| 1 | /* |
| 2 | * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. |
| 3 | * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. |
| 4 | * |
| 5 | * This file is released under the GPL. |
| 6 | */ |
| 7 | |
| 8 | #include "dm.h" |
| 9 | #include "dm-uevent.h" |
| 10 | |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/mutex.h> |
| 14 | #include <linux/moduleparam.h> |
| 15 | #include <linux/blkpg.h> |
| 16 | #include <linux/bio.h> |
| 17 | #include <linux/mempool.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/idr.h> |
| 20 | #include <linux/hdreg.h> |
| 21 | #include <linux/delay.h> |
| 22 | |
| 23 | #include <trace/events/block.h> |
| 24 | |
| 25 | #define DM_MSG_PREFIX "core" |
| 26 | |
| 27 | #ifdef CONFIG_PRINTK |
| 28 | /* |
| 29 | * ratelimit state to be used in DMXXX_LIMIT(). |
| 30 | */ |
| 31 | DEFINE_RATELIMIT_STATE(dm_ratelimit_state, |
| 32 | DEFAULT_RATELIMIT_INTERVAL, |
| 33 | DEFAULT_RATELIMIT_BURST); |
| 34 | EXPORT_SYMBOL(dm_ratelimit_state); |
| 35 | #endif |
| 36 | |
| 37 | /* |
| 38 | * Cookies are numeric values sent with CHANGE and REMOVE |
| 39 | * uevents while resuming, removing or renaming the device. |
| 40 | */ |
| 41 | #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" |
| 42 | #define DM_COOKIE_LENGTH 24 |
| 43 | |
| 44 | static const char *_name = DM_NAME; |
| 45 | |
| 46 | static unsigned int major = 0; |
| 47 | static unsigned int _major = 0; |
| 48 | |
| 49 | static DEFINE_IDR(_minor_idr); |
| 50 | |
| 51 | static DEFINE_SPINLOCK(_minor_lock); |
| 52 | /* |
| 53 | * For bio-based dm. |
| 54 | * One of these is allocated per bio. |
| 55 | */ |
| 56 | struct dm_io { |
| 57 | struct mapped_device *md; |
| 58 | int error; |
| 59 | atomic_t io_count; |
| 60 | struct bio *bio; |
| 61 | unsigned long start_time; |
| 62 | spinlock_t endio_lock; |
| 63 | }; |
| 64 | |
| 65 | /* |
| 66 | * For request-based dm. |
| 67 | * One of these is allocated per request. |
| 68 | */ |
| 69 | struct dm_rq_target_io { |
| 70 | struct mapped_device *md; |
| 71 | struct dm_target *ti; |
| 72 | struct request *orig, clone; |
| 73 | int error; |
| 74 | union map_info info; |
| 75 | }; |
| 76 | |
| 77 | /* |
| 78 | * For request-based dm - the bio clones we allocate are embedded in these |
| 79 | * structs. |
| 80 | * |
| 81 | * We allocate these with bio_alloc_bioset, using the front_pad parameter when |
| 82 | * the bioset is created - this means the bio has to come at the end of the |
| 83 | * struct. |
| 84 | */ |
| 85 | struct dm_rq_clone_bio_info { |
| 86 | struct bio *orig; |
| 87 | struct dm_rq_target_io *tio; |
| 88 | struct bio clone; |
| 89 | }; |
| 90 | |
| 91 | union map_info *dm_get_mapinfo(struct bio *bio) |
| 92 | { |
| 93 | if (bio && bio->bi_private) |
| 94 | return &((struct dm_target_io *)bio->bi_private)->info; |
| 95 | return NULL; |
| 96 | } |
| 97 | |
| 98 | union map_info *dm_get_rq_mapinfo(struct request *rq) |
| 99 | { |
| 100 | if (rq && rq->end_io_data) |
| 101 | return &((struct dm_rq_target_io *)rq->end_io_data)->info; |
| 102 | return NULL; |
| 103 | } |
| 104 | EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); |
| 105 | |
| 106 | #define MINOR_ALLOCED ((void *)-1) |
| 107 | |
| 108 | /* |
| 109 | * Bits for the md->flags field. |
| 110 | */ |
| 111 | #define DMF_BLOCK_IO_FOR_SUSPEND 0 |
| 112 | #define DMF_SUSPENDED 1 |
| 113 | #define DMF_FROZEN 2 |
| 114 | #define DMF_FREEING 3 |
| 115 | #define DMF_DELETING 4 |
| 116 | #define DMF_NOFLUSH_SUSPENDING 5 |
| 117 | #define DMF_MERGE_IS_OPTIONAL 6 |
| 118 | |
| 119 | /* |
| 120 | * Work processed by per-device workqueue. |
| 121 | */ |
| 122 | struct mapped_device { |
| 123 | struct rw_semaphore io_lock; |
| 124 | struct mutex suspend_lock; |
| 125 | rwlock_t map_lock; |
| 126 | atomic_t holders; |
| 127 | atomic_t open_count; |
| 128 | |
| 129 | unsigned long flags; |
| 130 | |
| 131 | struct request_queue *queue; |
| 132 | unsigned type; |
| 133 | /* Protect queue and type against concurrent access. */ |
| 134 | struct mutex type_lock; |
| 135 | |
| 136 | struct target_type *immutable_target_type; |
| 137 | |
| 138 | struct gendisk *disk; |
| 139 | char name[16]; |
| 140 | |
| 141 | void *interface_ptr; |
| 142 | |
| 143 | /* |
| 144 | * A list of ios that arrived while we were suspended. |
| 145 | */ |
| 146 | atomic_t pending[2]; |
| 147 | wait_queue_head_t wait; |
| 148 | struct work_struct work; |
| 149 | struct bio_list deferred; |
| 150 | spinlock_t deferred_lock; |
| 151 | |
| 152 | /* |
| 153 | * Processing queue (flush) |
| 154 | */ |
| 155 | struct workqueue_struct *wq; |
| 156 | |
| 157 | /* |
| 158 | * The current mapping. |
| 159 | */ |
| 160 | struct dm_table *map; |
| 161 | |
| 162 | /* |
| 163 | * io objects are allocated from here. |
| 164 | */ |
| 165 | mempool_t *io_pool; |
| 166 | |
| 167 | struct bio_set *bs; |
| 168 | |
| 169 | /* |
| 170 | * Event handling. |
| 171 | */ |
| 172 | atomic_t event_nr; |
| 173 | wait_queue_head_t eventq; |
| 174 | atomic_t uevent_seq; |
| 175 | struct list_head uevent_list; |
| 176 | spinlock_t uevent_lock; /* Protect access to uevent_list */ |
| 177 | |
| 178 | /* |
| 179 | * freeze/thaw support require holding onto a super block |
| 180 | */ |
| 181 | struct super_block *frozen_sb; |
| 182 | struct block_device *bdev; |
| 183 | |
| 184 | /* forced geometry settings */ |
| 185 | struct hd_geometry geometry; |
| 186 | |
| 187 | /* sysfs handle */ |
| 188 | struct kobject kobj; |
| 189 | |
| 190 | /* zero-length flush that will be cloned and submitted to targets */ |
| 191 | struct bio flush_bio; |
| 192 | }; |
| 193 | |
| 194 | /* |
| 195 | * For mempools pre-allocation at the table loading time. |
| 196 | */ |
| 197 | struct dm_md_mempools { |
| 198 | mempool_t *io_pool; |
| 199 | struct bio_set *bs; |
| 200 | }; |
| 201 | |
| 202 | #define MIN_IOS 256 |
| 203 | static struct kmem_cache *_io_cache; |
| 204 | static struct kmem_cache *_rq_tio_cache; |
| 205 | |
| 206 | static int __init local_init(void) |
| 207 | { |
| 208 | int r = -ENOMEM; |
| 209 | |
| 210 | /* allocate a slab for the dm_ios */ |
| 211 | _io_cache = KMEM_CACHE(dm_io, 0); |
| 212 | if (!_io_cache) |
| 213 | return r; |
| 214 | |
| 215 | _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); |
| 216 | if (!_rq_tio_cache) |
| 217 | goto out_free_io_cache; |
| 218 | |
| 219 | r = dm_uevent_init(); |
| 220 | if (r) |
| 221 | goto out_free_rq_tio_cache; |
| 222 | |
| 223 | _major = major; |
| 224 | r = register_blkdev(_major, _name); |
| 225 | if (r < 0) |
| 226 | goto out_uevent_exit; |
| 227 | |
| 228 | if (!_major) |
| 229 | _major = r; |
| 230 | |
| 231 | return 0; |
| 232 | |
| 233 | out_uevent_exit: |
| 234 | dm_uevent_exit(); |
| 235 | out_free_rq_tio_cache: |
| 236 | kmem_cache_destroy(_rq_tio_cache); |
| 237 | out_free_io_cache: |
| 238 | kmem_cache_destroy(_io_cache); |
| 239 | |
| 240 | return r; |
| 241 | } |
| 242 | |
| 243 | static void local_exit(void) |
| 244 | { |
| 245 | kmem_cache_destroy(_rq_tio_cache); |
| 246 | kmem_cache_destroy(_io_cache); |
| 247 | unregister_blkdev(_major, _name); |
| 248 | dm_uevent_exit(); |
| 249 | |
| 250 | _major = 0; |
| 251 | |
| 252 | DMINFO("cleaned up"); |
| 253 | } |
| 254 | |
| 255 | static int (*_inits[])(void) __initdata = { |
| 256 | local_init, |
| 257 | dm_target_init, |
| 258 | dm_linear_init, |
| 259 | dm_stripe_init, |
| 260 | dm_io_init, |
| 261 | dm_kcopyd_init, |
| 262 | dm_interface_init, |
| 263 | }; |
| 264 | |
| 265 | static void (*_exits[])(void) = { |
| 266 | local_exit, |
| 267 | dm_target_exit, |
| 268 | dm_linear_exit, |
| 269 | dm_stripe_exit, |
| 270 | dm_io_exit, |
| 271 | dm_kcopyd_exit, |
| 272 | dm_interface_exit, |
| 273 | }; |
| 274 | |
| 275 | static int __init dm_init(void) |
| 276 | { |
| 277 | const int count = ARRAY_SIZE(_inits); |
| 278 | |
| 279 | int r, i; |
| 280 | |
| 281 | for (i = 0; i < count; i++) { |
| 282 | r = _inits[i](); |
| 283 | if (r) |
| 284 | goto bad; |
| 285 | } |
| 286 | |
| 287 | return 0; |
| 288 | |
| 289 | bad: |
| 290 | while (i--) |
| 291 | _exits[i](); |
| 292 | |
| 293 | return r; |
| 294 | } |
| 295 | |
| 296 | static void __exit dm_exit(void) |
| 297 | { |
| 298 | int i = ARRAY_SIZE(_exits); |
| 299 | |
| 300 | while (i--) |
| 301 | _exits[i](); |
| 302 | |
| 303 | /* |
| 304 | * Should be empty by this point. |
| 305 | */ |
| 306 | idr_destroy(&_minor_idr); |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * Block device functions |
| 311 | */ |
| 312 | int dm_deleting_md(struct mapped_device *md) |
| 313 | { |
| 314 | return test_bit(DMF_DELETING, &md->flags); |
| 315 | } |
| 316 | |
| 317 | static int dm_blk_open(struct block_device *bdev, fmode_t mode) |
| 318 | { |
| 319 | struct mapped_device *md; |
| 320 | |
| 321 | spin_lock(&_minor_lock); |
| 322 | |
| 323 | md = bdev->bd_disk->private_data; |
| 324 | if (!md) |
| 325 | goto out; |
| 326 | |
| 327 | if (test_bit(DMF_FREEING, &md->flags) || |
| 328 | dm_deleting_md(md)) { |
| 329 | md = NULL; |
| 330 | goto out; |
| 331 | } |
| 332 | |
| 333 | dm_get(md); |
| 334 | atomic_inc(&md->open_count); |
| 335 | |
| 336 | out: |
| 337 | spin_unlock(&_minor_lock); |
| 338 | |
| 339 | return md ? 0 : -ENXIO; |
| 340 | } |
| 341 | |
| 342 | static int dm_blk_close(struct gendisk *disk, fmode_t mode) |
| 343 | { |
| 344 | struct mapped_device *md = disk->private_data; |
| 345 | |
| 346 | spin_lock(&_minor_lock); |
| 347 | |
| 348 | atomic_dec(&md->open_count); |
| 349 | dm_put(md); |
| 350 | |
| 351 | spin_unlock(&_minor_lock); |
| 352 | |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | int dm_open_count(struct mapped_device *md) |
| 357 | { |
| 358 | return atomic_read(&md->open_count); |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * Guarantees nothing is using the device before it's deleted. |
| 363 | */ |
| 364 | int dm_lock_for_deletion(struct mapped_device *md) |
| 365 | { |
| 366 | int r = 0; |
| 367 | |
| 368 | spin_lock(&_minor_lock); |
| 369 | |
| 370 | if (dm_open_count(md)) |
| 371 | r = -EBUSY; |
| 372 | else |
| 373 | set_bit(DMF_DELETING, &md->flags); |
| 374 | |
| 375 | spin_unlock(&_minor_lock); |
| 376 | |
| 377 | return r; |
| 378 | } |
| 379 | |
| 380 | static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| 381 | { |
| 382 | struct mapped_device *md = bdev->bd_disk->private_data; |
| 383 | |
| 384 | return dm_get_geometry(md, geo); |
| 385 | } |
| 386 | |
| 387 | static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, |
| 388 | unsigned int cmd, unsigned long arg) |
| 389 | { |
| 390 | struct mapped_device *md = bdev->bd_disk->private_data; |
| 391 | struct dm_table *map = dm_get_live_table(md); |
| 392 | struct dm_target *tgt; |
| 393 | int r = -ENOTTY; |
| 394 | |
| 395 | if (!map || !dm_table_get_size(map)) |
| 396 | goto out; |
| 397 | |
| 398 | /* We only support devices that have a single target */ |
| 399 | if (dm_table_get_num_targets(map) != 1) |
| 400 | goto out; |
| 401 | |
| 402 | tgt = dm_table_get_target(map, 0); |
| 403 | |
| 404 | if (dm_suspended_md(md)) { |
| 405 | r = -EAGAIN; |
| 406 | goto out; |
| 407 | } |
| 408 | |
| 409 | if (tgt->type->ioctl) |
| 410 | r = tgt->type->ioctl(tgt, cmd, arg); |
| 411 | |
| 412 | out: |
| 413 | dm_table_put(map); |
| 414 | |
| 415 | return r; |
| 416 | } |
| 417 | |
| 418 | static struct dm_io *alloc_io(struct mapped_device *md) |
| 419 | { |
| 420 | return mempool_alloc(md->io_pool, GFP_NOIO); |
| 421 | } |
| 422 | |
| 423 | static void free_io(struct mapped_device *md, struct dm_io *io) |
| 424 | { |
| 425 | mempool_free(io, md->io_pool); |
| 426 | } |
| 427 | |
| 428 | static void free_tio(struct mapped_device *md, struct dm_target_io *tio) |
| 429 | { |
| 430 | bio_put(&tio->clone); |
| 431 | } |
| 432 | |
| 433 | static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, |
| 434 | gfp_t gfp_mask) |
| 435 | { |
| 436 | return mempool_alloc(md->io_pool, gfp_mask); |
| 437 | } |
| 438 | |
| 439 | static void free_rq_tio(struct dm_rq_target_io *tio) |
| 440 | { |
| 441 | mempool_free(tio, tio->md->io_pool); |
| 442 | } |
| 443 | |
| 444 | static int md_in_flight(struct mapped_device *md) |
| 445 | { |
| 446 | return atomic_read(&md->pending[READ]) + |
| 447 | atomic_read(&md->pending[WRITE]); |
| 448 | } |
| 449 | |
| 450 | static void start_io_acct(struct dm_io *io) |
| 451 | { |
| 452 | struct mapped_device *md = io->md; |
| 453 | int cpu; |
| 454 | int rw = bio_data_dir(io->bio); |
| 455 | |
| 456 | io->start_time = jiffies; |
| 457 | |
| 458 | cpu = part_stat_lock(); |
| 459 | part_round_stats(cpu, &dm_disk(md)->part0); |
| 460 | part_stat_unlock(); |
| 461 | atomic_set(&dm_disk(md)->part0.in_flight[rw], |
| 462 | atomic_inc_return(&md->pending[rw])); |
| 463 | } |
| 464 | |
| 465 | static void end_io_acct(struct dm_io *io) |
| 466 | { |
| 467 | struct mapped_device *md = io->md; |
| 468 | struct bio *bio = io->bio; |
| 469 | unsigned long duration = jiffies - io->start_time; |
| 470 | int pending, cpu; |
| 471 | int rw = bio_data_dir(bio); |
| 472 | |
| 473 | cpu = part_stat_lock(); |
| 474 | part_round_stats(cpu, &dm_disk(md)->part0); |
| 475 | part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); |
| 476 | part_stat_unlock(); |
| 477 | |
| 478 | /* |
| 479 | * After this is decremented the bio must not be touched if it is |
| 480 | * a flush. |
| 481 | */ |
| 482 | pending = atomic_dec_return(&md->pending[rw]); |
| 483 | atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); |
| 484 | pending += atomic_read(&md->pending[rw^0x1]); |
| 485 | |
| 486 | /* nudge anyone waiting on suspend queue */ |
| 487 | if (!pending) |
| 488 | wake_up(&md->wait); |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Add the bio to the list of deferred io. |
| 493 | */ |
| 494 | static void queue_io(struct mapped_device *md, struct bio *bio) |
| 495 | { |
| 496 | unsigned long flags; |
| 497 | |
| 498 | spin_lock_irqsave(&md->deferred_lock, flags); |
| 499 | bio_list_add(&md->deferred, bio); |
| 500 | spin_unlock_irqrestore(&md->deferred_lock, flags); |
| 501 | queue_work(md->wq, &md->work); |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Everyone (including functions in this file), should use this |
| 506 | * function to access the md->map field, and make sure they call |
| 507 | * dm_table_put() when finished. |
| 508 | */ |
| 509 | struct dm_table *dm_get_live_table(struct mapped_device *md) |
| 510 | { |
| 511 | struct dm_table *t; |
| 512 | unsigned long flags; |
| 513 | |
| 514 | read_lock_irqsave(&md->map_lock, flags); |
| 515 | t = md->map; |
| 516 | if (t) |
| 517 | dm_table_get(t); |
| 518 | read_unlock_irqrestore(&md->map_lock, flags); |
| 519 | |
| 520 | return t; |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * Get the geometry associated with a dm device |
| 525 | */ |
| 526 | int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) |
| 527 | { |
| 528 | *geo = md->geometry; |
| 529 | |
| 530 | return 0; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Set the geometry of a device. |
| 535 | */ |
| 536 | int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) |
| 537 | { |
| 538 | sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; |
| 539 | |
| 540 | if (geo->start > sz) { |
| 541 | DMWARN("Start sector is beyond the geometry limits."); |
| 542 | return -EINVAL; |
| 543 | } |
| 544 | |
| 545 | md->geometry = *geo; |
| 546 | |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | /*----------------------------------------------------------------- |
| 551 | * CRUD START: |
| 552 | * A more elegant soln is in the works that uses the queue |
| 553 | * merge fn, unfortunately there are a couple of changes to |
| 554 | * the block layer that I want to make for this. So in the |
| 555 | * interests of getting something for people to use I give |
| 556 | * you this clearly demarcated crap. |
| 557 | *---------------------------------------------------------------*/ |
| 558 | |
| 559 | static int __noflush_suspending(struct mapped_device *md) |
| 560 | { |
| 561 | return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Decrements the number of outstanding ios that a bio has been |
| 566 | * cloned into, completing the original io if necc. |
| 567 | */ |
| 568 | static void dec_pending(struct dm_io *io, int error) |
| 569 | { |
| 570 | unsigned long flags; |
| 571 | int io_error; |
| 572 | struct bio *bio; |
| 573 | struct mapped_device *md = io->md; |
| 574 | |
| 575 | /* Push-back supersedes any I/O errors */ |
| 576 | if (unlikely(error)) { |
| 577 | spin_lock_irqsave(&io->endio_lock, flags); |
| 578 | if (!(io->error > 0 && __noflush_suspending(md))) |
| 579 | io->error = error; |
| 580 | spin_unlock_irqrestore(&io->endio_lock, flags); |
| 581 | } |
| 582 | |
| 583 | if (atomic_dec_and_test(&io->io_count)) { |
| 584 | if (io->error == DM_ENDIO_REQUEUE) { |
| 585 | /* |
| 586 | * Target requested pushing back the I/O. |
| 587 | */ |
| 588 | spin_lock_irqsave(&md->deferred_lock, flags); |
| 589 | if (__noflush_suspending(md)) |
| 590 | bio_list_add_head(&md->deferred, io->bio); |
| 591 | else |
| 592 | /* noflush suspend was interrupted. */ |
| 593 | io->error = -EIO; |
| 594 | spin_unlock_irqrestore(&md->deferred_lock, flags); |
| 595 | } |
| 596 | |
| 597 | io_error = io->error; |
| 598 | bio = io->bio; |
| 599 | end_io_acct(io); |
| 600 | free_io(md, io); |
| 601 | |
| 602 | if (io_error == DM_ENDIO_REQUEUE) |
| 603 | return; |
| 604 | |
| 605 | if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { |
| 606 | /* |
| 607 | * Preflush done for flush with data, reissue |
| 608 | * without REQ_FLUSH. |
| 609 | */ |
| 610 | bio->bi_rw &= ~REQ_FLUSH; |
| 611 | queue_io(md, bio); |
| 612 | } else { |
| 613 | /* done with normal IO or empty flush */ |
| 614 | trace_block_bio_complete(md->queue, bio, io_error); |
| 615 | bio_endio(bio, io_error); |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | static void clone_endio(struct bio *bio, int error) |
| 621 | { |
| 622 | int r = 0; |
| 623 | struct dm_target_io *tio = bio->bi_private; |
| 624 | struct dm_io *io = tio->io; |
| 625 | struct mapped_device *md = tio->io->md; |
| 626 | dm_endio_fn endio = tio->ti->type->end_io; |
| 627 | |
| 628 | if (!bio_flagged(bio, BIO_UPTODATE) && !error) |
| 629 | error = -EIO; |
| 630 | |
| 631 | if (endio) { |
| 632 | r = endio(tio->ti, bio, error); |
| 633 | if (r < 0 || r == DM_ENDIO_REQUEUE) |
| 634 | /* |
| 635 | * error and requeue request are handled |
| 636 | * in dec_pending(). |
| 637 | */ |
| 638 | error = r; |
| 639 | else if (r == DM_ENDIO_INCOMPLETE) |
| 640 | /* The target will handle the io */ |
| 641 | return; |
| 642 | else if (r) { |
| 643 | DMWARN("unimplemented target endio return value: %d", r); |
| 644 | BUG(); |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | free_tio(md, tio); |
| 649 | dec_pending(io, error); |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Partial completion handling for request-based dm |
| 654 | */ |
| 655 | static void end_clone_bio(struct bio *clone, int error) |
| 656 | { |
| 657 | struct dm_rq_clone_bio_info *info = clone->bi_private; |
| 658 | struct dm_rq_target_io *tio = info->tio; |
| 659 | struct bio *bio = info->orig; |
| 660 | unsigned int nr_bytes = info->orig->bi_size; |
| 661 | |
| 662 | bio_put(clone); |
| 663 | |
| 664 | if (tio->error) |
| 665 | /* |
| 666 | * An error has already been detected on the request. |
| 667 | * Once error occurred, just let clone->end_io() handle |
| 668 | * the remainder. |
| 669 | */ |
| 670 | return; |
| 671 | else if (error) { |
| 672 | /* |
| 673 | * Don't notice the error to the upper layer yet. |
| 674 | * The error handling decision is made by the target driver, |
| 675 | * when the request is completed. |
| 676 | */ |
| 677 | tio->error = error; |
| 678 | return; |
| 679 | } |
| 680 | |
| 681 | /* |
| 682 | * I/O for the bio successfully completed. |
| 683 | * Notice the data completion to the upper layer. |
| 684 | */ |
| 685 | |
| 686 | /* |
| 687 | * bios are processed from the head of the list. |
| 688 | * So the completing bio should always be rq->bio. |
| 689 | * If it's not, something wrong is happening. |
| 690 | */ |
| 691 | if (tio->orig->bio != bio) |
| 692 | DMERR("bio completion is going in the middle of the request"); |
| 693 | |
| 694 | /* |
| 695 | * Update the original request. |
| 696 | * Do not use blk_end_request() here, because it may complete |
| 697 | * the original request before the clone, and break the ordering. |
| 698 | */ |
| 699 | blk_update_request(tio->orig, 0, nr_bytes); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * Don't touch any member of the md after calling this function because |
| 704 | * the md may be freed in dm_put() at the end of this function. |
| 705 | * Or do dm_get() before calling this function and dm_put() later. |
| 706 | */ |
| 707 | static void rq_completed(struct mapped_device *md, int rw, int run_queue) |
| 708 | { |
| 709 | atomic_dec(&md->pending[rw]); |
| 710 | |
| 711 | /* nudge anyone waiting on suspend queue */ |
| 712 | if (!md_in_flight(md)) |
| 713 | wake_up(&md->wait); |
| 714 | |
| 715 | /* |
| 716 | * Run this off this callpath, as drivers could invoke end_io while |
| 717 | * inside their request_fn (and holding the queue lock). Calling |
| 718 | * back into ->request_fn() could deadlock attempting to grab the |
| 719 | * queue lock again. |
| 720 | */ |
| 721 | if (run_queue) |
| 722 | blk_run_queue_async(md->queue); |
| 723 | |
| 724 | /* |
| 725 | * dm_put() must be at the end of this function. See the comment above |
| 726 | */ |
| 727 | dm_put(md); |
| 728 | } |
| 729 | |
| 730 | static void free_rq_clone(struct request *clone) |
| 731 | { |
| 732 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 733 | |
| 734 | blk_rq_unprep_clone(clone); |
| 735 | free_rq_tio(tio); |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * Complete the clone and the original request. |
| 740 | * Must be called without queue lock. |
| 741 | */ |
| 742 | static void dm_end_request(struct request *clone, int error) |
| 743 | { |
| 744 | int rw = rq_data_dir(clone); |
| 745 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 746 | struct mapped_device *md = tio->md; |
| 747 | struct request *rq = tio->orig; |
| 748 | |
| 749 | if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { |
| 750 | rq->errors = clone->errors; |
| 751 | rq->resid_len = clone->resid_len; |
| 752 | |
| 753 | if (rq->sense) |
| 754 | /* |
| 755 | * We are using the sense buffer of the original |
| 756 | * request. |
| 757 | * So setting the length of the sense data is enough. |
| 758 | */ |
| 759 | rq->sense_len = clone->sense_len; |
| 760 | } |
| 761 | |
| 762 | free_rq_clone(clone); |
| 763 | blk_end_request_all(rq, error); |
| 764 | rq_completed(md, rw, true); |
| 765 | } |
| 766 | |
| 767 | static void dm_unprep_request(struct request *rq) |
| 768 | { |
| 769 | struct request *clone = rq->special; |
| 770 | |
| 771 | rq->special = NULL; |
| 772 | rq->cmd_flags &= ~REQ_DONTPREP; |
| 773 | |
| 774 | free_rq_clone(clone); |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | * Requeue the original request of a clone. |
| 779 | */ |
| 780 | void dm_requeue_unmapped_request(struct request *clone) |
| 781 | { |
| 782 | int rw = rq_data_dir(clone); |
| 783 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 784 | struct mapped_device *md = tio->md; |
| 785 | struct request *rq = tio->orig; |
| 786 | struct request_queue *q = rq->q; |
| 787 | unsigned long flags; |
| 788 | |
| 789 | dm_unprep_request(rq); |
| 790 | |
| 791 | spin_lock_irqsave(q->queue_lock, flags); |
| 792 | blk_requeue_request(q, rq); |
| 793 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 794 | |
| 795 | rq_completed(md, rw, 0); |
| 796 | } |
| 797 | EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); |
| 798 | |
| 799 | static void __stop_queue(struct request_queue *q) |
| 800 | { |
| 801 | blk_stop_queue(q); |
| 802 | } |
| 803 | |
| 804 | static void stop_queue(struct request_queue *q) |
| 805 | { |
| 806 | unsigned long flags; |
| 807 | |
| 808 | spin_lock_irqsave(q->queue_lock, flags); |
| 809 | __stop_queue(q); |
| 810 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 811 | } |
| 812 | |
| 813 | static void __start_queue(struct request_queue *q) |
| 814 | { |
| 815 | if (blk_queue_stopped(q)) |
| 816 | blk_start_queue(q); |
| 817 | } |
| 818 | |
| 819 | static void start_queue(struct request_queue *q) |
| 820 | { |
| 821 | unsigned long flags; |
| 822 | |
| 823 | spin_lock_irqsave(q->queue_lock, flags); |
| 824 | __start_queue(q); |
| 825 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 826 | } |
| 827 | |
| 828 | static void dm_done(struct request *clone, int error, bool mapped) |
| 829 | { |
| 830 | int r = error; |
| 831 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 832 | dm_request_endio_fn rq_end_io = NULL; |
| 833 | |
| 834 | if (tio->ti) { |
| 835 | rq_end_io = tio->ti->type->rq_end_io; |
| 836 | |
| 837 | if (mapped && rq_end_io) |
| 838 | r = rq_end_io(tio->ti, clone, error, &tio->info); |
| 839 | } |
| 840 | |
| 841 | if (r <= 0) |
| 842 | /* The target wants to complete the I/O */ |
| 843 | dm_end_request(clone, r); |
| 844 | else if (r == DM_ENDIO_INCOMPLETE) |
| 845 | /* The target will handle the I/O */ |
| 846 | return; |
| 847 | else if (r == DM_ENDIO_REQUEUE) |
| 848 | /* The target wants to requeue the I/O */ |
| 849 | dm_requeue_unmapped_request(clone); |
| 850 | else { |
| 851 | DMWARN("unimplemented target endio return value: %d", r); |
| 852 | BUG(); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * Request completion handler for request-based dm |
| 858 | */ |
| 859 | static void dm_softirq_done(struct request *rq) |
| 860 | { |
| 861 | bool mapped = true; |
| 862 | struct request *clone = rq->completion_data; |
| 863 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 864 | |
| 865 | if (rq->cmd_flags & REQ_FAILED) |
| 866 | mapped = false; |
| 867 | |
| 868 | dm_done(clone, tio->error, mapped); |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * Complete the clone and the original request with the error status |
| 873 | * through softirq context. |
| 874 | */ |
| 875 | static void dm_complete_request(struct request *clone, int error) |
| 876 | { |
| 877 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 878 | struct request *rq = tio->orig; |
| 879 | |
| 880 | tio->error = error; |
| 881 | rq->completion_data = clone; |
| 882 | blk_complete_request(rq); |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | * Complete the not-mapped clone and the original request with the error status |
| 887 | * through softirq context. |
| 888 | * Target's rq_end_io() function isn't called. |
| 889 | * This may be used when the target's map_rq() function fails. |
| 890 | */ |
| 891 | void dm_kill_unmapped_request(struct request *clone, int error) |
| 892 | { |
| 893 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 894 | struct request *rq = tio->orig; |
| 895 | |
| 896 | rq->cmd_flags |= REQ_FAILED; |
| 897 | dm_complete_request(clone, error); |
| 898 | } |
| 899 | EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); |
| 900 | |
| 901 | /* |
| 902 | * Called with the queue lock held |
| 903 | */ |
| 904 | static void end_clone_request(struct request *clone, int error) |
| 905 | { |
| 906 | /* |
| 907 | * For just cleaning up the information of the queue in which |
| 908 | * the clone was dispatched. |
| 909 | * The clone is *NOT* freed actually here because it is alloced from |
| 910 | * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. |
| 911 | */ |
| 912 | __blk_put_request(clone->q, clone); |
| 913 | |
| 914 | /* |
| 915 | * Actual request completion is done in a softirq context which doesn't |
| 916 | * hold the queue lock. Otherwise, deadlock could occur because: |
| 917 | * - another request may be submitted by the upper level driver |
| 918 | * of the stacking during the completion |
| 919 | * - the submission which requires queue lock may be done |
| 920 | * against this queue |
| 921 | */ |
| 922 | dm_complete_request(clone, error); |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * Return maximum size of I/O possible at the supplied sector up to the current |
| 927 | * target boundary. |
| 928 | */ |
| 929 | static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) |
| 930 | { |
| 931 | sector_t target_offset = dm_target_offset(ti, sector); |
| 932 | |
| 933 | return ti->len - target_offset; |
| 934 | } |
| 935 | |
| 936 | static sector_t max_io_len(sector_t sector, struct dm_target *ti) |
| 937 | { |
| 938 | sector_t len = max_io_len_target_boundary(sector, ti); |
| 939 | sector_t offset, max_len; |
| 940 | |
| 941 | /* |
| 942 | * Does the target need to split even further? |
| 943 | */ |
| 944 | if (ti->max_io_len) { |
| 945 | offset = dm_target_offset(ti, sector); |
| 946 | if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) |
| 947 | max_len = sector_div(offset, ti->max_io_len); |
| 948 | else |
| 949 | max_len = offset & (ti->max_io_len - 1); |
| 950 | max_len = ti->max_io_len - max_len; |
| 951 | |
| 952 | if (len > max_len) |
| 953 | len = max_len; |
| 954 | } |
| 955 | |
| 956 | return len; |
| 957 | } |
| 958 | |
| 959 | int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) |
| 960 | { |
| 961 | if (len > UINT_MAX) { |
| 962 | DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", |
| 963 | (unsigned long long)len, UINT_MAX); |
| 964 | ti->error = "Maximum size of target IO is too large"; |
| 965 | return -EINVAL; |
| 966 | } |
| 967 | |
| 968 | ti->max_io_len = (uint32_t) len; |
| 969 | |
| 970 | return 0; |
| 971 | } |
| 972 | EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); |
| 973 | |
| 974 | static void __map_bio(struct dm_target_io *tio) |
| 975 | { |
| 976 | int r; |
| 977 | sector_t sector; |
| 978 | struct mapped_device *md; |
| 979 | struct bio *clone = &tio->clone; |
| 980 | struct dm_target *ti = tio->ti; |
| 981 | |
| 982 | clone->bi_end_io = clone_endio; |
| 983 | clone->bi_private = tio; |
| 984 | |
| 985 | /* |
| 986 | * Map the clone. If r == 0 we don't need to do |
| 987 | * anything, the target has assumed ownership of |
| 988 | * this io. |
| 989 | */ |
| 990 | atomic_inc(&tio->io->io_count); |
| 991 | sector = clone->bi_sector; |
| 992 | r = ti->type->map(ti, clone); |
| 993 | if (r == DM_MAPIO_REMAPPED) { |
| 994 | /* the bio has been remapped so dispatch it */ |
| 995 | |
| 996 | trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, |
| 997 | tio->io->bio->bi_bdev->bd_dev, sector); |
| 998 | |
| 999 | generic_make_request(clone); |
| 1000 | } else if (r < 0 || r == DM_MAPIO_REQUEUE) { |
| 1001 | /* error the io and bail out, or requeue it if needed */ |
| 1002 | md = tio->io->md; |
| 1003 | dec_pending(tio->io, r); |
| 1004 | free_tio(md, tio); |
| 1005 | } else if (r) { |
| 1006 | DMWARN("unimplemented target map return value: %d", r); |
| 1007 | BUG(); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | struct clone_info { |
| 1012 | struct mapped_device *md; |
| 1013 | struct dm_table *map; |
| 1014 | struct bio *bio; |
| 1015 | struct dm_io *io; |
| 1016 | sector_t sector; |
| 1017 | sector_t sector_count; |
| 1018 | unsigned short idx; |
| 1019 | }; |
| 1020 | |
| 1021 | static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) |
| 1022 | { |
| 1023 | bio->bi_sector = sector; |
| 1024 | bio->bi_size = to_bytes(len); |
| 1025 | } |
| 1026 | |
| 1027 | static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) |
| 1028 | { |
| 1029 | bio->bi_idx = idx; |
| 1030 | bio->bi_vcnt = idx + bv_count; |
| 1031 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
| 1032 | } |
| 1033 | |
| 1034 | static void clone_bio_integrity(struct bio *bio, struct bio *clone, |
| 1035 | unsigned short idx, unsigned len, unsigned offset, |
| 1036 | unsigned trim) |
| 1037 | { |
| 1038 | if (!bio_integrity(bio)) |
| 1039 | return; |
| 1040 | |
| 1041 | bio_integrity_clone(clone, bio, GFP_NOIO); |
| 1042 | |
| 1043 | if (trim) |
| 1044 | bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Creates a little bio that just does part of a bvec. |
| 1049 | */ |
| 1050 | static void clone_split_bio(struct dm_target_io *tio, struct bio *bio, |
| 1051 | sector_t sector, unsigned short idx, |
| 1052 | unsigned offset, unsigned len) |
| 1053 | { |
| 1054 | struct bio *clone = &tio->clone; |
| 1055 | struct bio_vec *bv = bio->bi_io_vec + idx; |
| 1056 | |
| 1057 | *clone->bi_io_vec = *bv; |
| 1058 | |
| 1059 | bio_setup_sector(clone, sector, len); |
| 1060 | |
| 1061 | clone->bi_bdev = bio->bi_bdev; |
| 1062 | clone->bi_rw = bio->bi_rw; |
| 1063 | clone->bi_vcnt = 1; |
| 1064 | clone->bi_io_vec->bv_offset = offset; |
| 1065 | clone->bi_io_vec->bv_len = clone->bi_size; |
| 1066 | clone->bi_flags |= 1 << BIO_CLONED; |
| 1067 | |
| 1068 | clone_bio_integrity(bio, clone, idx, len, offset, 1); |
| 1069 | } |
| 1070 | |
| 1071 | /* |
| 1072 | * Creates a bio that consists of range of complete bvecs. |
| 1073 | */ |
| 1074 | static void clone_bio(struct dm_target_io *tio, struct bio *bio, |
| 1075 | sector_t sector, unsigned short idx, |
| 1076 | unsigned short bv_count, unsigned len) |
| 1077 | { |
| 1078 | struct bio *clone = &tio->clone; |
| 1079 | unsigned trim = 0; |
| 1080 | |
| 1081 | __bio_clone(clone, bio); |
| 1082 | bio_setup_sector(clone, sector, len); |
| 1083 | bio_setup_bv(clone, idx, bv_count); |
| 1084 | |
| 1085 | if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) |
| 1086 | trim = 1; |
| 1087 | clone_bio_integrity(bio, clone, idx, len, 0, trim); |
| 1088 | } |
| 1089 | |
| 1090 | static struct dm_target_io *alloc_tio(struct clone_info *ci, |
| 1091 | struct dm_target *ti, int nr_iovecs, |
| 1092 | unsigned target_bio_nr) |
| 1093 | { |
| 1094 | struct dm_target_io *tio; |
| 1095 | struct bio *clone; |
| 1096 | |
| 1097 | clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); |
| 1098 | tio = container_of(clone, struct dm_target_io, clone); |
| 1099 | |
| 1100 | tio->io = ci->io; |
| 1101 | tio->ti = ti; |
| 1102 | memset(&tio->info, 0, sizeof(tio->info)); |
| 1103 | tio->target_bio_nr = target_bio_nr; |
| 1104 | |
| 1105 | return tio; |
| 1106 | } |
| 1107 | |
| 1108 | static void __clone_and_map_simple_bio(struct clone_info *ci, |
| 1109 | struct dm_target *ti, |
| 1110 | unsigned target_bio_nr, sector_t len) |
| 1111 | { |
| 1112 | struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); |
| 1113 | struct bio *clone = &tio->clone; |
| 1114 | |
| 1115 | /* |
| 1116 | * Discard requests require the bio's inline iovecs be initialized. |
| 1117 | * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush |
| 1118 | * and discard, so no need for concern about wasted bvec allocations. |
| 1119 | */ |
| 1120 | __bio_clone(clone, ci->bio); |
| 1121 | if (len) |
| 1122 | bio_setup_sector(clone, ci->sector, len); |
| 1123 | |
| 1124 | __map_bio(tio); |
| 1125 | } |
| 1126 | |
| 1127 | static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, |
| 1128 | unsigned num_bios, sector_t len) |
| 1129 | { |
| 1130 | unsigned target_bio_nr; |
| 1131 | |
| 1132 | for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) |
| 1133 | __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); |
| 1134 | } |
| 1135 | |
| 1136 | static int __send_empty_flush(struct clone_info *ci) |
| 1137 | { |
| 1138 | unsigned target_nr = 0; |
| 1139 | struct dm_target *ti; |
| 1140 | |
| 1141 | BUG_ON(bio_has_data(ci->bio)); |
| 1142 | while ((ti = dm_table_get_target(ci->map, target_nr++))) |
| 1143 | __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); |
| 1144 | |
| 1145 | return 0; |
| 1146 | } |
| 1147 | |
| 1148 | static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, |
| 1149 | sector_t sector, int nr_iovecs, |
| 1150 | unsigned short idx, unsigned short bv_count, |
| 1151 | unsigned offset, unsigned len, |
| 1152 | unsigned split_bvec) |
| 1153 | { |
| 1154 | struct bio *bio = ci->bio; |
| 1155 | struct dm_target_io *tio; |
| 1156 | unsigned target_bio_nr; |
| 1157 | unsigned num_target_bios = 1; |
| 1158 | |
| 1159 | /* |
| 1160 | * Does the target want to receive duplicate copies of the bio? |
| 1161 | */ |
| 1162 | if (bio_data_dir(bio) == WRITE && ti->num_write_bios) |
| 1163 | num_target_bios = ti->num_write_bios(ti, bio); |
| 1164 | |
| 1165 | for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { |
| 1166 | tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr); |
| 1167 | if (split_bvec) |
| 1168 | clone_split_bio(tio, bio, sector, idx, offset, len); |
| 1169 | else |
| 1170 | clone_bio(tio, bio, sector, idx, bv_count, len); |
| 1171 | __map_bio(tio); |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); |
| 1176 | |
| 1177 | static unsigned get_num_discard_bios(struct dm_target *ti) |
| 1178 | { |
| 1179 | return ti->num_discard_bios; |
| 1180 | } |
| 1181 | |
| 1182 | static unsigned get_num_write_same_bios(struct dm_target *ti) |
| 1183 | { |
| 1184 | return ti->num_write_same_bios; |
| 1185 | } |
| 1186 | |
| 1187 | typedef bool (*is_split_required_fn)(struct dm_target *ti); |
| 1188 | |
| 1189 | static bool is_split_required_for_discard(struct dm_target *ti) |
| 1190 | { |
| 1191 | return ti->split_discard_bios; |
| 1192 | } |
| 1193 | |
| 1194 | static int __send_changing_extent_only(struct clone_info *ci, |
| 1195 | get_num_bios_fn get_num_bios, |
| 1196 | is_split_required_fn is_split_required) |
| 1197 | { |
| 1198 | struct dm_target *ti; |
| 1199 | sector_t len; |
| 1200 | unsigned num_bios; |
| 1201 | |
| 1202 | do { |
| 1203 | ti = dm_table_find_target(ci->map, ci->sector); |
| 1204 | if (!dm_target_is_valid(ti)) |
| 1205 | return -EIO; |
| 1206 | |
| 1207 | /* |
| 1208 | * Even though the device advertised support for this type of |
| 1209 | * request, that does not mean every target supports it, and |
| 1210 | * reconfiguration might also have changed that since the |
| 1211 | * check was performed. |
| 1212 | */ |
| 1213 | num_bios = get_num_bios ? get_num_bios(ti) : 0; |
| 1214 | if (!num_bios) |
| 1215 | return -EOPNOTSUPP; |
| 1216 | |
| 1217 | if (is_split_required && !is_split_required(ti)) |
| 1218 | len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); |
| 1219 | else |
| 1220 | len = min(ci->sector_count, max_io_len(ci->sector, ti)); |
| 1221 | |
| 1222 | __send_duplicate_bios(ci, ti, num_bios, len); |
| 1223 | |
| 1224 | ci->sector += len; |
| 1225 | } while (ci->sector_count -= len); |
| 1226 | |
| 1227 | return 0; |
| 1228 | } |
| 1229 | |
| 1230 | static int __send_discard(struct clone_info *ci) |
| 1231 | { |
| 1232 | return __send_changing_extent_only(ci, get_num_discard_bios, |
| 1233 | is_split_required_for_discard); |
| 1234 | } |
| 1235 | |
| 1236 | static int __send_write_same(struct clone_info *ci) |
| 1237 | { |
| 1238 | return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); |
| 1239 | } |
| 1240 | |
| 1241 | /* |
| 1242 | * Find maximum number of sectors / bvecs we can process with a single bio. |
| 1243 | */ |
| 1244 | static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx) |
| 1245 | { |
| 1246 | struct bio *bio = ci->bio; |
| 1247 | sector_t bv_len, total_len = 0; |
| 1248 | |
| 1249 | for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) { |
| 1250 | bv_len = to_sector(bio->bi_io_vec[*idx].bv_len); |
| 1251 | |
| 1252 | if (bv_len > max) |
| 1253 | break; |
| 1254 | |
| 1255 | max -= bv_len; |
| 1256 | total_len += bv_len; |
| 1257 | } |
| 1258 | |
| 1259 | return total_len; |
| 1260 | } |
| 1261 | |
| 1262 | static int __split_bvec_across_targets(struct clone_info *ci, |
| 1263 | struct dm_target *ti, sector_t max) |
| 1264 | { |
| 1265 | struct bio *bio = ci->bio; |
| 1266 | struct bio_vec *bv = bio->bi_io_vec + ci->idx; |
| 1267 | sector_t remaining = to_sector(bv->bv_len); |
| 1268 | unsigned offset = 0; |
| 1269 | sector_t len; |
| 1270 | |
| 1271 | do { |
| 1272 | if (offset) { |
| 1273 | ti = dm_table_find_target(ci->map, ci->sector); |
| 1274 | if (!dm_target_is_valid(ti)) |
| 1275 | return -EIO; |
| 1276 | |
| 1277 | max = max_io_len(ci->sector, ti); |
| 1278 | } |
| 1279 | |
| 1280 | len = min(remaining, max); |
| 1281 | |
| 1282 | __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0, |
| 1283 | bv->bv_offset + offset, len, 1); |
| 1284 | |
| 1285 | ci->sector += len; |
| 1286 | ci->sector_count -= len; |
| 1287 | offset += to_bytes(len); |
| 1288 | } while (remaining -= len); |
| 1289 | |
| 1290 | ci->idx++; |
| 1291 | |
| 1292 | return 0; |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * Select the correct strategy for processing a non-flush bio. |
| 1297 | */ |
| 1298 | static int __split_and_process_non_flush(struct clone_info *ci) |
| 1299 | { |
| 1300 | struct bio *bio = ci->bio; |
| 1301 | struct dm_target *ti; |
| 1302 | sector_t len, max; |
| 1303 | int idx; |
| 1304 | |
| 1305 | if (unlikely(bio->bi_rw & REQ_DISCARD)) |
| 1306 | return __send_discard(ci); |
| 1307 | else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) |
| 1308 | return __send_write_same(ci); |
| 1309 | |
| 1310 | ti = dm_table_find_target(ci->map, ci->sector); |
| 1311 | if (!dm_target_is_valid(ti)) |
| 1312 | return -EIO; |
| 1313 | |
| 1314 | max = max_io_len(ci->sector, ti); |
| 1315 | |
| 1316 | /* |
| 1317 | * Optimise for the simple case where we can do all of |
| 1318 | * the remaining io with a single clone. |
| 1319 | */ |
| 1320 | if (ci->sector_count <= max) { |
| 1321 | __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, |
| 1322 | ci->idx, bio->bi_vcnt - ci->idx, 0, |
| 1323 | ci->sector_count, 0); |
| 1324 | ci->sector_count = 0; |
| 1325 | return 0; |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * There are some bvecs that don't span targets. |
| 1330 | * Do as many of these as possible. |
| 1331 | */ |
| 1332 | if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { |
| 1333 | len = __len_within_target(ci, max, &idx); |
| 1334 | |
| 1335 | __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, |
| 1336 | ci->idx, idx - ci->idx, 0, len, 0); |
| 1337 | |
| 1338 | ci->sector += len; |
| 1339 | ci->sector_count -= len; |
| 1340 | ci->idx = idx; |
| 1341 | |
| 1342 | return 0; |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * Handle a bvec that must be split between two or more targets. |
| 1347 | */ |
| 1348 | return __split_bvec_across_targets(ci, ti, max); |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * Entry point to split a bio into clones and submit them to the targets. |
| 1353 | */ |
| 1354 | static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) |
| 1355 | { |
| 1356 | struct clone_info ci; |
| 1357 | int error = 0; |
| 1358 | |
| 1359 | ci.map = dm_get_live_table(md); |
| 1360 | if (unlikely(!ci.map)) { |
| 1361 | bio_io_error(bio); |
| 1362 | return; |
| 1363 | } |
| 1364 | |
| 1365 | ci.md = md; |
| 1366 | ci.io = alloc_io(md); |
| 1367 | ci.io->error = 0; |
| 1368 | atomic_set(&ci.io->io_count, 1); |
| 1369 | ci.io->bio = bio; |
| 1370 | ci.io->md = md; |
| 1371 | spin_lock_init(&ci.io->endio_lock); |
| 1372 | ci.sector = bio->bi_sector; |
| 1373 | ci.idx = bio->bi_idx; |
| 1374 | |
| 1375 | start_io_acct(ci.io); |
| 1376 | |
| 1377 | if (bio->bi_rw & REQ_FLUSH) { |
| 1378 | ci.bio = &ci.md->flush_bio; |
| 1379 | ci.sector_count = 0; |
| 1380 | error = __send_empty_flush(&ci); |
| 1381 | /* dec_pending submits any data associated with flush */ |
| 1382 | } else { |
| 1383 | ci.bio = bio; |
| 1384 | ci.sector_count = bio_sectors(bio); |
| 1385 | while (ci.sector_count && !error) |
| 1386 | error = __split_and_process_non_flush(&ci); |
| 1387 | } |
| 1388 | |
| 1389 | /* drop the extra reference count */ |
| 1390 | dec_pending(ci.io, error); |
| 1391 | dm_table_put(ci.map); |
| 1392 | } |
| 1393 | /*----------------------------------------------------------------- |
| 1394 | * CRUD END |
| 1395 | *---------------------------------------------------------------*/ |
| 1396 | |
| 1397 | static int dm_merge_bvec(struct request_queue *q, |
| 1398 | struct bvec_merge_data *bvm, |
| 1399 | struct bio_vec *biovec) |
| 1400 | { |
| 1401 | struct mapped_device *md = q->queuedata; |
| 1402 | struct dm_table *map = dm_get_live_table(md); |
| 1403 | struct dm_target *ti; |
| 1404 | sector_t max_sectors; |
| 1405 | int max_size = 0; |
| 1406 | |
| 1407 | if (unlikely(!map)) |
| 1408 | goto out; |
| 1409 | |
| 1410 | ti = dm_table_find_target(map, bvm->bi_sector); |
| 1411 | if (!dm_target_is_valid(ti)) |
| 1412 | goto out_table; |
| 1413 | |
| 1414 | /* |
| 1415 | * Find maximum amount of I/O that won't need splitting |
| 1416 | */ |
| 1417 | max_sectors = min(max_io_len(bvm->bi_sector, ti), |
| 1418 | (sector_t) BIO_MAX_SECTORS); |
| 1419 | max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; |
| 1420 | if (max_size < 0) |
| 1421 | max_size = 0; |
| 1422 | |
| 1423 | /* |
| 1424 | * merge_bvec_fn() returns number of bytes |
| 1425 | * it can accept at this offset |
| 1426 | * max is precomputed maximal io size |
| 1427 | */ |
| 1428 | if (max_size && ti->type->merge) |
| 1429 | max_size = ti->type->merge(ti, bvm, biovec, max_size); |
| 1430 | /* |
| 1431 | * If the target doesn't support merge method and some of the devices |
| 1432 | * provided their merge_bvec method (we know this by looking at |
| 1433 | * queue_max_hw_sectors), then we can't allow bios with multiple vector |
| 1434 | * entries. So always set max_size to 0, and the code below allows |
| 1435 | * just one page. |
| 1436 | */ |
| 1437 | else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) |
| 1438 | |
| 1439 | max_size = 0; |
| 1440 | |
| 1441 | out_table: |
| 1442 | dm_table_put(map); |
| 1443 | |
| 1444 | out: |
| 1445 | /* |
| 1446 | * Always allow an entire first page |
| 1447 | */ |
| 1448 | if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) |
| 1449 | max_size = biovec->bv_len; |
| 1450 | |
| 1451 | return max_size; |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * The request function that just remaps the bio built up by |
| 1456 | * dm_merge_bvec. |
| 1457 | */ |
| 1458 | static void _dm_request(struct request_queue *q, struct bio *bio) |
| 1459 | { |
| 1460 | int rw = bio_data_dir(bio); |
| 1461 | struct mapped_device *md = q->queuedata; |
| 1462 | int cpu; |
| 1463 | |
| 1464 | down_read(&md->io_lock); |
| 1465 | |
| 1466 | cpu = part_stat_lock(); |
| 1467 | part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); |
| 1468 | part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); |
| 1469 | part_stat_unlock(); |
| 1470 | |
| 1471 | /* if we're suspended, we have to queue this io for later */ |
| 1472 | if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { |
| 1473 | up_read(&md->io_lock); |
| 1474 | |
| 1475 | if (bio_rw(bio) != READA) |
| 1476 | queue_io(md, bio); |
| 1477 | else |
| 1478 | bio_io_error(bio); |
| 1479 | return; |
| 1480 | } |
| 1481 | |
| 1482 | __split_and_process_bio(md, bio); |
| 1483 | up_read(&md->io_lock); |
| 1484 | return; |
| 1485 | } |
| 1486 | |
| 1487 | static int dm_request_based(struct mapped_device *md) |
| 1488 | { |
| 1489 | return blk_queue_stackable(md->queue); |
| 1490 | } |
| 1491 | |
| 1492 | static void dm_request(struct request_queue *q, struct bio *bio) |
| 1493 | { |
| 1494 | struct mapped_device *md = q->queuedata; |
| 1495 | |
| 1496 | if (dm_request_based(md)) |
| 1497 | blk_queue_bio(q, bio); |
| 1498 | else |
| 1499 | _dm_request(q, bio); |
| 1500 | } |
| 1501 | |
| 1502 | void dm_dispatch_request(struct request *rq) |
| 1503 | { |
| 1504 | int r; |
| 1505 | |
| 1506 | if (blk_queue_io_stat(rq->q)) |
| 1507 | rq->cmd_flags |= REQ_IO_STAT; |
| 1508 | |
| 1509 | rq->start_time = jiffies; |
| 1510 | r = blk_insert_cloned_request(rq->q, rq); |
| 1511 | if (r) |
| 1512 | dm_complete_request(rq, r); |
| 1513 | } |
| 1514 | EXPORT_SYMBOL_GPL(dm_dispatch_request); |
| 1515 | |
| 1516 | static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, |
| 1517 | void *data) |
| 1518 | { |
| 1519 | struct dm_rq_target_io *tio = data; |
| 1520 | struct dm_rq_clone_bio_info *info = |
| 1521 | container_of(bio, struct dm_rq_clone_bio_info, clone); |
| 1522 | |
| 1523 | info->orig = bio_orig; |
| 1524 | info->tio = tio; |
| 1525 | bio->bi_end_io = end_clone_bio; |
| 1526 | bio->bi_private = info; |
| 1527 | |
| 1528 | return 0; |
| 1529 | } |
| 1530 | |
| 1531 | static int setup_clone(struct request *clone, struct request *rq, |
| 1532 | struct dm_rq_target_io *tio) |
| 1533 | { |
| 1534 | int r; |
| 1535 | |
| 1536 | r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, |
| 1537 | dm_rq_bio_constructor, tio); |
| 1538 | if (r) |
| 1539 | return r; |
| 1540 | |
| 1541 | clone->cmd = rq->cmd; |
| 1542 | clone->cmd_len = rq->cmd_len; |
| 1543 | clone->sense = rq->sense; |
| 1544 | clone->buffer = rq->buffer; |
| 1545 | clone->end_io = end_clone_request; |
| 1546 | clone->end_io_data = tio; |
| 1547 | |
| 1548 | return 0; |
| 1549 | } |
| 1550 | |
| 1551 | static struct request *clone_rq(struct request *rq, struct mapped_device *md, |
| 1552 | gfp_t gfp_mask) |
| 1553 | { |
| 1554 | struct request *clone; |
| 1555 | struct dm_rq_target_io *tio; |
| 1556 | |
| 1557 | tio = alloc_rq_tio(md, gfp_mask); |
| 1558 | if (!tio) |
| 1559 | return NULL; |
| 1560 | |
| 1561 | tio->md = md; |
| 1562 | tio->ti = NULL; |
| 1563 | tio->orig = rq; |
| 1564 | tio->error = 0; |
| 1565 | memset(&tio->info, 0, sizeof(tio->info)); |
| 1566 | |
| 1567 | clone = &tio->clone; |
| 1568 | if (setup_clone(clone, rq, tio)) { |
| 1569 | /* -ENOMEM */ |
| 1570 | free_rq_tio(tio); |
| 1571 | return NULL; |
| 1572 | } |
| 1573 | |
| 1574 | return clone; |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * Called with the queue lock held. |
| 1579 | */ |
| 1580 | static int dm_prep_fn(struct request_queue *q, struct request *rq) |
| 1581 | { |
| 1582 | struct mapped_device *md = q->queuedata; |
| 1583 | struct request *clone; |
| 1584 | |
| 1585 | if (unlikely(rq->special)) { |
| 1586 | DMWARN("Already has something in rq->special."); |
| 1587 | return BLKPREP_KILL; |
| 1588 | } |
| 1589 | |
| 1590 | clone = clone_rq(rq, md, GFP_ATOMIC); |
| 1591 | if (!clone) |
| 1592 | return BLKPREP_DEFER; |
| 1593 | |
| 1594 | rq->special = clone; |
| 1595 | rq->cmd_flags |= REQ_DONTPREP; |
| 1596 | |
| 1597 | return BLKPREP_OK; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * Returns: |
| 1602 | * 0 : the request has been processed (not requeued) |
| 1603 | * !0 : the request has been requeued |
| 1604 | */ |
| 1605 | static int map_request(struct dm_target *ti, struct request *clone, |
| 1606 | struct mapped_device *md) |
| 1607 | { |
| 1608 | int r, requeued = 0; |
| 1609 | struct dm_rq_target_io *tio = clone->end_io_data; |
| 1610 | |
| 1611 | tio->ti = ti; |
| 1612 | r = ti->type->map_rq(ti, clone, &tio->info); |
| 1613 | switch (r) { |
| 1614 | case DM_MAPIO_SUBMITTED: |
| 1615 | /* The target has taken the I/O to submit by itself later */ |
| 1616 | break; |
| 1617 | case DM_MAPIO_REMAPPED: |
| 1618 | /* The target has remapped the I/O so dispatch it */ |
| 1619 | trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), |
| 1620 | blk_rq_pos(tio->orig)); |
| 1621 | dm_dispatch_request(clone); |
| 1622 | break; |
| 1623 | case DM_MAPIO_REQUEUE: |
| 1624 | /* The target wants to requeue the I/O */ |
| 1625 | dm_requeue_unmapped_request(clone); |
| 1626 | requeued = 1; |
| 1627 | break; |
| 1628 | default: |
| 1629 | if (r > 0) { |
| 1630 | DMWARN("unimplemented target map return value: %d", r); |
| 1631 | BUG(); |
| 1632 | } |
| 1633 | |
| 1634 | /* The target wants to complete the I/O */ |
| 1635 | dm_kill_unmapped_request(clone, r); |
| 1636 | break; |
| 1637 | } |
| 1638 | |
| 1639 | return requeued; |
| 1640 | } |
| 1641 | |
| 1642 | static struct request *dm_start_request(struct mapped_device *md, struct request *orig) |
| 1643 | { |
| 1644 | struct request *clone; |
| 1645 | |
| 1646 | blk_start_request(orig); |
| 1647 | clone = orig->special; |
| 1648 | atomic_inc(&md->pending[rq_data_dir(clone)]); |
| 1649 | |
| 1650 | /* |
| 1651 | * Hold the md reference here for the in-flight I/O. |
| 1652 | * We can't rely on the reference count by device opener, |
| 1653 | * because the device may be closed during the request completion |
| 1654 | * when all bios are completed. |
| 1655 | * See the comment in rq_completed() too. |
| 1656 | */ |
| 1657 | dm_get(md); |
| 1658 | |
| 1659 | return clone; |
| 1660 | } |
| 1661 | |
| 1662 | /* |
| 1663 | * q->request_fn for request-based dm. |
| 1664 | * Called with the queue lock held. |
| 1665 | */ |
| 1666 | static void dm_request_fn(struct request_queue *q) |
| 1667 | { |
| 1668 | struct mapped_device *md = q->queuedata; |
| 1669 | struct dm_table *map = dm_get_live_table(md); |
| 1670 | struct dm_target *ti; |
| 1671 | struct request *rq, *clone; |
| 1672 | sector_t pos; |
| 1673 | |
| 1674 | /* |
| 1675 | * For suspend, check blk_queue_stopped() and increment |
| 1676 | * ->pending within a single queue_lock not to increment the |
| 1677 | * number of in-flight I/Os after the queue is stopped in |
| 1678 | * dm_suspend(). |
| 1679 | */ |
| 1680 | while (!blk_queue_stopped(q)) { |
| 1681 | rq = blk_peek_request(q); |
| 1682 | if (!rq) |
| 1683 | goto delay_and_out; |
| 1684 | |
| 1685 | /* always use block 0 to find the target for flushes for now */ |
| 1686 | pos = 0; |
| 1687 | if (!(rq->cmd_flags & REQ_FLUSH)) |
| 1688 | pos = blk_rq_pos(rq); |
| 1689 | |
| 1690 | ti = dm_table_find_target(map, pos); |
| 1691 | if (!dm_target_is_valid(ti)) { |
| 1692 | /* |
| 1693 | * Must perform setup, that dm_done() requires, |
| 1694 | * before calling dm_kill_unmapped_request |
| 1695 | */ |
| 1696 | DMERR_LIMIT("request attempted access beyond the end of device"); |
| 1697 | clone = dm_start_request(md, rq); |
| 1698 | dm_kill_unmapped_request(clone, -EIO); |
| 1699 | continue; |
| 1700 | } |
| 1701 | |
| 1702 | if (ti->type->busy && ti->type->busy(ti)) |
| 1703 | goto delay_and_out; |
| 1704 | |
| 1705 | clone = dm_start_request(md, rq); |
| 1706 | |
| 1707 | spin_unlock(q->queue_lock); |
| 1708 | if (map_request(ti, clone, md)) |
| 1709 | goto requeued; |
| 1710 | |
| 1711 | BUG_ON(!irqs_disabled()); |
| 1712 | spin_lock(q->queue_lock); |
| 1713 | } |
| 1714 | |
| 1715 | goto out; |
| 1716 | |
| 1717 | requeued: |
| 1718 | BUG_ON(!irqs_disabled()); |
| 1719 | spin_lock(q->queue_lock); |
| 1720 | |
| 1721 | delay_and_out: |
| 1722 | blk_delay_queue(q, HZ / 10); |
| 1723 | out: |
| 1724 | dm_table_put(map); |
| 1725 | } |
| 1726 | |
| 1727 | int dm_underlying_device_busy(struct request_queue *q) |
| 1728 | { |
| 1729 | return blk_lld_busy(q); |
| 1730 | } |
| 1731 | EXPORT_SYMBOL_GPL(dm_underlying_device_busy); |
| 1732 | |
| 1733 | static int dm_lld_busy(struct request_queue *q) |
| 1734 | { |
| 1735 | int r; |
| 1736 | struct mapped_device *md = q->queuedata; |
| 1737 | struct dm_table *map = dm_get_live_table(md); |
| 1738 | |
| 1739 | if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) |
| 1740 | r = 1; |
| 1741 | else |
| 1742 | r = dm_table_any_busy_target(map); |
| 1743 | |
| 1744 | dm_table_put(map); |
| 1745 | |
| 1746 | return r; |
| 1747 | } |
| 1748 | |
| 1749 | static int dm_any_congested(void *congested_data, int bdi_bits) |
| 1750 | { |
| 1751 | int r = bdi_bits; |
| 1752 | struct mapped_device *md = congested_data; |
| 1753 | struct dm_table *map; |
| 1754 | |
| 1755 | if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { |
| 1756 | map = dm_get_live_table(md); |
| 1757 | if (map) { |
| 1758 | /* |
| 1759 | * Request-based dm cares about only own queue for |
| 1760 | * the query about congestion status of request_queue |
| 1761 | */ |
| 1762 | if (dm_request_based(md)) |
| 1763 | r = md->queue->backing_dev_info.state & |
| 1764 | bdi_bits; |
| 1765 | else |
| 1766 | r = dm_table_any_congested(map, bdi_bits); |
| 1767 | |
| 1768 | dm_table_put(map); |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | return r; |
| 1773 | } |
| 1774 | |
| 1775 | /*----------------------------------------------------------------- |
| 1776 | * An IDR is used to keep track of allocated minor numbers. |
| 1777 | *---------------------------------------------------------------*/ |
| 1778 | static void free_minor(int minor) |
| 1779 | { |
| 1780 | spin_lock(&_minor_lock); |
| 1781 | idr_remove(&_minor_idr, minor); |
| 1782 | spin_unlock(&_minor_lock); |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * See if the device with a specific minor # is free. |
| 1787 | */ |
| 1788 | static int specific_minor(int minor) |
| 1789 | { |
| 1790 | int r; |
| 1791 | |
| 1792 | if (minor >= (1 << MINORBITS)) |
| 1793 | return -EINVAL; |
| 1794 | |
| 1795 | idr_preload(GFP_KERNEL); |
| 1796 | spin_lock(&_minor_lock); |
| 1797 | |
| 1798 | r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); |
| 1799 | |
| 1800 | spin_unlock(&_minor_lock); |
| 1801 | idr_preload_end(); |
| 1802 | if (r < 0) |
| 1803 | return r == -ENOSPC ? -EBUSY : r; |
| 1804 | return 0; |
| 1805 | } |
| 1806 | |
| 1807 | static int next_free_minor(int *minor) |
| 1808 | { |
| 1809 | int r; |
| 1810 | |
| 1811 | idr_preload(GFP_KERNEL); |
| 1812 | spin_lock(&_minor_lock); |
| 1813 | |
| 1814 | r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); |
| 1815 | |
| 1816 | spin_unlock(&_minor_lock); |
| 1817 | idr_preload_end(); |
| 1818 | if (r < 0) |
| 1819 | return r; |
| 1820 | *minor = r; |
| 1821 | return 0; |
| 1822 | } |
| 1823 | |
| 1824 | static const struct block_device_operations dm_blk_dops; |
| 1825 | |
| 1826 | static void dm_wq_work(struct work_struct *work); |
| 1827 | |
| 1828 | static void dm_init_md_queue(struct mapped_device *md) |
| 1829 | { |
| 1830 | /* |
| 1831 | * Request-based dm devices cannot be stacked on top of bio-based dm |
| 1832 | * devices. The type of this dm device has not been decided yet. |
| 1833 | * The type is decided at the first table loading time. |
| 1834 | * To prevent problematic device stacking, clear the queue flag |
| 1835 | * for request stacking support until then. |
| 1836 | * |
| 1837 | * This queue is new, so no concurrency on the queue_flags. |
| 1838 | */ |
| 1839 | queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); |
| 1840 | |
| 1841 | md->queue->queuedata = md; |
| 1842 | md->queue->backing_dev_info.congested_fn = dm_any_congested; |
| 1843 | md->queue->backing_dev_info.congested_data = md; |
| 1844 | blk_queue_make_request(md->queue, dm_request); |
| 1845 | blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); |
| 1846 | blk_queue_merge_bvec(md->queue, dm_merge_bvec); |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * Allocate and initialise a blank device with a given minor. |
| 1851 | */ |
| 1852 | static struct mapped_device *alloc_dev(int minor) |
| 1853 | { |
| 1854 | int r; |
| 1855 | struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); |
| 1856 | void *old_md; |
| 1857 | |
| 1858 | if (!md) { |
| 1859 | DMWARN("unable to allocate device, out of memory."); |
| 1860 | return NULL; |
| 1861 | } |
| 1862 | |
| 1863 | if (!try_module_get(THIS_MODULE)) |
| 1864 | goto bad_module_get; |
| 1865 | |
| 1866 | /* get a minor number for the dev */ |
| 1867 | if (minor == DM_ANY_MINOR) |
| 1868 | r = next_free_minor(&minor); |
| 1869 | else |
| 1870 | r = specific_minor(minor); |
| 1871 | if (r < 0) |
| 1872 | goto bad_minor; |
| 1873 | |
| 1874 | md->type = DM_TYPE_NONE; |
| 1875 | init_rwsem(&md->io_lock); |
| 1876 | mutex_init(&md->suspend_lock); |
| 1877 | mutex_init(&md->type_lock); |
| 1878 | spin_lock_init(&md->deferred_lock); |
| 1879 | rwlock_init(&md->map_lock); |
| 1880 | atomic_set(&md->holders, 1); |
| 1881 | atomic_set(&md->open_count, 0); |
| 1882 | atomic_set(&md->event_nr, 0); |
| 1883 | atomic_set(&md->uevent_seq, 0); |
| 1884 | INIT_LIST_HEAD(&md->uevent_list); |
| 1885 | spin_lock_init(&md->uevent_lock); |
| 1886 | |
| 1887 | md->queue = blk_alloc_queue(GFP_KERNEL); |
| 1888 | if (!md->queue) |
| 1889 | goto bad_queue; |
| 1890 | |
| 1891 | dm_init_md_queue(md); |
| 1892 | |
| 1893 | md->disk = alloc_disk(1); |
| 1894 | if (!md->disk) |
| 1895 | goto bad_disk; |
| 1896 | |
| 1897 | atomic_set(&md->pending[0], 0); |
| 1898 | atomic_set(&md->pending[1], 0); |
| 1899 | init_waitqueue_head(&md->wait); |
| 1900 | INIT_WORK(&md->work, dm_wq_work); |
| 1901 | init_waitqueue_head(&md->eventq); |
| 1902 | |
| 1903 | md->disk->major = _major; |
| 1904 | md->disk->first_minor = minor; |
| 1905 | md->disk->fops = &dm_blk_dops; |
| 1906 | md->disk->queue = md->queue; |
| 1907 | md->disk->private_data = md; |
| 1908 | sprintf(md->disk->disk_name, "dm-%d", minor); |
| 1909 | add_disk(md->disk); |
| 1910 | format_dev_t(md->name, MKDEV(_major, minor)); |
| 1911 | |
| 1912 | md->wq = alloc_workqueue("kdmflush", |
| 1913 | WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); |
| 1914 | if (!md->wq) |
| 1915 | goto bad_thread; |
| 1916 | |
| 1917 | md->bdev = bdget_disk(md->disk, 0); |
| 1918 | if (!md->bdev) |
| 1919 | goto bad_bdev; |
| 1920 | |
| 1921 | bio_init(&md->flush_bio); |
| 1922 | md->flush_bio.bi_bdev = md->bdev; |
| 1923 | md->flush_bio.bi_rw = WRITE_FLUSH; |
| 1924 | |
| 1925 | /* Populate the mapping, nobody knows we exist yet */ |
| 1926 | spin_lock(&_minor_lock); |
| 1927 | old_md = idr_replace(&_minor_idr, md, minor); |
| 1928 | spin_unlock(&_minor_lock); |
| 1929 | |
| 1930 | BUG_ON(old_md != MINOR_ALLOCED); |
| 1931 | |
| 1932 | return md; |
| 1933 | |
| 1934 | bad_bdev: |
| 1935 | destroy_workqueue(md->wq); |
| 1936 | bad_thread: |
| 1937 | del_gendisk(md->disk); |
| 1938 | put_disk(md->disk); |
| 1939 | bad_disk: |
| 1940 | blk_cleanup_queue(md->queue); |
| 1941 | bad_queue: |
| 1942 | free_minor(minor); |
| 1943 | bad_minor: |
| 1944 | module_put(THIS_MODULE); |
| 1945 | bad_module_get: |
| 1946 | kfree(md); |
| 1947 | return NULL; |
| 1948 | } |
| 1949 | |
| 1950 | static void unlock_fs(struct mapped_device *md); |
| 1951 | |
| 1952 | static void free_dev(struct mapped_device *md) |
| 1953 | { |
| 1954 | int minor = MINOR(disk_devt(md->disk)); |
| 1955 | |
| 1956 | unlock_fs(md); |
| 1957 | bdput(md->bdev); |
| 1958 | destroy_workqueue(md->wq); |
| 1959 | if (md->io_pool) |
| 1960 | mempool_destroy(md->io_pool); |
| 1961 | if (md->bs) |
| 1962 | bioset_free(md->bs); |
| 1963 | blk_integrity_unregister(md->disk); |
| 1964 | del_gendisk(md->disk); |
| 1965 | free_minor(minor); |
| 1966 | |
| 1967 | spin_lock(&_minor_lock); |
| 1968 | md->disk->private_data = NULL; |
| 1969 | spin_unlock(&_minor_lock); |
| 1970 | |
| 1971 | put_disk(md->disk); |
| 1972 | blk_cleanup_queue(md->queue); |
| 1973 | module_put(THIS_MODULE); |
| 1974 | kfree(md); |
| 1975 | } |
| 1976 | |
| 1977 | static void __bind_mempools(struct mapped_device *md, struct dm_table *t) |
| 1978 | { |
| 1979 | struct dm_md_mempools *p = dm_table_get_md_mempools(t); |
| 1980 | |
| 1981 | if (md->io_pool && md->bs) { |
| 1982 | /* The md already has necessary mempools. */ |
| 1983 | if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { |
| 1984 | /* |
| 1985 | * Reload bioset because front_pad may have changed |
| 1986 | * because a different table was loaded. |
| 1987 | */ |
| 1988 | bioset_free(md->bs); |
| 1989 | md->bs = p->bs; |
| 1990 | p->bs = NULL; |
| 1991 | } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { |
| 1992 | /* |
| 1993 | * There's no need to reload with request-based dm |
| 1994 | * because the size of front_pad doesn't change. |
| 1995 | * Note for future: If you are to reload bioset, |
| 1996 | * prep-ed requests in the queue may refer |
| 1997 | * to bio from the old bioset, so you must walk |
| 1998 | * through the queue to unprep. |
| 1999 | */ |
| 2000 | } |
| 2001 | goto out; |
| 2002 | } |
| 2003 | |
| 2004 | BUG_ON(!p || md->io_pool || md->bs); |
| 2005 | |
| 2006 | md->io_pool = p->io_pool; |
| 2007 | p->io_pool = NULL; |
| 2008 | md->bs = p->bs; |
| 2009 | p->bs = NULL; |
| 2010 | |
| 2011 | out: |
| 2012 | /* mempool bind completed, now no need any mempools in the table */ |
| 2013 | dm_table_free_md_mempools(t); |
| 2014 | } |
| 2015 | |
| 2016 | /* |
| 2017 | * Bind a table to the device. |
| 2018 | */ |
| 2019 | static void event_callback(void *context) |
| 2020 | { |
| 2021 | unsigned long flags; |
| 2022 | LIST_HEAD(uevents); |
| 2023 | struct mapped_device *md = (struct mapped_device *) context; |
| 2024 | |
| 2025 | spin_lock_irqsave(&md->uevent_lock, flags); |
| 2026 | list_splice_init(&md->uevent_list, &uevents); |
| 2027 | spin_unlock_irqrestore(&md->uevent_lock, flags); |
| 2028 | |
| 2029 | dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); |
| 2030 | |
| 2031 | atomic_inc(&md->event_nr); |
| 2032 | wake_up(&md->eventq); |
| 2033 | } |
| 2034 | |
| 2035 | /* |
| 2036 | * Protected by md->suspend_lock obtained by dm_swap_table(). |
| 2037 | */ |
| 2038 | static void __set_size(struct mapped_device *md, sector_t size) |
| 2039 | { |
| 2040 | set_capacity(md->disk, size); |
| 2041 | |
| 2042 | i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); |
| 2043 | } |
| 2044 | |
| 2045 | /* |
| 2046 | * Return 1 if the queue has a compulsory merge_bvec_fn function. |
| 2047 | * |
| 2048 | * If this function returns 0, then the device is either a non-dm |
| 2049 | * device without a merge_bvec_fn, or it is a dm device that is |
| 2050 | * able to split any bios it receives that are too big. |
| 2051 | */ |
| 2052 | int dm_queue_merge_is_compulsory(struct request_queue *q) |
| 2053 | { |
| 2054 | struct mapped_device *dev_md; |
| 2055 | |
| 2056 | if (!q->merge_bvec_fn) |
| 2057 | return 0; |
| 2058 | |
| 2059 | if (q->make_request_fn == dm_request) { |
| 2060 | dev_md = q->queuedata; |
| 2061 | if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) |
| 2062 | return 0; |
| 2063 | } |
| 2064 | |
| 2065 | return 1; |
| 2066 | } |
| 2067 | |
| 2068 | static int dm_device_merge_is_compulsory(struct dm_target *ti, |
| 2069 | struct dm_dev *dev, sector_t start, |
| 2070 | sector_t len, void *data) |
| 2071 | { |
| 2072 | struct block_device *bdev = dev->bdev; |
| 2073 | struct request_queue *q = bdev_get_queue(bdev); |
| 2074 | |
| 2075 | return dm_queue_merge_is_compulsory(q); |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * Return 1 if it is acceptable to ignore merge_bvec_fn based |
| 2080 | * on the properties of the underlying devices. |
| 2081 | */ |
| 2082 | static int dm_table_merge_is_optional(struct dm_table *table) |
| 2083 | { |
| 2084 | unsigned i = 0; |
| 2085 | struct dm_target *ti; |
| 2086 | |
| 2087 | while (i < dm_table_get_num_targets(table)) { |
| 2088 | ti = dm_table_get_target(table, i++); |
| 2089 | |
| 2090 | if (ti->type->iterate_devices && |
| 2091 | ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) |
| 2092 | return 0; |
| 2093 | } |
| 2094 | |
| 2095 | return 1; |
| 2096 | } |
| 2097 | |
| 2098 | /* |
| 2099 | * Returns old map, which caller must destroy. |
| 2100 | */ |
| 2101 | static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, |
| 2102 | struct queue_limits *limits) |
| 2103 | { |
| 2104 | struct dm_table *old_map; |
| 2105 | struct request_queue *q = md->queue; |
| 2106 | sector_t size; |
| 2107 | unsigned long flags; |
| 2108 | int merge_is_optional; |
| 2109 | |
| 2110 | size = dm_table_get_size(t); |
| 2111 | |
| 2112 | /* |
| 2113 | * Wipe any geometry if the size of the table changed. |
| 2114 | */ |
| 2115 | if (size != get_capacity(md->disk)) |
| 2116 | memset(&md->geometry, 0, sizeof(md->geometry)); |
| 2117 | |
| 2118 | __set_size(md, size); |
| 2119 | |
| 2120 | dm_table_event_callback(t, event_callback, md); |
| 2121 | |
| 2122 | /* |
| 2123 | * The queue hasn't been stopped yet, if the old table type wasn't |
| 2124 | * for request-based during suspension. So stop it to prevent |
| 2125 | * I/O mapping before resume. |
| 2126 | * This must be done before setting the queue restrictions, |
| 2127 | * because request-based dm may be run just after the setting. |
| 2128 | */ |
| 2129 | if (dm_table_request_based(t) && !blk_queue_stopped(q)) |
| 2130 | stop_queue(q); |
| 2131 | |
| 2132 | __bind_mempools(md, t); |
| 2133 | |
| 2134 | merge_is_optional = dm_table_merge_is_optional(t); |
| 2135 | |
| 2136 | write_lock_irqsave(&md->map_lock, flags); |
| 2137 | old_map = md->map; |
| 2138 | md->map = t; |
| 2139 | md->immutable_target_type = dm_table_get_immutable_target_type(t); |
| 2140 | |
| 2141 | dm_table_set_restrictions(t, q, limits); |
| 2142 | if (merge_is_optional) |
| 2143 | set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); |
| 2144 | else |
| 2145 | clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); |
| 2146 | write_unlock_irqrestore(&md->map_lock, flags); |
| 2147 | |
| 2148 | return old_map; |
| 2149 | } |
| 2150 | |
| 2151 | /* |
| 2152 | * Returns unbound table for the caller to free. |
| 2153 | */ |
| 2154 | static struct dm_table *__unbind(struct mapped_device *md) |
| 2155 | { |
| 2156 | struct dm_table *map = md->map; |
| 2157 | unsigned long flags; |
| 2158 | |
| 2159 | if (!map) |
| 2160 | return NULL; |
| 2161 | |
| 2162 | dm_table_event_callback(map, NULL, NULL); |
| 2163 | write_lock_irqsave(&md->map_lock, flags); |
| 2164 | md->map = NULL; |
| 2165 | write_unlock_irqrestore(&md->map_lock, flags); |
| 2166 | |
| 2167 | return map; |
| 2168 | } |
| 2169 | |
| 2170 | /* |
| 2171 | * Constructor for a new device. |
| 2172 | */ |
| 2173 | int dm_create(int minor, struct mapped_device **result) |
| 2174 | { |
| 2175 | struct mapped_device *md; |
| 2176 | |
| 2177 | md = alloc_dev(minor); |
| 2178 | if (!md) |
| 2179 | return -ENXIO; |
| 2180 | |
| 2181 | dm_sysfs_init(md); |
| 2182 | |
| 2183 | *result = md; |
| 2184 | return 0; |
| 2185 | } |
| 2186 | |
| 2187 | /* |
| 2188 | * Functions to manage md->type. |
| 2189 | * All are required to hold md->type_lock. |
| 2190 | */ |
| 2191 | void dm_lock_md_type(struct mapped_device *md) |
| 2192 | { |
| 2193 | mutex_lock(&md->type_lock); |
| 2194 | } |
| 2195 | |
| 2196 | void dm_unlock_md_type(struct mapped_device *md) |
| 2197 | { |
| 2198 | mutex_unlock(&md->type_lock); |
| 2199 | } |
| 2200 | |
| 2201 | void dm_set_md_type(struct mapped_device *md, unsigned type) |
| 2202 | { |
| 2203 | md->type = type; |
| 2204 | } |
| 2205 | |
| 2206 | unsigned dm_get_md_type(struct mapped_device *md) |
| 2207 | { |
| 2208 | return md->type; |
| 2209 | } |
| 2210 | |
| 2211 | struct target_type *dm_get_immutable_target_type(struct mapped_device *md) |
| 2212 | { |
| 2213 | return md->immutable_target_type; |
| 2214 | } |
| 2215 | |
| 2216 | /* |
| 2217 | * Fully initialize a request-based queue (->elevator, ->request_fn, etc). |
| 2218 | */ |
| 2219 | static int dm_init_request_based_queue(struct mapped_device *md) |
| 2220 | { |
| 2221 | struct request_queue *q = NULL; |
| 2222 | |
| 2223 | if (md->queue->elevator) |
| 2224 | return 1; |
| 2225 | |
| 2226 | /* Fully initialize the queue */ |
| 2227 | q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); |
| 2228 | if (!q) |
| 2229 | return 0; |
| 2230 | |
| 2231 | md->queue = q; |
| 2232 | dm_init_md_queue(md); |
| 2233 | blk_queue_softirq_done(md->queue, dm_softirq_done); |
| 2234 | blk_queue_prep_rq(md->queue, dm_prep_fn); |
| 2235 | blk_queue_lld_busy(md->queue, dm_lld_busy); |
| 2236 | |
| 2237 | elv_register_queue(md->queue); |
| 2238 | |
| 2239 | return 1; |
| 2240 | } |
| 2241 | |
| 2242 | /* |
| 2243 | * Setup the DM device's queue based on md's type |
| 2244 | */ |
| 2245 | int dm_setup_md_queue(struct mapped_device *md) |
| 2246 | { |
| 2247 | if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && |
| 2248 | !dm_init_request_based_queue(md)) { |
| 2249 | DMWARN("Cannot initialize queue for request-based mapped device"); |
| 2250 | return -EINVAL; |
| 2251 | } |
| 2252 | |
| 2253 | return 0; |
| 2254 | } |
| 2255 | |
| 2256 | static struct mapped_device *dm_find_md(dev_t dev) |
| 2257 | { |
| 2258 | struct mapped_device *md; |
| 2259 | unsigned minor = MINOR(dev); |
| 2260 | |
| 2261 | if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) |
| 2262 | return NULL; |
| 2263 | |
| 2264 | spin_lock(&_minor_lock); |
| 2265 | |
| 2266 | md = idr_find(&_minor_idr, minor); |
| 2267 | if (md && (md == MINOR_ALLOCED || |
| 2268 | (MINOR(disk_devt(dm_disk(md))) != minor) || |
| 2269 | dm_deleting_md(md) || |
| 2270 | test_bit(DMF_FREEING, &md->flags))) { |
| 2271 | md = NULL; |
| 2272 | goto out; |
| 2273 | } |
| 2274 | |
| 2275 | out: |
| 2276 | spin_unlock(&_minor_lock); |
| 2277 | |
| 2278 | return md; |
| 2279 | } |
| 2280 | |
| 2281 | struct mapped_device *dm_get_md(dev_t dev) |
| 2282 | { |
| 2283 | struct mapped_device *md = dm_find_md(dev); |
| 2284 | |
| 2285 | if (md) |
| 2286 | dm_get(md); |
| 2287 | |
| 2288 | return md; |
| 2289 | } |
| 2290 | EXPORT_SYMBOL_GPL(dm_get_md); |
| 2291 | |
| 2292 | void *dm_get_mdptr(struct mapped_device *md) |
| 2293 | { |
| 2294 | return md->interface_ptr; |
| 2295 | } |
| 2296 | |
| 2297 | void dm_set_mdptr(struct mapped_device *md, void *ptr) |
| 2298 | { |
| 2299 | md->interface_ptr = ptr; |
| 2300 | } |
| 2301 | |
| 2302 | void dm_get(struct mapped_device *md) |
| 2303 | { |
| 2304 | atomic_inc(&md->holders); |
| 2305 | BUG_ON(test_bit(DMF_FREEING, &md->flags)); |
| 2306 | } |
| 2307 | |
| 2308 | const char *dm_device_name(struct mapped_device *md) |
| 2309 | { |
| 2310 | return md->name; |
| 2311 | } |
| 2312 | EXPORT_SYMBOL_GPL(dm_device_name); |
| 2313 | |
| 2314 | static void __dm_destroy(struct mapped_device *md, bool wait) |
| 2315 | { |
| 2316 | struct dm_table *map; |
| 2317 | |
| 2318 | might_sleep(); |
| 2319 | |
| 2320 | spin_lock(&_minor_lock); |
| 2321 | map = dm_get_live_table(md); |
| 2322 | idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); |
| 2323 | set_bit(DMF_FREEING, &md->flags); |
| 2324 | spin_unlock(&_minor_lock); |
| 2325 | |
| 2326 | if (!dm_suspended_md(md)) { |
| 2327 | dm_table_presuspend_targets(map); |
| 2328 | dm_table_postsuspend_targets(map); |
| 2329 | } |
| 2330 | |
| 2331 | /* |
| 2332 | * Rare, but there may be I/O requests still going to complete, |
| 2333 | * for example. Wait for all references to disappear. |
| 2334 | * No one should increment the reference count of the mapped_device, |
| 2335 | * after the mapped_device state becomes DMF_FREEING. |
| 2336 | */ |
| 2337 | if (wait) |
| 2338 | while (atomic_read(&md->holders)) |
| 2339 | msleep(1); |
| 2340 | else if (atomic_read(&md->holders)) |
| 2341 | DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", |
| 2342 | dm_device_name(md), atomic_read(&md->holders)); |
| 2343 | |
| 2344 | dm_sysfs_exit(md); |
| 2345 | dm_table_put(map); |
| 2346 | dm_table_destroy(__unbind(md)); |
| 2347 | free_dev(md); |
| 2348 | } |
| 2349 | |
| 2350 | void dm_destroy(struct mapped_device *md) |
| 2351 | { |
| 2352 | __dm_destroy(md, true); |
| 2353 | } |
| 2354 | |
| 2355 | void dm_destroy_immediate(struct mapped_device *md) |
| 2356 | { |
| 2357 | __dm_destroy(md, false); |
| 2358 | } |
| 2359 | |
| 2360 | void dm_put(struct mapped_device *md) |
| 2361 | { |
| 2362 | atomic_dec(&md->holders); |
| 2363 | } |
| 2364 | EXPORT_SYMBOL_GPL(dm_put); |
| 2365 | |
| 2366 | static int dm_wait_for_completion(struct mapped_device *md, int interruptible) |
| 2367 | { |
| 2368 | int r = 0; |
| 2369 | DECLARE_WAITQUEUE(wait, current); |
| 2370 | |
| 2371 | add_wait_queue(&md->wait, &wait); |
| 2372 | |
| 2373 | while (1) { |
| 2374 | set_current_state(interruptible); |
| 2375 | |
| 2376 | if (!md_in_flight(md)) |
| 2377 | break; |
| 2378 | |
| 2379 | if (interruptible == TASK_INTERRUPTIBLE && |
| 2380 | signal_pending(current)) { |
| 2381 | r = -EINTR; |
| 2382 | break; |
| 2383 | } |
| 2384 | |
| 2385 | io_schedule(); |
| 2386 | } |
| 2387 | set_current_state(TASK_RUNNING); |
| 2388 | |
| 2389 | remove_wait_queue(&md->wait, &wait); |
| 2390 | |
| 2391 | return r; |
| 2392 | } |
| 2393 | |
| 2394 | /* |
| 2395 | * Process the deferred bios |
| 2396 | */ |
| 2397 | static void dm_wq_work(struct work_struct *work) |
| 2398 | { |
| 2399 | struct mapped_device *md = container_of(work, struct mapped_device, |
| 2400 | work); |
| 2401 | struct bio *c; |
| 2402 | |
| 2403 | down_read(&md->io_lock); |
| 2404 | |
| 2405 | while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { |
| 2406 | spin_lock_irq(&md->deferred_lock); |
| 2407 | c = bio_list_pop(&md->deferred); |
| 2408 | spin_unlock_irq(&md->deferred_lock); |
| 2409 | |
| 2410 | if (!c) |
| 2411 | break; |
| 2412 | |
| 2413 | up_read(&md->io_lock); |
| 2414 | |
| 2415 | if (dm_request_based(md)) |
| 2416 | generic_make_request(c); |
| 2417 | else |
| 2418 | __split_and_process_bio(md, c); |
| 2419 | |
| 2420 | down_read(&md->io_lock); |
| 2421 | } |
| 2422 | |
| 2423 | up_read(&md->io_lock); |
| 2424 | } |
| 2425 | |
| 2426 | static void dm_queue_flush(struct mapped_device *md) |
| 2427 | { |
| 2428 | clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); |
| 2429 | smp_mb__after_clear_bit(); |
| 2430 | queue_work(md->wq, &md->work); |
| 2431 | } |
| 2432 | |
| 2433 | /* |
| 2434 | * Swap in a new table, returning the old one for the caller to destroy. |
| 2435 | */ |
| 2436 | struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) |
| 2437 | { |
| 2438 | struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); |
| 2439 | struct queue_limits limits; |
| 2440 | int r; |
| 2441 | |
| 2442 | mutex_lock(&md->suspend_lock); |
| 2443 | |
| 2444 | /* device must be suspended */ |
| 2445 | if (!dm_suspended_md(md)) |
| 2446 | goto out; |
| 2447 | |
| 2448 | /* |
| 2449 | * If the new table has no data devices, retain the existing limits. |
| 2450 | * This helps multipath with queue_if_no_path if all paths disappear, |
| 2451 | * then new I/O is queued based on these limits, and then some paths |
| 2452 | * reappear. |
| 2453 | */ |
| 2454 | if (dm_table_has_no_data_devices(table)) { |
| 2455 | live_map = dm_get_live_table(md); |
| 2456 | if (live_map) |
| 2457 | limits = md->queue->limits; |
| 2458 | dm_table_put(live_map); |
| 2459 | } |
| 2460 | |
| 2461 | if (!live_map) { |
| 2462 | r = dm_calculate_queue_limits(table, &limits); |
| 2463 | if (r) { |
| 2464 | map = ERR_PTR(r); |
| 2465 | goto out; |
| 2466 | } |
| 2467 | } |
| 2468 | |
| 2469 | map = __bind(md, table, &limits); |
| 2470 | |
| 2471 | out: |
| 2472 | mutex_unlock(&md->suspend_lock); |
| 2473 | return map; |
| 2474 | } |
| 2475 | |
| 2476 | /* |
| 2477 | * Functions to lock and unlock any filesystem running on the |
| 2478 | * device. |
| 2479 | */ |
| 2480 | static int lock_fs(struct mapped_device *md) |
| 2481 | { |
| 2482 | int r; |
| 2483 | |
| 2484 | WARN_ON(md->frozen_sb); |
| 2485 | |
| 2486 | md->frozen_sb = freeze_bdev(md->bdev); |
| 2487 | if (IS_ERR(md->frozen_sb)) { |
| 2488 | r = PTR_ERR(md->frozen_sb); |
| 2489 | md->frozen_sb = NULL; |
| 2490 | return r; |
| 2491 | } |
| 2492 | |
| 2493 | set_bit(DMF_FROZEN, &md->flags); |
| 2494 | |
| 2495 | return 0; |
| 2496 | } |
| 2497 | |
| 2498 | static void unlock_fs(struct mapped_device *md) |
| 2499 | { |
| 2500 | if (!test_bit(DMF_FROZEN, &md->flags)) |
| 2501 | return; |
| 2502 | |
| 2503 | thaw_bdev(md->bdev, md->frozen_sb); |
| 2504 | md->frozen_sb = NULL; |
| 2505 | clear_bit(DMF_FROZEN, &md->flags); |
| 2506 | } |
| 2507 | |
| 2508 | /* |
| 2509 | * We need to be able to change a mapping table under a mounted |
| 2510 | * filesystem. For example we might want to move some data in |
| 2511 | * the background. Before the table can be swapped with |
| 2512 | * dm_bind_table, dm_suspend must be called to flush any in |
| 2513 | * flight bios and ensure that any further io gets deferred. |
| 2514 | */ |
| 2515 | /* |
| 2516 | * Suspend mechanism in request-based dm. |
| 2517 | * |
| 2518 | * 1. Flush all I/Os by lock_fs() if needed. |
| 2519 | * 2. Stop dispatching any I/O by stopping the request_queue. |
| 2520 | * 3. Wait for all in-flight I/Os to be completed or requeued. |
| 2521 | * |
| 2522 | * To abort suspend, start the request_queue. |
| 2523 | */ |
| 2524 | int dm_suspend(struct mapped_device *md, unsigned suspend_flags) |
| 2525 | { |
| 2526 | struct dm_table *map = NULL; |
| 2527 | int r = 0; |
| 2528 | int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; |
| 2529 | int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; |
| 2530 | |
| 2531 | mutex_lock(&md->suspend_lock); |
| 2532 | |
| 2533 | if (dm_suspended_md(md)) { |
| 2534 | r = -EINVAL; |
| 2535 | goto out_unlock; |
| 2536 | } |
| 2537 | |
| 2538 | map = dm_get_live_table(md); |
| 2539 | |
| 2540 | /* |
| 2541 | * DMF_NOFLUSH_SUSPENDING must be set before presuspend. |
| 2542 | * This flag is cleared before dm_suspend returns. |
| 2543 | */ |
| 2544 | if (noflush) |
| 2545 | set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| 2546 | |
| 2547 | /* This does not get reverted if there's an error later. */ |
| 2548 | dm_table_presuspend_targets(map); |
| 2549 | |
| 2550 | /* |
| 2551 | * Flush I/O to the device. |
| 2552 | * Any I/O submitted after lock_fs() may not be flushed. |
| 2553 | * noflush takes precedence over do_lockfs. |
| 2554 | * (lock_fs() flushes I/Os and waits for them to complete.) |
| 2555 | */ |
| 2556 | if (!noflush && do_lockfs) { |
| 2557 | r = lock_fs(md); |
| 2558 | if (r) |
| 2559 | goto out; |
| 2560 | } |
| 2561 | |
| 2562 | /* |
| 2563 | * Here we must make sure that no processes are submitting requests |
| 2564 | * to target drivers i.e. no one may be executing |
| 2565 | * __split_and_process_bio. This is called from dm_request and |
| 2566 | * dm_wq_work. |
| 2567 | * |
| 2568 | * To get all processes out of __split_and_process_bio in dm_request, |
| 2569 | * we take the write lock. To prevent any process from reentering |
| 2570 | * __split_and_process_bio from dm_request and quiesce the thread |
| 2571 | * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call |
| 2572 | * flush_workqueue(md->wq). |
| 2573 | */ |
| 2574 | down_write(&md->io_lock); |
| 2575 | set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); |
| 2576 | up_write(&md->io_lock); |
| 2577 | |
| 2578 | /* |
| 2579 | * Stop md->queue before flushing md->wq in case request-based |
| 2580 | * dm defers requests to md->wq from md->queue. |
| 2581 | */ |
| 2582 | if (dm_request_based(md)) |
| 2583 | stop_queue(md->queue); |
| 2584 | |
| 2585 | flush_workqueue(md->wq); |
| 2586 | |
| 2587 | /* |
| 2588 | * At this point no more requests are entering target request routines. |
| 2589 | * We call dm_wait_for_completion to wait for all existing requests |
| 2590 | * to finish. |
| 2591 | */ |
| 2592 | r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); |
| 2593 | |
| 2594 | down_write(&md->io_lock); |
| 2595 | if (noflush) |
| 2596 | clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| 2597 | up_write(&md->io_lock); |
| 2598 | |
| 2599 | /* were we interrupted ? */ |
| 2600 | if (r < 0) { |
| 2601 | dm_queue_flush(md); |
| 2602 | |
| 2603 | if (dm_request_based(md)) |
| 2604 | start_queue(md->queue); |
| 2605 | |
| 2606 | unlock_fs(md); |
| 2607 | goto out; /* pushback list is already flushed, so skip flush */ |
| 2608 | } |
| 2609 | |
| 2610 | /* |
| 2611 | * If dm_wait_for_completion returned 0, the device is completely |
| 2612 | * quiescent now. There is no request-processing activity. All new |
| 2613 | * requests are being added to md->deferred list. |
| 2614 | */ |
| 2615 | |
| 2616 | set_bit(DMF_SUSPENDED, &md->flags); |
| 2617 | |
| 2618 | dm_table_postsuspend_targets(map); |
| 2619 | |
| 2620 | out: |
| 2621 | dm_table_put(map); |
| 2622 | |
| 2623 | out_unlock: |
| 2624 | mutex_unlock(&md->suspend_lock); |
| 2625 | return r; |
| 2626 | } |
| 2627 | |
| 2628 | int dm_resume(struct mapped_device *md) |
| 2629 | { |
| 2630 | int r = -EINVAL; |
| 2631 | struct dm_table *map = NULL; |
| 2632 | |
| 2633 | mutex_lock(&md->suspend_lock); |
| 2634 | if (!dm_suspended_md(md)) |
| 2635 | goto out; |
| 2636 | |
| 2637 | map = dm_get_live_table(md); |
| 2638 | if (!map || !dm_table_get_size(map)) |
| 2639 | goto out; |
| 2640 | |
| 2641 | r = dm_table_resume_targets(map); |
| 2642 | if (r) |
| 2643 | goto out; |
| 2644 | |
| 2645 | dm_queue_flush(md); |
| 2646 | |
| 2647 | /* |
| 2648 | * Flushing deferred I/Os must be done after targets are resumed |
| 2649 | * so that mapping of targets can work correctly. |
| 2650 | * Request-based dm is queueing the deferred I/Os in its request_queue. |
| 2651 | */ |
| 2652 | if (dm_request_based(md)) |
| 2653 | start_queue(md->queue); |
| 2654 | |
| 2655 | unlock_fs(md); |
| 2656 | |
| 2657 | clear_bit(DMF_SUSPENDED, &md->flags); |
| 2658 | |
| 2659 | r = 0; |
| 2660 | out: |
| 2661 | dm_table_put(map); |
| 2662 | mutex_unlock(&md->suspend_lock); |
| 2663 | |
| 2664 | return r; |
| 2665 | } |
| 2666 | |
| 2667 | /*----------------------------------------------------------------- |
| 2668 | * Event notification. |
| 2669 | *---------------------------------------------------------------*/ |
| 2670 | int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, |
| 2671 | unsigned cookie) |
| 2672 | { |
| 2673 | char udev_cookie[DM_COOKIE_LENGTH]; |
| 2674 | char *envp[] = { udev_cookie, NULL }; |
| 2675 | |
| 2676 | if (!cookie) |
| 2677 | return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); |
| 2678 | else { |
| 2679 | snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", |
| 2680 | DM_COOKIE_ENV_VAR_NAME, cookie); |
| 2681 | return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, |
| 2682 | action, envp); |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | uint32_t dm_next_uevent_seq(struct mapped_device *md) |
| 2687 | { |
| 2688 | return atomic_add_return(1, &md->uevent_seq); |
| 2689 | } |
| 2690 | |
| 2691 | uint32_t dm_get_event_nr(struct mapped_device *md) |
| 2692 | { |
| 2693 | return atomic_read(&md->event_nr); |
| 2694 | } |
| 2695 | |
| 2696 | int dm_wait_event(struct mapped_device *md, int event_nr) |
| 2697 | { |
| 2698 | return wait_event_interruptible(md->eventq, |
| 2699 | (event_nr != atomic_read(&md->event_nr))); |
| 2700 | } |
| 2701 | |
| 2702 | void dm_uevent_add(struct mapped_device *md, struct list_head *elist) |
| 2703 | { |
| 2704 | unsigned long flags; |
| 2705 | |
| 2706 | spin_lock_irqsave(&md->uevent_lock, flags); |
| 2707 | list_add(elist, &md->uevent_list); |
| 2708 | spin_unlock_irqrestore(&md->uevent_lock, flags); |
| 2709 | } |
| 2710 | |
| 2711 | /* |
| 2712 | * The gendisk is only valid as long as you have a reference |
| 2713 | * count on 'md'. |
| 2714 | */ |
| 2715 | struct gendisk *dm_disk(struct mapped_device *md) |
| 2716 | { |
| 2717 | return md->disk; |
| 2718 | } |
| 2719 | |
| 2720 | struct kobject *dm_kobject(struct mapped_device *md) |
| 2721 | { |
| 2722 | return &md->kobj; |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * struct mapped_device should not be exported outside of dm.c |
| 2727 | * so use this check to verify that kobj is part of md structure |
| 2728 | */ |
| 2729 | struct mapped_device *dm_get_from_kobject(struct kobject *kobj) |
| 2730 | { |
| 2731 | struct mapped_device *md; |
| 2732 | |
| 2733 | md = container_of(kobj, struct mapped_device, kobj); |
| 2734 | if (&md->kobj != kobj) |
| 2735 | return NULL; |
| 2736 | |
| 2737 | if (test_bit(DMF_FREEING, &md->flags) || |
| 2738 | dm_deleting_md(md)) |
| 2739 | return NULL; |
| 2740 | |
| 2741 | dm_get(md); |
| 2742 | return md; |
| 2743 | } |
| 2744 | |
| 2745 | int dm_suspended_md(struct mapped_device *md) |
| 2746 | { |
| 2747 | return test_bit(DMF_SUSPENDED, &md->flags); |
| 2748 | } |
| 2749 | |
| 2750 | int dm_suspended(struct dm_target *ti) |
| 2751 | { |
| 2752 | return dm_suspended_md(dm_table_get_md(ti->table)); |
| 2753 | } |
| 2754 | EXPORT_SYMBOL_GPL(dm_suspended); |
| 2755 | |
| 2756 | int dm_noflush_suspending(struct dm_target *ti) |
| 2757 | { |
| 2758 | return __noflush_suspending(dm_table_get_md(ti->table)); |
| 2759 | } |
| 2760 | EXPORT_SYMBOL_GPL(dm_noflush_suspending); |
| 2761 | |
| 2762 | struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) |
| 2763 | { |
| 2764 | struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); |
| 2765 | struct kmem_cache *cachep; |
| 2766 | unsigned int pool_size; |
| 2767 | unsigned int front_pad; |
| 2768 | |
| 2769 | if (!pools) |
| 2770 | return NULL; |
| 2771 | |
| 2772 | if (type == DM_TYPE_BIO_BASED) { |
| 2773 | cachep = _io_cache; |
| 2774 | pool_size = 16; |
| 2775 | front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); |
| 2776 | } else if (type == DM_TYPE_REQUEST_BASED) { |
| 2777 | cachep = _rq_tio_cache; |
| 2778 | pool_size = MIN_IOS; |
| 2779 | front_pad = offsetof(struct dm_rq_clone_bio_info, clone); |
| 2780 | /* per_bio_data_size is not used. See __bind_mempools(). */ |
| 2781 | WARN_ON(per_bio_data_size != 0); |
| 2782 | } else |
| 2783 | goto out; |
| 2784 | |
| 2785 | pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep); |
| 2786 | if (!pools->io_pool) |
| 2787 | goto out; |
| 2788 | |
| 2789 | pools->bs = bioset_create(pool_size, front_pad); |
| 2790 | if (!pools->bs) |
| 2791 | goto out; |
| 2792 | |
| 2793 | if (integrity && bioset_integrity_create(pools->bs, pool_size)) |
| 2794 | goto out; |
| 2795 | |
| 2796 | return pools; |
| 2797 | |
| 2798 | out: |
| 2799 | dm_free_md_mempools(pools); |
| 2800 | |
| 2801 | return NULL; |
| 2802 | } |
| 2803 | |
| 2804 | void dm_free_md_mempools(struct dm_md_mempools *pools) |
| 2805 | { |
| 2806 | if (!pools) |
| 2807 | return; |
| 2808 | |
| 2809 | if (pools->io_pool) |
| 2810 | mempool_destroy(pools->io_pool); |
| 2811 | |
| 2812 | if (pools->bs) |
| 2813 | bioset_free(pools->bs); |
| 2814 | |
| 2815 | kfree(pools); |
| 2816 | } |
| 2817 | |
| 2818 | static const struct block_device_operations dm_blk_dops = { |
| 2819 | .open = dm_blk_open, |
| 2820 | .release = dm_blk_close, |
| 2821 | .ioctl = dm_blk_ioctl, |
| 2822 | .getgeo = dm_blk_getgeo, |
| 2823 | .owner = THIS_MODULE |
| 2824 | }; |
| 2825 | |
| 2826 | EXPORT_SYMBOL(dm_get_mapinfo); |
| 2827 | |
| 2828 | /* |
| 2829 | * module hooks |
| 2830 | */ |
| 2831 | module_init(dm_init); |
| 2832 | module_exit(dm_exit); |
| 2833 | |
| 2834 | module_param(major, uint, 0); |
| 2835 | MODULE_PARM_DESC(major, "The major number of the device mapper"); |
| 2836 | MODULE_DESCRIPTION(DM_NAME " driver"); |
| 2837 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); |
| 2838 | MODULE_LICENSE("GPL"); |