drm/i915: Store current watermark state in dev_priv->wm
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / drivers / gpu / drm / i915 / intel_pm.c
... / ...
CommitLineData
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include <linux/cpufreq.h>
29#include "i915_drv.h"
30#include "intel_drv.h"
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
33#include <drm/i915_powerwell.h>
34
35/* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
38 *
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
41 *
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
44 */
45
46static void i8xx_disable_fbc(struct drm_device *dev)
47{
48 struct drm_i915_private *dev_priv = dev->dev_private;
49 u32 fbc_ctl;
50
51 /* Disable compression */
52 fbc_ctl = I915_READ(FBC_CONTROL);
53 if ((fbc_ctl & FBC_CTL_EN) == 0)
54 return;
55
56 fbc_ctl &= ~FBC_CTL_EN;
57 I915_WRITE(FBC_CONTROL, fbc_ctl);
58
59 /* Wait for compressing bit to clear */
60 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
61 DRM_DEBUG_KMS("FBC idle timed out\n");
62 return;
63 }
64
65 DRM_DEBUG_KMS("disabled FBC\n");
66}
67
68static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
69{
70 struct drm_device *dev = crtc->dev;
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 struct drm_framebuffer *fb = crtc->fb;
73 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
74 struct drm_i915_gem_object *obj = intel_fb->obj;
75 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
76 int cfb_pitch;
77 int plane, i;
78 u32 fbc_ctl, fbc_ctl2;
79
80 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
81 if (fb->pitches[0] < cfb_pitch)
82 cfb_pitch = fb->pitches[0];
83
84 /* FBC_CTL wants 64B units */
85 cfb_pitch = (cfb_pitch / 64) - 1;
86 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
87
88 /* Clear old tags */
89 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
90 I915_WRITE(FBC_TAG + (i * 4), 0);
91
92 /* Set it up... */
93 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
94 fbc_ctl2 |= plane;
95 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
96 I915_WRITE(FBC_FENCE_OFF, crtc->y);
97
98 /* enable it... */
99 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
100 if (IS_I945GM(dev))
101 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
102 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
103 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
104 fbc_ctl |= obj->fence_reg;
105 I915_WRITE(FBC_CONTROL, fbc_ctl);
106
107 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
108 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
109}
110
111static bool i8xx_fbc_enabled(struct drm_device *dev)
112{
113 struct drm_i915_private *dev_priv = dev->dev_private;
114
115 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
116}
117
118static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
119{
120 struct drm_device *dev = crtc->dev;
121 struct drm_i915_private *dev_priv = dev->dev_private;
122 struct drm_framebuffer *fb = crtc->fb;
123 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
124 struct drm_i915_gem_object *obj = intel_fb->obj;
125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
126 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
127 unsigned long stall_watermark = 200;
128 u32 dpfc_ctl;
129
130 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
131 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
132 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
133
134 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
135 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
136 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
137 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
138
139 /* enable it... */
140 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
141
142 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
143}
144
145static void g4x_disable_fbc(struct drm_device *dev)
146{
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 u32 dpfc_ctl;
149
150 /* Disable compression */
151 dpfc_ctl = I915_READ(DPFC_CONTROL);
152 if (dpfc_ctl & DPFC_CTL_EN) {
153 dpfc_ctl &= ~DPFC_CTL_EN;
154 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
155
156 DRM_DEBUG_KMS("disabled FBC\n");
157 }
158}
159
160static bool g4x_fbc_enabled(struct drm_device *dev)
161{
162 struct drm_i915_private *dev_priv = dev->dev_private;
163
164 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
165}
166
167static void sandybridge_blit_fbc_update(struct drm_device *dev)
168{
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 u32 blt_ecoskpd;
171
172 /* Make sure blitter notifies FBC of writes */
173 gen6_gt_force_wake_get(dev_priv);
174 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
175 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
176 GEN6_BLITTER_LOCK_SHIFT;
177 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
178 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
179 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
180 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
181 GEN6_BLITTER_LOCK_SHIFT);
182 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
183 POSTING_READ(GEN6_BLITTER_ECOSKPD);
184 gen6_gt_force_wake_put(dev_priv);
185}
186
187static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
188{
189 struct drm_device *dev = crtc->dev;
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct drm_framebuffer *fb = crtc->fb;
192 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
193 struct drm_i915_gem_object *obj = intel_fb->obj;
194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
195 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
196 unsigned long stall_watermark = 200;
197 u32 dpfc_ctl;
198
199 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
200 dpfc_ctl &= DPFC_RESERVED;
201 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
202 /* Set persistent mode for front-buffer rendering, ala X. */
203 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
204 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
205 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
206
207 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
208 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
209 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
210 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
211 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
212 /* enable it... */
213 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
214
215 if (IS_GEN6(dev)) {
216 I915_WRITE(SNB_DPFC_CTL_SA,
217 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
218 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
219 sandybridge_blit_fbc_update(dev);
220 }
221
222 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
223}
224
225static void ironlake_disable_fbc(struct drm_device *dev)
226{
227 struct drm_i915_private *dev_priv = dev->dev_private;
228 u32 dpfc_ctl;
229
230 /* Disable compression */
231 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
232 if (dpfc_ctl & DPFC_CTL_EN) {
233 dpfc_ctl &= ~DPFC_CTL_EN;
234 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
235
236 if (IS_IVYBRIDGE(dev))
237 /* WaFbcDisableDpfcClockGating:ivb */
238 I915_WRITE(ILK_DSPCLK_GATE_D,
239 I915_READ(ILK_DSPCLK_GATE_D) &
240 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
241
242 if (IS_HASWELL(dev))
243 /* WaFbcDisableDpfcClockGating:hsw */
244 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
245 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
246 ~HSW_DPFC_GATING_DISABLE);
247
248 DRM_DEBUG_KMS("disabled FBC\n");
249 }
250}
251
252static bool ironlake_fbc_enabled(struct drm_device *dev)
253{
254 struct drm_i915_private *dev_priv = dev->dev_private;
255
256 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
257}
258
259static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
260{
261 struct drm_device *dev = crtc->dev;
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 struct drm_framebuffer *fb = crtc->fb;
264 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
265 struct drm_i915_gem_object *obj = intel_fb->obj;
266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
267
268 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
269
270 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
271 IVB_DPFC_CTL_FENCE_EN |
272 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
273
274 if (IS_IVYBRIDGE(dev)) {
275 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
276 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
277 /* WaFbcDisableDpfcClockGating:ivb */
278 I915_WRITE(ILK_DSPCLK_GATE_D,
279 I915_READ(ILK_DSPCLK_GATE_D) |
280 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
281 } else {
282 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
283 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
284 HSW_BYPASS_FBC_QUEUE);
285 /* WaFbcDisableDpfcClockGating:hsw */
286 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
287 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
288 HSW_DPFC_GATING_DISABLE);
289 }
290
291 I915_WRITE(SNB_DPFC_CTL_SA,
292 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
293 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
294
295 sandybridge_blit_fbc_update(dev);
296
297 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
298}
299
300bool intel_fbc_enabled(struct drm_device *dev)
301{
302 struct drm_i915_private *dev_priv = dev->dev_private;
303
304 if (!dev_priv->display.fbc_enabled)
305 return false;
306
307 return dev_priv->display.fbc_enabled(dev);
308}
309
310static void intel_fbc_work_fn(struct work_struct *__work)
311{
312 struct intel_fbc_work *work =
313 container_of(to_delayed_work(__work),
314 struct intel_fbc_work, work);
315 struct drm_device *dev = work->crtc->dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317
318 mutex_lock(&dev->struct_mutex);
319 if (work == dev_priv->fbc.fbc_work) {
320 /* Double check that we haven't switched fb without cancelling
321 * the prior work.
322 */
323 if (work->crtc->fb == work->fb) {
324 dev_priv->display.enable_fbc(work->crtc,
325 work->interval);
326
327 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
328 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
329 dev_priv->fbc.y = work->crtc->y;
330 }
331
332 dev_priv->fbc.fbc_work = NULL;
333 }
334 mutex_unlock(&dev->struct_mutex);
335
336 kfree(work);
337}
338
339static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
340{
341 if (dev_priv->fbc.fbc_work == NULL)
342 return;
343
344 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
345
346 /* Synchronisation is provided by struct_mutex and checking of
347 * dev_priv->fbc.fbc_work, so we can perform the cancellation
348 * entirely asynchronously.
349 */
350 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
351 /* tasklet was killed before being run, clean up */
352 kfree(dev_priv->fbc.fbc_work);
353
354 /* Mark the work as no longer wanted so that if it does
355 * wake-up (because the work was already running and waiting
356 * for our mutex), it will discover that is no longer
357 * necessary to run.
358 */
359 dev_priv->fbc.fbc_work = NULL;
360}
361
362static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
363{
364 struct intel_fbc_work *work;
365 struct drm_device *dev = crtc->dev;
366 struct drm_i915_private *dev_priv = dev->dev_private;
367
368 if (!dev_priv->display.enable_fbc)
369 return;
370
371 intel_cancel_fbc_work(dev_priv);
372
373 work = kzalloc(sizeof(*work), GFP_KERNEL);
374 if (work == NULL) {
375 DRM_ERROR("Failed to allocate FBC work structure\n");
376 dev_priv->display.enable_fbc(crtc, interval);
377 return;
378 }
379
380 work->crtc = crtc;
381 work->fb = crtc->fb;
382 work->interval = interval;
383 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
384
385 dev_priv->fbc.fbc_work = work;
386
387 /* Delay the actual enabling to let pageflipping cease and the
388 * display to settle before starting the compression. Note that
389 * this delay also serves a second purpose: it allows for a
390 * vblank to pass after disabling the FBC before we attempt
391 * to modify the control registers.
392 *
393 * A more complicated solution would involve tracking vblanks
394 * following the termination of the page-flipping sequence
395 * and indeed performing the enable as a co-routine and not
396 * waiting synchronously upon the vblank.
397 *
398 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
399 */
400 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
401}
402
403void intel_disable_fbc(struct drm_device *dev)
404{
405 struct drm_i915_private *dev_priv = dev->dev_private;
406
407 intel_cancel_fbc_work(dev_priv);
408
409 if (!dev_priv->display.disable_fbc)
410 return;
411
412 dev_priv->display.disable_fbc(dev);
413 dev_priv->fbc.plane = -1;
414}
415
416static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
417 enum no_fbc_reason reason)
418{
419 if (dev_priv->fbc.no_fbc_reason == reason)
420 return false;
421
422 dev_priv->fbc.no_fbc_reason = reason;
423 return true;
424}
425
426/**
427 * intel_update_fbc - enable/disable FBC as needed
428 * @dev: the drm_device
429 *
430 * Set up the framebuffer compression hardware at mode set time. We
431 * enable it if possible:
432 * - plane A only (on pre-965)
433 * - no pixel mulitply/line duplication
434 * - no alpha buffer discard
435 * - no dual wide
436 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
437 *
438 * We can't assume that any compression will take place (worst case),
439 * so the compressed buffer has to be the same size as the uncompressed
440 * one. It also must reside (along with the line length buffer) in
441 * stolen memory.
442 *
443 * We need to enable/disable FBC on a global basis.
444 */
445void intel_update_fbc(struct drm_device *dev)
446{
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 struct drm_crtc *crtc = NULL, *tmp_crtc;
449 struct intel_crtc *intel_crtc;
450 struct drm_framebuffer *fb;
451 struct intel_framebuffer *intel_fb;
452 struct drm_i915_gem_object *obj;
453 const struct drm_display_mode *adjusted_mode;
454 unsigned int max_width, max_height;
455
456 if (!I915_HAS_FBC(dev)) {
457 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
458 return;
459 }
460
461 if (!i915_powersave) {
462 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
463 DRM_DEBUG_KMS("fbc disabled per module param\n");
464 return;
465 }
466
467 /*
468 * If FBC is already on, we just have to verify that we can
469 * keep it that way...
470 * Need to disable if:
471 * - more than one pipe is active
472 * - changing FBC params (stride, fence, mode)
473 * - new fb is too large to fit in compressed buffer
474 * - going to an unsupported config (interlace, pixel multiply, etc.)
475 */
476 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
477 if (intel_crtc_active(tmp_crtc) &&
478 to_intel_crtc(tmp_crtc)->primary_enabled) {
479 if (crtc) {
480 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
481 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
482 goto out_disable;
483 }
484 crtc = tmp_crtc;
485 }
486 }
487
488 if (!crtc || crtc->fb == NULL) {
489 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
490 DRM_DEBUG_KMS("no output, disabling\n");
491 goto out_disable;
492 }
493
494 intel_crtc = to_intel_crtc(crtc);
495 fb = crtc->fb;
496 intel_fb = to_intel_framebuffer(fb);
497 obj = intel_fb->obj;
498 adjusted_mode = &intel_crtc->config.adjusted_mode;
499
500 if (i915_enable_fbc < 0 &&
501 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
502 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
503 DRM_DEBUG_KMS("disabled per chip default\n");
504 goto out_disable;
505 }
506 if (!i915_enable_fbc) {
507 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508 DRM_DEBUG_KMS("fbc disabled per module param\n");
509 goto out_disable;
510 }
511 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
512 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
513 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
514 DRM_DEBUG_KMS("mode incompatible with compression, "
515 "disabling\n");
516 goto out_disable;
517 }
518
519 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
520 max_width = 4096;
521 max_height = 2048;
522 } else {
523 max_width = 2048;
524 max_height = 1536;
525 }
526 if (intel_crtc->config.pipe_src_w > max_width ||
527 intel_crtc->config.pipe_src_h > max_height) {
528 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
529 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
530 goto out_disable;
531 }
532 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
533 intel_crtc->plane != 0) {
534 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
535 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
536 goto out_disable;
537 }
538
539 /* The use of a CPU fence is mandatory in order to detect writes
540 * by the CPU to the scanout and trigger updates to the FBC.
541 */
542 if (obj->tiling_mode != I915_TILING_X ||
543 obj->fence_reg == I915_FENCE_REG_NONE) {
544 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
545 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
546 goto out_disable;
547 }
548
549 /* If the kernel debugger is active, always disable compression */
550 if (in_dbg_master())
551 goto out_disable;
552
553 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
554 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
555 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
556 goto out_disable;
557 }
558
559 /* If the scanout has not changed, don't modify the FBC settings.
560 * Note that we make the fundamental assumption that the fb->obj
561 * cannot be unpinned (and have its GTT offset and fence revoked)
562 * without first being decoupled from the scanout and FBC disabled.
563 */
564 if (dev_priv->fbc.plane == intel_crtc->plane &&
565 dev_priv->fbc.fb_id == fb->base.id &&
566 dev_priv->fbc.y == crtc->y)
567 return;
568
569 if (intel_fbc_enabled(dev)) {
570 /* We update FBC along two paths, after changing fb/crtc
571 * configuration (modeswitching) and after page-flipping
572 * finishes. For the latter, we know that not only did
573 * we disable the FBC at the start of the page-flip
574 * sequence, but also more than one vblank has passed.
575 *
576 * For the former case of modeswitching, it is possible
577 * to switch between two FBC valid configurations
578 * instantaneously so we do need to disable the FBC
579 * before we can modify its control registers. We also
580 * have to wait for the next vblank for that to take
581 * effect. However, since we delay enabling FBC we can
582 * assume that a vblank has passed since disabling and
583 * that we can safely alter the registers in the deferred
584 * callback.
585 *
586 * In the scenario that we go from a valid to invalid
587 * and then back to valid FBC configuration we have
588 * no strict enforcement that a vblank occurred since
589 * disabling the FBC. However, along all current pipe
590 * disabling paths we do need to wait for a vblank at
591 * some point. And we wait before enabling FBC anyway.
592 */
593 DRM_DEBUG_KMS("disabling active FBC for update\n");
594 intel_disable_fbc(dev);
595 }
596
597 intel_enable_fbc(crtc, 500);
598 dev_priv->fbc.no_fbc_reason = FBC_OK;
599 return;
600
601out_disable:
602 /* Multiple disables should be harmless */
603 if (intel_fbc_enabled(dev)) {
604 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
605 intel_disable_fbc(dev);
606 }
607 i915_gem_stolen_cleanup_compression(dev);
608}
609
610static void i915_pineview_get_mem_freq(struct drm_device *dev)
611{
612 drm_i915_private_t *dev_priv = dev->dev_private;
613 u32 tmp;
614
615 tmp = I915_READ(CLKCFG);
616
617 switch (tmp & CLKCFG_FSB_MASK) {
618 case CLKCFG_FSB_533:
619 dev_priv->fsb_freq = 533; /* 133*4 */
620 break;
621 case CLKCFG_FSB_800:
622 dev_priv->fsb_freq = 800; /* 200*4 */
623 break;
624 case CLKCFG_FSB_667:
625 dev_priv->fsb_freq = 667; /* 167*4 */
626 break;
627 case CLKCFG_FSB_400:
628 dev_priv->fsb_freq = 400; /* 100*4 */
629 break;
630 }
631
632 switch (tmp & CLKCFG_MEM_MASK) {
633 case CLKCFG_MEM_533:
634 dev_priv->mem_freq = 533;
635 break;
636 case CLKCFG_MEM_667:
637 dev_priv->mem_freq = 667;
638 break;
639 case CLKCFG_MEM_800:
640 dev_priv->mem_freq = 800;
641 break;
642 }
643
644 /* detect pineview DDR3 setting */
645 tmp = I915_READ(CSHRDDR3CTL);
646 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
647}
648
649static void i915_ironlake_get_mem_freq(struct drm_device *dev)
650{
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 u16 ddrpll, csipll;
653
654 ddrpll = I915_READ16(DDRMPLL1);
655 csipll = I915_READ16(CSIPLL0);
656
657 switch (ddrpll & 0xff) {
658 case 0xc:
659 dev_priv->mem_freq = 800;
660 break;
661 case 0x10:
662 dev_priv->mem_freq = 1066;
663 break;
664 case 0x14:
665 dev_priv->mem_freq = 1333;
666 break;
667 case 0x18:
668 dev_priv->mem_freq = 1600;
669 break;
670 default:
671 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
672 ddrpll & 0xff);
673 dev_priv->mem_freq = 0;
674 break;
675 }
676
677 dev_priv->ips.r_t = dev_priv->mem_freq;
678
679 switch (csipll & 0x3ff) {
680 case 0x00c:
681 dev_priv->fsb_freq = 3200;
682 break;
683 case 0x00e:
684 dev_priv->fsb_freq = 3733;
685 break;
686 case 0x010:
687 dev_priv->fsb_freq = 4266;
688 break;
689 case 0x012:
690 dev_priv->fsb_freq = 4800;
691 break;
692 case 0x014:
693 dev_priv->fsb_freq = 5333;
694 break;
695 case 0x016:
696 dev_priv->fsb_freq = 5866;
697 break;
698 case 0x018:
699 dev_priv->fsb_freq = 6400;
700 break;
701 default:
702 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
703 csipll & 0x3ff);
704 dev_priv->fsb_freq = 0;
705 break;
706 }
707
708 if (dev_priv->fsb_freq == 3200) {
709 dev_priv->ips.c_m = 0;
710 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
711 dev_priv->ips.c_m = 1;
712 } else {
713 dev_priv->ips.c_m = 2;
714 }
715}
716
717static const struct cxsr_latency cxsr_latency_table[] = {
718 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
719 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
720 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
721 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
722 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
723
724 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
725 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
726 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
727 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
728 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
729
730 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
731 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
732 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
733 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
734 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
735
736 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
737 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
738 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
739 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
740 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
741
742 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
743 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
744 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
745 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
746 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
747
748 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
749 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
750 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
751 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
752 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
753};
754
755static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
756 int is_ddr3,
757 int fsb,
758 int mem)
759{
760 const struct cxsr_latency *latency;
761 int i;
762
763 if (fsb == 0 || mem == 0)
764 return NULL;
765
766 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
767 latency = &cxsr_latency_table[i];
768 if (is_desktop == latency->is_desktop &&
769 is_ddr3 == latency->is_ddr3 &&
770 fsb == latency->fsb_freq && mem == latency->mem_freq)
771 return latency;
772 }
773
774 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
775
776 return NULL;
777}
778
779static void pineview_disable_cxsr(struct drm_device *dev)
780{
781 struct drm_i915_private *dev_priv = dev->dev_private;
782
783 /* deactivate cxsr */
784 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
785}
786
787/*
788 * Latency for FIFO fetches is dependent on several factors:
789 * - memory configuration (speed, channels)
790 * - chipset
791 * - current MCH state
792 * It can be fairly high in some situations, so here we assume a fairly
793 * pessimal value. It's a tradeoff between extra memory fetches (if we
794 * set this value too high, the FIFO will fetch frequently to stay full)
795 * and power consumption (set it too low to save power and we might see
796 * FIFO underruns and display "flicker").
797 *
798 * A value of 5us seems to be a good balance; safe for very low end
799 * platforms but not overly aggressive on lower latency configs.
800 */
801static const int latency_ns = 5000;
802
803static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
804{
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 uint32_t dsparb = I915_READ(DSPARB);
807 int size;
808
809 size = dsparb & 0x7f;
810 if (plane)
811 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
812
813 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814 plane ? "B" : "A", size);
815
816 return size;
817}
818
819static int i85x_get_fifo_size(struct drm_device *dev, int plane)
820{
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 uint32_t dsparb = I915_READ(DSPARB);
823 int size;
824
825 size = dsparb & 0x1ff;
826 if (plane)
827 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
828 size >>= 1; /* Convert to cachelines */
829
830 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
831 plane ? "B" : "A", size);
832
833 return size;
834}
835
836static int i845_get_fifo_size(struct drm_device *dev, int plane)
837{
838 struct drm_i915_private *dev_priv = dev->dev_private;
839 uint32_t dsparb = I915_READ(DSPARB);
840 int size;
841
842 size = dsparb & 0x7f;
843 size >>= 2; /* Convert to cachelines */
844
845 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
846 plane ? "B" : "A",
847 size);
848
849 return size;
850}
851
852static int i830_get_fifo_size(struct drm_device *dev, int plane)
853{
854 struct drm_i915_private *dev_priv = dev->dev_private;
855 uint32_t dsparb = I915_READ(DSPARB);
856 int size;
857
858 size = dsparb & 0x7f;
859 size >>= 1; /* Convert to cachelines */
860
861 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
862 plane ? "B" : "A", size);
863
864 return size;
865}
866
867/* Pineview has different values for various configs */
868static const struct intel_watermark_params pineview_display_wm = {
869 PINEVIEW_DISPLAY_FIFO,
870 PINEVIEW_MAX_WM,
871 PINEVIEW_DFT_WM,
872 PINEVIEW_GUARD_WM,
873 PINEVIEW_FIFO_LINE_SIZE
874};
875static const struct intel_watermark_params pineview_display_hplloff_wm = {
876 PINEVIEW_DISPLAY_FIFO,
877 PINEVIEW_MAX_WM,
878 PINEVIEW_DFT_HPLLOFF_WM,
879 PINEVIEW_GUARD_WM,
880 PINEVIEW_FIFO_LINE_SIZE
881};
882static const struct intel_watermark_params pineview_cursor_wm = {
883 PINEVIEW_CURSOR_FIFO,
884 PINEVIEW_CURSOR_MAX_WM,
885 PINEVIEW_CURSOR_DFT_WM,
886 PINEVIEW_CURSOR_GUARD_WM,
887 PINEVIEW_FIFO_LINE_SIZE,
888};
889static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
890 PINEVIEW_CURSOR_FIFO,
891 PINEVIEW_CURSOR_MAX_WM,
892 PINEVIEW_CURSOR_DFT_WM,
893 PINEVIEW_CURSOR_GUARD_WM,
894 PINEVIEW_FIFO_LINE_SIZE
895};
896static const struct intel_watermark_params g4x_wm_info = {
897 G4X_FIFO_SIZE,
898 G4X_MAX_WM,
899 G4X_MAX_WM,
900 2,
901 G4X_FIFO_LINE_SIZE,
902};
903static const struct intel_watermark_params g4x_cursor_wm_info = {
904 I965_CURSOR_FIFO,
905 I965_CURSOR_MAX_WM,
906 I965_CURSOR_DFT_WM,
907 2,
908 G4X_FIFO_LINE_SIZE,
909};
910static const struct intel_watermark_params valleyview_wm_info = {
911 VALLEYVIEW_FIFO_SIZE,
912 VALLEYVIEW_MAX_WM,
913 VALLEYVIEW_MAX_WM,
914 2,
915 G4X_FIFO_LINE_SIZE,
916};
917static const struct intel_watermark_params valleyview_cursor_wm_info = {
918 I965_CURSOR_FIFO,
919 VALLEYVIEW_CURSOR_MAX_WM,
920 I965_CURSOR_DFT_WM,
921 2,
922 G4X_FIFO_LINE_SIZE,
923};
924static const struct intel_watermark_params i965_cursor_wm_info = {
925 I965_CURSOR_FIFO,
926 I965_CURSOR_MAX_WM,
927 I965_CURSOR_DFT_WM,
928 2,
929 I915_FIFO_LINE_SIZE,
930};
931static const struct intel_watermark_params i945_wm_info = {
932 I945_FIFO_SIZE,
933 I915_MAX_WM,
934 1,
935 2,
936 I915_FIFO_LINE_SIZE
937};
938static const struct intel_watermark_params i915_wm_info = {
939 I915_FIFO_SIZE,
940 I915_MAX_WM,
941 1,
942 2,
943 I915_FIFO_LINE_SIZE
944};
945static const struct intel_watermark_params i855_wm_info = {
946 I855GM_FIFO_SIZE,
947 I915_MAX_WM,
948 1,
949 2,
950 I830_FIFO_LINE_SIZE
951};
952static const struct intel_watermark_params i830_wm_info = {
953 I830_FIFO_SIZE,
954 I915_MAX_WM,
955 1,
956 2,
957 I830_FIFO_LINE_SIZE
958};
959
960static const struct intel_watermark_params ironlake_display_wm_info = {
961 ILK_DISPLAY_FIFO,
962 ILK_DISPLAY_MAXWM,
963 ILK_DISPLAY_DFTWM,
964 2,
965 ILK_FIFO_LINE_SIZE
966};
967static const struct intel_watermark_params ironlake_cursor_wm_info = {
968 ILK_CURSOR_FIFO,
969 ILK_CURSOR_MAXWM,
970 ILK_CURSOR_DFTWM,
971 2,
972 ILK_FIFO_LINE_SIZE
973};
974static const struct intel_watermark_params ironlake_display_srwm_info = {
975 ILK_DISPLAY_SR_FIFO,
976 ILK_DISPLAY_MAX_SRWM,
977 ILK_DISPLAY_DFT_SRWM,
978 2,
979 ILK_FIFO_LINE_SIZE
980};
981static const struct intel_watermark_params ironlake_cursor_srwm_info = {
982 ILK_CURSOR_SR_FIFO,
983 ILK_CURSOR_MAX_SRWM,
984 ILK_CURSOR_DFT_SRWM,
985 2,
986 ILK_FIFO_LINE_SIZE
987};
988
989static const struct intel_watermark_params sandybridge_display_wm_info = {
990 SNB_DISPLAY_FIFO,
991 SNB_DISPLAY_MAXWM,
992 SNB_DISPLAY_DFTWM,
993 2,
994 SNB_FIFO_LINE_SIZE
995};
996static const struct intel_watermark_params sandybridge_cursor_wm_info = {
997 SNB_CURSOR_FIFO,
998 SNB_CURSOR_MAXWM,
999 SNB_CURSOR_DFTWM,
1000 2,
1001 SNB_FIFO_LINE_SIZE
1002};
1003static const struct intel_watermark_params sandybridge_display_srwm_info = {
1004 SNB_DISPLAY_SR_FIFO,
1005 SNB_DISPLAY_MAX_SRWM,
1006 SNB_DISPLAY_DFT_SRWM,
1007 2,
1008 SNB_FIFO_LINE_SIZE
1009};
1010static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1011 SNB_CURSOR_SR_FIFO,
1012 SNB_CURSOR_MAX_SRWM,
1013 SNB_CURSOR_DFT_SRWM,
1014 2,
1015 SNB_FIFO_LINE_SIZE
1016};
1017
1018
1019/**
1020 * intel_calculate_wm - calculate watermark level
1021 * @clock_in_khz: pixel clock
1022 * @wm: chip FIFO params
1023 * @pixel_size: display pixel size
1024 * @latency_ns: memory latency for the platform
1025 *
1026 * Calculate the watermark level (the level at which the display plane will
1027 * start fetching from memory again). Each chip has a different display
1028 * FIFO size and allocation, so the caller needs to figure that out and pass
1029 * in the correct intel_watermark_params structure.
1030 *
1031 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1032 * on the pixel size. When it reaches the watermark level, it'll start
1033 * fetching FIFO line sized based chunks from memory until the FIFO fills
1034 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1035 * will occur, and a display engine hang could result.
1036 */
1037static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1038 const struct intel_watermark_params *wm,
1039 int fifo_size,
1040 int pixel_size,
1041 unsigned long latency_ns)
1042{
1043 long entries_required, wm_size;
1044
1045 /*
1046 * Note: we need to make sure we don't overflow for various clock &
1047 * latency values.
1048 * clocks go from a few thousand to several hundred thousand.
1049 * latency is usually a few thousand
1050 */
1051 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1052 1000;
1053 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1054
1055 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1056
1057 wm_size = fifo_size - (entries_required + wm->guard_size);
1058
1059 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1060
1061 /* Don't promote wm_size to unsigned... */
1062 if (wm_size > (long)wm->max_wm)
1063 wm_size = wm->max_wm;
1064 if (wm_size <= 0)
1065 wm_size = wm->default_wm;
1066 return wm_size;
1067}
1068
1069static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1070{
1071 struct drm_crtc *crtc, *enabled = NULL;
1072
1073 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1074 if (intel_crtc_active(crtc)) {
1075 if (enabled)
1076 return NULL;
1077 enabled = crtc;
1078 }
1079 }
1080
1081 return enabled;
1082}
1083
1084static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085{
1086 struct drm_device *dev = unused_crtc->dev;
1087 struct drm_i915_private *dev_priv = dev->dev_private;
1088 struct drm_crtc *crtc;
1089 const struct cxsr_latency *latency;
1090 u32 reg;
1091 unsigned long wm;
1092
1093 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1094 dev_priv->fsb_freq, dev_priv->mem_freq);
1095 if (!latency) {
1096 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097 pineview_disable_cxsr(dev);
1098 return;
1099 }
1100
1101 crtc = single_enabled_crtc(dev);
1102 if (crtc) {
1103 const struct drm_display_mode *adjusted_mode;
1104 int pixel_size = crtc->fb->bits_per_pixel / 8;
1105 int clock;
1106
1107 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1108 clock = adjusted_mode->crtc_clock;
1109
1110 /* Display SR */
1111 wm = intel_calculate_wm(clock, &pineview_display_wm,
1112 pineview_display_wm.fifo_size,
1113 pixel_size, latency->display_sr);
1114 reg = I915_READ(DSPFW1);
1115 reg &= ~DSPFW_SR_MASK;
1116 reg |= wm << DSPFW_SR_SHIFT;
1117 I915_WRITE(DSPFW1, reg);
1118 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1119
1120 /* cursor SR */
1121 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1122 pineview_display_wm.fifo_size,
1123 pixel_size, latency->cursor_sr);
1124 reg = I915_READ(DSPFW3);
1125 reg &= ~DSPFW_CURSOR_SR_MASK;
1126 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1127 I915_WRITE(DSPFW3, reg);
1128
1129 /* Display HPLL off SR */
1130 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1131 pineview_display_hplloff_wm.fifo_size,
1132 pixel_size, latency->display_hpll_disable);
1133 reg = I915_READ(DSPFW3);
1134 reg &= ~DSPFW_HPLL_SR_MASK;
1135 reg |= wm & DSPFW_HPLL_SR_MASK;
1136 I915_WRITE(DSPFW3, reg);
1137
1138 /* cursor HPLL off SR */
1139 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1140 pineview_display_hplloff_wm.fifo_size,
1141 pixel_size, latency->cursor_hpll_disable);
1142 reg = I915_READ(DSPFW3);
1143 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1144 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1145 I915_WRITE(DSPFW3, reg);
1146 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1147
1148 /* activate cxsr */
1149 I915_WRITE(DSPFW3,
1150 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1151 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1152 } else {
1153 pineview_disable_cxsr(dev);
1154 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1155 }
1156}
1157
1158static bool g4x_compute_wm0(struct drm_device *dev,
1159 int plane,
1160 const struct intel_watermark_params *display,
1161 int display_latency_ns,
1162 const struct intel_watermark_params *cursor,
1163 int cursor_latency_ns,
1164 int *plane_wm,
1165 int *cursor_wm)
1166{
1167 struct drm_crtc *crtc;
1168 const struct drm_display_mode *adjusted_mode;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1172
1173 crtc = intel_get_crtc_for_plane(dev, plane);
1174 if (!intel_crtc_active(crtc)) {
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1177 return false;
1178 }
1179
1180 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1181 clock = adjusted_mode->crtc_clock;
1182 htotal = adjusted_mode->htotal;
1183 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1184 pixel_size = crtc->fb->bits_per_pixel / 8;
1185
1186 /* Use the small buffer method to calculate plane watermark */
1187 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1188 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1189 if (tlb_miss > 0)
1190 entries += tlb_miss;
1191 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1192 *plane_wm = entries + display->guard_size;
1193 if (*plane_wm > (int)display->max_wm)
1194 *plane_wm = display->max_wm;
1195
1196 /* Use the large buffer method to calculate cursor watermark */
1197 line_time_us = ((htotal * 1000) / clock);
1198 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1199 entries = line_count * 64 * pixel_size;
1200 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1201 if (tlb_miss > 0)
1202 entries += tlb_miss;
1203 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1204 *cursor_wm = entries + cursor->guard_size;
1205 if (*cursor_wm > (int)cursor->max_wm)
1206 *cursor_wm = (int)cursor->max_wm;
1207
1208 return true;
1209}
1210
1211/*
1212 * Check the wm result.
1213 *
1214 * If any calculated watermark values is larger than the maximum value that
1215 * can be programmed into the associated watermark register, that watermark
1216 * must be disabled.
1217 */
1218static bool g4x_check_srwm(struct drm_device *dev,
1219 int display_wm, int cursor_wm,
1220 const struct intel_watermark_params *display,
1221 const struct intel_watermark_params *cursor)
1222{
1223 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1224 display_wm, cursor_wm);
1225
1226 if (display_wm > display->max_wm) {
1227 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1228 display_wm, display->max_wm);
1229 return false;
1230 }
1231
1232 if (cursor_wm > cursor->max_wm) {
1233 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1234 cursor_wm, cursor->max_wm);
1235 return false;
1236 }
1237
1238 if (!(display_wm || cursor_wm)) {
1239 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1240 return false;
1241 }
1242
1243 return true;
1244}
1245
1246static bool g4x_compute_srwm(struct drm_device *dev,
1247 int plane,
1248 int latency_ns,
1249 const struct intel_watermark_params *display,
1250 const struct intel_watermark_params *cursor,
1251 int *display_wm, int *cursor_wm)
1252{
1253 struct drm_crtc *crtc;
1254 const struct drm_display_mode *adjusted_mode;
1255 int hdisplay, htotal, pixel_size, clock;
1256 unsigned long line_time_us;
1257 int line_count, line_size;
1258 int small, large;
1259 int entries;
1260
1261 if (!latency_ns) {
1262 *display_wm = *cursor_wm = 0;
1263 return false;
1264 }
1265
1266 crtc = intel_get_crtc_for_plane(dev, plane);
1267 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1268 clock = adjusted_mode->crtc_clock;
1269 htotal = adjusted_mode->htotal;
1270 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1271 pixel_size = crtc->fb->bits_per_pixel / 8;
1272
1273 line_time_us = (htotal * 1000) / clock;
1274 line_count = (latency_ns / line_time_us + 1000) / 1000;
1275 line_size = hdisplay * pixel_size;
1276
1277 /* Use the minimum of the small and large buffer method for primary */
1278 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1279 large = line_count * line_size;
1280
1281 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1282 *display_wm = entries + display->guard_size;
1283
1284 /* calculate the self-refresh watermark for display cursor */
1285 entries = line_count * pixel_size * 64;
1286 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1287 *cursor_wm = entries + cursor->guard_size;
1288
1289 return g4x_check_srwm(dev,
1290 *display_wm, *cursor_wm,
1291 display, cursor);
1292}
1293
1294static bool vlv_compute_drain_latency(struct drm_device *dev,
1295 int plane,
1296 int *plane_prec_mult,
1297 int *plane_dl,
1298 int *cursor_prec_mult,
1299 int *cursor_dl)
1300{
1301 struct drm_crtc *crtc;
1302 int clock, pixel_size;
1303 int entries;
1304
1305 crtc = intel_get_crtc_for_plane(dev, plane);
1306 if (!intel_crtc_active(crtc))
1307 return false;
1308
1309 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1310 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1311
1312 entries = (clock / 1000) * pixel_size;
1313 *plane_prec_mult = (entries > 256) ?
1314 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1315 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1316 pixel_size);
1317
1318 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1319 *cursor_prec_mult = (entries > 256) ?
1320 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1321 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1322
1323 return true;
1324}
1325
1326/*
1327 * Update drain latency registers of memory arbiter
1328 *
1329 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1330 * to be programmed. Each plane has a drain latency multiplier and a drain
1331 * latency value.
1332 */
1333
1334static void vlv_update_drain_latency(struct drm_device *dev)
1335{
1336 struct drm_i915_private *dev_priv = dev->dev_private;
1337 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1338 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1339 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1340 either 16 or 32 */
1341
1342 /* For plane A, Cursor A */
1343 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1344 &cursor_prec_mult, &cursora_dl)) {
1345 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1346 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1347 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1348 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1349
1350 I915_WRITE(VLV_DDL1, cursora_prec |
1351 (cursora_dl << DDL_CURSORA_SHIFT) |
1352 planea_prec | planea_dl);
1353 }
1354
1355 /* For plane B, Cursor B */
1356 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1357 &cursor_prec_mult, &cursorb_dl)) {
1358 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1359 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1360 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1361 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1362
1363 I915_WRITE(VLV_DDL2, cursorb_prec |
1364 (cursorb_dl << DDL_CURSORB_SHIFT) |
1365 planeb_prec | planeb_dl);
1366 }
1367}
1368
1369#define single_plane_enabled(mask) is_power_of_2(mask)
1370
1371static void valleyview_update_wm(struct drm_crtc *crtc)
1372{
1373 struct drm_device *dev = crtc->dev;
1374 static const int sr_latency_ns = 12000;
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377 int plane_sr, cursor_sr;
1378 int ignore_plane_sr, ignore_cursor_sr;
1379 unsigned int enabled = 0;
1380
1381 vlv_update_drain_latency(dev);
1382
1383 if (g4x_compute_wm0(dev, PIPE_A,
1384 &valleyview_wm_info, latency_ns,
1385 &valleyview_cursor_wm_info, latency_ns,
1386 &planea_wm, &cursora_wm))
1387 enabled |= 1 << PIPE_A;
1388
1389 if (g4x_compute_wm0(dev, PIPE_B,
1390 &valleyview_wm_info, latency_ns,
1391 &valleyview_cursor_wm_info, latency_ns,
1392 &planeb_wm, &cursorb_wm))
1393 enabled |= 1 << PIPE_B;
1394
1395 if (single_plane_enabled(enabled) &&
1396 g4x_compute_srwm(dev, ffs(enabled) - 1,
1397 sr_latency_ns,
1398 &valleyview_wm_info,
1399 &valleyview_cursor_wm_info,
1400 &plane_sr, &ignore_cursor_sr) &&
1401 g4x_compute_srwm(dev, ffs(enabled) - 1,
1402 2*sr_latency_ns,
1403 &valleyview_wm_info,
1404 &valleyview_cursor_wm_info,
1405 &ignore_plane_sr, &cursor_sr)) {
1406 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1407 } else {
1408 I915_WRITE(FW_BLC_SELF_VLV,
1409 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1410 plane_sr = cursor_sr = 0;
1411 }
1412
1413 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1414 planea_wm, cursora_wm,
1415 planeb_wm, cursorb_wm,
1416 plane_sr, cursor_sr);
1417
1418 I915_WRITE(DSPFW1,
1419 (plane_sr << DSPFW_SR_SHIFT) |
1420 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1421 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1422 planea_wm);
1423 I915_WRITE(DSPFW2,
1424 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425 (cursora_wm << DSPFW_CURSORA_SHIFT));
1426 I915_WRITE(DSPFW3,
1427 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1428 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429}
1430
1431static void g4x_update_wm(struct drm_crtc *crtc)
1432{
1433 struct drm_device *dev = crtc->dev;
1434 static const int sr_latency_ns = 12000;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1437 int plane_sr, cursor_sr;
1438 unsigned int enabled = 0;
1439
1440 if (g4x_compute_wm0(dev, PIPE_A,
1441 &g4x_wm_info, latency_ns,
1442 &g4x_cursor_wm_info, latency_ns,
1443 &planea_wm, &cursora_wm))
1444 enabled |= 1 << PIPE_A;
1445
1446 if (g4x_compute_wm0(dev, PIPE_B,
1447 &g4x_wm_info, latency_ns,
1448 &g4x_cursor_wm_info, latency_ns,
1449 &planeb_wm, &cursorb_wm))
1450 enabled |= 1 << PIPE_B;
1451
1452 if (single_plane_enabled(enabled) &&
1453 g4x_compute_srwm(dev, ffs(enabled) - 1,
1454 sr_latency_ns,
1455 &g4x_wm_info,
1456 &g4x_cursor_wm_info,
1457 &plane_sr, &cursor_sr)) {
1458 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1459 } else {
1460 I915_WRITE(FW_BLC_SELF,
1461 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1462 plane_sr = cursor_sr = 0;
1463 }
1464
1465 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1466 planea_wm, cursora_wm,
1467 planeb_wm, cursorb_wm,
1468 plane_sr, cursor_sr);
1469
1470 I915_WRITE(DSPFW1,
1471 (plane_sr << DSPFW_SR_SHIFT) |
1472 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1473 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1474 planea_wm);
1475 I915_WRITE(DSPFW2,
1476 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1477 (cursora_wm << DSPFW_CURSORA_SHIFT));
1478 /* HPLL off in SR has some issues on G4x... disable it */
1479 I915_WRITE(DSPFW3,
1480 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1481 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1482}
1483
1484static void i965_update_wm(struct drm_crtc *unused_crtc)
1485{
1486 struct drm_device *dev = unused_crtc->dev;
1487 struct drm_i915_private *dev_priv = dev->dev_private;
1488 struct drm_crtc *crtc;
1489 int srwm = 1;
1490 int cursor_sr = 16;
1491
1492 /* Calc sr entries for one plane configs */
1493 crtc = single_enabled_crtc(dev);
1494 if (crtc) {
1495 /* self-refresh has much higher latency */
1496 static const int sr_latency_ns = 12000;
1497 const struct drm_display_mode *adjusted_mode =
1498 &to_intel_crtc(crtc)->config.adjusted_mode;
1499 int clock = adjusted_mode->crtc_clock;
1500 int htotal = adjusted_mode->htotal;
1501 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1502 int pixel_size = crtc->fb->bits_per_pixel / 8;
1503 unsigned long line_time_us;
1504 int entries;
1505
1506 line_time_us = ((htotal * 1000) / clock);
1507
1508 /* Use ns/us then divide to preserve precision */
1509 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1510 pixel_size * hdisplay;
1511 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1512 srwm = I965_FIFO_SIZE - entries;
1513 if (srwm < 0)
1514 srwm = 1;
1515 srwm &= 0x1ff;
1516 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1517 entries, srwm);
1518
1519 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1520 pixel_size * 64;
1521 entries = DIV_ROUND_UP(entries,
1522 i965_cursor_wm_info.cacheline_size);
1523 cursor_sr = i965_cursor_wm_info.fifo_size -
1524 (entries + i965_cursor_wm_info.guard_size);
1525
1526 if (cursor_sr > i965_cursor_wm_info.max_wm)
1527 cursor_sr = i965_cursor_wm_info.max_wm;
1528
1529 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1530 "cursor %d\n", srwm, cursor_sr);
1531
1532 if (IS_CRESTLINE(dev))
1533 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1534 } else {
1535 /* Turn off self refresh if both pipes are enabled */
1536 if (IS_CRESTLINE(dev))
1537 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1538 & ~FW_BLC_SELF_EN);
1539 }
1540
1541 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1542 srwm);
1543
1544 /* 965 has limitations... */
1545 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1546 (8 << 16) | (8 << 8) | (8 << 0));
1547 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1548 /* update cursor SR watermark */
1549 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1550}
1551
1552static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1553{
1554 struct drm_device *dev = unused_crtc->dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 const struct intel_watermark_params *wm_info;
1557 uint32_t fwater_lo;
1558 uint32_t fwater_hi;
1559 int cwm, srwm = 1;
1560 int fifo_size;
1561 int planea_wm, planeb_wm;
1562 struct drm_crtc *crtc, *enabled = NULL;
1563
1564 if (IS_I945GM(dev))
1565 wm_info = &i945_wm_info;
1566 else if (!IS_GEN2(dev))
1567 wm_info = &i915_wm_info;
1568 else
1569 wm_info = &i855_wm_info;
1570
1571 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1572 crtc = intel_get_crtc_for_plane(dev, 0);
1573 if (intel_crtc_active(crtc)) {
1574 const struct drm_display_mode *adjusted_mode;
1575 int cpp = crtc->fb->bits_per_pixel / 8;
1576 if (IS_GEN2(dev))
1577 cpp = 4;
1578
1579 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1580 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1581 wm_info, fifo_size, cpp,
1582 latency_ns);
1583 enabled = crtc;
1584 } else
1585 planea_wm = fifo_size - wm_info->guard_size;
1586
1587 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1588 crtc = intel_get_crtc_for_plane(dev, 1);
1589 if (intel_crtc_active(crtc)) {
1590 const struct drm_display_mode *adjusted_mode;
1591 int cpp = crtc->fb->bits_per_pixel / 8;
1592 if (IS_GEN2(dev))
1593 cpp = 4;
1594
1595 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1596 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1597 wm_info, fifo_size, cpp,
1598 latency_ns);
1599 if (enabled == NULL)
1600 enabled = crtc;
1601 else
1602 enabled = NULL;
1603 } else
1604 planeb_wm = fifo_size - wm_info->guard_size;
1605
1606 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1607
1608 /*
1609 * Overlay gets an aggressive default since video jitter is bad.
1610 */
1611 cwm = 2;
1612
1613 /* Play safe and disable self-refresh before adjusting watermarks. */
1614 if (IS_I945G(dev) || IS_I945GM(dev))
1615 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1616 else if (IS_I915GM(dev))
1617 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1618
1619 /* Calc sr entries for one plane configs */
1620 if (HAS_FW_BLC(dev) && enabled) {
1621 /* self-refresh has much higher latency */
1622 static const int sr_latency_ns = 6000;
1623 const struct drm_display_mode *adjusted_mode =
1624 &to_intel_crtc(enabled)->config.adjusted_mode;
1625 int clock = adjusted_mode->crtc_clock;
1626 int htotal = adjusted_mode->htotal;
1627 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1628 int pixel_size = enabled->fb->bits_per_pixel / 8;
1629 unsigned long line_time_us;
1630 int entries;
1631
1632 line_time_us = (htotal * 1000) / clock;
1633
1634 /* Use ns/us then divide to preserve precision */
1635 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1636 pixel_size * hdisplay;
1637 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1638 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1639 srwm = wm_info->fifo_size - entries;
1640 if (srwm < 0)
1641 srwm = 1;
1642
1643 if (IS_I945G(dev) || IS_I945GM(dev))
1644 I915_WRITE(FW_BLC_SELF,
1645 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1646 else if (IS_I915GM(dev))
1647 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1648 }
1649
1650 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1651 planea_wm, planeb_wm, cwm, srwm);
1652
1653 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1654 fwater_hi = (cwm & 0x1f);
1655
1656 /* Set request length to 8 cachelines per fetch */
1657 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1658 fwater_hi = fwater_hi | (1 << 8);
1659
1660 I915_WRITE(FW_BLC, fwater_lo);
1661 I915_WRITE(FW_BLC2, fwater_hi);
1662
1663 if (HAS_FW_BLC(dev)) {
1664 if (enabled) {
1665 if (IS_I945G(dev) || IS_I945GM(dev))
1666 I915_WRITE(FW_BLC_SELF,
1667 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1668 else if (IS_I915GM(dev))
1669 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1670 DRM_DEBUG_KMS("memory self refresh enabled\n");
1671 } else
1672 DRM_DEBUG_KMS("memory self refresh disabled\n");
1673 }
1674}
1675
1676static void i830_update_wm(struct drm_crtc *unused_crtc)
1677{
1678 struct drm_device *dev = unused_crtc->dev;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 struct drm_crtc *crtc;
1681 const struct drm_display_mode *adjusted_mode;
1682 uint32_t fwater_lo;
1683 int planea_wm;
1684
1685 crtc = single_enabled_crtc(dev);
1686 if (crtc == NULL)
1687 return;
1688
1689 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1690 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1691 &i830_wm_info,
1692 dev_priv->display.get_fifo_size(dev, 0),
1693 4, latency_ns);
1694 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1695 fwater_lo |= (3<<8) | planea_wm;
1696
1697 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1698
1699 I915_WRITE(FW_BLC, fwater_lo);
1700}
1701
1702/*
1703 * Check the wm result.
1704 *
1705 * If any calculated watermark values is larger than the maximum value that
1706 * can be programmed into the associated watermark register, that watermark
1707 * must be disabled.
1708 */
1709static bool ironlake_check_srwm(struct drm_device *dev, int level,
1710 int fbc_wm, int display_wm, int cursor_wm,
1711 const struct intel_watermark_params *display,
1712 const struct intel_watermark_params *cursor)
1713{
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715
1716 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1717 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1718
1719 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1720 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1721 fbc_wm, SNB_FBC_MAX_SRWM, level);
1722
1723 /* fbc has it's own way to disable FBC WM */
1724 I915_WRITE(DISP_ARB_CTL,
1725 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1726 return false;
1727 } else if (INTEL_INFO(dev)->gen >= 6) {
1728 /* enable FBC WM (except on ILK, where it must remain off) */
1729 I915_WRITE(DISP_ARB_CTL,
1730 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1731 }
1732
1733 if (display_wm > display->max_wm) {
1734 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1735 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1736 return false;
1737 }
1738
1739 if (cursor_wm > cursor->max_wm) {
1740 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1741 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1742 return false;
1743 }
1744
1745 if (!(fbc_wm || display_wm || cursor_wm)) {
1746 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1747 return false;
1748 }
1749
1750 return true;
1751}
1752
1753/*
1754 * Compute watermark values of WM[1-3],
1755 */
1756static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1757 int latency_ns,
1758 const struct intel_watermark_params *display,
1759 const struct intel_watermark_params *cursor,
1760 int *fbc_wm, int *display_wm, int *cursor_wm)
1761{
1762 struct drm_crtc *crtc;
1763 const struct drm_display_mode *adjusted_mode;
1764 unsigned long line_time_us;
1765 int hdisplay, htotal, pixel_size, clock;
1766 int line_count, line_size;
1767 int small, large;
1768 int entries;
1769
1770 if (!latency_ns) {
1771 *fbc_wm = *display_wm = *cursor_wm = 0;
1772 return false;
1773 }
1774
1775 crtc = intel_get_crtc_for_plane(dev, plane);
1776 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1777 clock = adjusted_mode->crtc_clock;
1778 htotal = adjusted_mode->htotal;
1779 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1780 pixel_size = crtc->fb->bits_per_pixel / 8;
1781
1782 line_time_us = (htotal * 1000) / clock;
1783 line_count = (latency_ns / line_time_us + 1000) / 1000;
1784 line_size = hdisplay * pixel_size;
1785
1786 /* Use the minimum of the small and large buffer method for primary */
1787 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1788 large = line_count * line_size;
1789
1790 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1791 *display_wm = entries + display->guard_size;
1792
1793 /*
1794 * Spec says:
1795 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1796 */
1797 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1798
1799 /* calculate the self-refresh watermark for display cursor */
1800 entries = line_count * pixel_size * 64;
1801 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1802 *cursor_wm = entries + cursor->guard_size;
1803
1804 return ironlake_check_srwm(dev, level,
1805 *fbc_wm, *display_wm, *cursor_wm,
1806 display, cursor);
1807}
1808
1809static void ironlake_update_wm(struct drm_crtc *crtc)
1810{
1811 struct drm_device *dev = crtc->dev;
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813 int fbc_wm, plane_wm, cursor_wm;
1814 unsigned int enabled;
1815
1816 enabled = 0;
1817 if (g4x_compute_wm0(dev, PIPE_A,
1818 &ironlake_display_wm_info,
1819 dev_priv->wm.pri_latency[0] * 100,
1820 &ironlake_cursor_wm_info,
1821 dev_priv->wm.cur_latency[0] * 100,
1822 &plane_wm, &cursor_wm)) {
1823 I915_WRITE(WM0_PIPEA_ILK,
1824 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1825 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1826 " plane %d, " "cursor: %d\n",
1827 plane_wm, cursor_wm);
1828 enabled |= 1 << PIPE_A;
1829 }
1830
1831 if (g4x_compute_wm0(dev, PIPE_B,
1832 &ironlake_display_wm_info,
1833 dev_priv->wm.pri_latency[0] * 100,
1834 &ironlake_cursor_wm_info,
1835 dev_priv->wm.cur_latency[0] * 100,
1836 &plane_wm, &cursor_wm)) {
1837 I915_WRITE(WM0_PIPEB_ILK,
1838 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1839 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1840 " plane %d, cursor: %d\n",
1841 plane_wm, cursor_wm);
1842 enabled |= 1 << PIPE_B;
1843 }
1844
1845 /*
1846 * Calculate and update the self-refresh watermark only when one
1847 * display plane is used.
1848 */
1849 I915_WRITE(WM3_LP_ILK, 0);
1850 I915_WRITE(WM2_LP_ILK, 0);
1851 I915_WRITE(WM1_LP_ILK, 0);
1852
1853 if (!single_plane_enabled(enabled))
1854 return;
1855 enabled = ffs(enabled) - 1;
1856
1857 /* WM1 */
1858 if (!ironlake_compute_srwm(dev, 1, enabled,
1859 dev_priv->wm.pri_latency[1] * 500,
1860 &ironlake_display_srwm_info,
1861 &ironlake_cursor_srwm_info,
1862 &fbc_wm, &plane_wm, &cursor_wm))
1863 return;
1864
1865 I915_WRITE(WM1_LP_ILK,
1866 WM1_LP_SR_EN |
1867 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1868 (fbc_wm << WM1_LP_FBC_SHIFT) |
1869 (plane_wm << WM1_LP_SR_SHIFT) |
1870 cursor_wm);
1871
1872 /* WM2 */
1873 if (!ironlake_compute_srwm(dev, 2, enabled,
1874 dev_priv->wm.pri_latency[2] * 500,
1875 &ironlake_display_srwm_info,
1876 &ironlake_cursor_srwm_info,
1877 &fbc_wm, &plane_wm, &cursor_wm))
1878 return;
1879
1880 I915_WRITE(WM2_LP_ILK,
1881 WM2_LP_EN |
1882 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1883 (fbc_wm << WM1_LP_FBC_SHIFT) |
1884 (plane_wm << WM1_LP_SR_SHIFT) |
1885 cursor_wm);
1886
1887 /*
1888 * WM3 is unsupported on ILK, probably because we don't have latency
1889 * data for that power state
1890 */
1891}
1892
1893static void sandybridge_update_wm(struct drm_crtc *crtc)
1894{
1895 struct drm_device *dev = crtc->dev;
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1898 u32 val;
1899 int fbc_wm, plane_wm, cursor_wm;
1900 unsigned int enabled;
1901
1902 enabled = 0;
1903 if (g4x_compute_wm0(dev, PIPE_A,
1904 &sandybridge_display_wm_info, latency,
1905 &sandybridge_cursor_wm_info, latency,
1906 &plane_wm, &cursor_wm)) {
1907 val = I915_READ(WM0_PIPEA_ILK);
1908 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1909 I915_WRITE(WM0_PIPEA_ILK, val |
1910 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1911 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1912 " plane %d, " "cursor: %d\n",
1913 plane_wm, cursor_wm);
1914 enabled |= 1 << PIPE_A;
1915 }
1916
1917 if (g4x_compute_wm0(dev, PIPE_B,
1918 &sandybridge_display_wm_info, latency,
1919 &sandybridge_cursor_wm_info, latency,
1920 &plane_wm, &cursor_wm)) {
1921 val = I915_READ(WM0_PIPEB_ILK);
1922 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1923 I915_WRITE(WM0_PIPEB_ILK, val |
1924 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1925 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1926 " plane %d, cursor: %d\n",
1927 plane_wm, cursor_wm);
1928 enabled |= 1 << PIPE_B;
1929 }
1930
1931 /*
1932 * Calculate and update the self-refresh watermark only when one
1933 * display plane is used.
1934 *
1935 * SNB support 3 levels of watermark.
1936 *
1937 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1938 * and disabled in the descending order
1939 *
1940 */
1941 I915_WRITE(WM3_LP_ILK, 0);
1942 I915_WRITE(WM2_LP_ILK, 0);
1943 I915_WRITE(WM1_LP_ILK, 0);
1944
1945 if (!single_plane_enabled(enabled) ||
1946 dev_priv->sprite_scaling_enabled)
1947 return;
1948 enabled = ffs(enabled) - 1;
1949
1950 /* WM1 */
1951 if (!ironlake_compute_srwm(dev, 1, enabled,
1952 dev_priv->wm.pri_latency[1] * 500,
1953 &sandybridge_display_srwm_info,
1954 &sandybridge_cursor_srwm_info,
1955 &fbc_wm, &plane_wm, &cursor_wm))
1956 return;
1957
1958 I915_WRITE(WM1_LP_ILK,
1959 WM1_LP_SR_EN |
1960 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1961 (fbc_wm << WM1_LP_FBC_SHIFT) |
1962 (plane_wm << WM1_LP_SR_SHIFT) |
1963 cursor_wm);
1964
1965 /* WM2 */
1966 if (!ironlake_compute_srwm(dev, 2, enabled,
1967 dev_priv->wm.pri_latency[2] * 500,
1968 &sandybridge_display_srwm_info,
1969 &sandybridge_cursor_srwm_info,
1970 &fbc_wm, &plane_wm, &cursor_wm))
1971 return;
1972
1973 I915_WRITE(WM2_LP_ILK,
1974 WM2_LP_EN |
1975 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1976 (fbc_wm << WM1_LP_FBC_SHIFT) |
1977 (plane_wm << WM1_LP_SR_SHIFT) |
1978 cursor_wm);
1979
1980 /* WM3 */
1981 if (!ironlake_compute_srwm(dev, 3, enabled,
1982 dev_priv->wm.pri_latency[3] * 500,
1983 &sandybridge_display_srwm_info,
1984 &sandybridge_cursor_srwm_info,
1985 &fbc_wm, &plane_wm, &cursor_wm))
1986 return;
1987
1988 I915_WRITE(WM3_LP_ILK,
1989 WM3_LP_EN |
1990 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1991 (fbc_wm << WM1_LP_FBC_SHIFT) |
1992 (plane_wm << WM1_LP_SR_SHIFT) |
1993 cursor_wm);
1994}
1995
1996static void ivybridge_update_wm(struct drm_crtc *crtc)
1997{
1998 struct drm_device *dev = crtc->dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
2001 u32 val;
2002 int fbc_wm, plane_wm, cursor_wm;
2003 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2004 unsigned int enabled;
2005
2006 enabled = 0;
2007 if (g4x_compute_wm0(dev, PIPE_A,
2008 &sandybridge_display_wm_info, latency,
2009 &sandybridge_cursor_wm_info, latency,
2010 &plane_wm, &cursor_wm)) {
2011 val = I915_READ(WM0_PIPEA_ILK);
2012 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2013 I915_WRITE(WM0_PIPEA_ILK, val |
2014 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2015 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2016 " plane %d, " "cursor: %d\n",
2017 plane_wm, cursor_wm);
2018 enabled |= 1 << PIPE_A;
2019 }
2020
2021 if (g4x_compute_wm0(dev, PIPE_B,
2022 &sandybridge_display_wm_info, latency,
2023 &sandybridge_cursor_wm_info, latency,
2024 &plane_wm, &cursor_wm)) {
2025 val = I915_READ(WM0_PIPEB_ILK);
2026 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2027 I915_WRITE(WM0_PIPEB_ILK, val |
2028 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2029 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2030 " plane %d, cursor: %d\n",
2031 plane_wm, cursor_wm);
2032 enabled |= 1 << PIPE_B;
2033 }
2034
2035 if (g4x_compute_wm0(dev, PIPE_C,
2036 &sandybridge_display_wm_info, latency,
2037 &sandybridge_cursor_wm_info, latency,
2038 &plane_wm, &cursor_wm)) {
2039 val = I915_READ(WM0_PIPEC_IVB);
2040 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2041 I915_WRITE(WM0_PIPEC_IVB, val |
2042 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2043 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2044 " plane %d, cursor: %d\n",
2045 plane_wm, cursor_wm);
2046 enabled |= 1 << PIPE_C;
2047 }
2048
2049 /*
2050 * Calculate and update the self-refresh watermark only when one
2051 * display plane is used.
2052 *
2053 * SNB support 3 levels of watermark.
2054 *
2055 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2056 * and disabled in the descending order
2057 *
2058 */
2059 I915_WRITE(WM3_LP_ILK, 0);
2060 I915_WRITE(WM2_LP_ILK, 0);
2061 I915_WRITE(WM1_LP_ILK, 0);
2062
2063 if (!single_plane_enabled(enabled) ||
2064 dev_priv->sprite_scaling_enabled)
2065 return;
2066 enabled = ffs(enabled) - 1;
2067
2068 /* WM1 */
2069 if (!ironlake_compute_srwm(dev, 1, enabled,
2070 dev_priv->wm.pri_latency[1] * 500,
2071 &sandybridge_display_srwm_info,
2072 &sandybridge_cursor_srwm_info,
2073 &fbc_wm, &plane_wm, &cursor_wm))
2074 return;
2075
2076 I915_WRITE(WM1_LP_ILK,
2077 WM1_LP_SR_EN |
2078 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2079 (fbc_wm << WM1_LP_FBC_SHIFT) |
2080 (plane_wm << WM1_LP_SR_SHIFT) |
2081 cursor_wm);
2082
2083 /* WM2 */
2084 if (!ironlake_compute_srwm(dev, 2, enabled,
2085 dev_priv->wm.pri_latency[2] * 500,
2086 &sandybridge_display_srwm_info,
2087 &sandybridge_cursor_srwm_info,
2088 &fbc_wm, &plane_wm, &cursor_wm))
2089 return;
2090
2091 I915_WRITE(WM2_LP_ILK,
2092 WM2_LP_EN |
2093 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2094 (fbc_wm << WM1_LP_FBC_SHIFT) |
2095 (plane_wm << WM1_LP_SR_SHIFT) |
2096 cursor_wm);
2097
2098 /* WM3, note we have to correct the cursor latency */
2099 if (!ironlake_compute_srwm(dev, 3, enabled,
2100 dev_priv->wm.pri_latency[3] * 500,
2101 &sandybridge_display_srwm_info,
2102 &sandybridge_cursor_srwm_info,
2103 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2104 !ironlake_compute_srwm(dev, 3, enabled,
2105 dev_priv->wm.cur_latency[3] * 500,
2106 &sandybridge_display_srwm_info,
2107 &sandybridge_cursor_srwm_info,
2108 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2109 return;
2110
2111 I915_WRITE(WM3_LP_ILK,
2112 WM3_LP_EN |
2113 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2114 (fbc_wm << WM1_LP_FBC_SHIFT) |
2115 (plane_wm << WM1_LP_SR_SHIFT) |
2116 cursor_wm);
2117}
2118
2119static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2120 struct drm_crtc *crtc)
2121{
2122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2123 uint32_t pixel_rate;
2124
2125 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2126
2127 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2128 * adjust the pixel_rate here. */
2129
2130 if (intel_crtc->config.pch_pfit.enabled) {
2131 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2132 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2133
2134 pipe_w = intel_crtc->config.pipe_src_w;
2135 pipe_h = intel_crtc->config.pipe_src_h;
2136 pfit_w = (pfit_size >> 16) & 0xFFFF;
2137 pfit_h = pfit_size & 0xFFFF;
2138 if (pipe_w < pfit_w)
2139 pipe_w = pfit_w;
2140 if (pipe_h < pfit_h)
2141 pipe_h = pfit_h;
2142
2143 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2144 pfit_w * pfit_h);
2145 }
2146
2147 return pixel_rate;
2148}
2149
2150/* latency must be in 0.1us units. */
2151static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2152 uint32_t latency)
2153{
2154 uint64_t ret;
2155
2156 if (WARN(latency == 0, "Latency value missing\n"))
2157 return UINT_MAX;
2158
2159 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2160 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2161
2162 return ret;
2163}
2164
2165/* latency must be in 0.1us units. */
2166static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2167 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2168 uint32_t latency)
2169{
2170 uint32_t ret;
2171
2172 if (WARN(latency == 0, "Latency value missing\n"))
2173 return UINT_MAX;
2174
2175 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2176 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2177 ret = DIV_ROUND_UP(ret, 64) + 2;
2178 return ret;
2179}
2180
2181static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2182 uint8_t bytes_per_pixel)
2183{
2184 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2185}
2186
2187struct hsw_pipe_wm_parameters {
2188 bool active;
2189 uint32_t pipe_htotal;
2190 uint32_t pixel_rate;
2191 struct intel_plane_wm_parameters pri;
2192 struct intel_plane_wm_parameters spr;
2193 struct intel_plane_wm_parameters cur;
2194};
2195
2196struct hsw_wm_maximums {
2197 uint16_t pri;
2198 uint16_t spr;
2199 uint16_t cur;
2200 uint16_t fbc;
2201};
2202
2203/* used in computing the new watermarks state */
2204struct intel_wm_config {
2205 unsigned int num_pipes_active;
2206 bool sprites_enabled;
2207 bool sprites_scaled;
2208};
2209
2210/*
2211 * For both WM_PIPE and WM_LP.
2212 * mem_value must be in 0.1us units.
2213 */
2214static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2215 uint32_t mem_value,
2216 bool is_lp)
2217{
2218 uint32_t method1, method2;
2219
2220 if (!params->active || !params->pri.enabled)
2221 return 0;
2222
2223 method1 = ilk_wm_method1(params->pixel_rate,
2224 params->pri.bytes_per_pixel,
2225 mem_value);
2226
2227 if (!is_lp)
2228 return method1;
2229
2230 method2 = ilk_wm_method2(params->pixel_rate,
2231 params->pipe_htotal,
2232 params->pri.horiz_pixels,
2233 params->pri.bytes_per_pixel,
2234 mem_value);
2235
2236 return min(method1, method2);
2237}
2238
2239/*
2240 * For both WM_PIPE and WM_LP.
2241 * mem_value must be in 0.1us units.
2242 */
2243static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2244 uint32_t mem_value)
2245{
2246 uint32_t method1, method2;
2247
2248 if (!params->active || !params->spr.enabled)
2249 return 0;
2250
2251 method1 = ilk_wm_method1(params->pixel_rate,
2252 params->spr.bytes_per_pixel,
2253 mem_value);
2254 method2 = ilk_wm_method2(params->pixel_rate,
2255 params->pipe_htotal,
2256 params->spr.horiz_pixels,
2257 params->spr.bytes_per_pixel,
2258 mem_value);
2259 return min(method1, method2);
2260}
2261
2262/*
2263 * For both WM_PIPE and WM_LP.
2264 * mem_value must be in 0.1us units.
2265 */
2266static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2267 uint32_t mem_value)
2268{
2269 if (!params->active || !params->cur.enabled)
2270 return 0;
2271
2272 return ilk_wm_method2(params->pixel_rate,
2273 params->pipe_htotal,
2274 params->cur.horiz_pixels,
2275 params->cur.bytes_per_pixel,
2276 mem_value);
2277}
2278
2279/* Only for WM_LP. */
2280static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2281 uint32_t pri_val)
2282{
2283 if (!params->active || !params->pri.enabled)
2284 return 0;
2285
2286 return ilk_wm_fbc(pri_val,
2287 params->pri.horiz_pixels,
2288 params->pri.bytes_per_pixel);
2289}
2290
2291static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2292{
2293 if (INTEL_INFO(dev)->gen >= 7)
2294 return 768;
2295 else
2296 return 512;
2297}
2298
2299/* Calculate the maximum primary/sprite plane watermark */
2300static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2301 int level,
2302 const struct intel_wm_config *config,
2303 enum intel_ddb_partitioning ddb_partitioning,
2304 bool is_sprite)
2305{
2306 unsigned int fifo_size = ilk_display_fifo_size(dev);
2307 unsigned int max;
2308
2309 /* if sprites aren't enabled, sprites get nothing */
2310 if (is_sprite && !config->sprites_enabled)
2311 return 0;
2312
2313 /* HSW allows LP1+ watermarks even with multiple pipes */
2314 if (level == 0 || config->num_pipes_active > 1) {
2315 fifo_size /= INTEL_INFO(dev)->num_pipes;
2316
2317 /*
2318 * For some reason the non self refresh
2319 * FIFO size is only half of the self
2320 * refresh FIFO size on ILK/SNB.
2321 */
2322 if (INTEL_INFO(dev)->gen <= 6)
2323 fifo_size /= 2;
2324 }
2325
2326 if (config->sprites_enabled) {
2327 /* level 0 is always calculated with 1:1 split */
2328 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2329 if (is_sprite)
2330 fifo_size *= 5;
2331 fifo_size /= 6;
2332 } else {
2333 fifo_size /= 2;
2334 }
2335 }
2336
2337 /* clamp to max that the registers can hold */
2338 if (INTEL_INFO(dev)->gen >= 7)
2339 /* IVB/HSW primary/sprite plane watermarks */
2340 max = level == 0 ? 127 : 1023;
2341 else if (!is_sprite)
2342 /* ILK/SNB primary plane watermarks */
2343 max = level == 0 ? 127 : 511;
2344 else
2345 /* ILK/SNB sprite plane watermarks */
2346 max = level == 0 ? 63 : 255;
2347
2348 return min(fifo_size, max);
2349}
2350
2351/* Calculate the maximum cursor plane watermark */
2352static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2353 int level,
2354 const struct intel_wm_config *config)
2355{
2356 /* HSW LP1+ watermarks w/ multiple pipes */
2357 if (level > 0 && config->num_pipes_active > 1)
2358 return 64;
2359
2360 /* otherwise just report max that registers can hold */
2361 if (INTEL_INFO(dev)->gen >= 7)
2362 return level == 0 ? 63 : 255;
2363 else
2364 return level == 0 ? 31 : 63;
2365}
2366
2367/* Calculate the maximum FBC watermark */
2368static unsigned int ilk_fbc_wm_max(void)
2369{
2370 /* max that registers can hold */
2371 return 15;
2372}
2373
2374static void ilk_wm_max(struct drm_device *dev,
2375 int level,
2376 const struct intel_wm_config *config,
2377 enum intel_ddb_partitioning ddb_partitioning,
2378 struct hsw_wm_maximums *max)
2379{
2380 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2381 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2382 max->cur = ilk_cursor_wm_max(dev, level, config);
2383 max->fbc = ilk_fbc_wm_max();
2384}
2385
2386static bool ilk_check_wm(int level,
2387 const struct hsw_wm_maximums *max,
2388 struct intel_wm_level *result)
2389{
2390 bool ret;
2391
2392 /* already determined to be invalid? */
2393 if (!result->enable)
2394 return false;
2395
2396 result->enable = result->pri_val <= max->pri &&
2397 result->spr_val <= max->spr &&
2398 result->cur_val <= max->cur;
2399
2400 ret = result->enable;
2401
2402 /*
2403 * HACK until we can pre-compute everything,
2404 * and thus fail gracefully if LP0 watermarks
2405 * are exceeded...
2406 */
2407 if (level == 0 && !result->enable) {
2408 if (result->pri_val > max->pri)
2409 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2410 level, result->pri_val, max->pri);
2411 if (result->spr_val > max->spr)
2412 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2413 level, result->spr_val, max->spr);
2414 if (result->cur_val > max->cur)
2415 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2416 level, result->cur_val, max->cur);
2417
2418 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2419 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2420 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2421 result->enable = true;
2422 }
2423
2424 DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2425
2426 return ret;
2427}
2428
2429static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2430 int level,
2431 const struct hsw_pipe_wm_parameters *p,
2432 struct intel_wm_level *result)
2433{
2434 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2435 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2436 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2437
2438 /* WM1+ latency values stored in 0.5us units */
2439 if (level > 0) {
2440 pri_latency *= 5;
2441 spr_latency *= 5;
2442 cur_latency *= 5;
2443 }
2444
2445 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2446 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2447 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2448 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2449 result->enable = true;
2450}
2451
2452static uint32_t
2453hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2454{
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2457 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2458 u32 linetime, ips_linetime;
2459
2460 if (!intel_crtc_active(crtc))
2461 return 0;
2462
2463 /* The WM are computed with base on how long it takes to fill a single
2464 * row at the given clock rate, multiplied by 8.
2465 * */
2466 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2467 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2468 intel_ddi_get_cdclk_freq(dev_priv));
2469
2470 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2471 PIPE_WM_LINETIME_TIME(linetime);
2472}
2473
2474static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2475{
2476 struct drm_i915_private *dev_priv = dev->dev_private;
2477
2478 if (IS_HASWELL(dev)) {
2479 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2480
2481 wm[0] = (sskpd >> 56) & 0xFF;
2482 if (wm[0] == 0)
2483 wm[0] = sskpd & 0xF;
2484 wm[1] = (sskpd >> 4) & 0xFF;
2485 wm[2] = (sskpd >> 12) & 0xFF;
2486 wm[3] = (sskpd >> 20) & 0x1FF;
2487 wm[4] = (sskpd >> 32) & 0x1FF;
2488 } else if (INTEL_INFO(dev)->gen >= 6) {
2489 uint32_t sskpd = I915_READ(MCH_SSKPD);
2490
2491 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2492 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2493 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2494 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2495 } else if (INTEL_INFO(dev)->gen >= 5) {
2496 uint32_t mltr = I915_READ(MLTR_ILK);
2497
2498 /* ILK primary LP0 latency is 700 ns */
2499 wm[0] = 7;
2500 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2501 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2502 }
2503}
2504
2505static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2506{
2507 /* ILK sprite LP0 latency is 1300 ns */
2508 if (INTEL_INFO(dev)->gen == 5)
2509 wm[0] = 13;
2510}
2511
2512static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2513{
2514 /* ILK cursor LP0 latency is 1300 ns */
2515 if (INTEL_INFO(dev)->gen == 5)
2516 wm[0] = 13;
2517
2518 /* WaDoubleCursorLP3Latency:ivb */
2519 if (IS_IVYBRIDGE(dev))
2520 wm[3] *= 2;
2521}
2522
2523static int ilk_wm_max_level(const struct drm_device *dev)
2524{
2525 /* how many WM levels are we expecting */
2526 if (IS_HASWELL(dev))
2527 return 4;
2528 else if (INTEL_INFO(dev)->gen >= 6)
2529 return 3;
2530 else
2531 return 2;
2532}
2533
2534static void intel_print_wm_latency(struct drm_device *dev,
2535 const char *name,
2536 const uint16_t wm[5])
2537{
2538 int level, max_level = ilk_wm_max_level(dev);
2539
2540 for (level = 0; level <= max_level; level++) {
2541 unsigned int latency = wm[level];
2542
2543 if (latency == 0) {
2544 DRM_ERROR("%s WM%d latency not provided\n",
2545 name, level);
2546 continue;
2547 }
2548
2549 /* WM1+ latency values in 0.5us units */
2550 if (level > 0)
2551 latency *= 5;
2552
2553 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2554 name, level, wm[level],
2555 latency / 10, latency % 10);
2556 }
2557}
2558
2559static void intel_setup_wm_latency(struct drm_device *dev)
2560{
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562
2563 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2564
2565 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2566 sizeof(dev_priv->wm.pri_latency));
2567 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2568 sizeof(dev_priv->wm.pri_latency));
2569
2570 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2571 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2572
2573 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2574 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2575 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2576}
2577
2578static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2579 struct hsw_pipe_wm_parameters *p,
2580 struct intel_wm_config *config)
2581{
2582 struct drm_device *dev = crtc->dev;
2583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2584 enum pipe pipe = intel_crtc->pipe;
2585 struct drm_plane *plane;
2586
2587 p->active = intel_crtc_active(crtc);
2588 if (p->active) {
2589 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2590 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2591 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2592 p->cur.bytes_per_pixel = 4;
2593 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2594 p->cur.horiz_pixels = 64;
2595 /* TODO: for now, assume primary and cursor planes are always enabled. */
2596 p->pri.enabled = true;
2597 p->cur.enabled = true;
2598 }
2599
2600 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2601 config->num_pipes_active += intel_crtc_active(crtc);
2602
2603 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2604 struct intel_plane *intel_plane = to_intel_plane(plane);
2605
2606 if (intel_plane->pipe == pipe)
2607 p->spr = intel_plane->wm;
2608
2609 config->sprites_enabled |= intel_plane->wm.enabled;
2610 config->sprites_scaled |= intel_plane->wm.scaled;
2611 }
2612}
2613
2614/* Compute new watermarks for the pipe */
2615static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2616 const struct hsw_pipe_wm_parameters *params,
2617 struct intel_pipe_wm *pipe_wm)
2618{
2619 struct drm_device *dev = crtc->dev;
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 int level, max_level = ilk_wm_max_level(dev);
2622 /* LP0 watermark maximums depend on this pipe alone */
2623 struct intel_wm_config config = {
2624 .num_pipes_active = 1,
2625 .sprites_enabled = params->spr.enabled,
2626 .sprites_scaled = params->spr.scaled,
2627 };
2628 struct hsw_wm_maximums max;
2629
2630 /* LP0 watermarks always use 1/2 DDB partitioning */
2631 ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2632
2633 for (level = 0; level <= max_level; level++)
2634 ilk_compute_wm_level(dev_priv, level, params,
2635 &pipe_wm->wm[level]);
2636
2637 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2638
2639 /* At least LP0 must be valid */
2640 return ilk_check_wm(0, &max, &pipe_wm->wm[0]);
2641}
2642
2643/*
2644 * Merge the watermarks from all active pipes for a specific level.
2645 */
2646static void ilk_merge_wm_level(struct drm_device *dev,
2647 int level,
2648 struct intel_wm_level *ret_wm)
2649{
2650 const struct intel_crtc *intel_crtc;
2651
2652 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2653 const struct intel_wm_level *wm =
2654 &intel_crtc->wm.active.wm[level];
2655
2656 if (!wm->enable)
2657 return;
2658
2659 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2660 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2661 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2662 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2663 }
2664
2665 ret_wm->enable = true;
2666}
2667
2668/*
2669 * Merge all low power watermarks for all active pipes.
2670 */
2671static void ilk_wm_merge(struct drm_device *dev,
2672 const struct hsw_wm_maximums *max,
2673 struct intel_pipe_wm *merged)
2674{
2675 int level, max_level = ilk_wm_max_level(dev);
2676
2677 merged->fbc_wm_enabled = true;
2678
2679 /* merge each WM1+ level */
2680 for (level = 1; level <= max_level; level++) {
2681 struct intel_wm_level *wm = &merged->wm[level];
2682
2683 ilk_merge_wm_level(dev, level, wm);
2684
2685 if (!ilk_check_wm(level, max, wm))
2686 break;
2687
2688 /*
2689 * The spec says it is preferred to disable
2690 * FBC WMs instead of disabling a WM level.
2691 */
2692 if (wm->fbc_val > max->fbc) {
2693 merged->fbc_wm_enabled = false;
2694 wm->fbc_val = 0;
2695 }
2696 }
2697}
2698
2699static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2700{
2701 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2702 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2703}
2704
2705static void hsw_compute_wm_results(struct drm_device *dev,
2706 const struct intel_pipe_wm *merged,
2707 enum intel_ddb_partitioning partitioning,
2708 struct hsw_wm_values *results)
2709{
2710 struct intel_crtc *intel_crtc;
2711 int level, wm_lp;
2712
2713 results->enable_fbc_wm = merged->fbc_wm_enabled;
2714 results->partitioning = partitioning;
2715
2716 /* LP1+ register values */
2717 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2718 const struct intel_wm_level *r;
2719
2720 level = ilk_wm_lp_to_level(wm_lp, merged);
2721
2722 r = &merged->wm[level];
2723 if (!r->enable)
2724 break;
2725
2726 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2727 r->fbc_val,
2728 r->pri_val,
2729 r->cur_val);
2730 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2731 }
2732
2733 /* LP0 register values */
2734 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2735 enum pipe pipe = intel_crtc->pipe;
2736 const struct intel_wm_level *r =
2737 &intel_crtc->wm.active.wm[0];
2738
2739 if (WARN_ON(!r->enable))
2740 continue;
2741
2742 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2743
2744 results->wm_pipe[pipe] =
2745 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2746 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2747 r->cur_val;
2748 }
2749}
2750
2751/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2752 * case both are at the same level. Prefer r1 in case they're the same. */
2753static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2754 struct intel_pipe_wm *r1,
2755 struct intel_pipe_wm *r2)
2756{
2757 int level, max_level = ilk_wm_max_level(dev);
2758 int level1 = 0, level2 = 0;
2759
2760 for (level = 1; level <= max_level; level++) {
2761 if (r1->wm[level].enable)
2762 level1 = level;
2763 if (r2->wm[level].enable)
2764 level2 = level;
2765 }
2766
2767 if (level1 == level2) {
2768 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2769 return r2;
2770 else
2771 return r1;
2772 } else if (level1 > level2) {
2773 return r1;
2774 } else {
2775 return r2;
2776 }
2777}
2778
2779/*
2780 * The spec says we shouldn't write when we don't need, because every write
2781 * causes WMs to be re-evaluated, expending some power.
2782 */
2783static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2784 struct hsw_wm_values *results)
2785{
2786 struct hsw_wm_values previous;
2787 uint32_t val;
2788
2789 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2790 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2791 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2792 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2793 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2794 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2795 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2796 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2797 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2798 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2799 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2800 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2801
2802 previous.partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2803 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2804
2805 previous.enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2806
2807 if (memcmp(results, &previous, sizeof(*results)) == 0)
2808 return;
2809
2810 if (previous.wm_lp[2] != 0)
2811 I915_WRITE(WM3_LP_ILK, 0);
2812 if (previous.wm_lp[1] != 0)
2813 I915_WRITE(WM2_LP_ILK, 0);
2814 if (previous.wm_lp[0] != 0)
2815 I915_WRITE(WM1_LP_ILK, 0);
2816
2817 if (previous.wm_pipe[0] != results->wm_pipe[0])
2818 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2819 if (previous.wm_pipe[1] != results->wm_pipe[1])
2820 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2821 if (previous.wm_pipe[2] != results->wm_pipe[2])
2822 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2823
2824 if (previous.wm_linetime[0] != results->wm_linetime[0])
2825 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2826 if (previous.wm_linetime[1] != results->wm_linetime[1])
2827 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2828 if (previous.wm_linetime[2] != results->wm_linetime[2])
2829 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2830
2831 if (previous.partitioning != results->partitioning) {
2832 val = I915_READ(WM_MISC);
2833 if (results->partitioning == INTEL_DDB_PART_1_2)
2834 val &= ~WM_MISC_DATA_PARTITION_5_6;
2835 else
2836 val |= WM_MISC_DATA_PARTITION_5_6;
2837 I915_WRITE(WM_MISC, val);
2838 }
2839
2840 if (previous.enable_fbc_wm != results->enable_fbc_wm) {
2841 val = I915_READ(DISP_ARB_CTL);
2842 if (results->enable_fbc_wm)
2843 val &= ~DISP_FBC_WM_DIS;
2844 else
2845 val |= DISP_FBC_WM_DIS;
2846 I915_WRITE(DISP_ARB_CTL, val);
2847 }
2848
2849 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2850 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2851 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2852 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2853 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2854 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2855
2856 if (results->wm_lp[0] != 0)
2857 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2858 if (results->wm_lp[1] != 0)
2859 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2860 if (results->wm_lp[2] != 0)
2861 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2862
2863 dev_priv->wm.hw = *results;
2864}
2865
2866static void haswell_update_wm(struct drm_crtc *crtc)
2867{
2868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2869 struct drm_device *dev = crtc->dev;
2870 struct drm_i915_private *dev_priv = dev->dev_private;
2871 struct hsw_wm_maximums max;
2872 struct hsw_pipe_wm_parameters params = {};
2873 struct hsw_wm_values results = {};
2874 enum intel_ddb_partitioning partitioning;
2875 struct intel_pipe_wm pipe_wm = {};
2876 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2877 struct intel_wm_config config = {};
2878
2879 hsw_compute_wm_parameters(crtc, &params, &config);
2880
2881 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2882
2883 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2884 return;
2885
2886 intel_crtc->wm.active = pipe_wm;
2887
2888 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2889 ilk_wm_merge(dev, &max, &lp_wm_1_2);
2890
2891 /* 5/6 split only in single pipe config on IVB+ */
2892 if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active == 1) {
2893 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2894 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2895
2896 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2897 } else {
2898 best_lp_wm = &lp_wm_1_2;
2899 }
2900
2901 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2902 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2903
2904 hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2905
2906 hsw_write_wm_values(dev_priv, &results);
2907}
2908
2909static void haswell_update_sprite_wm(struct drm_plane *plane,
2910 struct drm_crtc *crtc,
2911 uint32_t sprite_width, int pixel_size,
2912 bool enabled, bool scaled)
2913{
2914 struct intel_plane *intel_plane = to_intel_plane(plane);
2915
2916 intel_plane->wm.enabled = enabled;
2917 intel_plane->wm.scaled = scaled;
2918 intel_plane->wm.horiz_pixels = sprite_width;
2919 intel_plane->wm.bytes_per_pixel = pixel_size;
2920
2921 haswell_update_wm(crtc);
2922}
2923
2924static bool
2925sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2926 uint32_t sprite_width, int pixel_size,
2927 const struct intel_watermark_params *display,
2928 int display_latency_ns, int *sprite_wm)
2929{
2930 struct drm_crtc *crtc;
2931 int clock;
2932 int entries, tlb_miss;
2933
2934 crtc = intel_get_crtc_for_plane(dev, plane);
2935 if (!intel_crtc_active(crtc)) {
2936 *sprite_wm = display->guard_size;
2937 return false;
2938 }
2939
2940 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2941
2942 /* Use the small buffer method to calculate the sprite watermark */
2943 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2944 tlb_miss = display->fifo_size*display->cacheline_size -
2945 sprite_width * 8;
2946 if (tlb_miss > 0)
2947 entries += tlb_miss;
2948 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2949 *sprite_wm = entries + display->guard_size;
2950 if (*sprite_wm > (int)display->max_wm)
2951 *sprite_wm = display->max_wm;
2952
2953 return true;
2954}
2955
2956static bool
2957sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2958 uint32_t sprite_width, int pixel_size,
2959 const struct intel_watermark_params *display,
2960 int latency_ns, int *sprite_wm)
2961{
2962 struct drm_crtc *crtc;
2963 unsigned long line_time_us;
2964 int clock;
2965 int line_count, line_size;
2966 int small, large;
2967 int entries;
2968
2969 if (!latency_ns) {
2970 *sprite_wm = 0;
2971 return false;
2972 }
2973
2974 crtc = intel_get_crtc_for_plane(dev, plane);
2975 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2976 if (!clock) {
2977 *sprite_wm = 0;
2978 return false;
2979 }
2980
2981 line_time_us = (sprite_width * 1000) / clock;
2982 if (!line_time_us) {
2983 *sprite_wm = 0;
2984 return false;
2985 }
2986
2987 line_count = (latency_ns / line_time_us + 1000) / 1000;
2988 line_size = sprite_width * pixel_size;
2989
2990 /* Use the minimum of the small and large buffer method for primary */
2991 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2992 large = line_count * line_size;
2993
2994 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2995 *sprite_wm = entries + display->guard_size;
2996
2997 return *sprite_wm > 0x3ff ? false : true;
2998}
2999
3000static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3001 struct drm_crtc *crtc,
3002 uint32_t sprite_width, int pixel_size,
3003 bool enabled, bool scaled)
3004{
3005 struct drm_device *dev = plane->dev;
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 int pipe = to_intel_plane(plane)->pipe;
3008 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
3009 u32 val;
3010 int sprite_wm, reg;
3011 int ret;
3012
3013 if (!enabled)
3014 return;
3015
3016 switch (pipe) {
3017 case 0:
3018 reg = WM0_PIPEA_ILK;
3019 break;
3020 case 1:
3021 reg = WM0_PIPEB_ILK;
3022 break;
3023 case 2:
3024 reg = WM0_PIPEC_IVB;
3025 break;
3026 default:
3027 return; /* bad pipe */
3028 }
3029
3030 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3031 &sandybridge_display_wm_info,
3032 latency, &sprite_wm);
3033 if (!ret) {
3034 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3035 pipe_name(pipe));
3036 return;
3037 }
3038
3039 val = I915_READ(reg);
3040 val &= ~WM0_PIPE_SPRITE_MASK;
3041 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3042 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3043
3044
3045 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3046 pixel_size,
3047 &sandybridge_display_srwm_info,
3048 dev_priv->wm.spr_latency[1] * 500,
3049 &sprite_wm);
3050 if (!ret) {
3051 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3052 pipe_name(pipe));
3053 return;
3054 }
3055 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3056
3057 /* Only IVB has two more LP watermarks for sprite */
3058 if (!IS_IVYBRIDGE(dev))
3059 return;
3060
3061 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3062 pixel_size,
3063 &sandybridge_display_srwm_info,
3064 dev_priv->wm.spr_latency[2] * 500,
3065 &sprite_wm);
3066 if (!ret) {
3067 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3068 pipe_name(pipe));
3069 return;
3070 }
3071 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3072
3073 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3074 pixel_size,
3075 &sandybridge_display_srwm_info,
3076 dev_priv->wm.spr_latency[3] * 500,
3077 &sprite_wm);
3078 if (!ret) {
3079 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3080 pipe_name(pipe));
3081 return;
3082 }
3083 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3084}
3085
3086/**
3087 * intel_update_watermarks - update FIFO watermark values based on current modes
3088 *
3089 * Calculate watermark values for the various WM regs based on current mode
3090 * and plane configuration.
3091 *
3092 * There are several cases to deal with here:
3093 * - normal (i.e. non-self-refresh)
3094 * - self-refresh (SR) mode
3095 * - lines are large relative to FIFO size (buffer can hold up to 2)
3096 * - lines are small relative to FIFO size (buffer can hold more than 2
3097 * lines), so need to account for TLB latency
3098 *
3099 * The normal calculation is:
3100 * watermark = dotclock * bytes per pixel * latency
3101 * where latency is platform & configuration dependent (we assume pessimal
3102 * values here).
3103 *
3104 * The SR calculation is:
3105 * watermark = (trunc(latency/line time)+1) * surface width *
3106 * bytes per pixel
3107 * where
3108 * line time = htotal / dotclock
3109 * surface width = hdisplay for normal plane and 64 for cursor
3110 * and latency is assumed to be high, as above.
3111 *
3112 * The final value programmed to the register should always be rounded up,
3113 * and include an extra 2 entries to account for clock crossings.
3114 *
3115 * We don't use the sprite, so we can ignore that. And on Crestline we have
3116 * to set the non-SR watermarks to 8.
3117 */
3118void intel_update_watermarks(struct drm_crtc *crtc)
3119{
3120 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3121
3122 if (dev_priv->display.update_wm)
3123 dev_priv->display.update_wm(crtc);
3124}
3125
3126void intel_update_sprite_watermarks(struct drm_plane *plane,
3127 struct drm_crtc *crtc,
3128 uint32_t sprite_width, int pixel_size,
3129 bool enabled, bool scaled)
3130{
3131 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3132
3133 if (dev_priv->display.update_sprite_wm)
3134 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3135 pixel_size, enabled, scaled);
3136}
3137
3138static struct drm_i915_gem_object *
3139intel_alloc_context_page(struct drm_device *dev)
3140{
3141 struct drm_i915_gem_object *ctx;
3142 int ret;
3143
3144 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3145
3146 ctx = i915_gem_alloc_object(dev, 4096);
3147 if (!ctx) {
3148 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3149 return NULL;
3150 }
3151
3152 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3153 if (ret) {
3154 DRM_ERROR("failed to pin power context: %d\n", ret);
3155 goto err_unref;
3156 }
3157
3158 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3159 if (ret) {
3160 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3161 goto err_unpin;
3162 }
3163
3164 return ctx;
3165
3166err_unpin:
3167 i915_gem_object_unpin(ctx);
3168err_unref:
3169 drm_gem_object_unreference(&ctx->base);
3170 return NULL;
3171}
3172
3173/**
3174 * Lock protecting IPS related data structures
3175 */
3176DEFINE_SPINLOCK(mchdev_lock);
3177
3178/* Global for IPS driver to get at the current i915 device. Protected by
3179 * mchdev_lock. */
3180static struct drm_i915_private *i915_mch_dev;
3181
3182bool ironlake_set_drps(struct drm_device *dev, u8 val)
3183{
3184 struct drm_i915_private *dev_priv = dev->dev_private;
3185 u16 rgvswctl;
3186
3187 assert_spin_locked(&mchdev_lock);
3188
3189 rgvswctl = I915_READ16(MEMSWCTL);
3190 if (rgvswctl & MEMCTL_CMD_STS) {
3191 DRM_DEBUG("gpu busy, RCS change rejected\n");
3192 return false; /* still busy with another command */
3193 }
3194
3195 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3196 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3197 I915_WRITE16(MEMSWCTL, rgvswctl);
3198 POSTING_READ16(MEMSWCTL);
3199
3200 rgvswctl |= MEMCTL_CMD_STS;
3201 I915_WRITE16(MEMSWCTL, rgvswctl);
3202
3203 return true;
3204}
3205
3206static void ironlake_enable_drps(struct drm_device *dev)
3207{
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 u32 rgvmodectl = I915_READ(MEMMODECTL);
3210 u8 fmax, fmin, fstart, vstart;
3211
3212 spin_lock_irq(&mchdev_lock);
3213
3214 /* Enable temp reporting */
3215 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3216 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3217
3218 /* 100ms RC evaluation intervals */
3219 I915_WRITE(RCUPEI, 100000);
3220 I915_WRITE(RCDNEI, 100000);
3221
3222 /* Set max/min thresholds to 90ms and 80ms respectively */
3223 I915_WRITE(RCBMAXAVG, 90000);
3224 I915_WRITE(RCBMINAVG, 80000);
3225
3226 I915_WRITE(MEMIHYST, 1);
3227
3228 /* Set up min, max, and cur for interrupt handling */
3229 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3230 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3231 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3232 MEMMODE_FSTART_SHIFT;
3233
3234 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3235 PXVFREQ_PX_SHIFT;
3236
3237 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3238 dev_priv->ips.fstart = fstart;
3239
3240 dev_priv->ips.max_delay = fstart;
3241 dev_priv->ips.min_delay = fmin;
3242 dev_priv->ips.cur_delay = fstart;
3243
3244 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3245 fmax, fmin, fstart);
3246
3247 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3248
3249 /*
3250 * Interrupts will be enabled in ironlake_irq_postinstall
3251 */
3252
3253 I915_WRITE(VIDSTART, vstart);
3254 POSTING_READ(VIDSTART);
3255
3256 rgvmodectl |= MEMMODE_SWMODE_EN;
3257 I915_WRITE(MEMMODECTL, rgvmodectl);
3258
3259 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3260 DRM_ERROR("stuck trying to change perf mode\n");
3261 mdelay(1);
3262
3263 ironlake_set_drps(dev, fstart);
3264
3265 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3266 I915_READ(0x112e0);
3267 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3268 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3269 getrawmonotonic(&dev_priv->ips.last_time2);
3270
3271 spin_unlock_irq(&mchdev_lock);
3272}
3273
3274static void ironlake_disable_drps(struct drm_device *dev)
3275{
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 u16 rgvswctl;
3278
3279 spin_lock_irq(&mchdev_lock);
3280
3281 rgvswctl = I915_READ16(MEMSWCTL);
3282
3283 /* Ack interrupts, disable EFC interrupt */
3284 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3285 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3286 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3287 I915_WRITE(DEIIR, DE_PCU_EVENT);
3288 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3289
3290 /* Go back to the starting frequency */
3291 ironlake_set_drps(dev, dev_priv->ips.fstart);
3292 mdelay(1);
3293 rgvswctl |= MEMCTL_CMD_STS;
3294 I915_WRITE(MEMSWCTL, rgvswctl);
3295 mdelay(1);
3296
3297 spin_unlock_irq(&mchdev_lock);
3298}
3299
3300/* There's a funny hw issue where the hw returns all 0 when reading from
3301 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3302 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3303 * all limits and the gpu stuck at whatever frequency it is at atm).
3304 */
3305static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3306{
3307 u32 limits;
3308
3309 limits = 0;
3310
3311 if (*val >= dev_priv->rps.max_delay)
3312 *val = dev_priv->rps.max_delay;
3313 limits |= dev_priv->rps.max_delay << 24;
3314
3315 /* Only set the down limit when we've reached the lowest level to avoid
3316 * getting more interrupts, otherwise leave this clear. This prevents a
3317 * race in the hw when coming out of rc6: There's a tiny window where
3318 * the hw runs at the minimal clock before selecting the desired
3319 * frequency, if the down threshold expires in that window we will not
3320 * receive a down interrupt. */
3321 if (*val <= dev_priv->rps.min_delay) {
3322 *val = dev_priv->rps.min_delay;
3323 limits |= dev_priv->rps.min_delay << 16;
3324 }
3325
3326 return limits;
3327}
3328
3329static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3330{
3331 int new_power;
3332
3333 new_power = dev_priv->rps.power;
3334 switch (dev_priv->rps.power) {
3335 case LOW_POWER:
3336 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3337 new_power = BETWEEN;
3338 break;
3339
3340 case BETWEEN:
3341 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3342 new_power = LOW_POWER;
3343 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3344 new_power = HIGH_POWER;
3345 break;
3346
3347 case HIGH_POWER:
3348 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3349 new_power = BETWEEN;
3350 break;
3351 }
3352 /* Max/min bins are special */
3353 if (val == dev_priv->rps.min_delay)
3354 new_power = LOW_POWER;
3355 if (val == dev_priv->rps.max_delay)
3356 new_power = HIGH_POWER;
3357 if (new_power == dev_priv->rps.power)
3358 return;
3359
3360 /* Note the units here are not exactly 1us, but 1280ns. */
3361 switch (new_power) {
3362 case LOW_POWER:
3363 /* Upclock if more than 95% busy over 16ms */
3364 I915_WRITE(GEN6_RP_UP_EI, 12500);
3365 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3366
3367 /* Downclock if less than 85% busy over 32ms */
3368 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3369 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3370
3371 I915_WRITE(GEN6_RP_CONTROL,
3372 GEN6_RP_MEDIA_TURBO |
3373 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3374 GEN6_RP_MEDIA_IS_GFX |
3375 GEN6_RP_ENABLE |
3376 GEN6_RP_UP_BUSY_AVG |
3377 GEN6_RP_DOWN_IDLE_AVG);
3378 break;
3379
3380 case BETWEEN:
3381 /* Upclock if more than 90% busy over 13ms */
3382 I915_WRITE(GEN6_RP_UP_EI, 10250);
3383 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3384
3385 /* Downclock if less than 75% busy over 32ms */
3386 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3387 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3388
3389 I915_WRITE(GEN6_RP_CONTROL,
3390 GEN6_RP_MEDIA_TURBO |
3391 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3392 GEN6_RP_MEDIA_IS_GFX |
3393 GEN6_RP_ENABLE |
3394 GEN6_RP_UP_BUSY_AVG |
3395 GEN6_RP_DOWN_IDLE_AVG);
3396 break;
3397
3398 case HIGH_POWER:
3399 /* Upclock if more than 85% busy over 10ms */
3400 I915_WRITE(GEN6_RP_UP_EI, 8000);
3401 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3402
3403 /* Downclock if less than 60% busy over 32ms */
3404 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3405 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3406
3407 I915_WRITE(GEN6_RP_CONTROL,
3408 GEN6_RP_MEDIA_TURBO |
3409 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3410 GEN6_RP_MEDIA_IS_GFX |
3411 GEN6_RP_ENABLE |
3412 GEN6_RP_UP_BUSY_AVG |
3413 GEN6_RP_DOWN_IDLE_AVG);
3414 break;
3415 }
3416
3417 dev_priv->rps.power = new_power;
3418 dev_priv->rps.last_adj = 0;
3419}
3420
3421void gen6_set_rps(struct drm_device *dev, u8 val)
3422{
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 u32 limits = gen6_rps_limits(dev_priv, &val);
3425
3426 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3427 WARN_ON(val > dev_priv->rps.max_delay);
3428 WARN_ON(val < dev_priv->rps.min_delay);
3429
3430 if (val == dev_priv->rps.cur_delay)
3431 return;
3432
3433 gen6_set_rps_thresholds(dev_priv, val);
3434
3435 if (IS_HASWELL(dev))
3436 I915_WRITE(GEN6_RPNSWREQ,
3437 HSW_FREQUENCY(val));
3438 else
3439 I915_WRITE(GEN6_RPNSWREQ,
3440 GEN6_FREQUENCY(val) |
3441 GEN6_OFFSET(0) |
3442 GEN6_AGGRESSIVE_TURBO);
3443
3444 /* Make sure we continue to get interrupts
3445 * until we hit the minimum or maximum frequencies.
3446 */
3447 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3448
3449 POSTING_READ(GEN6_RPNSWREQ);
3450
3451 dev_priv->rps.cur_delay = val;
3452
3453 trace_intel_gpu_freq_change(val * 50);
3454}
3455
3456void gen6_rps_idle(struct drm_i915_private *dev_priv)
3457{
3458 mutex_lock(&dev_priv->rps.hw_lock);
3459 if (dev_priv->rps.enabled) {
3460 if (dev_priv->info->is_valleyview)
3461 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3462 else
3463 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3464 dev_priv->rps.last_adj = 0;
3465 }
3466 mutex_unlock(&dev_priv->rps.hw_lock);
3467}
3468
3469void gen6_rps_boost(struct drm_i915_private *dev_priv)
3470{
3471 mutex_lock(&dev_priv->rps.hw_lock);
3472 if (dev_priv->rps.enabled) {
3473 if (dev_priv->info->is_valleyview)
3474 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3475 else
3476 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3477 dev_priv->rps.last_adj = 0;
3478 }
3479 mutex_unlock(&dev_priv->rps.hw_lock);
3480}
3481
3482/*
3483 * Wait until the previous freq change has completed,
3484 * or the timeout elapsed, and then update our notion
3485 * of the current GPU frequency.
3486 */
3487static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3488{
3489 u32 pval;
3490
3491 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3492
3493 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3494 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3495
3496 pval >>= 8;
3497
3498 if (pval != dev_priv->rps.cur_delay)
3499 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3500 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3501 dev_priv->rps.cur_delay,
3502 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3503
3504 dev_priv->rps.cur_delay = pval;
3505}
3506
3507void valleyview_set_rps(struct drm_device *dev, u8 val)
3508{
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510
3511 gen6_rps_limits(dev_priv, &val);
3512
3513 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3514 WARN_ON(val > dev_priv->rps.max_delay);
3515 WARN_ON(val < dev_priv->rps.min_delay);
3516
3517 vlv_update_rps_cur_delay(dev_priv);
3518
3519 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3520 vlv_gpu_freq(dev_priv->mem_freq,
3521 dev_priv->rps.cur_delay),
3522 dev_priv->rps.cur_delay,
3523 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3524
3525 if (val == dev_priv->rps.cur_delay)
3526 return;
3527
3528 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3529
3530 dev_priv->rps.cur_delay = val;
3531
3532 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3533}
3534
3535static void gen6_disable_rps_interrupts(struct drm_device *dev)
3536{
3537 struct drm_i915_private *dev_priv = dev->dev_private;
3538
3539 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3540 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3541 /* Complete PM interrupt masking here doesn't race with the rps work
3542 * item again unmasking PM interrupts because that is using a different
3543 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3544 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3545
3546 spin_lock_irq(&dev_priv->irq_lock);
3547 dev_priv->rps.pm_iir = 0;
3548 spin_unlock_irq(&dev_priv->irq_lock);
3549
3550 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3551}
3552
3553static void gen6_disable_rps(struct drm_device *dev)
3554{
3555 struct drm_i915_private *dev_priv = dev->dev_private;
3556
3557 I915_WRITE(GEN6_RC_CONTROL, 0);
3558 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3559
3560 gen6_disable_rps_interrupts(dev);
3561}
3562
3563static void valleyview_disable_rps(struct drm_device *dev)
3564{
3565 struct drm_i915_private *dev_priv = dev->dev_private;
3566
3567 I915_WRITE(GEN6_RC_CONTROL, 0);
3568
3569 gen6_disable_rps_interrupts(dev);
3570
3571 if (dev_priv->vlv_pctx) {
3572 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3573 dev_priv->vlv_pctx = NULL;
3574 }
3575}
3576
3577int intel_enable_rc6(const struct drm_device *dev)
3578{
3579 /* No RC6 before Ironlake */
3580 if (INTEL_INFO(dev)->gen < 5)
3581 return 0;
3582
3583 /* Respect the kernel parameter if it is set */
3584 if (i915_enable_rc6 >= 0)
3585 return i915_enable_rc6;
3586
3587 /* Disable RC6 on Ironlake */
3588 if (INTEL_INFO(dev)->gen == 5)
3589 return 0;
3590
3591 if (IS_HASWELL(dev)) {
3592 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3593 return INTEL_RC6_ENABLE;
3594 }
3595
3596 /* snb/ivb have more than one rc6 state. */
3597 if (INTEL_INFO(dev)->gen == 6) {
3598 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3599 return INTEL_RC6_ENABLE;
3600 }
3601
3602 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3603 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3604}
3605
3606static void gen6_enable_rps_interrupts(struct drm_device *dev)
3607{
3608 struct drm_i915_private *dev_priv = dev->dev_private;
3609 u32 enabled_intrs;
3610
3611 spin_lock_irq(&dev_priv->irq_lock);
3612 WARN_ON(dev_priv->rps.pm_iir);
3613 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3614 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3615 spin_unlock_irq(&dev_priv->irq_lock);
3616
3617 /* only unmask PM interrupts we need. Mask all others. */
3618 enabled_intrs = GEN6_PM_RPS_EVENTS;
3619
3620 /* IVB and SNB hard hangs on looping batchbuffer
3621 * if GEN6_PM_UP_EI_EXPIRED is masked.
3622 */
3623 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3624 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3625
3626 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3627}
3628
3629static void gen6_enable_rps(struct drm_device *dev)
3630{
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632 struct intel_ring_buffer *ring;
3633 u32 rp_state_cap;
3634 u32 gt_perf_status;
3635 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3636 u32 gtfifodbg;
3637 int rc6_mode;
3638 int i, ret;
3639
3640 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3641
3642 /* Here begins a magic sequence of register writes to enable
3643 * auto-downclocking.
3644 *
3645 * Perhaps there might be some value in exposing these to
3646 * userspace...
3647 */
3648 I915_WRITE(GEN6_RC_STATE, 0);
3649
3650 /* Clear the DBG now so we don't confuse earlier errors */
3651 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3652 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3653 I915_WRITE(GTFIFODBG, gtfifodbg);
3654 }
3655
3656 gen6_gt_force_wake_get(dev_priv);
3657
3658 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3659 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3660
3661 /* In units of 50MHz */
3662 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3663 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3664 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3665 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3666 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3667 dev_priv->rps.cur_delay = 0;
3668
3669 /* disable the counters and set deterministic thresholds */
3670 I915_WRITE(GEN6_RC_CONTROL, 0);
3671
3672 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3673 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3674 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3675 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3676 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3677
3678 for_each_ring(ring, dev_priv, i)
3679 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3680
3681 I915_WRITE(GEN6_RC_SLEEP, 0);
3682 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3683 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3684 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3685 else
3686 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3687 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3688 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3689
3690 /* Check if we are enabling RC6 */
3691 rc6_mode = intel_enable_rc6(dev_priv->dev);
3692 if (rc6_mode & INTEL_RC6_ENABLE)
3693 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3694
3695 /* We don't use those on Haswell */
3696 if (!IS_HASWELL(dev)) {
3697 if (rc6_mode & INTEL_RC6p_ENABLE)
3698 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3699
3700 if (rc6_mode & INTEL_RC6pp_ENABLE)
3701 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3702 }
3703
3704 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3705 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3706 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3707 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3708
3709 I915_WRITE(GEN6_RC_CONTROL,
3710 rc6_mask |
3711 GEN6_RC_CTL_EI_MODE(1) |
3712 GEN6_RC_CTL_HW_ENABLE);
3713
3714 /* Power down if completely idle for over 50ms */
3715 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3716 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3717
3718 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3719 if (!ret) {
3720 pcu_mbox = 0;
3721 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3722 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3723 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3724 (dev_priv->rps.max_delay & 0xff) * 50,
3725 (pcu_mbox & 0xff) * 50);
3726 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3727 }
3728 } else {
3729 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3730 }
3731
3732 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3733 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3734
3735 gen6_enable_rps_interrupts(dev);
3736
3737 rc6vids = 0;
3738 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3739 if (IS_GEN6(dev) && ret) {
3740 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3741 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3742 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3743 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3744 rc6vids &= 0xffff00;
3745 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3746 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3747 if (ret)
3748 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3749 }
3750
3751 gen6_gt_force_wake_put(dev_priv);
3752}
3753
3754void gen6_update_ring_freq(struct drm_device *dev)
3755{
3756 struct drm_i915_private *dev_priv = dev->dev_private;
3757 int min_freq = 15;
3758 unsigned int gpu_freq;
3759 unsigned int max_ia_freq, min_ring_freq;
3760 int scaling_factor = 180;
3761 struct cpufreq_policy *policy;
3762
3763 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3764
3765 policy = cpufreq_cpu_get(0);
3766 if (policy) {
3767 max_ia_freq = policy->cpuinfo.max_freq;
3768 cpufreq_cpu_put(policy);
3769 } else {
3770 /*
3771 * Default to measured freq if none found, PCU will ensure we
3772 * don't go over
3773 */
3774 max_ia_freq = tsc_khz;
3775 }
3776
3777 /* Convert from kHz to MHz */
3778 max_ia_freq /= 1000;
3779
3780 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
3781 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3782 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3783
3784 /*
3785 * For each potential GPU frequency, load a ring frequency we'd like
3786 * to use for memory access. We do this by specifying the IA frequency
3787 * the PCU should use as a reference to determine the ring frequency.
3788 */
3789 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3790 gpu_freq--) {
3791 int diff = dev_priv->rps.max_delay - gpu_freq;
3792 unsigned int ia_freq = 0, ring_freq = 0;
3793
3794 if (IS_HASWELL(dev)) {
3795 ring_freq = mult_frac(gpu_freq, 5, 4);
3796 ring_freq = max(min_ring_freq, ring_freq);
3797 /* leave ia_freq as the default, chosen by cpufreq */
3798 } else {
3799 /* On older processors, there is no separate ring
3800 * clock domain, so in order to boost the bandwidth
3801 * of the ring, we need to upclock the CPU (ia_freq).
3802 *
3803 * For GPU frequencies less than 750MHz,
3804 * just use the lowest ring freq.
3805 */
3806 if (gpu_freq < min_freq)
3807 ia_freq = 800;
3808 else
3809 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3810 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3811 }
3812
3813 sandybridge_pcode_write(dev_priv,
3814 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3815 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3816 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3817 gpu_freq);
3818 }
3819}
3820
3821int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3822{
3823 u32 val, rp0;
3824
3825 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3826
3827 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3828 /* Clamp to max */
3829 rp0 = min_t(u32, rp0, 0xea);
3830
3831 return rp0;
3832}
3833
3834static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3835{
3836 u32 val, rpe;
3837
3838 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3839 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3840 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3841 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3842
3843 return rpe;
3844}
3845
3846int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3847{
3848 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3849}
3850
3851static void valleyview_setup_pctx(struct drm_device *dev)
3852{
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854 struct drm_i915_gem_object *pctx;
3855 unsigned long pctx_paddr;
3856 u32 pcbr;
3857 int pctx_size = 24*1024;
3858
3859 pcbr = I915_READ(VLV_PCBR);
3860 if (pcbr) {
3861 /* BIOS set it up already, grab the pre-alloc'd space */
3862 int pcbr_offset;
3863
3864 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3865 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3866 pcbr_offset,
3867 I915_GTT_OFFSET_NONE,
3868 pctx_size);
3869 goto out;
3870 }
3871
3872 /*
3873 * From the Gunit register HAS:
3874 * The Gfx driver is expected to program this register and ensure
3875 * proper allocation within Gfx stolen memory. For example, this
3876 * register should be programmed such than the PCBR range does not
3877 * overlap with other ranges, such as the frame buffer, protected
3878 * memory, or any other relevant ranges.
3879 */
3880 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3881 if (!pctx) {
3882 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3883 return;
3884 }
3885
3886 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3887 I915_WRITE(VLV_PCBR, pctx_paddr);
3888
3889out:
3890 dev_priv->vlv_pctx = pctx;
3891}
3892
3893static void valleyview_enable_rps(struct drm_device *dev)
3894{
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 struct intel_ring_buffer *ring;
3897 u32 gtfifodbg, val, rc6_mode = 0;
3898 int i;
3899
3900 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3901
3902 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3903 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3904 gtfifodbg);
3905 I915_WRITE(GTFIFODBG, gtfifodbg);
3906 }
3907
3908 valleyview_setup_pctx(dev);
3909
3910 gen6_gt_force_wake_get(dev_priv);
3911
3912 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3913 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3914 I915_WRITE(GEN6_RP_UP_EI, 66000);
3915 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3916
3917 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3918
3919 I915_WRITE(GEN6_RP_CONTROL,
3920 GEN6_RP_MEDIA_TURBO |
3921 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3922 GEN6_RP_MEDIA_IS_GFX |
3923 GEN6_RP_ENABLE |
3924 GEN6_RP_UP_BUSY_AVG |
3925 GEN6_RP_DOWN_IDLE_CONT);
3926
3927 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3928 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3929 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3930
3931 for_each_ring(ring, dev_priv, i)
3932 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3933
3934 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3935
3936 /* allows RC6 residency counter to work */
3937 I915_WRITE(VLV_COUNTER_CONTROL,
3938 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3939 VLV_MEDIA_RC6_COUNT_EN |
3940 VLV_RENDER_RC6_COUNT_EN));
3941 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3942 rc6_mode = GEN7_RC_CTL_TO_MODE;
3943 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3944
3945 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3946 switch ((val >> 6) & 3) {
3947 case 0:
3948 case 1:
3949 dev_priv->mem_freq = 800;
3950 break;
3951 case 2:
3952 dev_priv->mem_freq = 1066;
3953 break;
3954 case 3:
3955 dev_priv->mem_freq = 1333;
3956 break;
3957 }
3958 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3959
3960 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3961 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3962
3963 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3964 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3965 vlv_gpu_freq(dev_priv->mem_freq,
3966 dev_priv->rps.cur_delay),
3967 dev_priv->rps.cur_delay);
3968
3969 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3970 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3971 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3972 vlv_gpu_freq(dev_priv->mem_freq,
3973 dev_priv->rps.max_delay),
3974 dev_priv->rps.max_delay);
3975
3976 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3977 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3978 vlv_gpu_freq(dev_priv->mem_freq,
3979 dev_priv->rps.rpe_delay),
3980 dev_priv->rps.rpe_delay);
3981
3982 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3983 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3984 vlv_gpu_freq(dev_priv->mem_freq,
3985 dev_priv->rps.min_delay),
3986 dev_priv->rps.min_delay);
3987
3988 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3989 vlv_gpu_freq(dev_priv->mem_freq,
3990 dev_priv->rps.rpe_delay),
3991 dev_priv->rps.rpe_delay);
3992
3993 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3994
3995 gen6_enable_rps_interrupts(dev);
3996
3997 gen6_gt_force_wake_put(dev_priv);
3998}
3999
4000void ironlake_teardown_rc6(struct drm_device *dev)
4001{
4002 struct drm_i915_private *dev_priv = dev->dev_private;
4003
4004 if (dev_priv->ips.renderctx) {
4005 i915_gem_object_unpin(dev_priv->ips.renderctx);
4006 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4007 dev_priv->ips.renderctx = NULL;
4008 }
4009
4010 if (dev_priv->ips.pwrctx) {
4011 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4012 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4013 dev_priv->ips.pwrctx = NULL;
4014 }
4015}
4016
4017static void ironlake_disable_rc6(struct drm_device *dev)
4018{
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020
4021 if (I915_READ(PWRCTXA)) {
4022 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4023 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4024 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4025 50);
4026
4027 I915_WRITE(PWRCTXA, 0);
4028 POSTING_READ(PWRCTXA);
4029
4030 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4031 POSTING_READ(RSTDBYCTL);
4032 }
4033}
4034
4035static int ironlake_setup_rc6(struct drm_device *dev)
4036{
4037 struct drm_i915_private *dev_priv = dev->dev_private;
4038
4039 if (dev_priv->ips.renderctx == NULL)
4040 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4041 if (!dev_priv->ips.renderctx)
4042 return -ENOMEM;
4043
4044 if (dev_priv->ips.pwrctx == NULL)
4045 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4046 if (!dev_priv->ips.pwrctx) {
4047 ironlake_teardown_rc6(dev);
4048 return -ENOMEM;
4049 }
4050
4051 return 0;
4052}
4053
4054static void ironlake_enable_rc6(struct drm_device *dev)
4055{
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4058 bool was_interruptible;
4059 int ret;
4060
4061 /* rc6 disabled by default due to repeated reports of hanging during
4062 * boot and resume.
4063 */
4064 if (!intel_enable_rc6(dev))
4065 return;
4066
4067 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4068
4069 ret = ironlake_setup_rc6(dev);
4070 if (ret)
4071 return;
4072
4073 was_interruptible = dev_priv->mm.interruptible;
4074 dev_priv->mm.interruptible = false;
4075
4076 /*
4077 * GPU can automatically power down the render unit if given a page
4078 * to save state.
4079 */
4080 ret = intel_ring_begin(ring, 6);
4081 if (ret) {
4082 ironlake_teardown_rc6(dev);
4083 dev_priv->mm.interruptible = was_interruptible;
4084 return;
4085 }
4086
4087 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4088 intel_ring_emit(ring, MI_SET_CONTEXT);
4089 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4090 MI_MM_SPACE_GTT |
4091 MI_SAVE_EXT_STATE_EN |
4092 MI_RESTORE_EXT_STATE_EN |
4093 MI_RESTORE_INHIBIT);
4094 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4095 intel_ring_emit(ring, MI_NOOP);
4096 intel_ring_emit(ring, MI_FLUSH);
4097 intel_ring_advance(ring);
4098
4099 /*
4100 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4101 * does an implicit flush, combined with MI_FLUSH above, it should be
4102 * safe to assume that renderctx is valid
4103 */
4104 ret = intel_ring_idle(ring);
4105 dev_priv->mm.interruptible = was_interruptible;
4106 if (ret) {
4107 DRM_ERROR("failed to enable ironlake power savings\n");
4108 ironlake_teardown_rc6(dev);
4109 return;
4110 }
4111
4112 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4113 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4114}
4115
4116static unsigned long intel_pxfreq(u32 vidfreq)
4117{
4118 unsigned long freq;
4119 int div = (vidfreq & 0x3f0000) >> 16;
4120 int post = (vidfreq & 0x3000) >> 12;
4121 int pre = (vidfreq & 0x7);
4122
4123 if (!pre)
4124 return 0;
4125
4126 freq = ((div * 133333) / ((1<<post) * pre));
4127
4128 return freq;
4129}
4130
4131static const struct cparams {
4132 u16 i;
4133 u16 t;
4134 u16 m;
4135 u16 c;
4136} cparams[] = {
4137 { 1, 1333, 301, 28664 },
4138 { 1, 1066, 294, 24460 },
4139 { 1, 800, 294, 25192 },
4140 { 0, 1333, 276, 27605 },
4141 { 0, 1066, 276, 27605 },
4142 { 0, 800, 231, 23784 },
4143};
4144
4145static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4146{
4147 u64 total_count, diff, ret;
4148 u32 count1, count2, count3, m = 0, c = 0;
4149 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4150 int i;
4151
4152 assert_spin_locked(&mchdev_lock);
4153
4154 diff1 = now - dev_priv->ips.last_time1;
4155
4156 /* Prevent division-by-zero if we are asking too fast.
4157 * Also, we don't get interesting results if we are polling
4158 * faster than once in 10ms, so just return the saved value
4159 * in such cases.
4160 */
4161 if (diff1 <= 10)
4162 return dev_priv->ips.chipset_power;
4163
4164 count1 = I915_READ(DMIEC);
4165 count2 = I915_READ(DDREC);
4166 count3 = I915_READ(CSIEC);
4167
4168 total_count = count1 + count2 + count3;
4169
4170 /* FIXME: handle per-counter overflow */
4171 if (total_count < dev_priv->ips.last_count1) {
4172 diff = ~0UL - dev_priv->ips.last_count1;
4173 diff += total_count;
4174 } else {
4175 diff = total_count - dev_priv->ips.last_count1;
4176 }
4177
4178 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4179 if (cparams[i].i == dev_priv->ips.c_m &&
4180 cparams[i].t == dev_priv->ips.r_t) {
4181 m = cparams[i].m;
4182 c = cparams[i].c;
4183 break;
4184 }
4185 }
4186
4187 diff = div_u64(diff, diff1);
4188 ret = ((m * diff) + c);
4189 ret = div_u64(ret, 10);
4190
4191 dev_priv->ips.last_count1 = total_count;
4192 dev_priv->ips.last_time1 = now;
4193
4194 dev_priv->ips.chipset_power = ret;
4195
4196 return ret;
4197}
4198
4199unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4200{
4201 unsigned long val;
4202
4203 if (dev_priv->info->gen != 5)
4204 return 0;
4205
4206 spin_lock_irq(&mchdev_lock);
4207
4208 val = __i915_chipset_val(dev_priv);
4209
4210 spin_unlock_irq(&mchdev_lock);
4211
4212 return val;
4213}
4214
4215unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4216{
4217 unsigned long m, x, b;
4218 u32 tsfs;
4219
4220 tsfs = I915_READ(TSFS);
4221
4222 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4223 x = I915_READ8(TR1);
4224
4225 b = tsfs & TSFS_INTR_MASK;
4226
4227 return ((m * x) / 127) - b;
4228}
4229
4230static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4231{
4232 static const struct v_table {
4233 u16 vd; /* in .1 mil */
4234 u16 vm; /* in .1 mil */
4235 } v_table[] = {
4236 { 0, 0, },
4237 { 375, 0, },
4238 { 500, 0, },
4239 { 625, 0, },
4240 { 750, 0, },
4241 { 875, 0, },
4242 { 1000, 0, },
4243 { 1125, 0, },
4244 { 4125, 3000, },
4245 { 4125, 3000, },
4246 { 4125, 3000, },
4247 { 4125, 3000, },
4248 { 4125, 3000, },
4249 { 4125, 3000, },
4250 { 4125, 3000, },
4251 { 4125, 3000, },
4252 { 4125, 3000, },
4253 { 4125, 3000, },
4254 { 4125, 3000, },
4255 { 4125, 3000, },
4256 { 4125, 3000, },
4257 { 4125, 3000, },
4258 { 4125, 3000, },
4259 { 4125, 3000, },
4260 { 4125, 3000, },
4261 { 4125, 3000, },
4262 { 4125, 3000, },
4263 { 4125, 3000, },
4264 { 4125, 3000, },
4265 { 4125, 3000, },
4266 { 4125, 3000, },
4267 { 4125, 3000, },
4268 { 4250, 3125, },
4269 { 4375, 3250, },
4270 { 4500, 3375, },
4271 { 4625, 3500, },
4272 { 4750, 3625, },
4273 { 4875, 3750, },
4274 { 5000, 3875, },
4275 { 5125, 4000, },
4276 { 5250, 4125, },
4277 { 5375, 4250, },
4278 { 5500, 4375, },
4279 { 5625, 4500, },
4280 { 5750, 4625, },
4281 { 5875, 4750, },
4282 { 6000, 4875, },
4283 { 6125, 5000, },
4284 { 6250, 5125, },
4285 { 6375, 5250, },
4286 { 6500, 5375, },
4287 { 6625, 5500, },
4288 { 6750, 5625, },
4289 { 6875, 5750, },
4290 { 7000, 5875, },
4291 { 7125, 6000, },
4292 { 7250, 6125, },
4293 { 7375, 6250, },
4294 { 7500, 6375, },
4295 { 7625, 6500, },
4296 { 7750, 6625, },
4297 { 7875, 6750, },
4298 { 8000, 6875, },
4299 { 8125, 7000, },
4300 { 8250, 7125, },
4301 { 8375, 7250, },
4302 { 8500, 7375, },
4303 { 8625, 7500, },
4304 { 8750, 7625, },
4305 { 8875, 7750, },
4306 { 9000, 7875, },
4307 { 9125, 8000, },
4308 { 9250, 8125, },
4309 { 9375, 8250, },
4310 { 9500, 8375, },
4311 { 9625, 8500, },
4312 { 9750, 8625, },
4313 { 9875, 8750, },
4314 { 10000, 8875, },
4315 { 10125, 9000, },
4316 { 10250, 9125, },
4317 { 10375, 9250, },
4318 { 10500, 9375, },
4319 { 10625, 9500, },
4320 { 10750, 9625, },
4321 { 10875, 9750, },
4322 { 11000, 9875, },
4323 { 11125, 10000, },
4324 { 11250, 10125, },
4325 { 11375, 10250, },
4326 { 11500, 10375, },
4327 { 11625, 10500, },
4328 { 11750, 10625, },
4329 { 11875, 10750, },
4330 { 12000, 10875, },
4331 { 12125, 11000, },
4332 { 12250, 11125, },
4333 { 12375, 11250, },
4334 { 12500, 11375, },
4335 { 12625, 11500, },
4336 { 12750, 11625, },
4337 { 12875, 11750, },
4338 { 13000, 11875, },
4339 { 13125, 12000, },
4340 { 13250, 12125, },
4341 { 13375, 12250, },
4342 { 13500, 12375, },
4343 { 13625, 12500, },
4344 { 13750, 12625, },
4345 { 13875, 12750, },
4346 { 14000, 12875, },
4347 { 14125, 13000, },
4348 { 14250, 13125, },
4349 { 14375, 13250, },
4350 { 14500, 13375, },
4351 { 14625, 13500, },
4352 { 14750, 13625, },
4353 { 14875, 13750, },
4354 { 15000, 13875, },
4355 { 15125, 14000, },
4356 { 15250, 14125, },
4357 { 15375, 14250, },
4358 { 15500, 14375, },
4359 { 15625, 14500, },
4360 { 15750, 14625, },
4361 { 15875, 14750, },
4362 { 16000, 14875, },
4363 { 16125, 15000, },
4364 };
4365 if (dev_priv->info->is_mobile)
4366 return v_table[pxvid].vm;
4367 else
4368 return v_table[pxvid].vd;
4369}
4370
4371static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4372{
4373 struct timespec now, diff1;
4374 u64 diff;
4375 unsigned long diffms;
4376 u32 count;
4377
4378 assert_spin_locked(&mchdev_lock);
4379
4380 getrawmonotonic(&now);
4381 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4382
4383 /* Don't divide by 0 */
4384 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4385 if (!diffms)
4386 return;
4387
4388 count = I915_READ(GFXEC);
4389
4390 if (count < dev_priv->ips.last_count2) {
4391 diff = ~0UL - dev_priv->ips.last_count2;
4392 diff += count;
4393 } else {
4394 diff = count - dev_priv->ips.last_count2;
4395 }
4396
4397 dev_priv->ips.last_count2 = count;
4398 dev_priv->ips.last_time2 = now;
4399
4400 /* More magic constants... */
4401 diff = diff * 1181;
4402 diff = div_u64(diff, diffms * 10);
4403 dev_priv->ips.gfx_power = diff;
4404}
4405
4406void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4407{
4408 if (dev_priv->info->gen != 5)
4409 return;
4410
4411 spin_lock_irq(&mchdev_lock);
4412
4413 __i915_update_gfx_val(dev_priv);
4414
4415 spin_unlock_irq(&mchdev_lock);
4416}
4417
4418static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4419{
4420 unsigned long t, corr, state1, corr2, state2;
4421 u32 pxvid, ext_v;
4422
4423 assert_spin_locked(&mchdev_lock);
4424
4425 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4426 pxvid = (pxvid >> 24) & 0x7f;
4427 ext_v = pvid_to_extvid(dev_priv, pxvid);
4428
4429 state1 = ext_v;
4430
4431 t = i915_mch_val(dev_priv);
4432
4433 /* Revel in the empirically derived constants */
4434
4435 /* Correction factor in 1/100000 units */
4436 if (t > 80)
4437 corr = ((t * 2349) + 135940);
4438 else if (t >= 50)
4439 corr = ((t * 964) + 29317);
4440 else /* < 50 */
4441 corr = ((t * 301) + 1004);
4442
4443 corr = corr * ((150142 * state1) / 10000 - 78642);
4444 corr /= 100000;
4445 corr2 = (corr * dev_priv->ips.corr);
4446
4447 state2 = (corr2 * state1) / 10000;
4448 state2 /= 100; /* convert to mW */
4449
4450 __i915_update_gfx_val(dev_priv);
4451
4452 return dev_priv->ips.gfx_power + state2;
4453}
4454
4455unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4456{
4457 unsigned long val;
4458
4459 if (dev_priv->info->gen != 5)
4460 return 0;
4461
4462 spin_lock_irq(&mchdev_lock);
4463
4464 val = __i915_gfx_val(dev_priv);
4465
4466 spin_unlock_irq(&mchdev_lock);
4467
4468 return val;
4469}
4470
4471/**
4472 * i915_read_mch_val - return value for IPS use
4473 *
4474 * Calculate and return a value for the IPS driver to use when deciding whether
4475 * we have thermal and power headroom to increase CPU or GPU power budget.
4476 */
4477unsigned long i915_read_mch_val(void)
4478{
4479 struct drm_i915_private *dev_priv;
4480 unsigned long chipset_val, graphics_val, ret = 0;
4481
4482 spin_lock_irq(&mchdev_lock);
4483 if (!i915_mch_dev)
4484 goto out_unlock;
4485 dev_priv = i915_mch_dev;
4486
4487 chipset_val = __i915_chipset_val(dev_priv);
4488 graphics_val = __i915_gfx_val(dev_priv);
4489
4490 ret = chipset_val + graphics_val;
4491
4492out_unlock:
4493 spin_unlock_irq(&mchdev_lock);
4494
4495 return ret;
4496}
4497EXPORT_SYMBOL_GPL(i915_read_mch_val);
4498
4499/**
4500 * i915_gpu_raise - raise GPU frequency limit
4501 *
4502 * Raise the limit; IPS indicates we have thermal headroom.
4503 */
4504bool i915_gpu_raise(void)
4505{
4506 struct drm_i915_private *dev_priv;
4507 bool ret = true;
4508
4509 spin_lock_irq(&mchdev_lock);
4510 if (!i915_mch_dev) {
4511 ret = false;
4512 goto out_unlock;
4513 }
4514 dev_priv = i915_mch_dev;
4515
4516 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4517 dev_priv->ips.max_delay--;
4518
4519out_unlock:
4520 spin_unlock_irq(&mchdev_lock);
4521
4522 return ret;
4523}
4524EXPORT_SYMBOL_GPL(i915_gpu_raise);
4525
4526/**
4527 * i915_gpu_lower - lower GPU frequency limit
4528 *
4529 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4530 * frequency maximum.
4531 */
4532bool i915_gpu_lower(void)
4533{
4534 struct drm_i915_private *dev_priv;
4535 bool ret = true;
4536
4537 spin_lock_irq(&mchdev_lock);
4538 if (!i915_mch_dev) {
4539 ret = false;
4540 goto out_unlock;
4541 }
4542 dev_priv = i915_mch_dev;
4543
4544 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4545 dev_priv->ips.max_delay++;
4546
4547out_unlock:
4548 spin_unlock_irq(&mchdev_lock);
4549
4550 return ret;
4551}
4552EXPORT_SYMBOL_GPL(i915_gpu_lower);
4553
4554/**
4555 * i915_gpu_busy - indicate GPU business to IPS
4556 *
4557 * Tell the IPS driver whether or not the GPU is busy.
4558 */
4559bool i915_gpu_busy(void)
4560{
4561 struct drm_i915_private *dev_priv;
4562 struct intel_ring_buffer *ring;
4563 bool ret = false;
4564 int i;
4565
4566 spin_lock_irq(&mchdev_lock);
4567 if (!i915_mch_dev)
4568 goto out_unlock;
4569 dev_priv = i915_mch_dev;
4570
4571 for_each_ring(ring, dev_priv, i)
4572 ret |= !list_empty(&ring->request_list);
4573
4574out_unlock:
4575 spin_unlock_irq(&mchdev_lock);
4576
4577 return ret;
4578}
4579EXPORT_SYMBOL_GPL(i915_gpu_busy);
4580
4581/**
4582 * i915_gpu_turbo_disable - disable graphics turbo
4583 *
4584 * Disable graphics turbo by resetting the max frequency and setting the
4585 * current frequency to the default.
4586 */
4587bool i915_gpu_turbo_disable(void)
4588{
4589 struct drm_i915_private *dev_priv;
4590 bool ret = true;
4591
4592 spin_lock_irq(&mchdev_lock);
4593 if (!i915_mch_dev) {
4594 ret = false;
4595 goto out_unlock;
4596 }
4597 dev_priv = i915_mch_dev;
4598
4599 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4600
4601 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4602 ret = false;
4603
4604out_unlock:
4605 spin_unlock_irq(&mchdev_lock);
4606
4607 return ret;
4608}
4609EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4610
4611/**
4612 * Tells the intel_ips driver that the i915 driver is now loaded, if
4613 * IPS got loaded first.
4614 *
4615 * This awkward dance is so that neither module has to depend on the
4616 * other in order for IPS to do the appropriate communication of
4617 * GPU turbo limits to i915.
4618 */
4619static void
4620ips_ping_for_i915_load(void)
4621{
4622 void (*link)(void);
4623
4624 link = symbol_get(ips_link_to_i915_driver);
4625 if (link) {
4626 link();
4627 symbol_put(ips_link_to_i915_driver);
4628 }
4629}
4630
4631void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4632{
4633 /* We only register the i915 ips part with intel-ips once everything is
4634 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4635 spin_lock_irq(&mchdev_lock);
4636 i915_mch_dev = dev_priv;
4637 spin_unlock_irq(&mchdev_lock);
4638
4639 ips_ping_for_i915_load();
4640}
4641
4642void intel_gpu_ips_teardown(void)
4643{
4644 spin_lock_irq(&mchdev_lock);
4645 i915_mch_dev = NULL;
4646 spin_unlock_irq(&mchdev_lock);
4647}
4648static void intel_init_emon(struct drm_device *dev)
4649{
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 u32 lcfuse;
4652 u8 pxw[16];
4653 int i;
4654
4655 /* Disable to program */
4656 I915_WRITE(ECR, 0);
4657 POSTING_READ(ECR);
4658
4659 /* Program energy weights for various events */
4660 I915_WRITE(SDEW, 0x15040d00);
4661 I915_WRITE(CSIEW0, 0x007f0000);
4662 I915_WRITE(CSIEW1, 0x1e220004);
4663 I915_WRITE(CSIEW2, 0x04000004);
4664
4665 for (i = 0; i < 5; i++)
4666 I915_WRITE(PEW + (i * 4), 0);
4667 for (i = 0; i < 3; i++)
4668 I915_WRITE(DEW + (i * 4), 0);
4669
4670 /* Program P-state weights to account for frequency power adjustment */
4671 for (i = 0; i < 16; i++) {
4672 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4673 unsigned long freq = intel_pxfreq(pxvidfreq);
4674 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4675 PXVFREQ_PX_SHIFT;
4676 unsigned long val;
4677
4678 val = vid * vid;
4679 val *= (freq / 1000);
4680 val *= 255;
4681 val /= (127*127*900);
4682 if (val > 0xff)
4683 DRM_ERROR("bad pxval: %ld\n", val);
4684 pxw[i] = val;
4685 }
4686 /* Render standby states get 0 weight */
4687 pxw[14] = 0;
4688 pxw[15] = 0;
4689
4690 for (i = 0; i < 4; i++) {
4691 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4692 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4693 I915_WRITE(PXW + (i * 4), val);
4694 }
4695
4696 /* Adjust magic regs to magic values (more experimental results) */
4697 I915_WRITE(OGW0, 0);
4698 I915_WRITE(OGW1, 0);
4699 I915_WRITE(EG0, 0x00007f00);
4700 I915_WRITE(EG1, 0x0000000e);
4701 I915_WRITE(EG2, 0x000e0000);
4702 I915_WRITE(EG3, 0x68000300);
4703 I915_WRITE(EG4, 0x42000000);
4704 I915_WRITE(EG5, 0x00140031);
4705 I915_WRITE(EG6, 0);
4706 I915_WRITE(EG7, 0);
4707
4708 for (i = 0; i < 8; i++)
4709 I915_WRITE(PXWL + (i * 4), 0);
4710
4711 /* Enable PMON + select events */
4712 I915_WRITE(ECR, 0x80000019);
4713
4714 lcfuse = I915_READ(LCFUSE02);
4715
4716 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4717}
4718
4719void intel_disable_gt_powersave(struct drm_device *dev)
4720{
4721 struct drm_i915_private *dev_priv = dev->dev_private;
4722
4723 /* Interrupts should be disabled already to avoid re-arming. */
4724 WARN_ON(dev->irq_enabled);
4725
4726 if (IS_IRONLAKE_M(dev)) {
4727 ironlake_disable_drps(dev);
4728 ironlake_disable_rc6(dev);
4729 } else if (INTEL_INFO(dev)->gen >= 6) {
4730 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4731 cancel_work_sync(&dev_priv->rps.work);
4732 mutex_lock(&dev_priv->rps.hw_lock);
4733 if (IS_VALLEYVIEW(dev))
4734 valleyview_disable_rps(dev);
4735 else
4736 gen6_disable_rps(dev);
4737 dev_priv->rps.enabled = false;
4738 mutex_unlock(&dev_priv->rps.hw_lock);
4739 }
4740}
4741
4742static void intel_gen6_powersave_work(struct work_struct *work)
4743{
4744 struct drm_i915_private *dev_priv =
4745 container_of(work, struct drm_i915_private,
4746 rps.delayed_resume_work.work);
4747 struct drm_device *dev = dev_priv->dev;
4748
4749 mutex_lock(&dev_priv->rps.hw_lock);
4750
4751 if (IS_VALLEYVIEW(dev)) {
4752 valleyview_enable_rps(dev);
4753 } else {
4754 gen6_enable_rps(dev);
4755 gen6_update_ring_freq(dev);
4756 }
4757 dev_priv->rps.enabled = true;
4758 mutex_unlock(&dev_priv->rps.hw_lock);
4759}
4760
4761void intel_enable_gt_powersave(struct drm_device *dev)
4762{
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765 if (IS_IRONLAKE_M(dev)) {
4766 ironlake_enable_drps(dev);
4767 ironlake_enable_rc6(dev);
4768 intel_init_emon(dev);
4769 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4770 /*
4771 * PCU communication is slow and this doesn't need to be
4772 * done at any specific time, so do this out of our fast path
4773 * to make resume and init faster.
4774 */
4775 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4776 round_jiffies_up_relative(HZ));
4777 }
4778}
4779
4780static void ibx_init_clock_gating(struct drm_device *dev)
4781{
4782 struct drm_i915_private *dev_priv = dev->dev_private;
4783
4784 /*
4785 * On Ibex Peak and Cougar Point, we need to disable clock
4786 * gating for the panel power sequencer or it will fail to
4787 * start up when no ports are active.
4788 */
4789 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4790}
4791
4792static void g4x_disable_trickle_feed(struct drm_device *dev)
4793{
4794 struct drm_i915_private *dev_priv = dev->dev_private;
4795 int pipe;
4796
4797 for_each_pipe(pipe) {
4798 I915_WRITE(DSPCNTR(pipe),
4799 I915_READ(DSPCNTR(pipe)) |
4800 DISPPLANE_TRICKLE_FEED_DISABLE);
4801 intel_flush_primary_plane(dev_priv, pipe);
4802 }
4803}
4804
4805static void ironlake_init_clock_gating(struct drm_device *dev)
4806{
4807 struct drm_i915_private *dev_priv = dev->dev_private;
4808 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4809
4810 /*
4811 * Required for FBC
4812 * WaFbcDisableDpfcClockGating:ilk
4813 */
4814 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4815 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4816 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4817
4818 I915_WRITE(PCH_3DCGDIS0,
4819 MARIUNIT_CLOCK_GATE_DISABLE |
4820 SVSMUNIT_CLOCK_GATE_DISABLE);
4821 I915_WRITE(PCH_3DCGDIS1,
4822 VFMUNIT_CLOCK_GATE_DISABLE);
4823
4824 /*
4825 * According to the spec the following bits should be set in
4826 * order to enable memory self-refresh
4827 * The bit 22/21 of 0x42004
4828 * The bit 5 of 0x42020
4829 * The bit 15 of 0x45000
4830 */
4831 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4832 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4833 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4834 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4835 I915_WRITE(DISP_ARB_CTL,
4836 (I915_READ(DISP_ARB_CTL) |
4837 DISP_FBC_WM_DIS));
4838 I915_WRITE(WM3_LP_ILK, 0);
4839 I915_WRITE(WM2_LP_ILK, 0);
4840 I915_WRITE(WM1_LP_ILK, 0);
4841
4842 /*
4843 * Based on the document from hardware guys the following bits
4844 * should be set unconditionally in order to enable FBC.
4845 * The bit 22 of 0x42000
4846 * The bit 22 of 0x42004
4847 * The bit 7,8,9 of 0x42020.
4848 */
4849 if (IS_IRONLAKE_M(dev)) {
4850 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4851 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4852 I915_READ(ILK_DISPLAY_CHICKEN1) |
4853 ILK_FBCQ_DIS);
4854 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4855 I915_READ(ILK_DISPLAY_CHICKEN2) |
4856 ILK_DPARB_GATE);
4857 }
4858
4859 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4860
4861 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4862 I915_READ(ILK_DISPLAY_CHICKEN2) |
4863 ILK_ELPIN_409_SELECT);
4864 I915_WRITE(_3D_CHICKEN2,
4865 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4866 _3D_CHICKEN2_WM_READ_PIPELINED);
4867
4868 /* WaDisableRenderCachePipelinedFlush:ilk */
4869 I915_WRITE(CACHE_MODE_0,
4870 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4871
4872 g4x_disable_trickle_feed(dev);
4873
4874 ibx_init_clock_gating(dev);
4875}
4876
4877static void cpt_init_clock_gating(struct drm_device *dev)
4878{
4879 struct drm_i915_private *dev_priv = dev->dev_private;
4880 int pipe;
4881 uint32_t val;
4882
4883 /*
4884 * On Ibex Peak and Cougar Point, we need to disable clock
4885 * gating for the panel power sequencer or it will fail to
4886 * start up when no ports are active.
4887 */
4888 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4889 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4890 DPLS_EDP_PPS_FIX_DIS);
4891 /* The below fixes the weird display corruption, a few pixels shifted
4892 * downward, on (only) LVDS of some HP laptops with IVY.
4893 */
4894 for_each_pipe(pipe) {
4895 val = I915_READ(TRANS_CHICKEN2(pipe));
4896 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4897 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4898 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4899 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4900 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4901 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4902 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4903 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4904 }
4905 /* WADP0ClockGatingDisable */
4906 for_each_pipe(pipe) {
4907 I915_WRITE(TRANS_CHICKEN1(pipe),
4908 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4909 }
4910}
4911
4912static void gen6_check_mch_setup(struct drm_device *dev)
4913{
4914 struct drm_i915_private *dev_priv = dev->dev_private;
4915 uint32_t tmp;
4916
4917 tmp = I915_READ(MCH_SSKPD);
4918 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4919 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4920 DRM_INFO("This can cause pipe underruns and display issues.\n");
4921 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4922 }
4923}
4924
4925static void gen6_init_clock_gating(struct drm_device *dev)
4926{
4927 struct drm_i915_private *dev_priv = dev->dev_private;
4928 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4929
4930 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4931
4932 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4933 I915_READ(ILK_DISPLAY_CHICKEN2) |
4934 ILK_ELPIN_409_SELECT);
4935
4936 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4937 I915_WRITE(_3D_CHICKEN,
4938 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4939
4940 /* WaSetupGtModeTdRowDispatch:snb */
4941 if (IS_SNB_GT1(dev))
4942 I915_WRITE(GEN6_GT_MODE,
4943 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4944
4945 I915_WRITE(WM3_LP_ILK, 0);
4946 I915_WRITE(WM2_LP_ILK, 0);
4947 I915_WRITE(WM1_LP_ILK, 0);
4948
4949 I915_WRITE(CACHE_MODE_0,
4950 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4951
4952 I915_WRITE(GEN6_UCGCTL1,
4953 I915_READ(GEN6_UCGCTL1) |
4954 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4955 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4956
4957 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4958 * gating disable must be set. Failure to set it results in
4959 * flickering pixels due to Z write ordering failures after
4960 * some amount of runtime in the Mesa "fire" demo, and Unigine
4961 * Sanctuary and Tropics, and apparently anything else with
4962 * alpha test or pixel discard.
4963 *
4964 * According to the spec, bit 11 (RCCUNIT) must also be set,
4965 * but we didn't debug actual testcases to find it out.
4966 *
4967 * Also apply WaDisableVDSUnitClockGating:snb and
4968 * WaDisableRCPBUnitClockGating:snb.
4969 */
4970 I915_WRITE(GEN6_UCGCTL2,
4971 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4972 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4973 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4974
4975 /* Bspec says we need to always set all mask bits. */
4976 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4977 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4978
4979 /*
4980 * According to the spec the following bits should be
4981 * set in order to enable memory self-refresh and fbc:
4982 * The bit21 and bit22 of 0x42000
4983 * The bit21 and bit22 of 0x42004
4984 * The bit5 and bit7 of 0x42020
4985 * The bit14 of 0x70180
4986 * The bit14 of 0x71180
4987 *
4988 * WaFbcAsynchFlipDisableFbcQueue:snb
4989 */
4990 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4991 I915_READ(ILK_DISPLAY_CHICKEN1) |
4992 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4993 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4994 I915_READ(ILK_DISPLAY_CHICKEN2) |
4995 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4996 I915_WRITE(ILK_DSPCLK_GATE_D,
4997 I915_READ(ILK_DSPCLK_GATE_D) |
4998 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4999 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5000
5001 g4x_disable_trickle_feed(dev);
5002
5003 /* The default value should be 0x200 according to docs, but the two
5004 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5005 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5006 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5007
5008 cpt_init_clock_gating(dev);
5009
5010 gen6_check_mch_setup(dev);
5011}
5012
5013static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5014{
5015 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5016
5017 reg &= ~GEN7_FF_SCHED_MASK;
5018 reg |= GEN7_FF_TS_SCHED_HW;
5019 reg |= GEN7_FF_VS_SCHED_HW;
5020 reg |= GEN7_FF_DS_SCHED_HW;
5021
5022 if (IS_HASWELL(dev_priv->dev))
5023 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5024
5025 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5026}
5027
5028static void lpt_init_clock_gating(struct drm_device *dev)
5029{
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031
5032 /*
5033 * TODO: this bit should only be enabled when really needed, then
5034 * disabled when not needed anymore in order to save power.
5035 */
5036 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5037 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5038 I915_READ(SOUTH_DSPCLK_GATE_D) |
5039 PCH_LP_PARTITION_LEVEL_DISABLE);
5040
5041 /* WADPOClockGatingDisable:hsw */
5042 I915_WRITE(_TRANSA_CHICKEN1,
5043 I915_READ(_TRANSA_CHICKEN1) |
5044 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5045}
5046
5047static void lpt_suspend_hw(struct drm_device *dev)
5048{
5049 struct drm_i915_private *dev_priv = dev->dev_private;
5050
5051 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5052 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5053
5054 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5055 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5056 }
5057}
5058
5059static void haswell_init_clock_gating(struct drm_device *dev)
5060{
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062
5063 I915_WRITE(WM3_LP_ILK, 0);
5064 I915_WRITE(WM2_LP_ILK, 0);
5065 I915_WRITE(WM1_LP_ILK, 0);
5066
5067 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5068 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5069 */
5070 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5071
5072 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5073 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5074 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5075
5076 /* WaApplyL3ControlAndL3ChickenMode:hsw */
5077 I915_WRITE(GEN7_L3CNTLREG1,
5078 GEN7_WA_FOR_GEN7_L3_CONTROL);
5079 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5080 GEN7_WA_L3_CHICKEN_MODE);
5081
5082 /* This is required by WaCatErrorRejectionIssue:hsw */
5083 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5084 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5085 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5086
5087 /* WaVSRefCountFullforceMissDisable:hsw */
5088 gen7_setup_fixed_func_scheduler(dev_priv);
5089
5090 /* WaDisable4x2SubspanOptimization:hsw */
5091 I915_WRITE(CACHE_MODE_1,
5092 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5093
5094 /* WaSwitchSolVfFArbitrationPriority:hsw */
5095 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5096
5097 /* WaRsPkgCStateDisplayPMReq:hsw */
5098 I915_WRITE(CHICKEN_PAR1_1,
5099 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5100
5101 lpt_init_clock_gating(dev);
5102}
5103
5104static void ivybridge_init_clock_gating(struct drm_device *dev)
5105{
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107 uint32_t snpcr;
5108
5109 I915_WRITE(WM3_LP_ILK, 0);
5110 I915_WRITE(WM2_LP_ILK, 0);
5111 I915_WRITE(WM1_LP_ILK, 0);
5112
5113 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5114
5115 /* WaDisableEarlyCull:ivb */
5116 I915_WRITE(_3D_CHICKEN3,
5117 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5118
5119 /* WaDisableBackToBackFlipFix:ivb */
5120 I915_WRITE(IVB_CHICKEN3,
5121 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5122 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5123
5124 /* WaDisablePSDDualDispatchEnable:ivb */
5125 if (IS_IVB_GT1(dev))
5126 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5127 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5128 else
5129 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5130 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5131
5132 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5133 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5134 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5135
5136 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5137 I915_WRITE(GEN7_L3CNTLREG1,
5138 GEN7_WA_FOR_GEN7_L3_CONTROL);
5139 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5140 GEN7_WA_L3_CHICKEN_MODE);
5141 if (IS_IVB_GT1(dev))
5142 I915_WRITE(GEN7_ROW_CHICKEN2,
5143 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5144 else
5145 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5146 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5147
5148
5149 /* WaForceL3Serialization:ivb */
5150 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5151 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5152
5153 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5154 * gating disable must be set. Failure to set it results in
5155 * flickering pixels due to Z write ordering failures after
5156 * some amount of runtime in the Mesa "fire" demo, and Unigine
5157 * Sanctuary and Tropics, and apparently anything else with
5158 * alpha test or pixel discard.
5159 *
5160 * According to the spec, bit 11 (RCCUNIT) must also be set,
5161 * but we didn't debug actual testcases to find it out.
5162 *
5163 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5164 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5165 */
5166 I915_WRITE(GEN6_UCGCTL2,
5167 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5168 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5169
5170 /* This is required by WaCatErrorRejectionIssue:ivb */
5171 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5172 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5173 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5174
5175 g4x_disable_trickle_feed(dev);
5176
5177 /* WaVSRefCountFullforceMissDisable:ivb */
5178 gen7_setup_fixed_func_scheduler(dev_priv);
5179
5180 /* WaDisable4x2SubspanOptimization:ivb */
5181 I915_WRITE(CACHE_MODE_1,
5182 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5183
5184 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5185 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5186 snpcr |= GEN6_MBC_SNPCR_MED;
5187 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5188
5189 if (!HAS_PCH_NOP(dev))
5190 cpt_init_clock_gating(dev);
5191
5192 gen6_check_mch_setup(dev);
5193}
5194
5195static void valleyview_init_clock_gating(struct drm_device *dev)
5196{
5197 struct drm_i915_private *dev_priv = dev->dev_private;
5198
5199 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5200
5201 /* WaDisableEarlyCull:vlv */
5202 I915_WRITE(_3D_CHICKEN3,
5203 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5204
5205 /* WaDisableBackToBackFlipFix:vlv */
5206 I915_WRITE(IVB_CHICKEN3,
5207 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5208 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5209
5210 /* WaDisablePSDDualDispatchEnable:vlv */
5211 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5212 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5213 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5214
5215 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5216 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5217 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5218
5219 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5220 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5221 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5222
5223 /* WaForceL3Serialization:vlv */
5224 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5225 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5226
5227 /* WaDisableDopClockGating:vlv */
5228 I915_WRITE(GEN7_ROW_CHICKEN2,
5229 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5230
5231 /* This is required by WaCatErrorRejectionIssue:vlv */
5232 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5233 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5234 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5235
5236 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5237 * gating disable must be set. Failure to set it results in
5238 * flickering pixels due to Z write ordering failures after
5239 * some amount of runtime in the Mesa "fire" demo, and Unigine
5240 * Sanctuary and Tropics, and apparently anything else with
5241 * alpha test or pixel discard.
5242 *
5243 * According to the spec, bit 11 (RCCUNIT) must also be set,
5244 * but we didn't debug actual testcases to find it out.
5245 *
5246 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5247 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5248 *
5249 * Also apply WaDisableVDSUnitClockGating:vlv and
5250 * WaDisableRCPBUnitClockGating:vlv.
5251 */
5252 I915_WRITE(GEN6_UCGCTL2,
5253 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5254 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5255 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5256 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5257 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5258
5259 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5260
5261 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5262
5263 I915_WRITE(CACHE_MODE_1,
5264 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5265
5266 /*
5267 * WaDisableVLVClockGating_VBIIssue:vlv
5268 * Disable clock gating on th GCFG unit to prevent a delay
5269 * in the reporting of vblank events.
5270 */
5271 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5272
5273 /* Conservative clock gating settings for now */
5274 I915_WRITE(0x9400, 0xffffffff);
5275 I915_WRITE(0x9404, 0xffffffff);
5276 I915_WRITE(0x9408, 0xffffffff);
5277 I915_WRITE(0x940c, 0xffffffff);
5278 I915_WRITE(0x9410, 0xffffffff);
5279 I915_WRITE(0x9414, 0xffffffff);
5280 I915_WRITE(0x9418, 0xffffffff);
5281}
5282
5283static void g4x_init_clock_gating(struct drm_device *dev)
5284{
5285 struct drm_i915_private *dev_priv = dev->dev_private;
5286 uint32_t dspclk_gate;
5287
5288 I915_WRITE(RENCLK_GATE_D1, 0);
5289 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5290 GS_UNIT_CLOCK_GATE_DISABLE |
5291 CL_UNIT_CLOCK_GATE_DISABLE);
5292 I915_WRITE(RAMCLK_GATE_D, 0);
5293 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5294 OVRUNIT_CLOCK_GATE_DISABLE |
5295 OVCUNIT_CLOCK_GATE_DISABLE;
5296 if (IS_GM45(dev))
5297 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5298 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5299
5300 /* WaDisableRenderCachePipelinedFlush */
5301 I915_WRITE(CACHE_MODE_0,
5302 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5303
5304 g4x_disable_trickle_feed(dev);
5305}
5306
5307static void crestline_init_clock_gating(struct drm_device *dev)
5308{
5309 struct drm_i915_private *dev_priv = dev->dev_private;
5310
5311 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5312 I915_WRITE(RENCLK_GATE_D2, 0);
5313 I915_WRITE(DSPCLK_GATE_D, 0);
5314 I915_WRITE(RAMCLK_GATE_D, 0);
5315 I915_WRITE16(DEUC, 0);
5316 I915_WRITE(MI_ARB_STATE,
5317 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5318}
5319
5320static void broadwater_init_clock_gating(struct drm_device *dev)
5321{
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323
5324 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5325 I965_RCC_CLOCK_GATE_DISABLE |
5326 I965_RCPB_CLOCK_GATE_DISABLE |
5327 I965_ISC_CLOCK_GATE_DISABLE |
5328 I965_FBC_CLOCK_GATE_DISABLE);
5329 I915_WRITE(RENCLK_GATE_D2, 0);
5330 I915_WRITE(MI_ARB_STATE,
5331 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5332}
5333
5334static void gen3_init_clock_gating(struct drm_device *dev)
5335{
5336 struct drm_i915_private *dev_priv = dev->dev_private;
5337 u32 dstate = I915_READ(D_STATE);
5338
5339 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5340 DSTATE_DOT_CLOCK_GATING;
5341 I915_WRITE(D_STATE, dstate);
5342
5343 if (IS_PINEVIEW(dev))
5344 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5345
5346 /* IIR "flip pending" means done if this bit is set */
5347 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5348}
5349
5350static void i85x_init_clock_gating(struct drm_device *dev)
5351{
5352 struct drm_i915_private *dev_priv = dev->dev_private;
5353
5354 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5355}
5356
5357static void i830_init_clock_gating(struct drm_device *dev)
5358{
5359 struct drm_i915_private *dev_priv = dev->dev_private;
5360
5361 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5362}
5363
5364void intel_init_clock_gating(struct drm_device *dev)
5365{
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367
5368 dev_priv->display.init_clock_gating(dev);
5369}
5370
5371void intel_suspend_hw(struct drm_device *dev)
5372{
5373 if (HAS_PCH_LPT(dev))
5374 lpt_suspend_hw(dev);
5375}
5376
5377/**
5378 * We should only use the power well if we explicitly asked the hardware to
5379 * enable it, so check if it's enabled and also check if we've requested it to
5380 * be enabled.
5381 */
5382bool intel_display_power_enabled(struct drm_device *dev,
5383 enum intel_display_power_domain domain)
5384{
5385 struct drm_i915_private *dev_priv = dev->dev_private;
5386
5387 if (!HAS_POWER_WELL(dev))
5388 return true;
5389
5390 switch (domain) {
5391 case POWER_DOMAIN_PIPE_A:
5392 case POWER_DOMAIN_TRANSCODER_EDP:
5393 return true;
5394 case POWER_DOMAIN_VGA:
5395 case POWER_DOMAIN_PIPE_B:
5396 case POWER_DOMAIN_PIPE_C:
5397 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5398 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5399 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5400 case POWER_DOMAIN_TRANSCODER_A:
5401 case POWER_DOMAIN_TRANSCODER_B:
5402 case POWER_DOMAIN_TRANSCODER_C:
5403 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5404 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5405 default:
5406 BUG();
5407 }
5408}
5409
5410static void __intel_set_power_well(struct drm_device *dev, bool enable)
5411{
5412 struct drm_i915_private *dev_priv = dev->dev_private;
5413 bool is_enabled, enable_requested;
5414 uint32_t tmp;
5415
5416 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5417 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5418 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5419
5420 if (enable) {
5421 if (!enable_requested)
5422 I915_WRITE(HSW_PWR_WELL_DRIVER,
5423 HSW_PWR_WELL_ENABLE_REQUEST);
5424
5425 if (!is_enabled) {
5426 DRM_DEBUG_KMS("Enabling power well\n");
5427 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5428 HSW_PWR_WELL_STATE_ENABLED), 20))
5429 DRM_ERROR("Timeout enabling power well\n");
5430 }
5431 } else {
5432 if (enable_requested) {
5433 unsigned long irqflags;
5434 enum pipe p;
5435
5436 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5437 POSTING_READ(HSW_PWR_WELL_DRIVER);
5438 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5439
5440 /*
5441 * After this, the registers on the pipes that are part
5442 * of the power well will become zero, so we have to
5443 * adjust our counters according to that.
5444 *
5445 * FIXME: Should we do this in general in
5446 * drm_vblank_post_modeset?
5447 */
5448 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5449 for_each_pipe(p)
5450 if (p != PIPE_A)
5451 dev->vblank[p].last = 0;
5452 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5453 }
5454 }
5455}
5456
5457static void __intel_power_well_get(struct i915_power_well *power_well)
5458{
5459 if (!power_well->count++)
5460 __intel_set_power_well(power_well->device, true);
5461}
5462
5463static void __intel_power_well_put(struct i915_power_well *power_well)
5464{
5465 WARN_ON(!power_well->count);
5466 if (!--power_well->count)
5467 __intel_set_power_well(power_well->device, false);
5468}
5469
5470void intel_display_power_get(struct drm_device *dev,
5471 enum intel_display_power_domain domain)
5472{
5473 struct drm_i915_private *dev_priv = dev->dev_private;
5474 struct i915_power_well *power_well = &dev_priv->power_well;
5475
5476 if (!HAS_POWER_WELL(dev))
5477 return;
5478
5479 switch (domain) {
5480 case POWER_DOMAIN_PIPE_A:
5481 case POWER_DOMAIN_TRANSCODER_EDP:
5482 return;
5483 case POWER_DOMAIN_VGA:
5484 case POWER_DOMAIN_PIPE_B:
5485 case POWER_DOMAIN_PIPE_C:
5486 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5487 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5488 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5489 case POWER_DOMAIN_TRANSCODER_A:
5490 case POWER_DOMAIN_TRANSCODER_B:
5491 case POWER_DOMAIN_TRANSCODER_C:
5492 spin_lock_irq(&power_well->lock);
5493 __intel_power_well_get(power_well);
5494 spin_unlock_irq(&power_well->lock);
5495 return;
5496 default:
5497 BUG();
5498 }
5499}
5500
5501void intel_display_power_put(struct drm_device *dev,
5502 enum intel_display_power_domain domain)
5503{
5504 struct drm_i915_private *dev_priv = dev->dev_private;
5505 struct i915_power_well *power_well = &dev_priv->power_well;
5506
5507 if (!HAS_POWER_WELL(dev))
5508 return;
5509
5510 switch (domain) {
5511 case POWER_DOMAIN_PIPE_A:
5512 case POWER_DOMAIN_TRANSCODER_EDP:
5513 return;
5514 case POWER_DOMAIN_VGA:
5515 case POWER_DOMAIN_PIPE_B:
5516 case POWER_DOMAIN_PIPE_C:
5517 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5518 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5519 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5520 case POWER_DOMAIN_TRANSCODER_A:
5521 case POWER_DOMAIN_TRANSCODER_B:
5522 case POWER_DOMAIN_TRANSCODER_C:
5523 spin_lock_irq(&power_well->lock);
5524 __intel_power_well_put(power_well);
5525 spin_unlock_irq(&power_well->lock);
5526 return;
5527 default:
5528 BUG();
5529 }
5530}
5531
5532static struct i915_power_well *hsw_pwr;
5533
5534/* Display audio driver power well request */
5535void i915_request_power_well(void)
5536{
5537 if (WARN_ON(!hsw_pwr))
5538 return;
5539
5540 spin_lock_irq(&hsw_pwr->lock);
5541 __intel_power_well_get(hsw_pwr);
5542 spin_unlock_irq(&hsw_pwr->lock);
5543}
5544EXPORT_SYMBOL_GPL(i915_request_power_well);
5545
5546/* Display audio driver power well release */
5547void i915_release_power_well(void)
5548{
5549 if (WARN_ON(!hsw_pwr))
5550 return;
5551
5552 spin_lock_irq(&hsw_pwr->lock);
5553 __intel_power_well_put(hsw_pwr);
5554 spin_unlock_irq(&hsw_pwr->lock);
5555}
5556EXPORT_SYMBOL_GPL(i915_release_power_well);
5557
5558int i915_init_power_well(struct drm_device *dev)
5559{
5560 struct drm_i915_private *dev_priv = dev->dev_private;
5561
5562 hsw_pwr = &dev_priv->power_well;
5563
5564 hsw_pwr->device = dev;
5565 spin_lock_init(&hsw_pwr->lock);
5566 hsw_pwr->count = 0;
5567
5568 return 0;
5569}
5570
5571void i915_remove_power_well(struct drm_device *dev)
5572{
5573 hsw_pwr = NULL;
5574}
5575
5576void intel_set_power_well(struct drm_device *dev, bool enable)
5577{
5578 struct drm_i915_private *dev_priv = dev->dev_private;
5579 struct i915_power_well *power_well = &dev_priv->power_well;
5580
5581 if (!HAS_POWER_WELL(dev))
5582 return;
5583
5584 if (!i915_disable_power_well && !enable)
5585 return;
5586
5587 spin_lock_irq(&power_well->lock);
5588
5589 /*
5590 * This function will only ever contribute one
5591 * to the power well reference count. i915_request
5592 * is what tracks whether we have or have not
5593 * added the one to the reference count.
5594 */
5595 if (power_well->i915_request == enable)
5596 goto out;
5597
5598 power_well->i915_request = enable;
5599
5600 if (enable)
5601 __intel_power_well_get(power_well);
5602 else
5603 __intel_power_well_put(power_well);
5604
5605 out:
5606 spin_unlock_irq(&power_well->lock);
5607}
5608
5609static void intel_resume_power_well(struct drm_device *dev)
5610{
5611 struct drm_i915_private *dev_priv = dev->dev_private;
5612 struct i915_power_well *power_well = &dev_priv->power_well;
5613
5614 if (!HAS_POWER_WELL(dev))
5615 return;
5616
5617 spin_lock_irq(&power_well->lock);
5618 __intel_set_power_well(dev, power_well->count > 0);
5619 spin_unlock_irq(&power_well->lock);
5620}
5621
5622/*
5623 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5624 * when not needed anymore. We have 4 registers that can request the power well
5625 * to be enabled, and it will only be disabled if none of the registers is
5626 * requesting it to be enabled.
5627 */
5628void intel_init_power_well(struct drm_device *dev)
5629{
5630 struct drm_i915_private *dev_priv = dev->dev_private;
5631
5632 if (!HAS_POWER_WELL(dev))
5633 return;
5634
5635 /* For now, we need the power well to be always enabled. */
5636 intel_set_power_well(dev, true);
5637 intel_resume_power_well(dev);
5638
5639 /* We're taking over the BIOS, so clear any requests made by it since
5640 * the driver is in charge now. */
5641 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5642 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5643}
5644
5645/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5646void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5647{
5648 hsw_disable_package_c8(dev_priv);
5649}
5650
5651void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5652{
5653 hsw_enable_package_c8(dev_priv);
5654}
5655
5656/* Set up chip specific power management-related functions */
5657void intel_init_pm(struct drm_device *dev)
5658{
5659 struct drm_i915_private *dev_priv = dev->dev_private;
5660
5661 if (I915_HAS_FBC(dev)) {
5662 if (HAS_PCH_SPLIT(dev)) {
5663 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5664 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5665 dev_priv->display.enable_fbc =
5666 gen7_enable_fbc;
5667 else
5668 dev_priv->display.enable_fbc =
5669 ironlake_enable_fbc;
5670 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5671 } else if (IS_GM45(dev)) {
5672 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5673 dev_priv->display.enable_fbc = g4x_enable_fbc;
5674 dev_priv->display.disable_fbc = g4x_disable_fbc;
5675 } else if (IS_CRESTLINE(dev)) {
5676 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5677 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5678 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5679 }
5680 /* 855GM needs testing */
5681 }
5682
5683 /* For cxsr */
5684 if (IS_PINEVIEW(dev))
5685 i915_pineview_get_mem_freq(dev);
5686 else if (IS_GEN5(dev))
5687 i915_ironlake_get_mem_freq(dev);
5688
5689 /* For FIFO watermark updates */
5690 if (HAS_PCH_SPLIT(dev)) {
5691 intel_setup_wm_latency(dev);
5692
5693 if (IS_GEN5(dev)) {
5694 if (dev_priv->wm.pri_latency[1] &&
5695 dev_priv->wm.spr_latency[1] &&
5696 dev_priv->wm.cur_latency[1])
5697 dev_priv->display.update_wm = ironlake_update_wm;
5698 else {
5699 DRM_DEBUG_KMS("Failed to get proper latency. "
5700 "Disable CxSR\n");
5701 dev_priv->display.update_wm = NULL;
5702 }
5703 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5704 } else if (IS_GEN6(dev)) {
5705 if (dev_priv->wm.pri_latency[0] &&
5706 dev_priv->wm.spr_latency[0] &&
5707 dev_priv->wm.cur_latency[0]) {
5708 dev_priv->display.update_wm = sandybridge_update_wm;
5709 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5710 } else {
5711 DRM_DEBUG_KMS("Failed to read display plane latency. "
5712 "Disable CxSR\n");
5713 dev_priv->display.update_wm = NULL;
5714 }
5715 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5716 } else if (IS_IVYBRIDGE(dev)) {
5717 if (dev_priv->wm.pri_latency[0] &&
5718 dev_priv->wm.spr_latency[0] &&
5719 dev_priv->wm.cur_latency[0]) {
5720 dev_priv->display.update_wm = ivybridge_update_wm;
5721 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5722 } else {
5723 DRM_DEBUG_KMS("Failed to read display plane latency. "
5724 "Disable CxSR\n");
5725 dev_priv->display.update_wm = NULL;
5726 }
5727 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5728 } else if (IS_HASWELL(dev)) {
5729 if (dev_priv->wm.pri_latency[0] &&
5730 dev_priv->wm.spr_latency[0] &&
5731 dev_priv->wm.cur_latency[0]) {
5732 dev_priv->display.update_wm = haswell_update_wm;
5733 dev_priv->display.update_sprite_wm =
5734 haswell_update_sprite_wm;
5735 } else {
5736 DRM_DEBUG_KMS("Failed to read display plane latency. "
5737 "Disable CxSR\n");
5738 dev_priv->display.update_wm = NULL;
5739 }
5740 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5741 } else
5742 dev_priv->display.update_wm = NULL;
5743 } else if (IS_VALLEYVIEW(dev)) {
5744 dev_priv->display.update_wm = valleyview_update_wm;
5745 dev_priv->display.init_clock_gating =
5746 valleyview_init_clock_gating;
5747 } else if (IS_PINEVIEW(dev)) {
5748 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5749 dev_priv->is_ddr3,
5750 dev_priv->fsb_freq,
5751 dev_priv->mem_freq)) {
5752 DRM_INFO("failed to find known CxSR latency "
5753 "(found ddr%s fsb freq %d, mem freq %d), "
5754 "disabling CxSR\n",
5755 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5756 dev_priv->fsb_freq, dev_priv->mem_freq);
5757 /* Disable CxSR and never update its watermark again */
5758 pineview_disable_cxsr(dev);
5759 dev_priv->display.update_wm = NULL;
5760 } else
5761 dev_priv->display.update_wm = pineview_update_wm;
5762 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5763 } else if (IS_G4X(dev)) {
5764 dev_priv->display.update_wm = g4x_update_wm;
5765 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5766 } else if (IS_GEN4(dev)) {
5767 dev_priv->display.update_wm = i965_update_wm;
5768 if (IS_CRESTLINE(dev))
5769 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5770 else if (IS_BROADWATER(dev))
5771 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5772 } else if (IS_GEN3(dev)) {
5773 dev_priv->display.update_wm = i9xx_update_wm;
5774 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5775 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5776 } else if (IS_I865G(dev)) {
5777 dev_priv->display.update_wm = i830_update_wm;
5778 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5779 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5780 } else if (IS_I85X(dev)) {
5781 dev_priv->display.update_wm = i9xx_update_wm;
5782 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5783 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5784 } else {
5785 dev_priv->display.update_wm = i830_update_wm;
5786 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5787 if (IS_845G(dev))
5788 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5789 else
5790 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5791 }
5792}
5793
5794int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5795{
5796 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5797
5798 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5799 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5800 return -EAGAIN;
5801 }
5802
5803 I915_WRITE(GEN6_PCODE_DATA, *val);
5804 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5805
5806 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5807 500)) {
5808 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5809 return -ETIMEDOUT;
5810 }
5811
5812 *val = I915_READ(GEN6_PCODE_DATA);
5813 I915_WRITE(GEN6_PCODE_DATA, 0);
5814
5815 return 0;
5816}
5817
5818int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5819{
5820 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5821
5822 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5823 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5824 return -EAGAIN;
5825 }
5826
5827 I915_WRITE(GEN6_PCODE_DATA, val);
5828 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5829
5830 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5831 500)) {
5832 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5833 return -ETIMEDOUT;
5834 }
5835
5836 I915_WRITE(GEN6_PCODE_DATA, 0);
5837
5838 return 0;
5839}
5840
5841int vlv_gpu_freq(int ddr_freq, int val)
5842{
5843 int mult, base;
5844
5845 switch (ddr_freq) {
5846 case 800:
5847 mult = 20;
5848 base = 120;
5849 break;
5850 case 1066:
5851 mult = 22;
5852 base = 133;
5853 break;
5854 case 1333:
5855 mult = 21;
5856 base = 125;
5857 break;
5858 default:
5859 return -1;
5860 }
5861
5862 return ((val - 0xbd) * mult) + base;
5863}
5864
5865int vlv_freq_opcode(int ddr_freq, int val)
5866{
5867 int mult, base;
5868
5869 switch (ddr_freq) {
5870 case 800:
5871 mult = 20;
5872 base = 120;
5873 break;
5874 case 1066:
5875 mult = 22;
5876 base = 133;
5877 break;
5878 case 1333:
5879 mult = 21;
5880 base = 125;
5881 break;
5882 default:
5883 return -1;
5884 }
5885
5886 val /= mult;
5887 val -= base / mult;
5888 val += 0xbd;
5889
5890 if (val > 0xea)
5891 val = 0xea;
5892
5893 return val;
5894}
5895
5896void intel_pm_init(struct drm_device *dev)
5897{
5898 struct drm_i915_private *dev_priv = dev->dev_private;
5899
5900 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5901 intel_gen6_powersave_work);
5902}
5903