 | |
| 122 | data = &(il->sensitivity_data); |
| 123 | |
| 124 | data->nrg_auto_corr_silence_diff = 0; |
| 125 | |
| 126 | /* Find max silence rssi among all 3 receivers. |
| 127 | * This is background noise, which may include transmissions from other |
| 128 | * networks, measured during silence before our network's beacon */ |
| 129 | silence_rssi_a = |
| 130 | (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8); |
| 131 | silence_rssi_b = |
| 132 | (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8); |
| 133 | silence_rssi_c = |
| 134 | (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8); |
| 135 | |
| 136 | val = max(silence_rssi_b, silence_rssi_c); |
| 137 | max_silence_rssi = max(silence_rssi_a, (u8) val); |
| 138 | |
| 139 | /* Store silence rssi in 20-beacon history table */ |
| 140 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; |
| 141 | data->nrg_silence_idx++; |
| 142 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) |
| 143 | data->nrg_silence_idx = 0; |
| 144 | |
| 145 | /* Find max silence rssi across 20 beacon history */ |
| 146 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { |
| 147 | val = data->nrg_silence_rssi[i]; |
| 148 | silence_ref = max(silence_ref, val); |
| 149 | } |
| 150 | D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a, |
| 151 | silence_rssi_b, silence_rssi_c, silence_ref); |
| 152 | |
| 153 | /* Find max rx energy (min value!) among all 3 receivers, |
| 154 | * measured during beacon frame. |
| 155 | * Save it in 10-beacon history table. */ |
| 156 | i = data->nrg_energy_idx; |
| 157 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); |
| 158 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); |
| 159 | |
| 160 | data->nrg_energy_idx++; |
| 161 | if (data->nrg_energy_idx >= 10) |
| 162 | data->nrg_energy_idx = 0; |
| 163 | |
| 164 | /* Find min rx energy (max value) across 10 beacon history. |
| 165 | * This is the minimum signal level that we want to receive well. |
| 166 | * Add backoff (margin so we don't miss slightly lower energy frames). |
| 167 | * This establishes an upper bound (min value) for energy threshold. */ |
| 168 | max_nrg_cck = data->nrg_value[0]; |
| 169 | for (i = 1; i < 10; i++) |
| 170 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); |
| 171 | max_nrg_cck += 6; |
| 172 | |
| 173 | D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", |
| 174 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, |
| 175 | rx_info->beacon_energy_c, max_nrg_cck - 6); |
| 176 | |
| 177 | /* Count number of consecutive beacons with fewer-than-desired |
| 178 | * false alarms. */ |
| 179 | if (false_alarms < min_false_alarms) |
| 180 | data->num_in_cck_no_fa++; |
| 181 | else |
| 182 | data->num_in_cck_no_fa = 0; |
| 183 | D_CALIB("consecutive bcns with few false alarms = %u\n", |
| 184 | data->num_in_cck_no_fa); |
| 185 | |
| 186 | /* If we got too many false alarms this time, reduce sensitivity */ |
| 187 | if (false_alarms > max_false_alarms && |
| 188 | data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) { |
| 189 | D_CALIB("norm FA %u > max FA %u\n", false_alarms, |
| 190 | max_false_alarms); |
| 191 | D_CALIB("... reducing sensitivity\n"); |
| 192 | data->nrg_curr_state = IL_FA_TOO_MANY; |
| 193 | /* Store for "fewer than desired" on later beacon */ |
| 194 | data->nrg_silence_ref = silence_ref; |
| 195 | |
| 196 | /* increase energy threshold (reduce nrg value) |
| 197 | * to decrease sensitivity */ |
| 198 | data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; |
| 199 | /* Else if we got fewer than desired, increase sensitivity */ |
| 200 | } else if (false_alarms < min_false_alarms) { |
| 201 | data->nrg_curr_state = IL_FA_TOO_FEW; |
| 202 | |
| 203 | /* Compare silence level with silence level for most recent |
| 204 | * healthy number or too many false alarms */ |
| 205 | data->nrg_auto_corr_silence_diff = |
| 206 | (s32) data->nrg_silence_ref - (s32) silence_ref; |
| 207 | |
| 208 | D_CALIB("norm FA %u < min FA %u, silence diff %d\n", |
| 209 | false_alarms, min_false_alarms, |
| 210 | data->nrg_auto_corr_silence_diff); |
| 211 | |
| 212 | /* Increase value to increase sensitivity, but only if: |
| 213 | * 1a) previous beacon did *not* have *too many* false alarms |
| 214 | * 1b) AND there's a significant difference in Rx levels |
| 215 | * from a previous beacon with too many, or healthy # FAs |
| 216 | * OR 2) We've seen a lot of beacons (100) with too few |
| 217 | * false alarms */ |
| 218 | if (data->nrg_prev_state != IL_FA_TOO_MANY && |
| 219 | (data->nrg_auto_corr_silence_diff > NRG_DIFF || |
| 220 | data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { |
| 221 | |
| 222 | D_CALIB("... increasing sensitivity\n"); |
| 223 | /* Increase nrg value to increase sensitivity */ |
| 224 | val = data->nrg_th_cck + NRG_STEP_CCK; |
| 225 | data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val); |
| 226 | } else { |
| 227 | D_CALIB("... but not changing sensitivity\n"); |
| 228 | } |
| 229 | |
| 230 | /* Else we got a healthy number of false alarms, keep status quo */ |
| 231 | } else { |
| 232 | D_CALIB(" FA in safe zone\n"); |
| 233 | data->nrg_curr_state = IL_FA_GOOD_RANGE; |
| 234 | |
| 235 | /* Store for use in "fewer than desired" with later beacon */ |
| 236 | data->nrg_silence_ref = silence_ref; |
| 237 | |
| 238 | /* If previous beacon had too many false alarms, |
| 239 | * give it some extra margin by reducing sensitivity again |
| 240 | * (but don't go below measured energy of desired Rx) */ |
| 241 | if (IL_FA_TOO_MANY == data->nrg_prev_state) { |
| 242 | D_CALIB("... increasing margin\n"); |
| 243 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) |
| 244 | data->nrg_th_cck -= NRG_MARGIN; |
| 245 | else |
| 246 | data->nrg_th_cck = max_nrg_cck; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /* Make sure the energy threshold does not go above the measured |
| 251 | * energy of the desired Rx signals (reduced by backoff margin), |
| 252 | * or else we might start missing Rx frames. |
| 253 | * Lower value is higher energy, so we use max()! |
| 254 | */ |
| 255 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); |
| 256 | D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); |
| 257 | |
| 258 | data->nrg_prev_state = data->nrg_curr_state; |
| 259 | |
| 260 | /* Auto-correlation CCK algorithm */ |
| 261 | if (false_alarms > min_false_alarms) { |
| 262 | |
| 263 | /* increase auto_corr values to decrease sensitivity |
| 264 | * so the DSP won't be disturbed by the noise |
| 265 | */ |
| 266 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) |
| 267 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; |
| 268 | else { |
| 269 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; |
| 270 | data->auto_corr_cck = |
| 271 | min((u32) ranges->auto_corr_max_cck, val); |
| 272 | } |
| 273 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; |
| 274 | data->auto_corr_cck_mrc = |
| 275 | min((u32) ranges->auto_corr_max_cck_mrc, val); |
| 276 | } else if (false_alarms < min_false_alarms && |
| 277 | (data->nrg_auto_corr_silence_diff > NRG_DIFF || |
| 278 | data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { |
| 279 | |
| 280 | /* Decrease auto_corr values to increase sensitivity */ |
| 281 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; |
| 282 | data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val); |
| 283 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; |
| 284 | data->auto_corr_cck_mrc = |
| 285 | max((u32) ranges->auto_corr_min_cck_mrc, val); |
| 286 | } |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | static int |
| 292 | il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time) |
| 293 | { |
| 294 | u32 val; |
| 295 | u32 false_alarms = norm_fa * 200 * 1024; |
| 296 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; |
| 297 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; |
| 298 | struct il_sensitivity_data *data = NULL; |
| 299 | const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| 300 | |
| 301 | data = &(il->sensitivity_data); |
| 302 | |
| 303 | /* If we got too many false alarms this time, reduce sensitivity */ |
| 304 | if (false_alarms > max_false_alarms) { |
| 305 | |
| 306 | D_CALIB("norm FA %u > max FA %u)\n", false_alarms, |
| 307 | max_false_alarms); |
| 308 | |
| 309 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; |
| 310 | data->auto_corr_ofdm = |
| 311 | min((u32) ranges->auto_corr_max_ofdm, val); |
| 312 | |
| 313 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; |
| 314 | data->auto_corr_ofdm_mrc = |
| 315 | min((u32) ranges->auto_corr_max_ofdm_mrc, val); |
| 316 | |
| 317 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; |
| 318 | data->auto_corr_ofdm_x1 = |
| 319 | min((u32) ranges->auto_corr_max_ofdm_x1, val); |
| 320 | |
| 321 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; |
| 322 | data->auto_corr_ofdm_mrc_x1 = |
| 323 | min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val); |
| 324 | } |
| 325 | |
| 326 | /* Else if we got fewer than desired, increase sensitivity */ |
| 327 | else if (false_alarms < min_false_alarms) { |
| 328 | |
| 329 | D_CALIB("norm FA %u < min FA %u\n", false_alarms, |
| 330 | min_false_alarms); |
| 331 | |
| 332 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; |
| 333 | data->auto_corr_ofdm = |
| 334 | max((u32) ranges->auto_corr_min_ofdm, val); |
| 335 | |
| 336 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; |
| 337 | data->auto_corr_ofdm_mrc = |
| 338 | max((u32) ranges->auto_corr_min_ofdm_mrc, val); |
| 339 | |
| 340 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; |
| 341 | data->auto_corr_ofdm_x1 = |
| 342 | max((u32) ranges->auto_corr_min_ofdm_x1, val); |
| 343 | |
| 344 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; |
| 345 | data->auto_corr_ofdm_mrc_x1 = |
| 346 | max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val); |
| 347 | } else { |
| 348 | D_CALIB("min FA %u < norm FA %u < max FA %u OK\n", |
| 349 | min_false_alarms, false_alarms, max_false_alarms); |
| 350 | } |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | static void |
| 355 | il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il, |
| 356 | struct il_sensitivity_data *data, |
| 357 | __le16 *tbl) |
| 358 | { |
| 359 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] = |
| 360 | cpu_to_le16((u16) data->auto_corr_ofdm); |
| 361 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] = |
| 362 | cpu_to_le16((u16) data->auto_corr_ofdm_mrc); |
| 363 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] = |
| 364 | cpu_to_le16((u16) data->auto_corr_ofdm_x1); |
| 365 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] = |
| 366 | cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1); |
| 367 | |
| 368 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] = |
| 369 | cpu_to_le16((u16) data->auto_corr_cck); |
| 370 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] = |
| 371 | cpu_to_le16((u16) data->auto_corr_cck_mrc); |
| 372 | |
| 373 | tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck); |
| 374 | tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm); |
| 375 | |
| 376 | tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] = |
| 377 | cpu_to_le16(data->barker_corr_th_min); |
| 378 | tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] = |
| 379 | cpu_to_le16(data->barker_corr_th_min_mrc); |
| 380 | tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca); |
| 381 | |
| 382 | D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", |
| 383 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, |
| 384 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, |
| 385 | data->nrg_th_ofdm); |
| 386 | |
| 387 | D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck, |
| 388 | data->auto_corr_cck_mrc, data->nrg_th_cck); |
| 389 | } |
| 390 | |
| 391 | /* Prepare a C_SENSITIVITY, send to uCode if values have changed */ |
| 392 | static int |
| 393 | il4965_sensitivity_write(struct il_priv *il) |
| 394 | { |
| 395 | struct il_sensitivity_cmd cmd; |
| 396 | struct il_sensitivity_data *data = NULL; |
| 397 | struct il_host_cmd cmd_out = { |
| 398 | .id = C_SENSITIVITY, |
| 399 | .len = sizeof(struct il_sensitivity_cmd), |
| 400 | .flags = CMD_ASYNC, |
| 401 | .data = &cmd, |
| 402 | }; |
| 403 | |
| 404 | data = &(il->sensitivity_data); |
| 405 | |
| 406 | memset(&cmd, 0, sizeof(cmd)); |
| 407 | |
| 408 | il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]); |
| 409 | |
| 410 | /* Update uCode's "work" table, and copy it to DSP */ |
| 411 | cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL; |
| 412 | |
| 413 | /* Don't send command to uCode if nothing has changed */ |
| 414 | if (!memcmp |
| 415 | (&cmd.table[0], &(il->sensitivity_tbl[0]), |
| 416 | sizeof(u16) * HD_TBL_SIZE)) { |
| 417 | D_CALIB("No change in C_SENSITIVITY\n"); |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | /* Copy table for comparison next time */ |
| 422 | memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]), |
| 423 | sizeof(u16) * HD_TBL_SIZE); |
| 424 | |
| 425 | return il_send_cmd(il, &cmd_out); |
| 426 | } |
| 427 | |
| 428 | void |
| 429 | il4965_init_sensitivity(struct il_priv *il) |
| 430 | { |
| 431 | int ret = 0; |
| 432 | int i; |
| 433 | struct il_sensitivity_data *data = NULL; |
| 434 | const struct il_sensitivity_ranges *ranges = il->hw_params.sens; |
| 435 | |
| 436 | if (il->disable_sens_cal) |
| 437 | return; |
| 438 | |
| 439 | D_CALIB("Start il4965_init_sensitivity\n"); |
| 440 | |
| 441 | /* Clear driver's sensitivity algo data */ |
| 442 | data = &(il->sensitivity_data); |
| 443 | |
| 444 | if (ranges == NULL) |
| 445 | return; |
| 446 | |
| 447 | memset(data, 0, sizeof(struct il_sensitivity_data)); |
| 448 | |
| 449 | data->num_in_cck_no_fa = 0; |
| 450 | data->nrg_curr_state = IL_FA_TOO_MANY; |
| 451 | data->nrg_prev_state = IL_FA_TOO_MANY; |
| 452 | data->nrg_silence_ref = 0; |
| 453 | data->nrg_silence_idx = 0; |
| 454 | data->nrg_energy_idx = 0; |
| 455 | |
| 456 | for (i = 0; i < 10; i++) |
| 457 | data->nrg_value[i] = 0; |
| 458 | |
| 459 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) |
| 460 | data->nrg_silence_rssi[i] = 0; |
| 461 | |
| 462 | data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; |
| 463 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; |
| 464 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; |
| 465 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; |
| 466 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; |
| 467 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; |
| 468 | data->nrg_th_cck = ranges->nrg_th_cck; |
| 469 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; |
| 470 | data->barker_corr_th_min = ranges->barker_corr_th_min; |
| 471 | data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; |
| 472 | data->nrg_th_cca = ranges->nrg_th_cca; |
| 473 | |
| 474 | data->last_bad_plcp_cnt_ofdm = 0; |
| 475 | data->last_fa_cnt_ofdm = 0; |
| 476 | data->last_bad_plcp_cnt_cck = 0; |
| 477 | data->last_fa_cnt_cck = 0; |
| 478 | |
| 479 | ret |= il4965_sensitivity_write(il); |
| 480 | D_CALIB("<<return 0x%X\n", ret); |
| 481 | } |
| 482 | |
| 483 | void |
| 484 | il4965_sensitivity_calibration(struct il_priv *il, void *resp) |
| 485 | { |
| 486 | u32 rx_enable_time; |
| 487 | u32 fa_cck; |
| 488 | u32 fa_ofdm; |
| 489 | u32 bad_plcp_cck; |
| 490 | u32 bad_plcp_ofdm; |
| 491 | u32 norm_fa_ofdm; |
| 492 | u32 norm_fa_cck; |
| 493 | struct il_sensitivity_data *data = NULL; |
| 494 | struct stats_rx_non_phy *rx_info; |
| 495 | struct stats_rx_phy *ofdm, *cck; |
| 496 | unsigned long flags; |
| 497 | struct stats_general_data statis; |
| 498 | |
| 499 | if (il->disable_sens_cal) |
| 500 | return; |
| 501 | |
| 502 | data = &(il->sensitivity_data); |
| 503 | |
| 504 | if (!il_is_any_associated(il)) { |
| 505 | D_CALIB("<< - not associated\n"); |
| 506 | return; |
| 507 | } |
| 508 | |
| 509 | spin_lock_irqsave(&il->lock, flags); |
| 510 | |
| 511 | rx_info = &(((struct il_notif_stats *)resp)->rx.general); |
| 512 | ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm); |
| 513 | cck = &(((struct il_notif_stats *)resp)->rx.cck); |
| 514 | |
| 515 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| 516 | D_CALIB("<< invalid data.\n"); |
| 517 | spin_unlock_irqrestore(&il->lock, flags); |
| 518 | return; |
| 519 | } |
| 520 | |
| 521 | /* Extract Statistics: */ |
| 522 | rx_enable_time = le32_to_cpu(rx_info->channel_load); |
| 523 | fa_cck = le32_to_cpu(cck->false_alarm_cnt); |
| 524 | fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); |
| 525 | bad_plcp_cck = le32_to_cpu(cck->plcp_err); |
| 526 | bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); |
| 527 | |
| 528 | statis.beacon_silence_rssi_a = |
| 529 | le32_to_cpu(rx_info->beacon_silence_rssi_a); |
| 530 | statis.beacon_silence_rssi_b = |
| 531 | le32_to_cpu(rx_info->beacon_silence_rssi_b); |
| 532 | statis.beacon_silence_rssi_c = |
| 533 | le32_to_cpu(rx_info->beacon_silence_rssi_c); |
| 534 | statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a); |
| 535 | statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b); |
| 536 | statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c); |
| 537 | |
| 538 | spin_unlock_irqrestore(&il->lock, flags); |
| 539 | |
| 540 | D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); |
| 541 | |
| 542 | if (!rx_enable_time) { |
| 543 | D_CALIB("<< RX Enable Time == 0!\n"); |
| 544 | return; |
| 545 | } |
| 546 | |
| 547 | /* These stats increase monotonically, and do not reset |
| 548 | * at each beacon. Calculate difference from last value, or just |
| 549 | * use the new stats value if it has reset or wrapped around. */ |
| 550 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) |
| 551 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; |
| 552 | else { |
| 553 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; |
| 554 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; |
| 555 | } |
| 556 | |
| 557 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) |
| 558 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; |
| 559 | else { |
| 560 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; |
| 561 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; |
| 562 | } |
| 563 | |
| 564 | if (data->last_fa_cnt_ofdm > fa_ofdm) |
| 565 | data->last_fa_cnt_ofdm = fa_ofdm; |
| 566 | else { |
| 567 | fa_ofdm -= data->last_fa_cnt_ofdm; |
| 568 | data->last_fa_cnt_ofdm += fa_ofdm; |
| 569 | } |
| 570 | |
| 571 | if (data->last_fa_cnt_cck > fa_cck) |
| 572 | data->last_fa_cnt_cck = fa_cck; |
| 573 | else { |
| 574 | fa_cck -= data->last_fa_cnt_cck; |
| 575 | data->last_fa_cnt_cck += fa_cck; |
| 576 | } |
| 577 | |
| 578 | /* Total aborted signal locks */ |
| 579 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; |
| 580 | norm_fa_cck = fa_cck + bad_plcp_cck; |
| 581 | |
| 582 | D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, |
| 583 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); |
| 584 | |
| 585 | il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time); |
| 586 | il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis); |
| 587 | |
| 588 | il4965_sensitivity_write(il); |
| 589 | } |
| 590 | |
| 591 | static inline u8 |
| 592 | il4965_find_first_chain(u8 mask) |
| 593 | { |
| 594 | if (mask & ANT_A) |
| 595 | return CHAIN_A; |
| 596 | if (mask & ANT_B) |
| 597 | return CHAIN_B; |
| 598 | return CHAIN_C; |
| 599 | } |
| 600 | |
| 601 | /** |
| 602 | * Run disconnected antenna algorithm to find out which antennas are |
| 603 | * disconnected. |
| 604 | */ |
| 605 | static void |
| 606 | il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig, |
| 607 | struct il_chain_noise_data *data) |
| 608 | { |
| 609 | u32 active_chains = 0; |
| 610 | u32 max_average_sig; |
| 611 | u16 max_average_sig_antenna_i; |
| 612 | u8 num_tx_chains; |
| 613 | u8 first_chain; |
| 614 | u16 i = 0; |
| 615 | |
| 616 | average_sig[0] = |
| 617 | data->chain_signal_a / |
| 618 | il->cfg->chain_noise_num_beacons; |
| 619 | average_sig[1] = |
| 620 | data->chain_signal_b / |
| 621 | il->cfg->chain_noise_num_beacons; |
| 622 | average_sig[2] = |
| 623 | data->chain_signal_c / |
| 624 | il->cfg->chain_noise_num_beacons; |
| 625 | |
| 626 | if (average_sig[0] >= average_sig[1]) { |
| 627 | max_average_sig = average_sig[0]; |
| 628 | max_average_sig_antenna_i = 0; |
| 629 | active_chains = (1 << max_average_sig_antenna_i); |
| 630 | } else { |
| 631 | max_average_sig = average_sig[1]; |
| 632 | max_average_sig_antenna_i = 1; |
| 633 | active_chains = (1 << max_average_sig_antenna_i); |
| 634 | } |
| 635 | |
| 636 | if (average_sig[2] >= max_average_sig) { |
| 637 | max_average_sig = average_sig[2]; |
| 638 | max_average_sig_antenna_i = 2; |
| 639 | active_chains = (1 << max_average_sig_antenna_i); |
| 640 | } |
| 641 | |
| 642 | D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1], |
| 643 | average_sig[2]); |
| 644 | D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig, |
| 645 | max_average_sig_antenna_i); |
| 646 | |
| 647 | /* Compare signal strengths for all 3 receivers. */ |
| 648 | for (i = 0; i < NUM_RX_CHAINS; i++) { |
| 649 | if (i != max_average_sig_antenna_i) { |
| 650 | s32 rssi_delta = (max_average_sig - average_sig[i]); |
| 651 | |
| 652 | /* If signal is very weak, compared with |
| 653 | * strongest, mark it as disconnected. */ |
| 654 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) |
| 655 | data->disconn_array[i] = 1; |
| 656 | else |
| 657 | active_chains |= (1 << i); |
| 658 | D_CALIB("i = %d rssiDelta = %d " |
| 659 | "disconn_array[i] = %d\n", i, rssi_delta, |
| 660 | data->disconn_array[i]); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * The above algorithm sometimes fails when the ucode |
| 666 | * reports 0 for all chains. It's not clear why that |
| 667 | * happens to start with, but it is then causing trouble |
| 668 | * because this can make us enable more chains than the |
| 669 | * hardware really has. |
| 670 | * |
| 671 | * To be safe, simply mask out any chains that we know |
| 672 | * are not on the device. |
| 673 | */ |
| 674 | active_chains &= il->hw_params.valid_rx_ant; |
| 675 | |
| 676 | num_tx_chains = 0; |
| 677 | for (i = 0; i < NUM_RX_CHAINS; i++) { |
| 678 | /* loops on all the bits of |
| 679 | * il->hw_setting.valid_tx_ant */ |
| 680 | u8 ant_msk = (1 << i); |
| 681 | if (!(il->hw_params.valid_tx_ant & ant_msk)) |
| 682 | continue; |
| 683 | |
| 684 | num_tx_chains++; |
| 685 | if (data->disconn_array[i] == 0) |
| 686 | /* there is a Tx antenna connected */ |
| 687 | break; |
| 688 | if (num_tx_chains == il->hw_params.tx_chains_num && |
| 689 | data->disconn_array[i]) { |
| 690 | /* |
| 691 | * If all chains are disconnected |
| 692 | * connect the first valid tx chain |
| 693 | */ |
| 694 | first_chain = |
| 695 | il4965_find_first_chain(il->cfg->valid_tx_ant); |
| 696 | data->disconn_array[first_chain] = 0; |
| 697 | active_chains |= BIT(first_chain); |
| 698 | D_CALIB("All Tx chains are disconnected" |
| 699 | "- declare %d as connected\n", first_chain); |
| 700 | break; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | if (active_chains != il->hw_params.valid_rx_ant && |
| 705 | active_chains != il->chain_noise_data.active_chains) |
| 706 | D_CALIB("Detected that not all antennas are connected! " |
| 707 | "Connected: %#x, valid: %#x.\n", active_chains, |
| 708 | il->hw_params.valid_rx_ant); |
| 709 | |
| 710 | /* Save for use within RXON, TX, SCAN commands, etc. */ |
| 711 | data->active_chains = active_chains; |
| 712 | D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains); |
| 713 | } |
| 714 | |
| 715 | static void |
| 716 | il4965_gain_computation(struct il_priv *il, u32 * average_noise, |
| 717 | u16 min_average_noise_antenna_i, u32 min_average_noise, |
| 718 | u8 default_chain) |
| 719 | { |
| 720 | int i, ret; |
| 721 | struct il_chain_noise_data *data = &il->chain_noise_data; |
| 722 | |
| 723 | data->delta_gain_code[min_average_noise_antenna_i] = 0; |
| 724 | |
| 725 | for (i = default_chain; i < NUM_RX_CHAINS; i++) { |
| 726 | s32 delta_g = 0; |
| 727 | |
| 728 | if (!data->disconn_array[i] && |
| 729 | data->delta_gain_code[i] == |
| 730 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL) { |
| 731 | delta_g = average_noise[i] - min_average_noise; |
| 732 | data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15); |
| 733 | data->delta_gain_code[i] = |
| 734 | min(data->delta_gain_code[i], |
| 735 | (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); |
| 736 | |
| 737 | data->delta_gain_code[i] = |
| 738 | (data->delta_gain_code[i] | (1 << 2)); |
| 739 | } else { |
| 740 | data->delta_gain_code[i] = 0; |
| 741 | } |
| 742 | } |
| 743 | D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0], |
| 744 | data->delta_gain_code[1], data->delta_gain_code[2]); |
| 745 | |
| 746 | /* Differential gain gets sent to uCode only once */ |
| 747 | if (!data->radio_write) { |
| 748 | struct il_calib_diff_gain_cmd cmd; |
| 749 | data->radio_write = 1; |
| 750 | |
| 751 | memset(&cmd, 0, sizeof(cmd)); |
| 752 | cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD; |
| 753 | cmd.diff_gain_a = data->delta_gain_code[0]; |
| 754 | cmd.diff_gain_b = data->delta_gain_code[1]; |
| 755 | cmd.diff_gain_c = data->delta_gain_code[2]; |
| 756 | ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd); |
| 757 | if (ret) |
| 758 | D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n"); |
| 759 | |
| 760 | /* TODO we might want recalculate |
| 761 | * rx_chain in rxon cmd */ |
| 762 | |
| 763 | /* Mark so we run this algo only once! */ |
| 764 | data->state = IL_CHAIN_NOISE_CALIBRATED; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /* |
| 769 | * Accumulate 16 beacons of signal and noise stats for each of |
| 770 | * 3 receivers/antennas/rx-chains, then figure out: |
| 771 | * 1) Which antennas are connected. |
| 772 | * 2) Differential rx gain settings to balance the 3 receivers. |
| 773 | */ |
| 774 | void |
| 775 | il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp) |
| 776 | { |
| 777 | struct il_chain_noise_data *data = NULL; |
| 778 | |
| 779 | u32 chain_noise_a; |
| 780 | u32 chain_noise_b; |
| 781 | u32 chain_noise_c; |
| 782 | u32 chain_sig_a; |
| 783 | u32 chain_sig_b; |
| 784 | u32 chain_sig_c; |
| 785 | u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE }; |
| 786 | u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE }; |
| 787 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; |
| 788 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; |
| 789 | u16 i = 0; |
| 790 | u16 rxon_chnum = INITIALIZATION_VALUE; |
| 791 | u16 stat_chnum = INITIALIZATION_VALUE; |
| 792 | u8 rxon_band24; |
| 793 | u8 stat_band24; |
| 794 | unsigned long flags; |
| 795 | struct stats_rx_non_phy *rx_info; |
| 796 | |
| 797 | if (il->disable_chain_noise_cal) |
| 798 | return; |
| 799 | |
| 800 | data = &(il->chain_noise_data); |
| 801 | |
| 802 | /* |
| 803 | * Accumulate just the first "chain_noise_num_beacons" after |
| 804 | * the first association, then we're done forever. |
| 805 | */ |
| 806 | if (data->state != IL_CHAIN_NOISE_ACCUMULATE) { |
| 807 | if (data->state == IL_CHAIN_NOISE_ALIVE) |
| 808 | D_CALIB("Wait for noise calib reset\n"); |
| 809 | return; |
| 810 | } |
| 811 | |
| 812 | spin_lock_irqsave(&il->lock, flags); |
| 813 | |
| 814 | rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general); |
| 815 | |
| 816 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { |
| 817 | D_CALIB(" << Interference data unavailable\n"); |
| 818 | spin_unlock_irqrestore(&il->lock, flags); |
| 819 | return; |
| 820 | } |
| 821 | |
| 822 | rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK); |
| 823 | rxon_chnum = le16_to_cpu(il->staging.channel); |
| 824 | |
| 825 | stat_band24 = |
| 826 | !!(((struct il_notif_stats *)stat_resp)-> |
| 827 | flag & STATS_REPLY_FLG_BAND_24G_MSK); |
| 828 | stat_chnum = |
| 829 | le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16; |
| 830 | |
| 831 | /* Make sure we accumulate data for just the associated channel |
| 832 | * (even if scanning). */ |
| 833 | if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) { |
| 834 | D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum, |
| 835 | rxon_band24); |
| 836 | spin_unlock_irqrestore(&il->lock, flags); |
| 837 | return; |
| 838 | } |
| 839 | |
| 840 | /* |
| 841 | * Accumulate beacon stats values across |
| 842 | * "chain_noise_num_beacons" |
| 843 | */ |
| 844 | chain_noise_a = |
| 845 | le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER; |
| 846 | chain_noise_b = |
| 847 | le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER; |
| 848 | chain_noise_c = |
| 849 | le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER; |
| 850 | |
| 851 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; |
| 852 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; |
| 853 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; |
| 854 | |
| 855 | spin_unlock_irqrestore(&il->lock, flags); |
| 856 | |
| 857 | data->beacon_count++; |
| 858 | |
| 859 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); |
| 860 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); |
| 861 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); |
| 862 | |
| 863 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); |
| 864 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); |
| 865 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); |
| 866 | |
| 867 | D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24, |
| 868 | data->beacon_count); |
| 869 | D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b, |
| 870 | chain_sig_c); |
| 871 | D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b, |
| 872 | chain_noise_c); |
| 873 | |
| 874 | /* If this is the "chain_noise_num_beacons", determine: |
| 875 | * 1) Disconnected antennas (using signal strengths) |
| 876 | * 2) Differential gain (using silence noise) to balance receivers */ |
| 877 | if (data->beacon_count != il->cfg->chain_noise_num_beacons) |
| 878 | return; |
| 879 | |
| 880 | /* Analyze signal for disconnected antenna */ |
| 881 | il4965_find_disconn_antenna(il, average_sig, data); |
| 882 | |
| 883 | /* Analyze noise for rx balance */ |
| 884 | average_noise[0] = |
| 885 | data->chain_noise_a / il->cfg->chain_noise_num_beacons; |
| 886 | average_noise[1] = |
| 887 | data->chain_noise_b / il->cfg->chain_noise_num_beacons; |
| 888 | average_noise[2] = |
| 889 | data->chain_noise_c / il->cfg->chain_noise_num_beacons; |
| 890 | |
| 891 | for (i = 0; i < NUM_RX_CHAINS; i++) { |
| 892 | if (!data->disconn_array[i] && |
| 893 | average_noise[i] <= min_average_noise) { |
| 894 | /* This means that chain i is active and has |
| 895 | * lower noise values so far: */ |
| 896 | min_average_noise = average_noise[i]; |
| 897 | min_average_noise_antenna_i = i; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0], |
| 902 | average_noise[1], average_noise[2]); |
| 903 | |
| 904 | D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise, |
| 905 | min_average_noise_antenna_i); |
| 906 | |
| 907 | il4965_gain_computation(il, average_noise, min_average_noise_antenna_i, |
| 908 | min_average_noise, |
| 909 | il4965_find_first_chain(il->cfg->valid_rx_ant)); |
| 910 | |
| 911 | /* Some power changes may have been made during the calibration. |
| 912 | * Update and commit the RXON |
| 913 | */ |
| 914 | if (il->ops->update_chain_flags) |
| 915 | il->ops->update_chain_flags(il); |
| 916 | |
| 917 | data->state = IL_CHAIN_NOISE_DONE; |
| 918 | il_power_update_mode(il, false); |
| 919 | } |
| 920 | |
| 921 | void |
| 922 | il4965_reset_run_time_calib(struct il_priv *il) |
| 923 | { |
| 924 | int i; |
| 925 | memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data)); |
| 926 | memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data)); |
| 927 | for (i = 0; i < NUM_RX_CHAINS; i++) |
| 928 | il->chain_noise_data.delta_gain_code[i] = |
| 929 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; |
| 930 | |
| 931 | /* Ask for stats now, the uCode will send notification |
| 932 | * periodically after association */ |
| 933 | il_send_stats_request(il, CMD_ASYNC, true); |
| 934 | } |